Year of publication | Name [reference] | Abbrevation | Characteristics | Criterion |
N/A | Equal Width | EW | unsupervised, splitting, global, direct | N/A |
N/A | Equal Frequency | EF | unsupervised, splitting, global, direct | N/A |
1987 | Maximum Entropy [48] | ME | supervised, splitting, global, direct | Inf. Entropy |
1987 | Paterson Niblett [39] | PN | supervised, splitting, global, direct | Inf. Entropy |
1993 | IEM [14] | IM | supervised, splitting, local, incremental | Inf. Entropy |
1995 | CADD [7] | CD | supervised, splitting/merging, global, direct | CAIR |
2002 | Modified Chi2 [42] | MC | supervised, merging, global, incremental | Chi2 |
2003 | FCAIM [27] | FC | supervised, splitting, global, incremental | CAIM |
2004 | Khiops [4] | Kh | supervised, merging, global, incremental | Chi2 |
2004 | CAIM [26] | CM | supervised, splitting, global, incremental | CAIM |
2006 | MODL [5] | MO | supervised, merging, global, incremental | MODL |
2008 | CACC [43] | CC | supervised, splitting, global, incremental | CACC |
Name [reference] | Abb. | Year of Publication | Key characteristics | Complexity (tr/cl) |
Naive Bayes [30] | NB | 1992 | minimizes the prediction error by selecting argmax(y, P(y | x)); assumes that the features are independent given the class label; uses Gaussian distribution to model continuous features; | O(tn) / O(kn) |
SBC [31] | n/a | 1994 | uses forward selection to find a good subset of attributes and then uses this subset to construct a naive Bayes; | O(tn3) / O(kn) |
FNB [20] | FNB | 1995 | variant of the NB algorithm which improves the estimation of probability distributions for continuous features using a set of Gaussian kernels; | O(tn) / O(kn) |
SP-TAN [17] | n/a | 1997 | assumes that each feature depends on the class label and one other attribute (parent), which is selected based on conditional mutual information; accepts only discrete or nominal features; | O(tkn3) / O(kn) |
LBR [52] | LB | 2000 | relaxes the assumption of feature independence by choosing a subset of features W, and minimizing the prediction error by selecting ; accepts only discrete or nominal features; | O(tn) / O(tkn3) |
AODE [46] | A | 2005 | builds a one-dependence classifier for each attribute, in which the attribute is set to be the parent of all other attributes; accepts only discrete or nominal features; | O(tn2) / O(kn2) |
HNB [51] | H | 2005 | creates a hidden parent for each attribute, which represents the influences from all other attributes; accepts only discrete or nominal features; | O(tn2+kn2v2) / O(kn2) |
WAODE [19] | WA | 2006 | extends the AODE algorithm by assigning different weights to different tree augmented NB in the aggregate of AODE; accepts only discrete or nominal features; | O(tn2) / O(kn2) |
AODEsr [15] | Asr | 2006 | extends the AODE algorithm by using LE (Lazy Elimination) technique to eliminate all related attributes at the classification time; accepts only discrete or nominal features; | O(tn2) / O(kn2) |
Dataset | type | Number of continuous attributes | Number of attributes | Number of classes | Number of examples | Avg. nbr of distinct values |
anneal | mixed | 6 | 38 | 6 | 898 | 23.38 |
colic | mixed | 7 | 22 | 2 | 368 | 37.87 |
credit-a | mixed | 6 | 15 | 2 | 690 | 124 |
cylinder-bands | mixed | 18 | 39 | 2 | 540 | 44.36 |
heart-c | mixed | 6 | 13 | 2 | 303 | 47.98 |
hypothyroid | mixed | 7 | 29 | 4 | 3772 | 130 |
sick | mixed | 7 | 29 | 2 | 3772 | 130 |
vowel | mixed | 10 | 13 | 11 | 990 | 444 |
glass | numerical | 9 | 9 | 7 | 214 | 63.8 |
ionosphere | numerical | 34 | 34 | 2 | 351 | 121 |
page-blocks | numerical | 10 | 10 | 5 | 5473 | 665 |
pendigits | numerical | 16 | 16 | 10 | 10992 | 99.99 |
sat | numerical | 36 | 36 | 7 | 6433 | 75.01 |
segment | numerical | 19 | 19 | 7 | 2310 | 451 |
sonar | numerical | 60 | 60 | 2 | 208 | 97.85 |
vehicle | numerical | 18 | 18 | 4 | 846 | 66.28 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place |
Equal Width | 0.058 (0.002) 9 | 0.023 (0.004) 7 | 0.029 (0.003) 12 | 0.009 (0.001) 8 | 0.037 (0.005) 9 | 0.053 (0.005) 8 | 0.023 (0.005) 8 | 0.092 (0.002) 7 | 0.127 (0.008) 8 | 0.076 (0.004) 9 | 0.042 (0.007) 8 | 0.125 (0.001) 8 | 0.201 (0.002) 6 | 0.168 (0.001) 9 | 0.036 (0.003) 6 | 0.055 (0.003) 10 | 8.25 |
Equal Frequency | 0.062 (0.004) 8 | 0.022 (0.004) 8 | 0.037 (0.004) 9 | 0.01 (0.001) 7 | 0.036 (0.005) 10 | 0.036 (0.002) 9 | 0.021 (0.002) 9 | 0.092 (0.001) 8 | 0.127 (0.009) 7 | 0.073 (0.005) 10 | 0.041 (0.002) 9 | 0.125 (0.001) 7 | 0.2 (0.002) 8 | 0.168 (0.002) 8 | 0.034 (0.003) 7 | 0.057 (0.002) 9 | 8.31 |
Maximum Entropy | 0.012 (0.004) 12 | 0.01 (0.003) 11 | 0.034 (0.003) 10 | 0.006 (0.001) 10 | 0.022 (0.003) 12 | 0.026 (0.001) 11 | 0.014 (0.001) 10 | 0.086 (0.001) 9 | 0.073 (0.011) 12 | 0.068 (0.004) 11 | 0.035 (0.002) 12 | 0.12 (0.001) 9 | 0.159 (0.002) 11 | 0.159 (0.002) 11 | 0.023 (0.003) 9 | 0.044 (0.002) 12 | 10.75 |
Paterson - Niblett | 0.066 (0.002) 7 | 0.02 (0.009) 9 | 0.04 (0.008) 8 | 0.011 (0.001) 6 | 0.04 (0.009) 8 | 0.158 (0.01) 2 | 0.063 (0.006) 5 | 0.062 (0.001) 12 | 0.152 (0.009) 5 | 0.085 (0.005) 7 | 0.087 (0.009) 6 | 0.115 (0.001) 10 | 0.171 (0.002) 9 | 0.157 (0.002) 12 | 0.032 (0.008) 8 | 0.067 (0.004) 7 | 7.56 |
IEM | 0.07 (0.006) 6 | 0.009 (0.008) 12 | 0.049 (0.008) 7 | 0.003 (0.003) 12 | 0.047 (0.007) 6 | 0.135 (0.011) 6 | 0.071 (0.006) 4 | 0.073 (0.003) 11 | 0.113 (0.015) 9 | 0.103 (0.009) 4 | 0.108 (0.01) 5 | 0.134 (0.001) 2 | 0.201 (0.001) 7 | 0.228 (0.002) 5 | 0.02 (0.008) 11 | 0.08 (0.005) 4 | 6.94 |
CADD | 0.018 (0.005) 11 | 0.026 (0.007) 6 | 0.053 (0.005) 3 | 0.016 (0.001) 2 | 0.04 (0.004) 7 | 0.015 (0.012) 12 | 0.008 (0.001) 12 | 0.099 (0.001) 5 | 0.103 (0.014) 10 | 0.111 (0.007) 3 | 0.037 (0.002) 10 | 0.138 (0.002) 1 | 0.211 (0.003) 4 | 0.187 (0.002) 7 | 0.074 (0.004) 2 | 0.063 (0.003) 8 | 6.44 |
ModifiedChi2 | 0.088 (0.004) 1 | 0.032 (0.02) 5 | 0.053 (0.006) 2 | 0.005 (0.002) 11 | 0.059 (0.006) 2 | 0.112 (0.012) 7 | 0.06 (0.018) 7 | 0.379 (0.001) 1 | 0.272 (0.009) 1 | 0.095 (0.027) 5 | 0.067 (0.006) 7 | 0.103 (0.001) 12 | 0.17 (0.04) 10 | 0.217 (0.001) 6 | 0.02 (0.005) 10 | 0.083 (0.005) 1 | 5.5 |
CAIM | 0.076 (0.004) 4 | 0.035 (0.009) 3 | 0.052 (0.007) 4 | 0.015 (0.001) 3 | 0.053 (0.007) 3 | 0.138 (0.009) 4 | 0.074 (0.006) 2 | 0.104 (0.002) 3 | 0.179 (0.008) 4 | 0.087 (0.004) 6 | 0.139 (0.01) 2 | 0.131 (0.001) 5 | 0.212 (0.003) 2 | 0.229 (0.002) 3 | 0.039 (0.006) 3 | 0.074 (0.004) 5 | 3.5 |
FCAIM | 0.08 (0.004) 2 | 0.035 (0.009) 3 | 0.052 (0.007) 4 | 0.015 (0.001) 3 | 0.053 (0.007) 3 | 0.138 (0.009) 4 | 0.074 (0.006) 2 | 0.104 (0.002) 3 | 0.179 (0.008) 3 | 0.084 (0.004) 8 | 0.138 (0.01) 3 | 0.131 (0.001) 5 | 0.212 (0.003) 2 | 0.229 (0.002) 3 | 0.039 (0.006) 3 | 0.074 (0.004) 5 | 3.5 |
Khiops | 0.048 (0.005) 10 | 0.013 (0.005) 10 | 0.032 (0.004) 11 | 0.007 (0.001) 9 | 0.031 (0.005) 11 | 0.026 (0.001) 10 | 0.013 (0.001) 11 | 0.082 (0.002) 10 | 0.085 (0.012) 11 | 0.049 (0.006) 12 | 0.037 (0.002) 11 | 0.111 (0.001) 11 | 0.145 (0.001) 12 | 0.168 (0.002) 10 | 0.019 (0.004) 12 | 0.053 (0.003) 11 | 10.75 |
MODL | 0.07 (0.005) 5 | 0.035 (0.012) 2 | 0.051 (0.007) 6 | 0.012 (0.002) 5 | 0.053 (0.007) 5 | 0.142 (0.007) 3 | 0.063 (0.016) 6 | 0.096 (0.003) 6 | 0.147 (0.011) 6 | 0.126 (0.009) 2 | 0.124 (0.008) 4 | 0.133 (0.001) 3 | 0.204 (0.001) 5 | 0.23 (0.003) 2 | 0.039 (0.007) 5 | 0.083 (0.005) 3 | 4.25 |
CACC | 0.079 (0.004) 3 | 0.056 (0.007) 1 | 0.055 (0.007) 1 | 0.027 (0.002) 1 | 0.063 (0.006) 1 | 0.16 (0.008) 1 | 0.077 (0.006) 1 | 0.336 (0.012) 2 | 0.23 (0.018) 2 | 0.127 (0.011) 1 | 0.145 (0.007) 1 | 0.131 (0.001) 4 | 0.214 (0.002) 1 | 0.235 (0.003) 1 | 0.079 (0.007) 1 | 0.083 (0.005) 2 | 1.5 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place |
Equal Width | 2.202 (0.064) 6 | 2.788 (0.042) 9 | 3.178 (0.059) 8 | 2.674 (0.056) 8 | 3.169 (0.074) 10 | 2.153 (0.171) 9 | 2.776 (0.214) 8 | 6.299 (0.015) 7 | 3.353 (0.091) 5 | 4.175 (0.05) 10 | 2.561 (0.069) 7 | 5.549 (0.007) 8 | 4.056 (0.014) 6 | 4.715 (0.012) 7 | 4.314 (0.055) 9 | 3.745 (0.032) 8 | 7.81 |
Equal Frequency | 2.417 (0.067) 10 | 3.275 (0.054) 12 | 4.406 (0.029) 11 | 3.124 (0.028) 11 | 3.491 (0.038) 11 | 3.256 (0.043) 10 | 4.093 (0.028) 10 | 6.659 (0.008) 9 | 4.069 (0.034) 11 | 4.674 (0.068) 12 | 4.981 (0.021) 11 | 5.565 (0.008) 9 | 4.082 (0.011) 7 | 5.728 (0.018) 10 | 4.872 (0.025) 11 | 4.014 (0.021) 11 | 10.38 |
Maximum Entropy | 1.849 (0.125) 2 | 3.024 (0.058) 11 | 4.581 (0.036) 12 | 3.245 (0.023) 12 | 3.504 (0.035) 12 | 3.843 (0.037) 11 | 4.716 (0.028) 12 | 6.694 (0.01) 10 | 3.504 (0.086) 8 | 4.654 (0.082) 11 | 5.631 (0.026) 12 | 4.722 (0.008) 2 | 3.826 (0.008) 3 | 5.875 (0.016) 11 | 4.893 (0.022) 12 | 3.964 (0.033) 10 | 9.44 |
Paterson - Niblett | 2.183 (0.145) 5 | 1.268 (0.065) 2 | 1.287 (0.046) 1 | 1.16 (0.045) 3 | 1.325 (0.055) 1 | 0.576 (0.029) 1 | 0.407 (0.012) 1 | 4.425 (0.007) 2 | 2.73 (0.103) 3 | 1.264 (0.044) 1 | 0.71 (0.033) 1 | 4.841 (0.028) 3 | 3.25 (0.059) 1 | 3.288 (0.006) 1 | 1.253 (0.03) 3 | 3.293 (0.052) 3 | 2 |
IEM | 1.919 (0.122) 4 | 1.032 (0.076) 1 | 1.532 (0.141) 2 | 1 (0.036) 1 | 1.437 (0.082) 2 | 0.909 (0.09) 2 | 0.847 (0.071) 2 | 4.196 (0.064) 1 | 2.418 (0.096) 1 | 1.584 (0.119) 4 | 1.743 (0.096) 6 | 5.383 (0.032) 4 | 4.492 (0.035) 10 | 4.219 (0.038) 4 | 1.145 (0.059) 1 | 2.957 (0.063) 1 | 2.88 |
CADD | 1.727 (0.142) 1 | 2.754 (0.072) 8 | 4.166 (0.065) 10 | 2.827 (0.037) 9 | 3.112 (0.08) 9 | 1.835 (0.211) 8 | 3.663 (0.076) 9 | 6.609 (0.009) 8 | 3.344 (0.072) 4 | 4.028 (0.057) 9 | 4.472 (0.109) 9 | 4.618 (0.024) 1 | 3.539 (0.031) 2 | 5.53 (0.021) 9 | 4.532 (0.045) 10 | 3.741 (0.049) 7 | 7.06 |
ModifiedChi2 | 2.875 (0.075) 12 | 1.492 (0.425) 3 | 2.527 (0.419) 7 | 1.057 (0.057) 2 | 1.872 (0.251) 6 | 1.495 (0.275) 7 | 2.032 (0.61) 7 | 8.63 (0.011) 12 | 5.217 (0.053) 12 | 1.747 (0.395) 5 | 4.389 (0.429) 8 | 8.138 (0.006) 12 | 5.789 (1.559) 11 | 7.814 (0.02) 12 | 1.179 (0.041) 2 | 3.851 (0.124) 9 | 7.94 |
CAIM | 2.273 (0.079) 8 | 1.533 (0.085) 4 | 1.79 (0.026) 3 | 1.367 (0.105) 4 | 1.77 (0.098) 4 | 1.206 (0.113) 4 | 0.888 (0.062) 3 | 5.588 (0.101) 4 | 3.481 (0.102) 7 | 1.396 (0.105) 3 | 1.24 (0.057) 3 | 5.518 (0.027) 6 | 4.048 (0.019) 4 | 4.123 (0.017) 2 | 1.719 (0.078) 4 | 3.44 (0.061) 5 | 4.25 |
FCAIM | 2.212 (0.084) 7 | 1.533 (0.085) 4 | 1.79 (0.026) 3 | 1.367 (0.105) 4 | 1.77 (0.098) 4 | 1.206 (0.113) 4 | 0.888 (0.062) 3 | 5.588 (0.101) 4 | 3.477 (0.103) 6 | 1.389 (0.115) 2 | 1.253 (0.062) 4 | 5.518 (0.027) 6 | 4.048 (0.019) 4 | 4.123 (0.017) 2 | 1.719 (0.078) 4 | 3.44 (0.061) 5 | 4.12 |
Khiops | 2.539 (0.091) 11 | 2.901 (0.154) 10 | 3.353 (0.069) 9 | 3.093 (0.058) 10 | 2.938 (0.1) 8 | 4.421 (0.078) 12 | 4.324 (0.049) 11 | 6.141 (0.05) 6 | 3.583 (0.045) 9 | 2.938 (0.078) 8 | 4.867 (0.052) 10 | 6.925 (0.016) 11 | 6.353 (0.025) 12 | 5.504 (0.041) 8 | 2.805 (0.054) 8 | 4.853 (0.049) 12 | 9.69 |
MODL | 1.853 (0.103) 3 | 1.642 (0.069) 6 | 1.939 (0.102) 6 | 1.498 (0.063) 6 | 1.761 (0.106) 3 | 0.926 (0.112) 3 | 1.001 (0.079) 5 | 5.003 (0.093) 3 | 2.721 (0.102) 2 | 2.337 (0.088) 7 | 1.503 (0.098) 5 | 5.503 (0.016) 5 | 4.407 (0.031) 9 | 4.295 (0.029) 6 | 1.73 (0.039) 6 | 3.273 (0.064) 2 | 4.81 |
CACC | 2.342 (0.151) 9 | 2.053 (0.197) 7 | 1.922 (0.254) 5 | 2.134 (0.131) 7 | 2.134 (0.28) 7 | 1.251 (0.255) 6 | 1.287 (0.401) 6 | 7.976 (0.114) 11 | 3.729 (0.229) 10 | 1.912 (0.103) 6 | 1.169 (0.047) 2 | 5.614 (0.012) 10 | 4.089 (0.02) 8 | 4.224 (0.126) 5 | 2.559 (0.288) 7 | 3.434 (0.062) 4 | 6.88 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place |
Equal Width | 1.095 (0.153) 3 | 0.359 (0.039) 2 | 0.784 (0.11) 1 | 1.514 (0.202) 1 | 0.511 (0.43) 3 | 5.596 (0.876) 2 | 5.223 (0.117) 2 | 1.818 (0.184) 1 | 0.296 (0.026) 2 | 2.137 (0.36) 1 | 12.28 (1.563) 1 | 52.84 (8.61) 2 | 45.75 (7.455) 1 | 7.64 (0.055) 1 | 2.35 (0.173) 2 | 2.516 (0.027) 2 | 1.69 |
Equal Frequency | 1.049 (0.166) 1 | 0.341 (0.046) 1 | 0.817 (0.143) 2 | 1.554 (0.123) 2 | 0.319 (0.045) 1 | 5.131 (0.552) 1 | 4.727 (0.438) 1 | 2.056 (0.025) 2 | 0.289 (0.019) 1 | 2.196 (0.376) 2 | 13.05 (2.151) 2 | 44.86 (5.504) 1 | 48.23 (6.334) 2 | 7.687 (0.061) 2 | 2.23 (0.212) 1 | 2.508 (0.01) 1 | 1.44 |
Maximum Entropy | 1.309 (0.287) 5 | 1.336 (0.173) 6 | 17.2 (3.409) 8 | 11.4 (1.935) 8 | 2.928 (0.42) 8 | 15.53 (4.078) 7 | 62.14 (22.4) 9 | 44.65 (5.945) 3 | 3.028 (0.348) 3 | 66.71 (8.682) 9 | 335 (56.52) 8 | 64.39 (2.616) 4 | 69.37 (3.932) 3 | 293 (45.88) 8 | 53.95 (2.84) 8 | 14.51 (2.415) 8 | 6.56 |
Paterson - Niblett | 7.204 (0.874) 10 | 1.921 (0.129) 8 | 5.075 (0.747) 7 | 8.292 (1.13) 7 | 2.435 (0.323) 7 | 45.13 (13.22) 9 | 9.039 (1.41) 6 | 1220 (4.861) 10 | 19.55 (0.64) 9 | 36.48 (10.74) 8 | 545 (107) 9 | 1225 (64.08) 10 | 358 (30.33) 10 | 556 (36.09) 9 | 39.49 (1.366) 7 | 40.2 (7.495) 9 | 8.44 |
IEM | 2.353 (0.28) 7 | 0.812 (0.033) 5 | 2.178 (0.192) 5 | 3.864 (0.478) 5 | 1.111 (0.152) 5 | 10.1 (1.304) 5 | 8.878 (1.515) 5 | 58.31 (2.886) 6 | 7.282 (0.77) 4 | 8.75 (0.603) 5 | 36.16 (2.401) 5 | 100 (0.72) 8 | 119 (35.88) 9 | 113 (13.29) 5 | 9.702 (0.359) 5 | 13.83 (1.835) 7 | 5.69 |
CADD | 1.895 (0.326) 6 | 7.301 (1.139) 10 | 204 (22.14) 12 | 87.09 (16.5) 11 | 22.15 (2.933) 12 | 131 (17.44) 10 | 354 (63.09) 10 | 386 (45.68) 9 | 8.049 (1.392) 5 | 1107 (281) 12 | 2147 (0) 10 | 79.37 (5.338) 7 | 112 (13.08) 8 | 2147 (0) 11 | 618 (19.57) 12 | 114 (13.4) 10 | 9.69 |
ModifiedChi2 | 35.52 (7.737) 11 | 28.4 (3.483) 12 | 102 (5.673) 10 | 85.79 (14.22) 10 | 16.92 (2.811) 11 | 744 (68.02) 11 | 774 (204) 11 | 192 (54.41) 8 | 10.33 (2.732) 7 | 181 (23.28) 11 | 3947 (384) 11 | 9193 (2645) 11 | 11184 (4036) 12 | 769 (266) 10 | 354 (299) 11 | 203 (22.08) 11 | 10.5 |
CAIM | 1.291 (0.048) 4 | 0.508 (0.02) 4 | 1.095 (0.03) 4 | 1.913 (0.046) 3 | 0.584 (0.022) 4 | 6.494 (0.661) 4 | 6.706 (0.49) 4 | 71.74 (34.03) 7 | 16.16 (2.28) 8 | 6.503 (0.175) 4 | 32.3 (1.587) 4 | 79.09 (25) 6 | 86.25 (27.69) 5 | 43.32 (2.254) 4 | 5.332 (0.819) 4 | 4.059 (0.12) 4 | 4.56 |
FCAIM | 1.072 (0.012) 2 | 0.419 (0.007) 3 | 0.955 (0.012) 3 | 2.048 (0.281) 4 | 0.5 (0.007) 2 | 6.294 (0.773) 3 | 5.734 (0.733) 3 | 49.46 (4.401) 4 | 9.862 (2.55) 6 | 4.757 (0.836) 3 | 20.36 (0.284) 3 | 59.62 (0.793) 3 | 89.49 (46.11) 6 | 29.77 (0.184) 3 | 4.395 (0.051) 3 | 3.973 (0.028) 3 | 3.38 |
Khiops | 6.912 (0.387) 9 | 2.463 (0.15) 9 | 3.583 (0.082) 6 | 4.037 (0.113) 6 | 1.132 (0.047) 6 | 10.38 (0.139) 6 | 9.524 (0.139) 7 | 54.35 (1.552) 5 | 20.47 (9.381) 10 | 16.09 (0.741) 6 | 113 (7.202) 7 | 74.77 (0.782) 5 | 80.54 (0.695) 4 | 123 (6.012) 6 | 18.95 (0.348) 6 | 7.904 (0.105) 5 | 6.44 |
MODL | 43.98 (4.409) 12 | 10.2 (0.846) 11 | 115 (23.09) 11 | 87.84 (4.445) 12 | 9.338 (1.089) 10 | 909 (73.31) 12 | 865 (116) 12 | 3549 (286) 12 | 37.7 (6.081) 11 | 80.93 (7.322) 10 | 22160 (3021) 12 | 9770 (775) 12 | 6284 (183) 11 | 9381 (973) 12 | 77.79 (2.53) 9 | 363 (42.3) 12 | 11.31 |
CACC | 2.856 (0.952) 8 | 1.427 (1.076) 7 | 23.01 (65.63) 9 | 22.41 (14.51) 9 | 5.967 (8.5) 9 | 15.65 (10.47) 8 | 31.84 (31.91) 8 | 2147 (0) 11 | 64.34 (28.5) 12 | 16.95 (2.127) 7 | 92.37 (6.94) 6 | 156 (0.738) 9 | 98.47 (7.998) 7 | 277 (355) 7 | 222 (98.74) 10 | 10.78 (1.338) 6 | 8.31 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place |
Equal Width | 6 (0) 9 | 6.714 (0.178) 11 | 21.17 (0.401) 11 | 7.856 (0.184) 11 | 8.617 (0.158) 11 | 11.29 (0.202) 10 | 22.11 (0.361) 11 | 14.03 (0.067) 7 | 7 (0) 8 | 20.73 (0.795) 11 | 44.82 (0.349) 10 | 10 (0) 5 | 7 (0) 3 | 22.63 (0.186) 11 | 16.76 (0.099) 11 | 6.683 (0.053) 10 | 9.38 |
Equal Frequency | 6 (0) 9 | 6.714 (0.178) 11 | 21.17 (0.401) 11 | 7.856 (0.184) 11 | 8.617 (0.158) 11 | 11.29 (0.202) 10 | 22.11 (0.361) 11 | 14.03 (0.067) 7 | 7 (0) 8 | 20.73 (0.795) 11 | 44.82 (0.349) 10 | 10 (0) 5 | 7 (0) 3 | 22.23 (0.189) 10 | 16.76 (0.099) 11 | 6.683 (0.053) 10 | 9.31 |
Maximum Entropy | 1.933 (0.274) 2 | 5.586 (0.238) 10 | 19.12 (0.343) 10 | 7.15 (0.126) 10 | 8.383 (0.112) 10 | 10.7 (0.196) 9 | 20.74 (0.392) 10 | 14.03 (0.067) 7 | 3.467 (0.155) 4 | 19.21 (1.194) 10 | 44.48 (0.333) 9 | 3.969 (0.033) 2 | 4 (0) 2 | 22.13 (0.189) 9 | 16.76 (0.097) 10 | 5.994 (0.049) 8 | 7.62 |
Paterson - Niblett | 5.817 (0.346) 7 | 2.3 (0.171) 6 | 2 (0) 2 | 2.167 (0.114) 6 | 2.033 (0.07) 4 | 4.957 (0.901) 7 | 1.286 (0.165) 1 | 14.98 (0.042) 10 | 5 (0) 6 | 2.238 (0.258) 3 | 8.53 (0.931) 6 | 19.59 (0.773) 10 | 11.21 (0.608) 10 | 6.763 (0.2) 3 | 2.033 (0.052) 5 | 4.922 (0.272) 6 | 5.75 |
IEM | 3.4 (0.402) 4 | 1.129 (0.081) 1 | 1.717 (0.209) 1 | 1.078 (0.065) 1 | 1.567 (0.086) 1 | 2.157 (0.171) 1 | 1.529 (0.096) 2 | 3.03 (0.177) 1 | 1.989 (0.269) 1 | 2.509 (0.164) 4 | 4.95 (0.314) 2 | 8.488 (0.21) 3 | 9.381 (0.252) 9 | 7.242 (0.197) 4 | 1.222 (0.08) 1 | 3.017 (0.126) 1 | 2.31 |
CADD | 1.833 (0.272) 1 | 5.357 (0.236) 9 | 17.82 (0.474) 9 | 6.572 (0.18) 9 | 7.567 (0.335) 9 | 3.8 (0.5) 5 | 15.71 (0.628) 9 | 13.99 (0.074) 6 | 3.367 (0.166) 3 | 14.75 (0.462) 9 | 29.15 (1.115) 8 | 3.938 (0.059) 1 | 3.853 (0.049) 1 | 19.41 (0.172) 8 | 16.16 (0.181) 9 | 5.811 (0.137) 7 | 6.44 |
ModifiedChi2 | 14.88 (0.599) 12 | 2.214 (1.311) 4 | 5.15 (2.636) 7 | 1.178 (0.101) 2 | 2.9 (1.019) 6 | 4.329 (1.167) 6 | 7.271 (3.889) 7 | 383 (2.546) 12 | 44.74 (1.501) 12 | 2.674 (0.829) 5 | 48.48 (12.72) 12 | 98.12 (0.17) 12 | 38.94 (28.31) 12 | 295 (2.148) 12 | 1.267 (0.064) 2 | 6.656 (0.831) 9 | 8.25 |
CAIM | 5.983 (0.053) 8 | 2 (0) 2 | 2 (0) 2 | 1.978 (0.029) 3 | 2 (0) 2 | 3.429 (0) 3 | 1.714 (0) 3 | 11 (0) 4 | 7.011 (0.035) 10 | 1.912 (0) 1 | 5 (0) 3 | 10 (0) 5 | 7 (0) 3 | 6.132 (0.028) 1 | 2 (0) 3 | 4 (0) 2 | 3.44 |
FCAIM | 5.017 (0.214) 6 | 2 (0) 2 | 2 (0) 2 | 1.978 (0.029) 3 | 2 (0) 2 | 3.429 (0) 3 | 1.714 (0) 3 | 11 (0) 4 | 6.878 (0.152) 7 | 1.912 (0) 1 | 5 (0) 3 | 10 (0) 5 | 7 (0) 3 | 6.132 (0.028) 1 | 2 (0) 3 | 4 (0) 2 | 3.12 |
Khiops | 4.65 (0.183) 5 | 4.657 (0.443) 8 | 6.567 (0.326) 8 | 5.55 (0.26) 7 | 4.817 (0.364) 7 | 15.83 (0.663) 12 | 15.57 (0.495) 8 | 9.96 (0.363) 3 | 3.956 (0.107) 5 | 4.926 (0.208) 8 | 23.77 (0.76) 7 | 28.45 (0.444) 11 | 29.39 (0.414) 11 | 15.04 (0.517) 7 | 4.115 (0.126) 7 | 9.644 (0.246) 12 | 7.88 |
MODL | 3.233 (0.344) 3 | 2.257 (0.113) 5 | 2.617 (0.261) 5 | 2.033 (0.054) 5 | 2.183 (0.214) 5 | 2.243 (0.136) 2 | 1.986 (0.125) 5 | 5.73 (0.279) 2 | 2.944 (0.307) 2 | 4.144 (0.134) 7 | 4.76 (0.344) 1 | 8.875 (0.121) 4 | 8.717 (0.176) 8 | 7.289 (0.211) 5 | 2.235 (0.063) 6 | 4.006 (0.142) 4 | 4.31 |
CACC | 6.95 (0.981) 11 | 4.1 (1.321) 7 | 4.033 (5.964) 6 | 6.322 (1.127) 8 | 5.333 (3.599) 8 | 5.743 (2.569) 8 | 5.871 (4.124) 6 | 306 (15.72) 11 | 15.42 (4.301) 11 | 3.244 (0.278) 6 | 5.05 (0.053) 5 | 10 (0) 5 | 7 (0) 3 | 9.784 (5.852) 6 | 11.19 (3.615) 8 | 4.289 (0.11) 5 | 7.12 |
Figure 3. WDLC values for all considered setups. The values are based on comparison with all other setups except the setups that include the same classifier. The setups include NB or FNB executed on the sixteen raw datasets and each of the six classifiers on the sixteen datasets discretized by each of the twelve algorithms. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Figure 4. WDLC values for all considered setups. The values are based on comparison among setups that are based on the same classifier. The setups include NB or FNB executed on the sixteen raw datasets and each of the six classifiers on the sixteen datasets discretized by each of the twelve algorithms. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Table 8. Number of wins, draws, and losses, respectively, achieved by a setup in a given row when compared against all setups (using all discretization methods) for a given classifier shown in the column. The setups include NB or FNB classifier run on the sixteen raw datasets and each of the six classifiers run on the sixteen datasets discretized by each of the twelve discretization algorithms. Bolded scores show WDLC scores greater than 0.2; underlined scores printed in italic correspond to WDLC scores smaller than -0.2. Gray shading indicates comparison between setups that use the same classifier. The last column contains the aggregated, over all other setups, scores for a given setup. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Original Data | Discretized data | ||||||||||
NB | FNB | NB | LBR | AODE | HNB | AODEsr | WAODE | Aggregated | (W-L)/(W+D+L) | ||
Original Data | NB | - | 0/9/7 | 8/108/76 | 5/107/80 | 5/92/95 | 15/77/100 | 7/75/110 | 28/79/85 | 68/547/553 | -0.415 |
FNB | 7/9/0 | - | 32/137/23 | 8/121/63 | 6/112/74 | 25/92/75 | 10/95/87 | 39/88/65 | 127/654/387 | -0.223 | |
NB | EW | 5/10/1 | 1/11/4 | 18/138/20 | 5/115/72 | 3/108/81 | 19/83/90 | 5/81/106 | 28/85/79 | 84/631/453 | -0.316 |
EF | 8/8/0 | 1/12/3 | 22/133/21 | 10/115/67 | 7/118/67 | 31/83/78 | 10/90/92 | 43/69/80 | 132/628/408 | -0.236 | |
ME | 3/12/1 | 1/12/3 | 9/106/61 | 7/96/89 | 5/86/101 | 27/70/95 | 9/75/108 | 40/64/88 | 101/521/546 | -0.381 | |
PN | 5/9/2 | 2/11/3 | 15/119/42 | 9/118/65 | 6/113/73 | 29/89/74 | 11/100/81 | 42/77/73 | 119/636/413 | -0.252 | |
IM | 8/7/1 | 3/11/2 | 33/134/9 | 13/122/57 | 13/116/63 | 36/84/72 | 15/98/79 | 45/75/72 | 166/647/355 | -0.162 | |
CD | 5/10/1 | 1/11/4 | 9/111/56 | 6/92/94 | 5/79/108 | 24/63/105 | 5/76/111 | 28/80/84 | 83/522/563 | -0.411 | |
MC | 5/10/1 | 2/11/3 | 25/122/29 | 6/129/57 | 9/111/72 | 29/90/73 | 11/96/85 | 38/86/68 | 125/655/388 | -0.225 | |
CM | 8/8/0 | 3/11/2 | 31/145/0 | 11/133/48 | 10/123/59 | 35/96/61 | 14/112/66 | 43/85/64 | 155/713/300 | -0.124 | |
FC | 7/9/0 | 2/12/2 | 33/142/1 | 11/133/48 | 11/123/58 | 35/93/64 | 15/107/70 | 44/81/67 | 158/700/310 | -0.13 | |
Kh | 6/10/0 | 1/13/2 | 17/124/35 | 6/102/84 | 5/88/99 | 24/75/93 | 7/73/112 | 31/73/88 | 97/558/513 | -0.356 | |
MO | 8/8/0 | 3/11/2 | 42/134/0 | 16/126/50 | 11/123/58 | 36/90/66 | 17/100/75 | 47/73/72 | 180/665/323 | -0.122 | |
CC | 8/7/1 | 3/11/2 | 30/136/10 | 9/132/51 | 10/119/63 | 33/90/69 | 14/108/70 | 44/81/67 | 151/684/333 | -0.156 | |
LBR | EW | 6/9/1 | 5/10/1 | 52/126/14 | 16/133/27 | 13/109/70 | 32/100/60 | 14/98/80 | 42/86/64 | 180/671/317 | -0.117 |
EF | 8/8/0 | 4/12/0 | 68/123/1 | 22/134/20 | 16/135/41 | 41/109/42 | 17/118/57 | 52/89/51 | 228/728/212 | 0.014 | |
ME | 7/9/0 | 6/9/1 | 53/131/8 | 13/126/37 | 9/129/54 | 31/101/60 | 10/103/79 | 43/89/60 | 172/697/299 | -0.109 | |
PN | 7/8/1 | 5/10/1 | 54/120/18 | 10/119/47 | 11/125/56 | 36/99/57 | 12/119/61 | 42/93/57 | 177/693/298 | -0.104 | |
IM | 7/9/0 | 5/11/0 | 69/121/2 | 35/135/6 | 25/138/29 | 46/98/48 | 30/106/56 | 57/84/51 | 274/702/192 | 0.07 | |
CD | 5/10/1 | 4/10/2 | 52/116/24 | 15/124/37 | 8/116/68 | 31/90/71 | 11/91/90 | 37/94/61 | 163/651/354 | -0.164 | |
MC | 5/10/1 | 4/10/2 | 47/123/22 | 9/132/35 | 14/129/49 | 30/114/48 | 17/119/56 | 43/96/53 | 169/733/266 | -0.083 | |
CM | 8/8/0 | 7/9/0 | 87/105/0 | 30/143/3 | 22/144/26 | 48/116/28 | 26/128/38 | 56/102/34 | 284/755/129 | 0.133 | |
FC | 7/9/0 | 6/10/0 | 87/104/1 | 30/141/5 | 23/143/26 | 48/116/28 | 28/127/37 | 56/101/35 | 285/751/132 | 0.131 | |
Kh | 5/11/0 | 3/13/0 | 49/133/10 | 17/124/35 | 14/127/51 | 34/99/59 | 16/103/73 | 43/93/56 | 181/703/284 | -0.088 | |
MO | 7/9/0 | 6/10/0 | 86/105/1 | 34/141/1 | 24/141/27 | 47/101/44 | 29/115/48 | 55/94/43 | 288/716/164 | 0.106 | |
CC | 8/7/1 | 8/7/1 | 78/106/8 | 31/136/9 | 25/138/29 | 48/109/35 | 27/120/45 | 55/95/42 | 280/718/170 | 0.094 | |
AODE | EW | 7/8/1 | 4/11/1 | 52/132/8 | 39/128/25 | 17/126/33 | 42/103/47 | 16/111/65 | 46/99/47 | 223/718/227 | -0.003 |
EF | 9/6/1 | 8/8/0 | 85/105/2 | 47/136/9 | 23/140/13 | 45/123/24 | 25/126/41 | 56/106/30 | 298/750/120 | 0.152 | |
ME | 8/8/0 | 6/10/0 | 76/98/18 | 38/128/26 | 18/112/46 | 37/105/50 | 17/114/61 | 49/98/45 | 249/673/246 | 0.003 | |
PN | 7/8/1 | 5/10/1 | 52/124/16 | 13/133/46 | 11/111/54 | 34/99/59 | 12/108/72 | 44/82/66 | 178/675/315 | -0.117 | |
IM | 7/9/0 | 5/10/1 | 72/120/0 | 52/132/8 | 31/133/12 | 57/113/22 | 27/130/35 | 57/105/30 | 308/752/108 | 0.171 | |
CD | 7/8/1 | 6/8/2 | 79/92/21 | 47/108/37 | 17/115/44 | 43/102/47 | 21/100/71 | 48/99/45 | 268/632/268 | 0 | |
MC | 6/9/1 | 4/11/1 | 53/117/22 | 17/142/33 | 15/125/36 | 37/112/43 | 18/126/48 | 48/103/41 | 198/745/225 | -0.023 | |
CM | 9/7/0 | 8/8/0 | 91/101/0 | 61/130/1 | 34/140/2 | 57/116/19 | 26/133/33 | 58/109/25 | 344/744/80 | 0.226 | |
FC | 9/7/0 | 8/8/0 | 90/102/0 | 62/130/0 | 33/142/1 | 59/117/16 | 27/138/27 | 58/115/19 | 346/759/63 | 0.242 | |
Kh | 9/7/0 | 6/10/0 | 87/97/8 | 41/140/11 | 23/125/28 | 41/121/30 | 18/132/42 | 54/106/32 | 279/738/151 | 0.11 | |
MO | 9/7/0 | 7/9/0 | 88/104/0 | 61/131/0 | 34/138/4 | 56/123/13 | 33/142/17 | 61/115/16 | 349/769/50 | 0.256 | |
CC | 8/8/0 | 7/9/0 | 77/115/0 | 48/136/8 | 29/135/12 | 55/120/17 | 25/143/24 | 58/108/26 | 307/774/87 | 0.188 | |
HNB | EW | 7/6/3 | 4/9/3 | 63/96/33 | 47/106/39 | 34/107/51 | 27/120/29 | 17/115/60 | 32/129/31 | 231/688/249 | -0.015 |
EF | 10/5/1 | 7/7/2 | 91/65/36 | 53/86/53 | 41/101/50 | 28/122/26 | 24/104/64 | 45/105/42 | 299/595/274 | 0.021 | |
ME | 7/7/2 | 7/6/3 | 85/59/48 | 44/88/60 | 23/98/71 | 20/101/55 | 14/97/81 | 40/105/47 | 240/561/367 | -0.109 | |
PN | 6/9/1 | 5/9/2 | 44/119/29 | 13/108/71 | 13/96/83 | 13/98/65 | 9/93/90 | 22/99/71 | 125/631/412 | -0.246 | |
IM | 7/8/1 | 5/10/1 | 73/98/21 | 59/108/25 | 35/126/31 | 30/126/20 | 26/124/42 | 36/134/22 | 271/734/163 | 0.092 | |
CD | 7/6/3 | 6/6/4 | 80/52/60 | 39/89/64 | 25/83/84 | 16/109/51 | 15/86/91 | 23/105/64 | 211/536/421 | -0.18 | |
MC | 8/7/1 | 5/8/3 | 62/89/41 | 20/112/60 | 14/113/65 | 19/117/40 | 17/115/60 | 34/112/46 | 179/673/316 | -0.117 | |
CM | 11/5/0 | 8/7/1 | 98/82/12 | 68/112/12 | 47/126/19 | 38/132/6 | 29/131/32 | 51/127/14 | 350/722/96 | 0.217 | |
FC | 10/6/0 | 8/7/1 | 93/87/12 | 65/115/12 | 45/126/21 | 40/130/6 | 28/131/33 | 51/127/14 | 340/729/99 | 0.206 | |
Kh | 9/5/2 | 6/8/2 | 86/71/35 | 54/101/37 | 36/112/44 | 36/111/29 | 26/108/58 | 48/121/23 | 301/637/230 | 0.061 | |
MO | 9/7/0 | 7/8/1 | 86/94/12 | 67/111/14 | 41/138/13 | 43/131/2 | 30/138/24 | 52/134/6 | 335/761/72 | 0.225 | |
CC | 9/6/1 | 7/7/2 | 79/94/19 | 51/116/25 | 33/128/31 | 32/131/13 | 25/126/41 | 46/121/25 | 282/729/157 | 0.107 | |
AODEsr | EW | 9/6/1 | 5/10/1 | 77/104/11 | 55/118/19 | 44/121/27 | 55/112/25 | 22/126/28 | 56/115/21 | 323/712/133 | 0.163 |
EF | 10/5/1 | 9/6/1 | 94/79/19 | 66/94/32 | 47/123/22 | 51/117/24 | 25/129/22 | 58/113/21 | 360/666/142 | 0.187 | |
ME | 9/6/1 | 6/9/1 | 91/73/28 | 51/101/40 | 33/110/49 | 42/103/47 | 14/101/61 | 49/101/42 | 295/604/269 | 0.022 | |
PN | 9/7/0 | 6/9/1 | 64/123/5 | 26/128/38 | 22/122/48 | 42/106/44 | 13/110/53 | 50/90/52 | 232/695/241 | -0.008 | |
IM | 8/8/0 | 6/10/0 | 82/110/0 | 63/128/1 | 53/134/5 | 67/116/9 | 34/131/11 | 62/120/10 | 375/757/36 | 0.29 | |
CD | 7/8/1 | 7/7/2 | 81/87/24 | 55/101/36 | 31/123/38 | 36/118/38 | 14/109/53 | 47/113/32 | 278/666/224 | 0.046 | |
MC | 7/7/2 | 6/8/2 | 67/99/26 | 19/134/39 | 20/131/41 | 32/118/42 | 15/118/43 | 47/105/40 | 213/720/235 | -0.019 | |
CM | 11/5/0 | 9/7/0 | 104/87/1 | 83/107/2 | 57/135/0 | 74/117/1 | 36/138/2 | 70/122/0 | 444/718/6 | 0.375 | |
FC | 11/5/0 | 9/7/0 | 103/88/1 | 86/104/2 | 60/131/1 | 74/118/0 | 38/137/1 | 71/121/0 | 452/711/5 | 0.383 | |
Kh | 10/6/0 | 7/8/1 | 96/87/9 | 69/105/18 | 50/120/22 | 55/118/19 | 27/119/30 | 66/105/21 | 380/668/120 | 0.223 | |
MO | 10/6/0 | 8/8/0 | 101/91/0 | 81/111/0 | 70/122/0 | 81/110/1 | 46/129/1 | 72/120/0 | 469/697/2 | 0.4 | |
CC | 9/6/1 | 9/6/1 | 95/88/9 | 66/116/10 | 49/131/12 | 67/115/10 | 36/125/15 | 71/106/15 | 402/693/73 | 0.282 | |
WAODE | EW | 9/4/3 | 4/8/4 | 69/84/39 | 52/93/47 | 40/98/54 | 34/119/39 | 22/113/57 | 23/121/32 | 253/640/275 | -0.019 |
EF | 8/6/2 | 7/7/2 | 76/68/48 | 52/85/55 | 39/95/58 | 29/122/41 | 19/112/61 | 24/130/22 | 254/625/289 | -0.03 | |
ME | 8/5/3 | 6/7/3 | 80/52/60 | 43/80/69 | 17/97/78 | 21/98/73 | 11/93/88 | 14/108/54 | 200/540/428 | -0.195 | |
PN | 6/8/2 | 4/8/4 | 51/101/40 | 15/106/71 | 13/100/79 | 18/109/65 | 9/86/97 | 11/106/59 | 127/624/417 | -0.248 | |
IM | 6/9/1 | 4/10/2 | 71/92/29 | 57/101/34 | 45/106/41 | 48/113/31 | 28/115/49 | 30/133/13 | 289/679/200 | 0.076 | |
CD | 6/7/3 | 5/7/4 | 81/69/42 | 44/96/52 | 25/111/56 | 19/128/45 | 12/112/68 | 16/116/44 | 208/646/314 | -0.091 | |
MC | 4/9/3 | 4/7/5 | 55/77/60 | 11/109/72 | 13/104/75 | 13/118/61 | 7/105/80 | 18/118/40 | 125/647/396 | -0.232 | |
CM | 8/6/2 | 7/6/3 | 87/74/31 | 72/88/32 | 51/108/33 | 47/129/16 | 30/127/35 | 33/142/1 | 335/680/153 | 0.156 | |
FC | 8/6/2 | 7/6/3 | 87/74/31 | 73/87/32 | 49/110/33 | 48/128/16 | 30/128/34 | 34/141/1 | 336/680/152 | 0.158 | |
Kh | 8/4/4 | 6/6/4 | 85/71/36 | 58/94/40 | 38/104/50 | 35/118/39 | 25/107/60 | 29/118/29 | 284/622/262 | 0.019 | |
MO | 7/8/1 | 6/8/2 | 87/80/25 | 71/87/34 | 53/104/35 | 51/119/22 | 36/112/44 | 39/137/0 | 350/655/163 | 0.16 | |
CC | 7/7/2 | 5/8/3 | 73/87/32 | 59/90/43 | 39/108/45 | 42/118/32 | 25/121/46 | 38/124/14 | 288/663/217 | 0.061 |
Table 9. Number of wins, draws, and losses, respectively, achieved by a setup in a given row when compared against a setup in a given column. The setups include NB or FNB classifier run on the sixteen raw datasets and each of the six classifiers run on the sixteen datasets discretized by each of the twelve discretization algorithms. Bolded scores show WDLC scores greater than 0.2; underlined scores printed in italic correspond to WDLC scores smaller than -0.2. Gray shading indicates comparison between setups that use the same classifier. The last column contains the aggregated, over all other setups, scores for a given setup. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Original Data | NB | LBR | AODE | HNB | AODEsr | WAODE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NB | FNB | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | EW | EF | ME | PN | IM | CD | MC | CM | FC | Kh | MO | CC | Aggregated | ||
Original Data | NB | - | 0/9/7 | 1/10/5 | 0/8/8 | 1/12/3 | 2/9/5 | 1/7/8 | 1/10/5 | 1/10/5 | 0/8/8 | 0/9/7 | 0/10/6 | 0/8/8 | 1/7/8 | 1/9/6 | 0/8/8 | 0/9/7 | 1/8/7 | 0/9/7 | 1/10/5 | 1/10/5 | 0/8/8 | 0/9/7 | 0/11/5 | 0/9/7 | 1/7/8 | 1/8/7 | 1/6/9 | 0/8/8 | 1/8/7 | 0/9/7 | 1/8/7 | 1/9/6 | 0/7/9 | 0/7/9 | 0/7/9 | 0/7/9 | 0/8/8 | 3/6/7 | 1/5/10 | 2/7/7 | 1/9/6 | 1/8/7 | 3/6/7 | 1/7/8 | 0/5/11 | 0/6/10 | 2/5/9 | 0/7/9 | 1/6/9 | 1/6/9 | 1/5/10 | 1/6/9 | 0/7/9 | 0/8/8 | 1/8/7 | 2/7/7 | 0/5/11 | 0/5/11 | 0/6/10 | 0/6/10 | 1/6/9 | 3/4/9 | 2/6/8 | 3/5/8 | 2/8/6 | 1/9/6 | 3/7/6 | 3/9/4 | 2/6/8 | 2/6/8 | 4/4/8 | 1/8/7 | 2/7/7 | 68/547/553 |
FNB | 7/9/0 | - | 4/11/1 | 3/12/1 | 3/12/1 | 3/11/2 | 2/11/3 | 4/11/1 | 3/11/2 | 2/11/3 | 2/12/2 | 2/13/1 | 2/11/3 | 2/11/3 | 1/10/5 | 0/12/4 | 1/9/6 | 1/10/5 | 0/11/5 | 2/10/4 | 2/10/4 | 0/9/7 | 0/10/6 | 0/13/3 | 0/10/6 | 1/7/8 | 1/11/4 | 0/8/8 | 0/10/6 | 1/10/5 | 1/10/5 | 2/8/6 | 1/11/4 | 0/8/8 | 0/8/8 | 0/10/6 | 0/9/7 | 0/9/7 | 3/9/4 | 2/7/7 | 3/6/7 | 2/9/5 | 1/10/5 | 4/6/6 | 3/8/5 | 1/7/8 | 1/7/8 | 2/8/6 | 1/8/7 | 2/7/7 | 1/10/5 | 1/6/9 | 1/9/6 | 1/9/6 | 0/10/6 | 2/7/7 | 2/8/6 | 0/7/9 | 0/7/9 | 1/8/7 | 0/8/8 | 1/6/9 | 4/8/4 | 2/7/7 | 3/7/6 | 4/8/4 | 2/10/4 | 4/7/5 | 5/7/4 | 3/6/7 | 3/6/7 | 4/6/6 | 2/8/6 | 3/8/5 | 127/654/387 | |
NB | EW | 5/10/1 | 1/11/4 | - | 2/13/1 | 4/12/0 | 2/12/2 | 1/13/2 | 4/12/0 | 3/12/1 | 0/13/3 | 0/13/3 | 1/14/1 | 0/13/3 | 1/11/4 | 0/11/5 | 0/9/7 | 0/12/4 | 1/11/4 | 0/11/5 | 1/9/6 | 2/10/4 | 0/8/8 | 0/8/8 | 0/10/6 | 0/9/7 | 1/7/8 | 0/12/4 | 0/9/7 | 0/9/7 | 1/11/4 | 0/10/6 | 0/9/7 | 2/9/5 | 0/7/9 | 0/7/9 | 0/8/8 | 0/8/8 | 0/9/7 | 1/9/6 | 2/5/9 | 2/6/8 | 2/10/4 | 1/9/6 | 3/5/8 | 4/6/6 | 1/5/10 | 1/6/9 | 1/7/8 | 0/8/8 | 1/7/8 | 0/8/8 | 0/6/10 | 1/6/9 | 0/10/6 | 0/8/8 | 1/7/8 | 2/8/6 | 0/4/12 | 0/4/12 | 0/7/9 | 0/7/9 | 1/6/9 | 3/7/6 | 3/6/7 | 3/5/8 | 3/10/3 | 1/9/6 | 2/6/8 | 5/7/4 | 1/7/8 | 1/7/8 | 2/6/8 | 2/7/7 | 2/8/6 | 84/631/453 |
EF | 8/8/0 | 1/12/3 | 1/13/2 | - | 6/10/0 | 4/11/1 | 1/11/4 | 5/11/0 | 3/10/3 | 0/14/2 | 0/14/2 | 1/14/1 | 0/12/4 | 1/13/2 | 2/9/5 | 0/10/6 | 1/10/5 | 1/10/5 | 0/11/5 | 2/10/4 | 2/10/4 | 0/9/7 | 0/9/7 | 1/10/5 | 0/8/8 | 1/9/6 | 1/11/4 | 0/9/7 | 0/10/6 | 1/11/4 | 0/11/5 | 2/8/6 | 3/9/4 | 0/10/6 | 0/10/6 | 0/9/7 | 0/9/7 | 0/11/5 | 3/8/5 | 3/6/7 | 5/4/7 | 1/10/5 | 1/9/6 | 6/3/7 | 4/7/5 | 1/7/8 | 1/7/8 | 3/6/7 | 1/8/7 | 2/8/6 | 1/9/6 | 2/6/8 | 1/8/7 | 0/9/7 | 0/9/7 | 2/7/7 | 3/7/6 | 0/7/9 | 0/7/9 | 0/8/8 | 0/7/9 | 1/6/9 | 4/6/6 | 4/4/8 | 5/5/6 | 3/8/5 | 3/7/6 | 4/5/7 | 6/5/5 | 3/5/8 | 3/5/8 | 3/6/7 | 2/6/8 | 3/7/6 | 132/628/408 | |
ME | 3/12/1 | 1/12/3 | 0/12/4 | 0/10/6 | - | 2/9/5 | 1/8/7 | 2/13/1 | 2/7/7 | 0/9/7 | 0/9/7 | 1/13/2 | 0/7/9 | 1/9/6 | 0/10/6 | 0/7/9 | 0/9/7 | 2/7/7 | 0/9/7 | 2/9/5 | 2/7/7 | 0/7/9 | 0/7/9 | 0/10/6 | 0/7/9 | 1/7/8 | 0/9/7 | 0/6/10 | 0/8/8 | 2/7/7 | 0/8/8 | 1/8/7 | 2/7/7 | 0/6/10 | 0/6/10 | 0/7/9 | 0/6/10 | 0/8/8 | 3/6/7 | 2/5/9 | 4/3/9 | 1/11/4 | 1/8/7 | 5/2/9 | 4/5/7 | 1/6/9 | 1/6/9 | 2/5/9 | 1/7/8 | 2/6/8 | 0/8/8 | 2/4/10 | 2/5/9 | 0/8/8 | 0/8/8 | 2/6/8 | 2/7/7 | 0/6/10 | 0/6/10 | 0/5/11 | 0/6/10 | 1/6/9 | 3/6/7 | 5/3/8 | 5/3/8 | 3/8/5 | 2/7/7 | 3/4/9 | 5/6/5 | 3/5/8 | 3/5/8 | 3/4/9 | 2/6/8 | 3/7/6 | 101/521/546 | |
PN | 5/9/2 | 2/11/3 | 2/12/2 | 1/11/4 | 5/9/2 | - | 0/12/4 | 3/9/4 | 1/12/3 | 0/12/4 | 0/12/4 | 3/9/4 | 0/11/5 | 0/10/6 | 1/11/4 | 0/10/6 | 2/9/5 | 0/12/4 | 1/9/6 | 2/9/5 | 2/11/3 | 0/9/7 | 0/9/7 | 1/9/6 | 0/10/6 | 0/10/6 | 1/9/6 | 0/9/7 | 2/8/6 | 0/12/4 | 0/10/6 | 2/8/6 | 0/12/4 | 0/9/7 | 0/9/7 | 1/8/7 | 0/10/6 | 0/9/7 | 3/7/6 | 4/5/7 | 4/5/7 | 3/9/4 | 2/8/6 | 5/4/7 | 1/10/5 | 1/7/8 | 1/9/6 | 3/7/6 | 1/9/6 | 1/9/6 | 1/9/6 | 2/7/7 | 3/7/6 | 0/11/5 | 0/9/7 | 3/6/7 | 1/10/5 | 0/8/8 | 0/8/8 | 1/8/7 | 0/8/8 | 0/9/7 | 3/7/6 | 4/6/6 | 6/4/6 | 4/8/4 | 3/7/6 | 3/7/6 | 4/7/5 | 3/6/7 | 3/6/7 | 3/6/7 | 3/6/7 | 3/7/6 | 119/636/413 | |
IM | 8/7/1 | 3/11/2 | 2/13/1 | 4/11/1 | 7/8/1 | 4/12/0 | - | 7/8/1 | 3/12/1 | 0/15/1 | 0/15/1 | 5/10/1 | 0/15/1 | 1/15/0 | 1/12/3 | 1/11/4 | 1/11/4 | 4/9/3 | 0/9/7 | 3/8/5 | 2/11/3 | 0/10/6 | 0/10/6 | 1/11/4 | 0/10/6 | 0/10/6 | 1/12/3 | 1/10/5 | 3/7/6 | 2/11/3 | 0/9/7 | 3/7/6 | 2/11/3 | 0/10/6 | 0/10/6 | 1/9/6 | 0/10/6 | 0/10/6 | 3/9/4 | 4/5/7 | 4/5/7 | 3/9/4 | 2/7/7 | 6/3/7 | 4/8/4 | 1/7/8 | 1/8/7 | 4/6/6 | 1/9/6 | 3/8/5 | 1/8/7 | 2/6/8 | 4/5/7 | 1/11/4 | 0/9/7 | 3/6/7 | 2/9/5 | 0/10/6 | 0/10/6 | 1/8/7 | 0/8/8 | 1/8/7 | 4/6/6 | 5/5/6 | 6/4/6 | 4/8/4 | 3/7/6 | 4/5/7 | 5/6/5 | 3/7/6 | 3/7/6 | 3/6/7 | 2/7/7 | 3/7/6 | 166/647/355 | |
CD | 5/10/1 | 1/11/4 | 0/12/4 | 0/11/5 | 1/13/2 | 4/9/3 | 1/8/7 | - | 2/9/5 | 0/10/6 | 0/9/7 | 0/12/4 | 0/9/7 | 1/9/6 | 0/9/7 | 0/8/8 | 0/9/7 | 2/7/7 | 1/7/8 | 0/11/5 | 2/8/6 | 0/6/10 | 0/6/10 | 0/10/6 | 0/5/11 | 1/6/9 | 0/9/7 | 0/5/11 | 0/8/8 | 2/7/7 | 0/7/9 | 0/8/8 | 3/6/7 | 0/5/11 | 0/5/11 | 0/6/10 | 0/5/11 | 0/8/8 | 2/8/6 | 2/5/9 | 3/4/9 | 3/8/5 | 1/6/9 | 4/4/8 | 3/6/7 | 1/4/11 | 1/4/11 | 1/5/10 | 1/4/11 | 2/5/9 | 0/8/8 | 1/5/10 | 1/6/9 | 0/8/8 | 0/7/9 | 0/8/8 | 2/7/7 | 0/6/10 | 0/6/10 | 0/5/11 | 0/6/10 | 1/4/11 | 2/8/6 | 3/6/7 | 5/4/7 | 2/9/5 | 2/7/7 | 3/5/8 | 4/7/5 | 1/7/8 | 1/7/8 | 3/5/8 | 1/6/9 | 1/9/6 | 83/522/563 | |
MC | 5/10/1 | 2/11/3 | 1/12/3 | 3/10/3 | 7/7/2 | 3/12/1 | 1/12/3 | 5/9/2 | - | 0/13/3 | 0/13/3 | 5/8/3 | 0/13/3 | 0/13/3 | 1/11/4 | 0/11/5 | 2/10/4 | 0/13/3 | 0/10/6 | 2/9/5 | 0/14/2 | 0/10/6 | 0/10/6 | 1/12/3 | 0/9/7 | 0/10/6 | 1/11/4 | 1/8/7 | 3/7/6 | 0/11/5 | 0/10/6 | 3/6/7 | 0/12/4 | 0/9/7 | 0/9/7 | 1/9/6 | 0/10/6 | 0/9/7 | 2/10/4 | 4/4/8 | 5/4/7 | 2/10/4 | 2/9/5 | 5/5/6 | 2/9/5 | 1/8/7 | 1/8/7 | 3/6/7 | 1/8/7 | 1/9/6 | 1/10/5 | 1/9/6 | 4/5/7 | 0/10/6 | 0/9/7 | 3/6/7 | 1/9/6 | 0/7/9 | 0/7/9 | 1/8/7 | 0/7/9 | 0/9/7 | 3/8/5 | 4/7/5 | 4/5/7 | 3/8/5 | 2/9/5 | 5/6/5 | 4/9/3 | 3/6/7 | 3/6/7 | 3/7/6 | 2/7/7 | 2/8/6 | 125/655/388 | |
CM | 8/8/0 | 3/11/2 | 3/13/0 | 2/14/0 | 7/9/0 | 4/12/0 | 1/15/0 | 6/10/0 | 3/13/0 | - | 0/16/0 | 4/12/0 | 0/16/0 | 1/15/0 | 2/11/3 | 0/12/4 | 0/13/3 | 2/10/4 | 0/12/4 | 2/11/3 | 2/11/3 | 0/10/6 | 0/10/6 | 2/12/2 | 0/11/5 | 1/10/5 | 1/12/3 | 0/10/6 | 2/9/5 | 2/12/2 | 0/12/4 | 2/7/7 | 2/11/3 | 0/10/6 | 0/10/6 | 1/9/6 | 0/10/6 | 0/11/5 | 3/8/5 | 3/7/6 | 5/6/5 | 3/11/2 | 3/8/5 | 5/6/5 | 4/8/4 | 1/9/6 | 1/9/6 | 4/6/6 | 2/8/6 | 1/10/5 | 2/8/6 | 2/7/7 | 2/7/7 | 1/13/2 | 0/11/5 | 2/9/5 | 3/9/4 | 0/10/6 | 0/10/6 | 1/9/6 | 0/10/6 | 1/9/6 | 4/6/6 | 4/7/5 | 5/5/6 | 4/9/3 | 2/9/5 | 4/6/6 | 6/6/4 | 3/7/6 | 3/7/6 | 3/7/6 | 2/8/6 | 3/8/5 | 155/713/300 | |
FC | 7/9/0 | 2/12/2 | 3/13/0 | 2/14/0 | 7/9/0 | 4/12/0 | 1/15/0 | 7/9/0 | 3/13/0 | 0/16/0 | - | 5/11/0 | 0/15/1 | 1/15/0 | 2/11/3 | 0/12/4 | 0/13/3 | 2/10/4 | 0/12/4 | 2/11/3 | 2/11/3 | 0/10/6 | 0/10/6 | 2/12/2 | 0/11/5 | 1/10/5 | 1/12/3 | 0/11/5 | 3/8/5 | 2/12/2 | 0/12/4 | 2/7/7 | 2/11/3 | 0/10/6 | 0/10/6 | 1/9/6 | 0/10/6 | 0/11/5 | 3/8/5 | 3/6/7 | 5/6/5 | 3/11/2 | 3/8/5 | 5/6/5 | 4/8/4 | 1/8/7 | 1/8/7 | 4/6/6 | 2/8/6 | 1/10/5 | 2/8/6 | 2/8/6 | 3/6/7 | 1/13/2 | 0/11/5 | 2/9/5 | 3/8/5 | 0/9/7 | 0/9/7 | 1/9/6 | 0/9/7 | 1/8/7 | 3/8/5 | 4/7/5 | 6/4/6 | 4/9/3 | 2/9/5 | 5/5/6 | 6/5/5 | 3/6/7 | 3/6/7 | 3/7/6 | 2/8/6 | 3/7/6 | 158/700/310 | |
Kh | 6/10/0 | 1/13/2 | 1/14/1 | 1/14/1 | 2/13/1 | 4/9/3 | 1/10/5 | 4/12/0 | 3/8/5 | 0/12/4 | 0/11/5 | - | 0/9/7 | 1/12/3 | 0/11/5 | 0/8/8 | 0/12/4 | 1/9/6 | 0/9/7 | 2/10/4 | 2/7/7 | 0/6/10 | 0/6/10 | 0/11/5 | 0/6/10 | 1/7/8 | 0/11/5 | 0/6/10 | 0/8/8 | 1/8/7 | 0/9/7 | 2/7/7 | 2/7/7 | 0/5/11 | 0/6/10 | 0/7/9 | 0/6/10 | 0/8/8 | 3/7/6 | 3/4/9 | 2/6/8 | 2/10/4 | 1/8/7 | 5/4/7 | 3/6/7 | 1/5/10 | 1/6/9 | 2/6/8 | 0/7/9 | 1/6/9 | 0/8/8 | 1/5/10 | 1/5/10 | 0/8/8 | 0/8/8 | 2/7/7 | 2/7/7 | 0/4/12 | 0/5/11 | 0/6/10 | 0/5/11 | 1/5/10 | 2/7/7 | 3/5/8 | 4/5/7 | 2/8/6 | 3/7/6 | 2/6/8 | 4/7/5 | 2/6/8 | 2/6/8 | 2/6/8 | 2/5/9 | 3/5/8 | 97/558/513 | |
MO | 8/8/0 | 3/11/2 | 3/13/0 | 4/12/0 | 9/7/0 | 5/11/0 | 1/15/0 | 7/9/0 | 3/13/0 | 0/16/0 | 1/15/0 | 7/9/0 | - | 2/14/0 | 3/9/4 | 0/13/3 | 2/10/4 | 2/11/3 | 0/12/4 | 3/9/4 | 2/11/3 | 0/10/6 | 1/9/6 | 1/13/2 | 1/9/6 | 1/10/5 | 1/12/3 | 0/11/5 | 3/8/5 | 2/11/3 | 0/12/4 | 2/9/5 | 2/11/3 | 0/10/6 | 0/10/6 | 1/8/7 | 0/10/6 | 0/11/5 | 3/8/5 | 3/6/7 | 5/5/6 | 3/11/2 | 2/9/5 | 6/5/5 | 4/8/4 | 1/8/7 | 1/8/7 | 4/6/6 | 1/9/6 | 3/7/6 | 2/10/4 | 2/7/7 | 4/6/6 | 1/11/4 | 0/10/6 | 2/7/7 | 3/8/5 | 0/9/7 | 0/9/7 | 2/7/7 | 0/9/7 | 1/7/8 | 4/8/4 | 4/6/6 | 6/4/6 | 4/8/4 | 3/6/7 | 4/6/6 | 6/5/5 | 3/6/7 | 3/6/7 | 4/5/7 | 3/7/6 | 3/6/7 | 180/665/323 | |
CC | 8/7/1 | 3/11/2 | 4/11/1 | 2/13/1 | 6/9/1 | 6/10/0 | 0/15/1 | 6/9/1 | 3/13/0 | 0/15/1 | 0/15/1 | 3/12/1 | 0/14/2 | - | 2/11/3 | 0/12/4 | 0/13/3 | 1/11/4 | 0/10/6 | 3/10/3 | 2/12/2 | 0/10/6 | 0/10/6 | 1/13/2 | 0/10/6 | 0/10/6 | 1/12/3 | 0/11/5 | 2/8/6 | 1/11/4 | 0/10/6 | 2/8/6 | 2/11/3 | 0/10/6 | 0/10/6 | 2/8/6 | 0/10/6 | 0/10/6 | 4/8/4 | 3/7/6 | 4/5/7 | 3/9/4 | 2/9/5 | 5/5/6 | 4/8/4 | 1/8/7 | 1/8/7 | 4/5/7 | 1/9/6 | 1/9/6 | 1/10/5 | 2/9/5 | 2/7/7 | 1/11/4 | 0/11/5 | 2/9/5 | 2/10/4 | 1/7/8 | 1/7/8 | 2/7/7 | 0/9/7 | 0/11/5 | 4/7/5 | 5/6/5 | 5/4/7 | 4/8/4 | 3/8/5 | 3/8/5 | 5/7/4 | 3/6/7 | 3/6/7 | 4/6/6 | 2/7/7 | 3/8/5 | 151/684/333 | |
LBR | EW | 6/9/1 | 5/10/1 | 5/11/0 | 5/9/2 | 6/10/0 | 4/11/1 | 3/12/1 | 7/9/0 | 4/11/1 | 3/11/2 | 3/11/2 | 5/11/0 | 4/9/3 | 3/11/2 | - | 0/14/2 | 2/13/1 | 4/11/1 | 1/12/3 | 3/12/1 | 3/12/1 | 0/12/4 | 0/12/4 | 2/12/2 | 0/12/4 | 1/11/4 | 0/12/4 | 0/10/6 | 2/7/7 | 4/10/2 | 1/9/6 | 2/9/5 | 3/10/3 | 0/7/9 | 0/7/9 | 0/9/7 | 0/10/6 | 1/9/6 | 3/10/3 | 2/9/5 | 4/7/5 | 6/9/1 | 2/9/5 | 4/8/4 | 5/9/2 | 1/8/7 | 1/8/7 | 1/9/6 | 1/7/8 | 2/7/7 | 0/11/5 | 1/8/7 | 3/7/6 | 4/10/2 | 0/10/6 | 2/7/7 | 3/12/1 | 0/5/11 | 0/5/11 | 0/8/8 | 0/7/9 | 1/8/7 | 4/7/5 | 4/6/6 | 6/6/4 | 5/10/1 | 2/10/4 | 3/7/6 | 6/10/0 | 2/6/8 | 2/6/8 | 3/6/7 | 3/5/8 | 2/7/7 | 180/671/317 |
EF | 8/8/0 | 4/12/0 | 7/9/0 | 6/10/0 | 9/7/0 | 6/10/0 | 4/11/1 | 8/8/0 | 5/11/0 | 4/12/0 | 4/12/0 | 8/8/0 | 3/13/0 | 4/12/0 | 2/14/0 | - | 3/13/0 | 6/10/0 | 1/11/4 | 3/13/0 | 3/12/1 | 0/12/4 | 0/12/4 | 3/12/1 | 0/13/3 | 1/12/3 | 1/12/3 | 0/12/4 | 2/12/2 | 5/11/0 | 1/11/4 | 3/9/4 | 3/13/0 | 0/10/6 | 0/11/5 | 0/13/3 | 0/10/6 | 1/11/4 | 3/10/3 | 4/9/3 | 6/6/4 | 6/10/0 | 2/10/4 | 6/7/3 | 5/11/0 | 1/8/7 | 1/9/6 | 3/11/2 | 1/10/5 | 3/8/5 | 1/10/5 | 2/8/6 | 2/11/3 | 4/11/1 | 0/11/5 | 3/9/4 | 4/12/0 | 0/9/7 | 0/9/7 | 0/10/6 | 0/8/8 | 1/10/5 | 5/7/4 | 4/6/6 | 6/6/4 | 7/9/0 | 3/8/5 | 4/9/3 | 7/9/0 | 3/7/6 | 3/7/6 | 3/8/5 | 3/7/6 | 4/6/6 | 228/728/212 | |
ME | 7/9/0 | 6/9/1 | 4/12/0 | 5/10/1 | 7/9/0 | 5/9/2 | 4/11/1 | 7/9/0 | 4/10/2 | 3/13/0 | 3/13/0 | 4/12/0 | 4/10/2 | 3/13/0 | 1/13/2 | 0/13/3 | - | 3/11/2 | 0/10/6 | 2/13/1 | 3/11/2 | 1/10/5 | 1/10/5 | 1/15/0 | 0/10/6 | 1/10/5 | 0/13/3 | 0/13/3 | 0/13/3 | 3/10/3 | 1/8/7 | 1/12/3 | 3/10/3 | 0/10/6 | 0/10/6 | 0/12/4 | 0/9/7 | 1/9/6 | 2/9/5 | 2/9/5 | 4/8/4 | 6/9/1 | 1/10/5 | 4/8/4 | 5/7/4 | 1/8/7 | 1/8/7 | 2/8/6 | 1/9/6 | 2/8/6 | 0/10/6 | 1/8/7 | 0/10/6 | 3/8/5 | 0/9/7 | 2/9/5 | 3/9/4 | 0/7/9 | 0/7/9 | 0/10/6 | 0/7/9 | 1/9/6 | 2/8/6 | 4/7/5 | 3/9/4 | 6/8/2 | 3/8/5 | 3/9/4 | 6/8/2 | 3/6/7 | 3/6/7 | 3/7/6 | 3/6/7 | 4/7/5 | 172/697/299 | |
PN | 7/8/1 | 5/10/1 | 4/11/1 | 5/10/1 | 7/7/2 | 4/12/0 | 3/9/4 | 7/7/2 | 3/13/0 | 4/10/2 | 4/10/2 | 6/9/1 | 3/11/2 | 4/11/1 | 1/11/4 | 0/10/6 | 2/11/3 | - | 0/10/6 | 2/9/5 | 3/12/1 | 0/11/5 | 0/11/5 | 2/11/3 | 0/11/5 | 0/12/4 | 1/11/4 | 0/11/5 | 3/8/5 | 1/15/0 | 0/10/6 | 3/8/5 | 2/13/1 | 0/10/6 | 0/10/6 | 1/8/7 | 0/10/6 | 0/11/5 | 3/8/5 | 5/5/6 | 5/6/5 | 4/10/2 | 2/9/5 | 5/5/6 | 5/9/2 | 1/9/6 | 1/9/6 | 3/8/5 | 1/10/5 | 1/11/4 | 1/10/5 | 2/9/5 | 3/9/4 | 0/13/3 | 0/11/5 | 3/7/6 | 2/12/2 | 0/9/7 | 0/9/7 | 1/8/7 | 0/10/6 | 0/12/4 | 3/8/5 | 4/7/5 | 5/6/5 | 3/11/2 | 3/8/5 | 3/8/5 | 5/9/2 | 3/7/6 | 3/7/6 | 3/7/6 | 3/7/6 | 4/8/4 | 177/693/298 | |
IM | 7/9/0 | 5/11/0 | 5/11/0 | 5/11/0 | 7/9/0 | 6/9/1 | 7/9/0 | 8/7/1 | 6/10/0 | 4/12/0 | 4/12/0 | 7/9/0 | 4/12/0 | 6/10/0 | 3/12/1 | 4/11/1 | 6/10/0 | 6/10/0 | - | 5/9/2 | 4/12/0 | 0/16/0 | 1/15/0 | 5/9/2 | 0/16/0 | 1/15/0 | 4/9/3 | 1/12/3 | 3/12/1 | 5/11/0 | 1/13/2 | 5/7/4 | 4/12/0 | 0/12/4 | 0/12/4 | 1/13/2 | 0/13/3 | 1/12/3 | 4/7/5 | 6/6/4 | 5/8/3 | 6/9/1 | 2/8/6 | 7/6/3 | 5/9/2 | 1/9/6 | 1/10/5 | 5/6/5 | 1/10/5 | 3/10/3 | 2/9/5 | 5/6/5 | 5/8/3 | 4/10/2 | 0/11/5 | 5/7/4 | 5/9/2 | 0/11/5 | 0/10/6 | 3/8/5 | 0/8/8 | 1/9/6 | 5/6/5 | 6/6/4 | 7/6/3 | 7/6/3 | 3/8/5 | 6/6/4 | 6/9/1 | 3/8/5 | 3/8/5 | 4/7/5 | 3/8/5 | 4/6/6 | 274/702/192 | |
CD | 5/10/1 | 4/10/2 | 6/9/1 | 4/10/2 | 5/9/2 | 5/9/2 | 5/8/3 | 5/11/0 | 5/9/2 | 3/11/2 | 3/11/2 | 4/10/2 | 4/9/3 | 3/10/3 | 1/12/3 | 0/13/3 | 1/13/2 | 5/9/2 | 2/9/5 | - | 3/10/3 | 0/13/3 | 0/12/4 | 2/11/3 | 0/11/5 | 1/11/4 | 0/11/5 | 0/10/6 | 0/12/4 | 5/9/2 | 0/9/7 | 0/11/5 | 3/9/4 | 0/9/7 | 0/8/8 | 0/11/5 | 0/7/9 | 0/10/6 | 2/10/4 | 2/7/7 | 4/8/4 | 7/7/2 | 1/8/7 | 4/9/3 | 5/7/4 | 1/6/9 | 1/6/9 | 1/9/6 | 1/5/10 | 2/8/6 | 0/10/6 | 1/8/7 | 1/8/7 | 4/9/3 | 0/8/8 | 0/9/7 | 4/8/4 | 0/6/10 | 0/6/10 | 0/8/8 | 0/6/10 | 1/5/10 | 2/9/5 | 4/7/5 | 5/7/4 | 5/10/1 | 2/8/6 | 3/9/4 | 6/9/1 | 1/7/8 | 1/7/8 | 3/8/5 | 2/6/8 | 3/7/6 | 163/651/354 | |
MC | 5/10/1 | 4/10/2 | 4/10/2 | 4/10/2 | 7/7/2 | 3/11/2 | 3/11/2 | 6/8/2 | 2/14/0 | 3/11/2 | 3/11/2 | 7/7/2 | 3/11/2 | 2/12/2 | 1/12/3 | 1/12/3 | 2/11/3 | 1/12/3 | 0/12/4 | 3/10/3 | - | 0/13/3 | 0/13/3 | 1/12/3 | 0/12/4 | 0/13/3 | 3/9/4 | 1/11/4 | 3/9/4 | 1/11/4 | 1/11/4 | 3/8/5 | 0/13/3 | 0/11/5 | 0/11/5 | 2/11/3 | 0/12/4 | 0/12/4 | 2/10/4 | 5/6/5 | 4/7/5 | 3/10/3 | 2/10/4 | 4/7/5 | 3/11/2 | 1/11/4 | 1/12/3 | 3/8/5 | 1/12/3 | 1/10/5 | 2/10/4 | 2/9/5 | 4/7/5 | 1/11/4 | 0/12/4 | 4/7/5 | 1/12/3 | 0/10/6 | 0/10/6 | 3/8/5 | 0/11/5 | 0/12/4 | 4/8/4 | 4/7/5 | 5/6/5 | 4/9/3 | 3/9/4 | 4/8/4 | 4/9/3 | 3/7/6 | 3/7/6 | 3/9/4 | 3/8/5 | 3/9/4 | 169/733/266 | |
CM | 8/8/0 | 7/9/0 | 8/8/0 | 7/9/0 | 9/7/0 | 7/9/0 | 6/10/0 | 10/6/0 | 6/10/0 | 6/10/0 | 6/10/0 | 10/6/0 | 6/10/0 | 6/10/0 | 4/12/0 | 4/12/0 | 5/10/1 | 5/11/0 | 0/16/0 | 3/13/0 | 3/13/0 | - | 0/16/0 | 5/10/1 | 0/15/1 | 1/15/0 | 4/10/2 | 2/11/3 | 3/11/2 | 4/12/0 | 0/13/3 | 4/9/3 | 3/12/1 | 0/13/3 | 0/13/3 | 1/14/1 | 0/13/3 | 1/13/2 | 4/9/3 | 6/7/3 | 6/8/2 | 7/9/0 | 3/9/4 | 6/9/1 | 6/10/0 | 1/12/3 | 1/12/3 | 4/9/3 | 2/10/4 | 2/12/2 | 3/10/3 | 4/8/4 | 5/8/3 | 4/12/0 | 0/11/5 | 3/11/2 | 4/12/0 | 0/11/5 | 0/11/5 | 2/10/4 | 0/13/3 | 1/11/4 | 5/8/3 | 5/9/2 | 7/7/2 | 7/9/0 | 3/8/5 | 6/8/2 | 7/9/0 | 3/9/4 | 3/8/5 | 3/10/3 | 3/9/4 | 4/8/4 | 284/755/129 | |
FC | 7/9/0 | 6/10/0 | 8/8/0 | 7/9/0 | 9/7/0 | 7/9/0 | 6/10/0 | 10/6/0 | 6/10/0 | 6/10/0 | 6/10/0 | 10/6/0 | 6/9/1 | 6/10/0 | 4/12/0 | 4/12/0 | 5/10/1 | 5/11/0 | 0/15/1 | 4/12/0 | 3/13/0 | 0/16/0 | - | 4/11/1 | 0/15/1 | 1/14/1 | 4/10/2 | 2/11/3 | 3/11/2 | 4/12/0 | 0/13/3 | 4/9/3 | 3/12/1 | 0/13/3 | 0/13/3 | 2/13/1 | 0/13/3 | 1/13/2 | 4/9/3 | 6/7/3 | 6/8/2 | 7/9/0 | 3/9/4 | 6/9/1 | 6/10/0 | 1/12/3 | 1/12/3 | 4/9/3 | 2/10/4 | 2/12/2 | 3/10/3 | 4/9/3 | 5/8/3 | 4/12/0 | 0/12/4 | 4/10/2 | 4/12/0 | 0/11/5 | 0/11/5 | 3/9/4 | 0/12/4 | 1/11/4 | 4/9/3 | 5/9/2 | 7/7/2 | 7/9/0 | 3/8/5 | 6/8/2 | 7/9/0 | 3/8/5 | 3/8/5 | 4/9/3 | 3/9/4 | 4/8/4 | 285/751/132 | |
Kh | 5/11/0 | 3/13/0 | 6/10/0 | 5/10/1 | 6/10/0 | 6/9/1 | 4/11/1 | 6/10/0 | 3/12/1 | 2/12/2 | 2/12/2 | 5/11/0 | 2/13/1 | 2/13/1 | 2/12/2 | 1/12/3 | 0/15/1 | 3/11/2 | 2/9/5 | 3/11/2 | 3/12/1 | 1/10/5 | 1/11/4 | - | 0/12/4 | 1/9/6 | 1/12/3 | 0/12/4 | 0/12/4 | 4/10/2 | 2/9/5 | 3/8/5 | 3/12/1 | 0/11/5 | 0/10/6 | 0/11/5 | 0/10/6 | 1/10/5 | 3/8/5 | 3/8/5 | 3/9/4 | 5/10/1 | 3/8/5 | 6/5/5 | 4/9/3 | 1/9/6 | 1/8/7 | 2/9/5 | 1/7/8 | 2/9/5 | 2/9/5 | 2/6/8 | 1/9/6 | 3/10/3 | 1/9/6 | 3/7/6 | 3/11/2 | 0/8/8 | 0/7/9 | 0/9/7 | 0/9/7 | 1/9/6 | 4/8/4 | 4/7/5 | 4/8/4 | 7/8/1 | 3/8/5 | 4/8/4 | 6/9/1 | 2/7/7 | 2/7/7 | 2/8/6 | 2/7/7 | 3/8/5 | 181/703/284 | |
MO | 7/9/0 | 6/10/0 | 7/9/0 | 8/8/0 | 9/7/0 | 6/10/0 | 6/10/0 | 11/5/0 | 7/9/0 | 5/11/0 | 5/11/0 | 10/6/0 | 6/9/1 | 6/10/0 | 4/12/0 | 3/13/0 | 6/10/0 | 5/11/0 | 0/16/0 | 5/11/0 | 4/12/0 | 1/15/0 | 1/15/0 | 4/12/0 | - | 1/14/1 | 3/10/3 | 2/11/3 | 3/11/2 | 6/10/0 | 0/14/2 | 4/9/3 | 3/13/0 | 1/12/3 | 0/13/3 | 2/12/2 | 0/12/4 | 0/14/2 | 4/8/4 | 6/6/4 | 7/7/2 | 7/8/1 | 2/8/6 | 6/8/2 | 5/11/0 | 1/9/6 | 1/10/5 | 4/7/5 | 1/9/6 | 3/10/3 | 3/9/4 | 4/7/5 | 6/8/2 | 4/10/2 | 0/12/4 | 4/8/4 | 3/12/1 | 0/12/4 | 0/11/5 | 4/7/5 | 0/9/7 | 1/10/5 | 4/8/4 | 5/7/4 | 7/7/2 | 7/8/1 | 3/9/4 | 5/8/3 | 6/10/0 | 3/8/5 | 3/8/5 | 5/6/5 | 3/7/6 | 4/8/4 | 288/716/164 | |
CC | 8/7/1 | 8/7/1 | 8/7/1 | 6/9/1 | 8/7/1 | 6/10/0 | 6/10/0 | 9/6/1 | 6/10/0 | 5/10/1 | 5/10/1 | 8/7/1 | 5/10/1 | 6/10/0 | 4/11/1 | 3/12/1 | 5/10/1 | 4/12/0 | 0/15/1 | 4/11/1 | 3/13/0 | 0/15/1 | 1/14/1 | 6/9/1 | 1/14/1 | - | 4/9/3 | 1/12/3 | 4/10/2 | 4/12/0 | 1/12/3 | 5/9/2 | 3/13/0 | 0/12/4 | 0/12/4 | 2/13/1 | 0/12/4 | 1/12/3 | 5/8/3 | 6/7/3 | 6/6/4 | 7/8/1 | 2/10/4 | 6/8/2 | 6/9/1 | 1/11/4 | 1/11/4 | 5/8/3 | 1/12/3 | 2/11/3 | 2/10/4 | 4/8/4 | 5/8/3 | 3/12/1 | 0/12/4 | 3/10/3 | 3/13/0 | 2/8/6 | 2/8/6 | 2/10/4 | 0/11/5 | 1/10/5 | 5/7/4 | 6/7/3 | 7/5/4 | 6/9/1 | 3/9/4 | 5/8/3 | 6/9/1 | 3/8/5 | 3/8/5 | 4/9/3 | 3/8/5 | 4/8/4 | 280/718/170 | |
AODE | EW | 7/8/1 | 4/11/1 | 4/12/0 | 4/11/1 | 7/9/0 | 6/9/1 | 3/12/1 | 7/9/0 | 4/11/1 | 3/12/1 | 3/12/1 | 5/11/0 | 3/12/1 | 3/12/1 | 4/12/0 | 3/12/1 | 3/13/0 | 4/11/1 | 3/9/4 | 5/11/0 | 4/9/3 | 2/10/4 | 2/10/4 | 3/12/1 | 3/10/3 | 3/9/4 | - | 0/13/3 | 3/9/4 | 4/11/1 | 1/12/3 | 3/11/2 | 3/10/3 | 0/12/4 | 0/12/4 | 1/12/3 | 1/12/3 | 1/12/3 | 4/9/3 | 4/6/6 | 4/9/3 | 7/8/1 | 3/10/3 | 6/6/4 | 5/9/2 | 2/9/5 | 2/9/5 | 2/9/5 | 1/11/4 | 2/8/6 | 0/11/5 | 1/9/6 | 4/7/5 | 4/10/2 | 1/10/5 | 1/12/3 | 3/10/3 | 0/8/8 | 0/7/9 | 1/10/5 | 0/8/8 | 1/9/6 | 4/8/4 | 4/7/5 | 6/8/2 | 6/10/0 | 3/9/4 | 3/10/3 | 6/9/1 | 2/7/7 | 2/7/7 | 4/8/4 | 3/8/5 | 3/8/5 | 223/718/227 |
EF | 9/6/1 | 8/8/0 | 7/9/0 | 7/9/0 | 10/6/0 | 7/9/0 | 5/10/1 | 11/5/0 | 7/8/1 | 6/10/0 | 5/11/0 | 10/6/0 | 5/11/0 | 5/11/0 | 6/10/0 | 4/12/0 | 3/13/0 | 5/11/0 | 3/12/1 | 6/10/0 | 4/11/1 | 3/11/2 | 3/11/2 | 4/12/0 | 3/11/2 | 3/12/1 | 3/13/0 | - | 3/13/0 | 5/11/0 | 1/13/2 | 3/13/0 | 4/11/1 | 1/13/2 | 0/14/2 | 1/14/1 | 1/12/3 | 1/13/2 | 3/10/3 | 5/7/4 | 6/9/1 | 7/9/0 | 3/11/2 | 7/8/1 | 5/10/1 | 1/11/4 | 1/12/3 | 3/11/2 | 1/13/2 | 3/12/1 | 2/11/3 | 3/8/5 | 4/9/3 | 5/11/0 | 1/10/5 | 4/10/2 | 4/10/2 | 0/13/3 | 0/12/4 | 1/12/3 | 0/10/6 | 1/10/5 | 4/9/3 | 5/7/4 | 7/8/1 | 8/8/0 | 4/8/4 | 4/10/2 | 7/8/1 | 3/10/3 | 3/11/2 | 4/10/2 | 3/9/4 | 4/8/4 | 298/750/120 | |
ME | 8/8/0 | 6/10/0 | 7/9/0 | 6/10/0 | 8/8/0 | 6/8/2 | 6/7/3 | 8/8/0 | 6/7/3 | 5/9/2 | 5/8/3 | 8/8/0 | 5/8/3 | 6/8/2 | 7/7/2 | 2/12/2 | 3/13/0 | 5/8/3 | 1/12/3 | 4/12/0 | 4/9/3 | 2/11/3 | 2/11/3 | 4/12/0 | 2/11/3 | 2/10/4 | 4/9/3 | 0/13/3 | - | 5/8/3 | 1/9/6 | 3/12/1 | 3/10/3 | 0/10/6 | 0/10/6 | 0/14/2 | 1/8/7 | 1/9/6 | 3/9/4 | 2/9/5 | 5/8/3 | 7/8/1 | 3/9/4 | 4/8/4 | 5/8/3 | 1/8/7 | 1/8/7 | 2/10/4 | 1/10/5 | 3/10/3 | 3/8/5 | 1/9/6 | 1/12/3 | 4/9/3 | 1/9/6 | 2/10/4 | 4/9/3 | 0/10/6 | 0/10/6 | 0/10/6 | 0/9/7 | 1/9/6 | 4/7/5 | 4/7/5 | 4/10/2 | 7/8/1 | 4/8/4 | 3/8/5 | 7/8/1 | 3/9/4 | 3/9/4 | 3/8/5 | 3/8/5 | 4/8/4 | 249/673/246 | |
PN | 7/8/1 | 5/10/1 | 4/11/1 | 4/11/1 | 7/7/2 | 4/12/0 | 3/11/2 | 7/7/2 | 5/11/0 | 2/12/2 | 2/12/2 | 7/8/1 | 3/11/2 | 4/11/1 | 2/10/4 | 0/11/5 | 3/10/3 | 0/15/1 | 0/11/5 | 2/9/5 | 4/11/1 | 0/12/4 | 0/12/4 | 2/10/4 | 0/10/6 | 0/12/4 | 1/11/4 | 0/11/5 | 3/8/5 | - | 1/10/5 | 3/7/6 | 2/13/1 | 0/10/6 | 0/10/6 | 1/9/6 | 0/11/5 | 0/11/5 | 3/8/5 | 4/6/6 | 5/7/4 | 4/9/3 | 2/8/6 | 5/6/5 | 4/10/2 | 1/9/6 | 1/9/6 | 3/8/5 | 1/9/6 | 1/10/5 | 1/9/6 | 2/8/6 | 4/8/4 | 0/10/6 | 0/10/6 | 2/8/6 | 2/10/4 | 0/9/7 | 0/9/7 | 1/8/7 | 0/8/8 | 0/11/5 | 3/8/5 | 4/6/6 | 6/6/4 | 3/8/5 | 3/7/6 | 5/6/5 | 5/7/4 | 3/6/7 | 3/6/7 | 3/7/6 | 3/7/6 | 3/8/5 | 178/675/315 | |
IM | 7/9/0 | 5/10/1 | 6/10/0 | 5/11/0 | 8/8/0 | 6/10/0 | 7/9/0 | 9/7/0 | 6/10/0 | 4/12/0 | 4/12/0 | 7/9/0 | 4/12/0 | 6/10/0 | 6/9/1 | 4/11/1 | 7/8/1 | 6/10/0 | 2/13/1 | 7/9/0 | 4/11/1 | 3/13/0 | 3/13/0 | 5/9/2 | 2/14/0 | 3/12/1 | 3/12/1 | 2/13/1 | 6/9/1 | 5/10/1 | - | 6/8/2 | 3/12/1 | 0/15/1 | 0/15/1 | 4/11/1 | 0/15/1 | 2/13/1 | 5/9/2 | 6/9/1 | 7/7/2 | 6/10/0 | 3/11/2 | 8/6/2 | 6/9/1 | 2/11/3 | 3/10/3 | 6/7/3 | 1/13/2 | 4/11/1 | 2/11/3 | 2/12/2 | 7/7/2 | 4/11/1 | 0/12/4 | 5/9/2 | 3/12/1 | 0/12/4 | 1/11/4 | 2/11/3 | 0/10/6 | 1/12/3 | 5/8/3 | 5/9/2 | 9/6/1 | 7/8/1 | 3/10/3 | 5/10/1 | 6/9/1 | 3/9/4 | 3/9/4 | 4/9/3 | 3/8/5 | 4/10/2 | 308/752/108 | |
CD | 7/8/1 | 6/8/2 | 7/9/0 | 6/8/2 | 7/8/1 | 6/8/2 | 6/7/3 | 8/8/0 | 7/6/3 | 7/7/2 | 7/7/2 | 7/7/2 | 5/9/2 | 6/8/2 | 5/9/2 | 4/9/3 | 3/12/1 | 5/8/3 | 4/7/5 | 5/11/0 | 5/8/3 | 3/9/4 | 3/9/4 | 5/8/3 | 3/9/4 | 2/9/5 | 2/11/3 | 0/13/3 | 1/12/3 | 6/7/3 | 2/8/6 | - | 4/8/4 | 0/11/5 | 0/11/5 | 1/13/2 | 0/10/6 | 1/11/4 | 5/7/4 | 3/7/6 | 5/9/2 | 8/6/2 | 2/9/5 | 7/7/2 | 5/8/3 | 2/10/4 | 2/10/4 | 1/12/3 | 1/9/6 | 2/8/6 | 3/8/5 | 2/9/5 | 2/10/4 | 6/7/3 | 1/8/7 | 1/11/4 | 4/9/3 | 0/8/8 | 0/8/8 | 1/8/7 | 0/6/10 | 1/8/7 | 5/7/4 | 5/8/3 | 6/9/1 | 6/9/1 | 3/7/6 | 5/8/3 | 6/8/2 | 1/10/5 | 1/10/5 | 5/7/4 | 2/9/5 | 3/7/6 | 268/632/268 | |
MC | 6/9/1 | 4/11/1 | 5/9/2 | 4/9/3 | 7/7/2 | 4/12/0 | 3/11/2 | 7/6/3 | 4/12/0 | 3/11/2 | 3/11/2 | 7/7/2 | 3/11/2 | 3/11/2 | 3/10/3 | 0/13/3 | 3/10/3 | 1/13/2 | 0/12/4 | 4/9/3 | 3/13/0 | 1/12/3 | 1/12/3 | 1/12/3 | 0/13/3 | 0/13/3 | 3/10/3 | 1/11/4 | 3/10/3 | 1/13/2 | 1/12/3 | 4/8/4 | - | 0/12/4 | 0/12/4 | 2/11/3 | 0/13/3 | 0/13/3 | 3/10/3 | 4/8/4 | 5/6/5 | 4/9/3 | 2/11/3 | 6/5/5 | 5/11/0 | 1/11/4 | 1/11/4 | 4/8/4 | 1/11/4 | 1/11/4 | 3/9/4 | 2/9/5 | 4/7/5 | 1/12/3 | 0/12/4 | 3/8/5 | 1/14/1 | 0/12/4 | 0/12/4 | 4/7/5 | 0/11/5 | 0/13/3 | 4/8/4 | 5/7/4 | 5/7/4 | 4/10/2 | 4/9/3 | 5/7/4 | 4/11/1 | 3/8/5 | 3/9/4 | 5/7/4 | 3/9/4 | 3/11/2 | 198/745/225 | |
CM | 9/7/0 | 8/8/0 | 9/7/0 | 6/10/0 | 10/6/0 | 7/9/0 | 6/10/0 | 11/5/0 | 7/9/0 | 6/10/0 | 6/10/0 | 11/5/0 | 6/10/0 | 6/10/0 | 9/7/0 | 6/10/0 | 6/10/0 | 6/10/0 | 4/12/0 | 7/9/0 | 5/11/0 | 3/13/0 | 3/13/0 | 5/11/0 | 3/12/1 | 4/12/0 | 4/12/0 | 2/13/1 | 6/10/0 | 6/10/0 | 1/15/0 | 5/11/0 | 4/12/0 | - | 0/16/0 | 5/10/1 | 0/16/0 | 1/15/0 | 5/9/2 | 5/9/2 | 7/9/0 | 9/6/1 | 3/11/2 | 10/6/0 | 6/10/0 | 2/11/3 | 2/11/3 | 4/10/2 | 1/13/2 | 3/11/2 | 3/10/3 | 2/11/3 | 5/9/2 | 5/10/1 | 0/13/3 | 4/11/1 | 4/11/1 | 0/12/4 | 0/12/4 | 2/11/3 | 0/12/4 | 1/11/4 | 5/9/2 | 5/9/2 | 8/8/0 | 8/7/1 | 3/10/3 | 5/11/0 | 7/8/1 | 3/9/4 | 3/9/4 | 4/10/2 | 3/9/4 | 4/10/2 | 344/744/80 | |
FC | 9/7/0 | 8/8/0 | 9/7/0 | 6/10/0 | 10/6/0 | 7/9/0 | 6/10/0 | 11/5/0 | 7/9/0 | 6/10/0 | 6/10/0 | 10/6/0 | 6/10/0 | 6/10/0 | 9/7/0 | 5/11/0 | 6/10/0 | 6/10/0 | 4/12/0 | 8/8/0 | 5/11/0 | 3/13/0 | 3/13/0 | 6/10/0 | 3/13/0 | 4/12/0 | 4/12/0 | 2/14/0 | 6/10/0 | 6/10/0 | 1/15/0 | 5/11/0 | 4/12/0 | 0/16/0 | - | 4/11/1 | 0/16/0 | 1/15/0 | 5/9/2 | 5/10/1 | 7/9/0 | 9/6/1 | 3/12/1 | 10/6/0 | 6/10/0 | 2/11/3 | 3/11/2 | 5/9/2 | 1/13/2 | 3/11/2 | 3/10/3 | 2/12/2 | 5/9/2 | 5/11/0 | 0/14/2 | 4/11/1 | 4/12/0 | 0/13/3 | 0/12/4 | 3/10/3 | 0/12/4 | 1/12/3 | 5/9/2 | 5/9/2 | 8/8/0 | 8/8/0 | 3/11/2 | 5/11/0 | 7/9/0 | 3/10/3 | 3/10/3 | 4/10/2 | 3/9/4 | 4/11/1 | 346/759/63 | |
Kh | 9/7/0 | 6/10/0 | 8/8/0 | 7/9/0 | 9/7/0 | 7/8/1 | 6/9/1 | 10/6/0 | 6/9/1 | 6/9/1 | 6/9/1 | 9/7/0 | 7/8/1 | 6/8/2 | 7/9/0 | 3/13/0 | 4/12/0 | 7/8/1 | 2/13/1 | 5/11/0 | 3/11/2 | 1/14/1 | 1/13/2 | 5/11/0 | 2/12/2 | 1/13/2 | 3/12/1 | 1/14/1 | 2/14/0 | 6/9/1 | 1/11/4 | 2/13/1 | 3/11/2 | 1/10/5 | 1/11/4 | - | 1/11/4 | 2/9/5 | 4/9/3 | 2/11/3 | 6/9/1 | 8/7/1 | 2/11/3 | 6/10/0 | 5/9/2 | 1/11/4 | 1/11/4 | 2/12/2 | 1/11/4 | 3/10/3 | 1/12/3 | 1/12/3 | 1/15/0 | 4/10/2 | 1/10/5 | 4/11/1 | 4/10/2 | 0/10/6 | 0/10/6 | 0/12/4 | 0/11/5 | 2/9/5 | 5/7/4 | 5/9/2 | 4/12/0 | 7/8/1 | 4/8/4 | 5/11/0 | 7/8/1 | 3/8/5 | 3/8/5 | 3/11/2 | 3/9/4 | 5/7/4 | 279/738/151 | |
MO | 9/7/0 | 7/9/0 | 8/8/0 | 7/9/0 | 10/6/0 | 6/10/0 | 6/10/0 | 11/5/0 | 6/10/0 | 6/10/0 | 6/10/0 | 10/6/0 | 6/10/0 | 6/10/0 | 6/10/0 | 6/10/0 | 7/9/0 | 6/10/0 | 3/13/0 | 9/7/0 | 4/12/0 | 3/13/0 | 3/13/0 | 6/10/0 | 4/12/0 | 4/12/0 | 3/12/1 | 3/12/1 | 7/8/1 | 5/11/0 | 1/15/0 | 6/10/0 | 3/13/0 | 0/16/0 | 0/16/0 | 4/11/1 | - | 2/14/0 | 6/9/1 | 5/10/1 | 7/8/1 | 7/9/0 | 3/12/1 | 8/7/1 | 6/10/0 | 2/12/2 | 2/12/2 | 6/8/2 | 1/13/2 | 3/13/0 | 3/11/2 | 2/12/2 | 7/7/2 | 6/10/0 | 0/14/2 | 5/10/1 | 4/12/0 | 0/15/1 | 0/15/1 | 4/10/2 | 0/13/3 | 2/13/1 | 5/9/2 | 5/9/2 | 8/7/1 | 8/8/0 | 4/10/2 | 6/9/1 | 7/9/0 | 3/12/1 | 3/12/1 | 5/9/2 | 3/10/3 | 4/11/1 | 349/769/50 | |
CC | 8/8/0 | 7/9/0 | 7/9/0 | 5/11/0 | 8/8/0 | 7/9/0 | 6/10/0 | 8/8/0 | 7/9/0 | 5/11/0 | 5/11/0 | 8/8/0 | 5/11/0 | 6/10/0 | 6/9/1 | 4/11/1 | 6/9/1 | 5/11/0 | 3/12/1 | 6/10/0 | 4/12/0 | 2/13/1 | 2/13/1 | 5/10/1 | 2/14/0 | 3/12/1 | 3/12/1 | 2/13/1 | 6/9/1 | 5/11/0 | 1/13/2 | 4/11/1 | 3/13/0 | 0/15/1 | 0/15/1 | 5/9/2 | 0/14/2 | - | 5/9/2 | 5/9/2 | 7/8/1 | 7/9/0 | 2/11/3 | 7/8/1 | 7/9/0 | 2/12/2 | 2/12/2 | 6/8/2 | 2/12/2 | 3/13/0 | 3/11/2 | 2/12/2 | 5/10/1 | 4/11/1 | 0/12/4 | 3/12/1 | 4/12/0 | 0/13/3 | 0/13/3 | 3/11/2 | 0/12/4 | 1/14/1 | 5/9/2 | 6/8/2 | 7/8/1 | 7/8/1 | 3/9/4 | 5/10/1 | 6/10/0 | 3/10/3 | 3/10/3 | 6/8/2 | 3/9/4 | 4/9/3 | 307/774/87 | |
HNB | EW | 7/6/3 | 4/9/3 | 6/9/1 | 5/8/3 | 7/6/3 | 6/7/3 | 4/9/3 | 6/8/2 | 4/10/2 | 5/8/3 | 5/8/3 | 6/7/3 | 5/8/3 | 4/8/4 | 3/10/3 | 3/10/3 | 5/9/2 | 5/8/3 | 5/7/4 | 4/10/2 | 4/10/2 | 3/9/4 | 3/9/4 | 5/8/3 | 4/8/4 | 3/8/5 | 3/9/4 | 3/10/3 | 4/9/3 | 5/8/3 | 2/9/5 | 4/7/5 | 3/10/3 | 2/9/5 | 2/9/5 | 3/9/4 | 1/9/6 | 2/9/5 | - | 1/13/2 | 5/8/3 | 6/8/2 | 1/12/3 | 4/11/1 | 3/12/1 | 2/11/3 | 2/10/4 | 2/11/3 | 0/12/4 | 1/12/3 | 0/11/5 | 2/9/5 | 3/9/4 | 4/8/4 | 1/10/5 | 2/11/3 | 3/11/2 | 0/9/7 | 0/9/7 | 1/10/5 | 0/8/8 | 1/10/5 | 2/12/2 | 3/12/1 | 5/9/2 | 4/10/2 | 2/11/3 | 4/11/1 | 4/11/1 | 0/12/4 | 0/12/4 | 4/10/2 | 2/9/5 | 2/10/4 | 231/688/249 |
EF | 10/5/1 | 7/7/2 | 9/5/2 | 7/6/3 | 9/5/2 | 7/5/4 | 7/5/4 | 9/5/2 | 8/4/4 | 6/7/3 | 7/6/3 | 9/4/3 | 7/6/3 | 6/7/3 | 5/9/2 | 3/9/4 | 5/9/2 | 6/5/5 | 4/6/6 | 7/7/2 | 5/6/5 | 3/7/6 | 3/7/6 | 5/8/3 | 4/6/6 | 3/7/6 | 6/6/4 | 4/7/5 | 5/9/2 | 6/6/4 | 1/9/6 | 6/7/3 | 4/8/4 | 2/9/5 | 1/10/5 | 3/11/2 | 1/10/5 | 2/9/5 | 2/13/1 | - | 5/11/0 | 7/9/0 | 1/11/4 | 4/12/0 | 3/11/2 | 1/11/4 | 1/11/4 | 3/11/2 | 0/10/6 | 1/12/3 | 2/8/6 | 2/11/3 | 4/10/2 | 4/8/4 | 1/7/8 | 4/10/2 | 4/8/4 | 0/8/8 | 0/8/8 | 2/10/4 | 0/8/8 | 1/8/7 | 3/10/3 | 3/10/3 | 7/8/1 | 6/8/2 | 3/8/5 | 4/11/1 | 6/9/1 | 2/8/6 | 2/8/6 | 4/9/3 | 2/9/5 | 3/7/6 | 299/595/274 | |
ME | 7/7/2 | 7/6/3 | 8/6/2 | 7/4/5 | 9/3/4 | 7/5/4 | 7/5/4 | 9/4/3 | 7/4/5 | 5/6/5 | 5/6/5 | 8/6/2 | 6/5/5 | 7/5/4 | 5/7/4 | 4/6/6 | 4/8/4 | 5/6/5 | 3/8/5 | 4/8/4 | 5/7/4 | 2/8/6 | 2/8/6 | 4/9/3 | 2/7/7 | 4/6/6 | 3/9/4 | 1/9/6 | 3/8/5 | 4/7/5 | 2/7/7 | 2/9/5 | 5/6/5 | 0/9/7 | 0/9/7 | 1/9/6 | 1/8/7 | 1/8/7 | 3/8/5 | 0/11/5 | - | 6/8/2 | 1/11/4 | 3/12/1 | 4/7/5 | 1/8/7 | 1/8/7 | 0/9/7 | 0/10/6 | 1/9/6 | 1/9/6 | 1/8/7 | 1/8/7 | 4/7/5 | 1/7/8 | 1/12/3 | 4/8/4 | 0/7/9 | 0/7/9 | 0/10/6 | 0/8/8 | 1/6/9 | 2/10/4 | 3/10/3 | 5/8/3 | 7/6/3 | 4/7/5 | 2/12/2 | 7/8/1 | 1/9/6 | 1/9/6 | 3/8/5 | 2/10/4 | 3/8/5 | 240/561/367 | |
PN | 6/9/1 | 5/9/2 | 4/10/2 | 5/10/1 | 4/11/1 | 4/9/3 | 4/9/3 | 5/8/3 | 4/10/2 | 2/11/3 | 2/11/3 | 4/10/2 | 2/11/3 | 4/9/3 | 1/9/6 | 0/10/6 | 1/9/6 | 2/10/4 | 1/9/6 | 2/7/7 | 3/10/3 | 0/9/7 | 0/9/7 | 1/10/5 | 1/8/7 | 1/8/7 | 1/8/7 | 0/9/7 | 1/8/7 | 3/9/4 | 0/10/6 | 2/6/8 | 3/9/4 | 1/6/9 | 1/6/9 | 1/7/8 | 0/9/7 | 0/9/7 | 2/8/6 | 0/9/7 | 2/8/6 | - | 1/9/6 | 3/6/7 | 3/11/2 | 0/10/6 | 0/10/6 | 1/8/7 | 0/10/6 | 1/9/6 | 0/8/8 | 1/7/8 | 2/7/7 | 0/10/6 | 0/9/7 | 2/6/8 | 2/10/4 | 0/7/9 | 0/7/9 | 1/6/9 | 0/8/8 | 1/8/7 | 1/8/7 | 2/7/7 | 4/7/5 | 1/13/2 | 1/9/6 | 3/7/6 | 3/10/3 | 1/8/7 | 1/8/7 | 2/6/8 | 1/8/7 | 2/8/6 | 125/631/412 | |
IM | 7/8/1 | 5/10/1 | 6/9/1 | 6/9/1 | 7/8/1 | 6/8/2 | 7/7/2 | 9/6/1 | 5/9/2 | 5/8/3 | 5/8/3 | 7/8/1 | 5/9/2 | 5/9/2 | 5/9/2 | 4/10/2 | 5/10/1 | 5/9/2 | 6/8/2 | 7/8/1 | 4/10/2 | 4/9/3 | 4/9/3 | 5/8/3 | 6/8/2 | 4/10/2 | 3/10/3 | 2/11/3 | 4/9/3 | 6/8/2 | 2/11/3 | 5/9/2 | 3/11/2 | 2/11/3 | 1/12/3 | 3/11/2 | 1/12/3 | 3/11/2 | 3/12/1 | 4/11/1 | 4/11/1 | 6/9/1 | - | 4/11/1 | 4/10/2 | 0/13/3 | 0/13/3 | 4/10/2 | 0/12/4 | 1/14/1 | 2/10/4 | 2/11/3 | 5/9/2 | 5/7/4 | 1/11/4 | 4/10/2 | 3/11/2 | 1/12/3 | 0/13/3 | 2/10/4 | 0/9/7 | 1/11/4 | 2/13/1 | 3/11/2 | 6/9/1 | 6/9/1 | 1/12/3 | 5/10/1 | 5/10/1 | 1/13/2 | 1/13/2 | 3/11/2 | 1/12/3 | 2/11/3 | 271/734/163 | |
CD | 7/6/3 | 6/6/4 | 8/5/3 | 7/3/6 | 9/2/5 | 7/4/5 | 7/3/6 | 8/4/4 | 6/5/5 | 5/6/5 | 5/6/5 | 7/4/5 | 5/5/6 | 6/5/5 | 4/8/4 | 3/7/6 | 4/8/4 | 6/5/5 | 3/6/7 | 3/9/4 | 5/7/4 | 1/9/6 | 1/9/6 | 5/5/6 | 2/8/6 | 2/8/6 | 4/6/6 | 1/8/7 | 4/8/4 | 5/6/5 | 2/6/8 | 2/7/7 | 5/5/6 | 0/6/10 | 0/6/10 | 0/10/6 | 1/7/8 | 1/8/7 | 1/11/4 | 0/12/4 | 1/12/3 | 7/6/3 | 1/11/4 | - | 3/8/5 | 1/10/5 | 1/10/5 | 0/10/6 | 0/10/6 | 1/9/6 | 1/7/8 | 1/7/8 | 1/11/4 | 4/7/5 | 1/7/8 | 2/9/5 | 4/6/6 | 0/7/9 | 0/7/9 | 0/9/7 | 0/5/11 | 1/4/11 | 2/9/5 | 2/9/5 | 3/10/3 | 5/8/3 | 2/7/7 | 1/12/3 | 4/8/4 | 0/9/7 | 0/9/7 | 2/9/5 | 1/6/9 | 1/9/6 | 211/536/421 | |
MC | 8/7/1 | 5/8/3 | 6/6/4 | 5/7/4 | 7/5/4 | 5/10/1 | 4/8/4 | 7/6/3 | 5/9/2 | 4/8/4 | 4/8/4 | 7/6/3 | 4/8/4 | 4/8/4 | 2/9/5 | 0/11/5 | 4/7/5 | 2/9/5 | 2/9/5 | 4/7/5 | 2/11/3 | 0/10/6 | 0/10/6 | 3/9/4 | 0/11/5 | 1/9/6 | 2/9/5 | 1/10/5 | 3/8/5 | 2/10/4 | 1/9/6 | 3/8/5 | 0/11/5 | 0/10/6 | 0/10/6 | 2/9/5 | 0/10/6 | 0/9/7 | 1/12/3 | 2/11/3 | 5/7/4 | 2/11/3 | 2/10/4 | 5/8/3 | - | 0/11/5 | 0/11/5 | 2/10/4 | 0/13/3 | 0/13/3 | 2/9/5 | 2/9/5 | 4/7/5 | 1/11/4 | 0/10/6 | 4/8/4 | 2/12/2 | 0/9/7 | 0/9/7 | 2/9/5 | 0/10/6 | 0/12/4 | 3/10/3 | 3/10/3 | 5/7/4 | 3/10/3 | 2/8/6 | 4/9/3 | 3/12/1 | 2/8/6 | 2/8/6 | 3/9/4 | 2/10/4 | 2/11/3 | 179/673/316 | |
CM | 11/5/0 | 8/7/1 | 10/5/1 | 8/7/1 | 9/6/1 | 8/7/1 | 8/7/1 | 11/4/1 | 7/8/1 | 6/9/1 | 7/8/1 | 10/5/1 | 7/8/1 | 7/8/1 | 7/8/1 | 7/8/1 | 7/8/1 | 6/9/1 | 6/9/1 | 9/6/1 | 4/11/1 | 3/12/1 | 3/12/1 | 6/9/1 | 6/9/1 | 4/11/1 | 5/9/2 | 4/11/1 | 7/8/1 | 6/9/1 | 3/11/2 | 4/10/2 | 4/11/1 | 3/11/2 | 3/11/2 | 4/11/1 | 2/12/2 | 2/12/2 | 3/11/2 | 4/11/1 | 7/8/1 | 6/10/0 | 3/13/0 | 5/10/1 | 5/11/0 | - | 0/16/0 | 3/12/1 | 1/15/0 | 1/15/0 | 4/9/3 | 3/11/2 | 6/8/2 | 4/11/1 | 1/12/3 | 3/11/2 | 5/10/1 | 0/12/4 | 0/12/4 | 2/12/2 | 0/12/4 | 1/11/4 | 5/9/2 | 5/10/1 | 8/8/0 | 6/10/0 | 4/10/2 | 4/12/0 | 6/10/0 | 2/12/2 | 2/12/2 | 3/12/1 | 2/12/2 | 4/10/2 | 350/722/96 | |
FC | 10/6/0 | 8/7/1 | 9/6/1 | 8/7/1 | 9/6/1 | 6/9/1 | 7/8/1 | 11/4/1 | 7/8/1 | 6/9/1 | 7/8/1 | 9/6/1 | 7/8/1 | 7/8/1 | 7/8/1 | 6/9/1 | 7/8/1 | 6/9/1 | 5/10/1 | 9/6/1 | 3/12/1 | 3/12/1 | 3/12/1 | 7/8/1 | 5/10/1 | 4/11/1 | 5/9/2 | 3/12/1 | 7/8/1 | 6/9/1 | 3/10/3 | 4/10/2 | 4/11/1 | 3/11/2 | 2/11/3 | 4/11/1 | 2/12/2 | 2/12/2 | 4/10/2 | 4/11/1 | 7/8/1 | 6/10/0 | 3/13/0 | 5/10/1 | 5/11/0 | 0/16/0 | - | 4/11/1 | 1/15/0 | 1/15/0 | 5/8/3 | 3/11/2 | 5/9/2 | 4/11/1 | 1/12/3 | 3/11/2 | 4/11/1 | 0/12/4 | 0/12/4 | 2/12/2 | 0/11/5 | 1/11/4 | 5/9/2 | 5/10/1 | 8/8/0 | 6/10/0 | 4/10/2 | 4/12/0 | 6/10/0 | 2/12/2 | 2/12/2 | 3/12/1 | 2/12/2 | 4/10/2 | 340/729/99 | |
Kh | 9/5/2 | 6/8/2 | 8/7/1 | 7/6/3 | 9/5/2 | 6/7/3 | 6/6/4 | 10/5/1 | 7/6/3 | 6/6/4 | 6/6/4 | 8/6/2 | 6/6/4 | 7/5/4 | 6/9/1 | 2/11/3 | 6/8/2 | 5/8/3 | 5/6/5 | 6/9/1 | 5/8/3 | 3/9/4 | 3/9/4 | 5/9/2 | 5/7/4 | 3/8/5 | 5/9/2 | 2/11/3 | 4/10/2 | 5/8/3 | 3/7/6 | 3/12/1 | 4/8/4 | 2/10/4 | 2/9/5 | 2/12/2 | 2/8/6 | 2/8/6 | 3/11/2 | 2/11/3 | 7/9/0 | 7/8/1 | 2/10/4 | 6/10/0 | 4/10/2 | 1/12/3 | 1/11/4 | - | 0/10/6 | 3/9/4 | 3/11/2 | 3/9/4 | 5/8/3 | 5/7/4 | 1/8/7 | 3/11/2 | 4/8/4 | 0/9/7 | 0/9/7 | 0/12/4 | 1/7/8 | 1/9/6 | 5/10/1 | 4/11/1 | 7/8/1 | 7/8/1 | 3/9/4 | 5/10/1 | 6/9/1 | 1/13/2 | 1/12/3 | 3/12/1 | 3/9/4 | 3/10/3 | 301/637/230 | |
MO | 9/7/0 | 7/8/1 | 8/8/0 | 7/8/1 | 8/7/1 | 6/9/1 | 6/9/1 | 11/4/1 | 7/8/1 | 6/8/2 | 6/8/2 | 9/7/0 | 6/9/1 | 6/9/1 | 8/7/1 | 5/10/1 | 6/9/1 | 5/10/1 | 5/10/1 | 10/5/1 | 3/12/1 | 4/10/2 | 4/10/2 | 8/7/1 | 6/9/1 | 3/12/1 | 4/11/1 | 2/13/1 | 5/10/1 | 6/9/1 | 2/13/1 | 6/9/1 | 4/11/1 | 2/13/1 | 2/13/1 | 4/11/1 | 2/13/1 | 2/12/2 | 4/12/0 | 6/10/0 | 6/10/0 | 6/10/0 | 4/12/0 | 6/10/0 | 3/13/0 | 0/15/1 | 0/15/1 | 6/10/0 | - | 2/14/0 | 2/11/3 | 2/13/1 | 6/9/1 | 5/9/2 | 1/12/3 | 5/9/2 | 4/11/1 | 0/14/2 | 0/14/2 | 4/9/3 | 0/14/2 | 1/13/2 | 5/9/2 | 4/12/0 | 8/8/0 | 7/9/0 | 3/11/2 | 5/11/0 | 6/10/0 | 2/14/0 | 2/14/0 | 5/10/1 | 2/13/1 | 3/13/0 | 335/761/72 | |
CC | 9/6/1 | 7/7/2 | 8/7/1 | 6/8/2 | 8/6/2 | 6/9/1 | 5/8/3 | 9/5/2 | 6/9/1 | 5/10/1 | 5/10/1 | 9/6/1 | 6/7/3 | 6/9/1 | 7/7/2 | 5/8/3 | 6/8/2 | 4/11/1 | 3/10/3 | 6/8/2 | 5/10/1 | 2/12/2 | 2/12/2 | 5/9/2 | 3/10/3 | 3/11/2 | 6/8/2 | 1/12/3 | 3/10/3 | 5/10/1 | 1/11/4 | 6/8/2 | 4/11/1 | 2/11/3 | 2/11/3 | 3/10/3 | 0/13/3 | 0/13/3 | 3/12/1 | 3/12/1 | 6/9/1 | 6/9/1 | 1/14/1 | 6/9/1 | 3/13/0 | 0/15/1 | 0/15/1 | 4/9/3 | 0/14/2 | - | 3/11/2 | 2/11/3 | 5/8/3 | 4/10/2 | 0/11/5 | 5/10/1 | 3/12/1 | 0/11/5 | 0/11/5 | 3/9/4 | 0/10/6 | 0/12/4 | 4/10/2 | 4/10/2 | 7/8/1 | 7/8/1 | 2/11/3 | 4/11/1 | 5/11/0 | 2/11/3 | 2/11/3 | 4/10/2 | 2/9/5 | 3/11/2 | 282/729/157 | |
AODEsr | EW | 9/6/1 | 5/10/1 | 8/8/0 | 6/9/1 | 8/8/0 | 6/9/1 | 7/8/1 | 8/8/0 | 5/10/1 | 6/8/2 | 6/8/2 | 8/8/0 | 4/10/2 | 5/10/1 | 5/11/0 | 5/10/1 | 6/10/0 | 5/10/1 | 5/9/2 | 6/10/0 | 4/10/2 | 3/10/3 | 3/10/3 | 5/9/2 | 4/9/3 | 4/10/2 | 5/11/0 | 3/11/2 | 5/8/3 | 6/9/1 | 3/11/2 | 5/8/3 | 4/9/3 | 3/10/3 | 3/10/3 | 3/12/1 | 2/11/3 | 2/11/3 | 5/11/0 | 6/8/2 | 6/9/1 | 8/8/0 | 4/10/2 | 8/7/1 | 5/9/2 | 3/9/4 | 3/8/5 | 2/11/3 | 3/11/2 | 2/11/3 | - | 2/12/2 | 4/10/2 | 5/10/1 | 1/12/3 | 4/11/1 | 4/10/2 | 0/12/4 | 0/12/4 | 1/13/2 | 0/12/4 | 1/12/3 | 4/12/0 | 5/10/1 | 8/7/1 | 9/7/0 | 4/9/3 | 5/11/0 | 7/8/1 | 2/11/3 | 2/11/3 | 4/9/3 | 4/8/4 | 2/12/2 | 323/712/133 |
EF | 10/5/1 | 9/6/1 | 10/6/0 | 8/6/2 | 10/4/2 | 7/7/2 | 8/6/2 | 10/5/1 | 6/9/1 | 7/7/2 | 6/8/2 | 10/5/1 | 7/7/2 | 5/9/2 | 7/8/1 | 6/8/2 | 7/8/1 | 5/9/2 | 5/6/5 | 7/8/1 | 5/9/2 | 4/8/4 | 3/9/4 | 8/6/2 | 5/7/4 | 4/8/4 | 6/9/1 | 5/8/3 | 6/9/1 | 6/8/2 | 2/12/2 | 5/9/2 | 5/9/2 | 3/11/2 | 2/12/2 | 3/12/1 | 2/12/2 | 2/12/2 | 5/9/2 | 3/11/2 | 7/8/1 | 8/7/1 | 3/11/2 | 8/7/1 | 5/9/2 | 2/11/3 | 2/11/3 | 4/9/3 | 1/13/2 | 3/11/2 | 2/12/2 | - | 5/11/0 | 5/10/1 | 1/12/3 | 4/11/1 | 4/9/3 | 0/14/2 | 0/14/2 | 3/11/2 | 0/13/3 | 1/12/3 | 4/10/2 | 4/12/0 | 6/10/0 | 9/5/2 | 5/8/3 | 5/10/1 | 7/8/1 | 3/11/2 | 3/11/2 | 5/9/2 | 4/9/3 | 3/10/3 | 360/666/142 | |
ME | 9/6/1 | 6/9/1 | 9/6/1 | 7/8/1 | 9/5/2 | 6/7/3 | 7/5/4 | 9/6/1 | 7/5/4 | 7/7/2 | 7/6/3 | 10/5/1 | 6/6/4 | 7/7/2 | 6/7/3 | 3/11/2 | 6/10/0 | 4/9/3 | 3/8/5 | 7/8/1 | 5/7/4 | 3/8/5 | 3/8/5 | 6/9/1 | 2/8/6 | 3/8/5 | 5/7/4 | 3/9/4 | 3/12/1 | 4/8/4 | 2/7/7 | 4/10/2 | 5/7/4 | 2/9/5 | 2/9/5 | 0/15/1 | 2/7/7 | 1/10/5 | 4/9/3 | 2/10/4 | 7/8/1 | 7/7/2 | 2/9/5 | 4/11/1 | 5/7/4 | 2/8/6 | 2/9/5 | 3/8/5 | 1/9/6 | 3/8/5 | 2/10/4 | 0/11/5 | - | 4/9/3 | 1/8/7 | 2/13/1 | 4/8/4 | 0/8/8 | 0/8/8 | 0/11/5 | 0/8/8 | 1/7/8 | 4/8/4 | 4/9/3 | 3/13/0 | 8/6/2 | 4/7/5 | 3/12/1 | 7/7/2 | 3/7/6 | 3/7/6 | 3/10/3 | 4/7/5 | 3/8/5 | 295/604/269 | |
PN | 9/7/0 | 6/9/1 | 6/10/0 | 7/9/0 | 8/8/0 | 5/11/0 | 4/11/1 | 8/8/0 | 6/10/0 | 2/13/1 | 2/13/1 | 8/8/0 | 4/11/1 | 4/11/1 | 2/10/4 | 1/11/4 | 5/8/3 | 3/13/0 | 2/10/4 | 3/9/4 | 4/11/1 | 0/12/4 | 0/12/4 | 3/10/3 | 2/10/4 | 1/12/3 | 2/10/4 | 0/11/5 | 3/9/4 | 6/10/0 | 1/11/4 | 3/7/6 | 3/12/1 | 1/10/5 | 0/11/5 | 2/10/4 | 0/10/6 | 1/11/4 | 4/8/4 | 4/8/4 | 5/7/4 | 6/10/0 | 4/7/5 | 5/7/4 | 4/11/1 | 1/11/4 | 1/11/4 | 4/7/5 | 2/9/5 | 2/10/4 | 1/10/5 | 1/10/5 | 3/9/4 | - | 0/11/5 | 3/8/5 | 2/13/1 | 0/10/6 | 0/9/7 | 2/9/5 | 0/10/6 | 1/11/4 | 4/7/5 | 4/7/5 | 5/7/4 | 5/11/0 | 4/7/5 | 4/7/5 | 6/9/1 | 3/7/6 | 3/7/6 | 4/6/6 | 4/7/5 | 4/8/4 | 232/695/241 | |
IM | 8/8/0 | 6/10/0 | 8/8/0 | 7/9/0 | 8/8/0 | 7/9/0 | 7/9/0 | 9/7/0 | 7/9/0 | 5/11/0 | 5/11/0 | 8/8/0 | 6/10/0 | 5/11/0 | 6/10/0 | 5/11/0 | 7/9/0 | 5/11/0 | 5/11/0 | 8/8/0 | 4/12/0 | 5/11/0 | 4/12/0 | 6/9/1 | 4/12/0 | 4/12/0 | 5/10/1 | 5/10/1 | 6/9/1 | 6/10/0 | 4/12/0 | 7/8/1 | 4/12/0 | 3/13/0 | 2/14/0 | 5/10/1 | 2/14/0 | 4/12/0 | 5/10/1 | 8/7/1 | 8/7/1 | 7/9/0 | 4/11/1 | 8/7/1 | 6/10/0 | 3/12/1 | 3/12/1 | 7/8/1 | 3/12/1 | 5/11/0 | 3/12/1 | 3/12/1 | 7/8/1 | 5/11/0 | - | 7/8/1 | 4/12/0 | 0/15/1 | 0/15/1 | 4/11/1 | 0/13/3 | 1/14/1 | 5/10/1 | 6/9/1 | 8/7/1 | 8/8/0 | 3/13/0 | 7/8/1 | 6/10/0 | 3/12/1 | 3/12/1 | 6/8/2 | 3/11/2 | 4/12/0 | 375/757/36 | |
CD | 7/8/1 | 7/7/2 | 8/7/1 | 7/7/2 | 8/6/2 | 7/6/3 | 7/6/3 | 8/8/0 | 7/6/3 | 5/9/2 | 5/9/2 | 7/7/2 | 7/7/2 | 5/9/2 | 7/7/2 | 4/9/3 | 5/9/2 | 6/7/3 | 4/7/5 | 7/9/0 | 5/7/4 | 2/11/3 | 2/10/4 | 6/7/3 | 4/8/4 | 3/10/3 | 3/12/1 | 2/10/4 | 4/10/2 | 6/8/2 | 2/9/5 | 4/11/1 | 5/8/3 | 1/11/4 | 1/11/4 | 1/11/4 | 1/10/5 | 1/12/3 | 3/11/2 | 2/10/4 | 3/12/1 | 8/6/2 | 2/10/4 | 5/9/2 | 4/8/4 | 2/11/3 | 2/11/3 | 2/11/3 | 2/9/5 | 1/10/5 | 1/11/4 | 1/11/4 | 1/13/2 | 5/8/3 | 1/8/7 | - | 4/9/3 | 0/11/5 | 0/11/5 | 0/11/5 | 0/8/8 | 1/8/7 | 3/10/3 | 5/9/2 | 6/10/0 | 8/7/1 | 4/7/5 | 3/13/0 | 7/8/1 | 1/12/3 | 1/12/3 | 4/9/3 | 3/6/7 | 2/10/4 | 278/666/224 | |
MC | 7/7/2 | 6/8/2 | 6/8/2 | 6/7/3 | 7/7/2 | 5/10/1 | 5/9/2 | 7/7/2 | 6/9/1 | 4/9/3 | 5/8/3 | 7/7/2 | 5/8/3 | 4/10/2 | 1/12/3 | 0/12/4 | 4/9/3 | 2/12/2 | 2/9/5 | 4/8/4 | 3/12/1 | 0/12/4 | 0/12/4 | 2/11/3 | 1/12/3 | 0/13/3 | 3/10/3 | 2/10/4 | 3/9/4 | 4/10/2 | 1/12/3 | 3/9/4 | 1/14/1 | 1/11/4 | 0/12/4 | 2/10/4 | 0/12/4 | 0/12/4 | 2/11/3 | 4/8/4 | 4/8/4 | 4/10/2 | 2/11/3 | 6/6/4 | 2/12/2 | 1/10/5 | 1/11/4 | 4/8/4 | 1/11/4 | 1/12/3 | 2/10/4 | 3/9/4 | 4/8/4 | 1/13/2 | 0/12/4 | 3/9/4 | - | 0/12/4 | 0/12/4 | 2/10/4 | 0/11/5 | 0/12/4 | 4/8/4 | 4/8/4 | 6/6/4 | 4/10/2 | 3/10/3 | 6/7/3 | 4/12/0 | 3/9/4 | 3/9/4 | 4/8/4 | 3/9/4 | 3/9/4 | 213/720/235 | |
CM | 11/5/0 | 9/7/0 | 12/4/0 | 9/7/0 | 10/6/0 | 8/8/0 | 6/10/0 | 10/6/0 | 9/7/0 | 6/10/0 | 7/9/0 | 12/4/0 | 7/9/0 | 8/7/1 | 11/5/0 | 7/9/0 | 9/7/0 | 7/9/0 | 5/11/0 | 10/6/0 | 6/10/0 | 5/11/0 | 5/11/0 | 8/8/0 | 4/12/0 | 6/8/2 | 8/8/0 | 3/13/0 | 6/10/0 | 7/9/0 | 4/12/0 | 8/8/0 | 4/12/0 | 4/12/0 | 3/13/0 | 6/10/0 | 1/15/0 | 3/13/0 | 7/9/0 | 8/8/0 | 9/7/0 | 9/7/0 | 3/12/1 | 9/7/0 | 7/9/0 | 4/12/0 | 4/12/0 | 7/9/0 | 2/14/0 | 5/11/0 | 4/12/0 | 2/14/0 | 8/8/0 | 6/10/0 | 1/15/0 | 5/11/0 | 4/12/0 | - | 0/15/1 | 4/12/0 | 0/16/0 | 2/13/1 | 6/10/0 | 6/10/0 | 10/6/0 | 10/6/0 | 4/12/0 | 6/10/0 | 7/9/0 | 3/13/0 | 3/13/0 | 7/9/0 | 3/13/0 | 5/11/0 | 444/718/6 | |
FC | 11/5/0 | 9/7/0 | 12/4/0 | 9/7/0 | 10/6/0 | 8/8/0 | 6/10/0 | 10/6/0 | 9/7/0 | 6/10/0 | 7/9/0 | 11/5/0 | 7/9/0 | 8/7/1 | 11/5/0 | 7/9/0 | 9/7/0 | 7/9/0 | 6/10/0 | 10/6/0 | 6/10/0 | 5/11/0 | 5/11/0 | 9/7/0 | 5/11/0 | 6/8/2 | 9/7/0 | 4/12/0 | 6/10/0 | 7/9/0 | 4/11/1 | 8/8/0 | 4/12/0 | 4/12/0 | 4/12/0 | 6/10/0 | 1/15/0 | 3/13/0 | 7/9/0 | 8/8/0 | 9/7/0 | 9/7/0 | 3/13/0 | 9/7/0 | 7/9/0 | 4/12/0 | 4/12/0 | 7/9/0 | 2/14/0 | 5/11/0 | 4/12/0 | 2/14/0 | 8/8/0 | 7/9/0 | 1/15/0 | 5/11/0 | 4/12/0 | 1/15/0 | - | 4/12/0 | 0/16/0 | 2/13/1 | 6/10/0 | 6/10/0 | 10/6/0 | 10/6/0 | 4/12/0 | 6/10/0 | 7/9/0 | 4/12/0 | 3/13/0 | 7/9/0 | 3/13/0 | 5/11/0 | 452/711/5 | |
Kh | 10/6/0 | 7/8/1 | 9/7/0 | 8/8/0 | 11/5/0 | 7/8/1 | 7/8/1 | 11/5/0 | 7/8/1 | 6/9/1 | 6/9/1 | 10/6/0 | 7/7/2 | 7/7/2 | 8/8/0 | 6/10/0 | 6/10/0 | 7/8/1 | 5/8/3 | 8/8/0 | 5/8/3 | 4/10/2 | 4/9/3 | 7/9/0 | 5/7/4 | 4/10/2 | 5/10/1 | 3/12/1 | 6/10/0 | 7/8/1 | 3/11/2 | 7/8/1 | 5/7/4 | 3/11/2 | 3/10/3 | 4/12/0 | 2/10/4 | 2/11/3 | 5/10/1 | 4/10/2 | 6/10/0 | 9/6/1 | 4/10/2 | 7/9/0 | 5/9/2 | 2/12/2 | 2/12/2 | 4/12/0 | 3/9/4 | 4/9/3 | 2/13/1 | 2/11/3 | 5/11/0 | 5/9/2 | 1/11/4 | 5/11/0 | 4/10/2 | 0/12/4 | 0/12/4 | - | 1/9/6 | 2/10/4 | 6/8/2 | 5/9/2 | 8/8/0 | 9/6/1 | 5/8/3 | 6/10/0 | 8/7/1 | 3/10/3 | 3/10/3 | 4/12/0 | 5/8/3 | 4/9/3 | 380/668/120 | |
MO | 10/6/0 | 8/8/0 | 9/7/0 | 9/7/0 | 10/6/0 | 8/8/0 | 8/8/0 | 10/6/0 | 9/7/0 | 6/10/0 | 7/9/0 | 11/5/0 | 7/9/0 | 7/9/0 | 9/7/0 | 8/8/0 | 9/7/0 | 6/10/0 | 8/8/0 | 10/6/0 | 5/11/0 | 3/13/0 | 4/12/0 | 7/9/0 | 7/9/0 | 5/11/0 | 8/8/0 | 6/10/0 | 7/9/0 | 8/8/0 | 6/10/0 | 10/6/0 | 5/11/0 | 4/12/0 | 4/12/0 | 5/11/0 | 3/13/0 | 4/12/0 | 8/8/0 | 8/8/0 | 8/8/0 | 8/8/0 | 7/9/0 | 11/5/0 | 6/10/0 | 4/12/0 | 5/11/0 | 8/7/1 | 2/14/0 | 6/10/0 | 4/12/0 | 3/13/0 | 8/8/0 | 6/10/0 | 3/13/0 | 8/8/0 | 5/11/0 | 0/16/0 | 0/16/0 | 6/9/1 | - | 3/13/0 | 6/10/0 | 6/10/0 | 9/7/0 | 9/7/0 | 5/11/0 | 8/8/0 | 7/9/0 | 3/13/0 | 3/13/0 | 6/10/0 | 4/12/0 | 6/10/0 | 469/697/2 | |
CC | 9/6/1 | 9/6/1 | 9/6/1 | 9/6/1 | 9/6/1 | 7/9/0 | 7/8/1 | 11/4/1 | 7/9/0 | 6/9/1 | 7/8/1 | 10/5/1 | 8/7/1 | 5/11/0 | 7/8/1 | 5/10/1 | 6/9/1 | 4/12/0 | 6/9/1 | 10/5/1 | 4/12/0 | 4/11/1 | 4/11/1 | 6/9/1 | 5/10/1 | 5/10/1 | 6/9/1 | 5/10/1 | 6/9/1 | 5/11/0 | 3/12/1 | 7/8/1 | 3/13/0 | 4/11/1 | 3/12/1 | 5/9/2 | 1/13/2 | 1/14/1 | 5/10/1 | 7/8/1 | 9/6/1 | 7/8/1 | 4/11/1 | 11/4/1 | 4/12/0 | 4/11/1 | 4/11/1 | 6/9/1 | 2/13/1 | 4/12/0 | 3/12/1 | 3/12/1 | 8/7/1 | 4/11/1 | 1/14/1 | 7/8/1 | 4/12/0 | 1/13/2 | 1/13/2 | 4/10/2 | 0/13/3 | - | 5/10/1 | 6/9/1 | 9/6/1 | 8/7/1 | 4/11/1 | 9/6/1 | 7/9/0 | 4/10/2 | 4/10/2 | 6/8/2 | 4/9/3 | 5/11/0 | 402/693/73 | |
WAODE | EW | 9/4/3 | 4/8/4 | 6/7/3 | 6/6/4 | 7/6/3 | 6/7/3 | 6/6/4 | 6/8/2 | 5/8/3 | 6/6/4 | 5/8/3 | 7/7/2 | 4/8/4 | 5/7/4 | 5/7/4 | 4/7/5 | 6/8/2 | 5/8/3 | 5/6/5 | 5/9/2 | 4/8/4 | 3/8/5 | 3/9/4 | 4/8/4 | 4/8/4 | 4/7/5 | 4/8/4 | 3/9/4 | 5/7/4 | 5/8/3 | 3/8/5 | 4/7/5 | 4/8/4 | 2/9/5 | 2/9/5 | 4/7/5 | 2/9/5 | 2/9/5 | 2/12/2 | 3/10/3 | 4/10/2 | 7/8/1 | 1/13/2 | 5/9/2 | 3/10/3 | 2/9/5 | 2/9/5 | 1/10/5 | 2/9/5 | 2/10/4 | 0/12/4 | 2/10/4 | 4/8/4 | 5/7/4 | 1/10/5 | 3/10/3 | 4/8/4 | 0/10/6 | 0/10/6 | 2/8/6 | 0/10/6 | 1/10/5 | - | 2/12/2 | 4/10/2 | 6/9/1 | 2/11/3 | 2/14/0 | 4/10/2 | 0/11/5 | 0/11/5 | 2/11/3 | 0/11/5 | 1/11/4 | 253/640/275 |
EF | 8/6/2 | 7/7/2 | 7/6/3 | 8/4/4 | 8/3/5 | 6/6/4 | 6/5/5 | 7/6/3 | 5/7/4 | 5/7/4 | 5/7/4 | 8/5/3 | 6/6/4 | 5/6/5 | 6/6/4 | 6/6/4 | 5/7/4 | 5/7/4 | 4/6/6 | 5/7/4 | 5/7/4 | 2/9/5 | 2/9/5 | 5/7/4 | 4/7/5 | 3/7/6 | 5/7/4 | 4/7/5 | 5/7/4 | 6/6/4 | 2/9/5 | 3/8/5 | 4/7/5 | 2/9/5 | 2/9/5 | 2/9/5 | 2/9/5 | 2/8/6 | 1/12/3 | 3/10/3 | 3/10/3 | 7/7/2 | 2/11/3 | 5/9/2 | 3/10/3 | 1/10/5 | 1/10/5 | 1/11/4 | 0/12/4 | 2/10/4 | 1/10/5 | 0/12/4 | 3/9/4 | 5/7/4 | 1/9/6 | 2/9/5 | 4/8/4 | 0/10/6 | 0/10/6 | 2/9/5 | 0/10/6 | 1/9/6 | 2/12/2 | - | 4/12/0 | 5/10/1 | 1/13/2 | 4/11/1 | 4/10/2 | 0/14/2 | 0/14/2 | 3/11/2 | 0/12/4 | 1/11/4 | 254/625/289 | |
ME | 8/5/3 | 6/7/3 | 8/5/3 | 6/5/5 | 8/3/5 | 6/4/6 | 6/4/6 | 7/4/5 | 7/5/4 | 6/5/5 | 6/4/6 | 7/5/4 | 6/4/6 | 7/4/5 | 4/6/6 | 4/6/6 | 4/9/3 | 5/6/5 | 3/6/7 | 4/7/5 | 5/6/5 | 2/7/7 | 2/7/7 | 4/8/4 | 2/7/7 | 4/5/7 | 2/8/6 | 1/8/7 | 2/10/4 | 4/6/6 | 1/6/9 | 1/9/6 | 4/7/5 | 0/8/8 | 0/8/8 | 0/12/4 | 1/7/8 | 1/8/7 | 2/9/5 | 1/8/7 | 3/8/5 | 5/7/4 | 1/9/6 | 3/10/3 | 4/7/5 | 0/8/8 | 0/8/8 | 1/8/7 | 0/8/8 | 1/8/7 | 1/7/8 | 0/10/6 | 0/13/3 | 4/7/5 | 1/7/8 | 0/10/6 | 4/6/6 | 0/6/10 | 0/6/10 | 0/8/8 | 0/7/9 | 1/6/9 | 2/10/4 | 0/12/4 | - | 4/9/3 | 1/9/6 | 2/12/2 | 4/7/5 | 0/10/6 | 0/10/6 | 0/12/4 | 0/10/6 | 1/7/8 | 200/540/428 | |
PN | 6/8/2 | 4/8/4 | 3/10/3 | 5/8/3 | 5/8/3 | 4/8/4 | 4/8/4 | 5/9/2 | 5/8/3 | 3/9/4 | 3/9/4 | 6/8/2 | 4/8/4 | 4/8/4 | 1/10/5 | 0/9/7 | 2/8/6 | 2/11/3 | 3/6/7 | 1/10/5 | 3/9/4 | 0/9/7 | 0/9/7 | 1/8/7 | 1/8/7 | 1/9/6 | 0/10/6 | 0/8/8 | 1/8/7 | 5/8/3 | 1/8/7 | 1/9/6 | 2/10/4 | 1/7/8 | 0/8/8 | 1/8/7 | 0/8/8 | 1/8/7 | 2/10/4 | 2/8/6 | 3/6/7 | 2/13/1 | 1/9/6 | 3/8/5 | 3/10/3 | 0/10/6 | 0/10/6 | 1/8/7 | 0/9/7 | 1/8/7 | 0/7/9 | 2/5/9 | 2/6/8 | 0/11/5 | 0/8/8 | 1/7/8 | 2/10/4 | 0/6/10 | 0/6/10 | 1/6/9 | 0/7/9 | 1/7/8 | 1/9/6 | 1/10/5 | 3/9/4 | - | 0/10/6 | 2/8/6 | 2/12/2 | 0/10/6 | 0/9/7 | 1/9/6 | 0/10/6 | 1/10/5 | 127/624/417 | |
IM | 6/9/1 | 4/10/2 | 6/9/1 | 6/7/3 | 7/7/2 | 6/7/3 | 6/7/3 | 7/7/2 | 5/9/2 | 5/9/2 | 5/9/2 | 6/7/3 | 7/6/3 | 5/8/3 | 4/10/2 | 5/8/3 | 5/8/3 | 5/8/3 | 5/8/3 | 6/8/2 | 4/9/3 | 5/8/3 | 5/8/3 | 5/8/3 | 4/9/3 | 4/9/3 | 4/9/3 | 4/8/4 | 4/8/4 | 6/7/3 | 3/10/3 | 6/7/3 | 3/9/4 | 3/10/3 | 2/11/3 | 4/8/4 | 2/10/4 | 4/9/3 | 3/11/2 | 5/8/3 | 5/7/4 | 6/9/1 | 3/12/1 | 7/7/2 | 6/8/2 | 2/10/4 | 2/10/4 | 4/9/3 | 2/11/3 | 3/11/2 | 3/9/4 | 3/8/5 | 5/7/4 | 5/7/4 | 0/13/3 | 5/7/4 | 3/10/3 | 0/12/4 | 0/12/4 | 3/8/5 | 0/11/5 | 1/11/4 | 3/11/2 | 2/13/1 | 6/9/1 | 6/10/0 | - | 5/9/2 | 3/13/0 | 0/15/1 | 0/15/1 | 4/10/2 | 0/14/2 | 1/14/1 | 289/679/200 | |
CD | 6/7/3 | 5/7/4 | 8/6/2 | 7/5/4 | 9/4/3 | 6/7/3 | 7/5/4 | 8/5/3 | 5/6/5 | 6/6/4 | 6/5/5 | 8/6/2 | 6/6/4 | 5/8/3 | 6/7/3 | 3/9/4 | 4/9/3 | 5/8/3 | 4/6/6 | 4/9/3 | 4/8/4 | 2/8/6 | 2/8/6 | 4/8/4 | 3/8/5 | 3/8/5 | 3/10/3 | 2/10/4 | 5/8/3 | 5/6/5 | 1/10/5 | 3/8/5 | 4/7/5 | 0/11/5 | 0/11/5 | 0/11/5 | 1/9/6 | 1/10/5 | 1/11/4 | 1/11/4 | 2/12/2 | 6/7/3 | 1/10/5 | 3/12/1 | 3/9/4 | 0/12/4 | 0/12/4 | 1/10/5 | 0/11/5 | 1/11/4 | 0/11/5 | 1/10/5 | 1/12/3 | 5/7/4 | 1/8/7 | 0/13/3 | 3/7/6 | 0/10/6 | 0/10/6 | 0/10/6 | 0/8/8 | 1/6/9 | 0/14/2 | 1/11/4 | 2/12/2 | 6/8/2 | 2/9/5 | - | 4/8/4 | 0/13/3 | 0/13/3 | 0/10/6 | 0/10/6 | 1/8/7 | 208/646/314 | |
MC | 4/9/3 | 4/7/5 | 4/7/5 | 5/5/6 | 5/6/5 | 5/7/4 | 5/6/5 | 5/7/4 | 3/9/4 | 4/6/6 | 5/5/6 | 5/7/4 | 5/5/6 | 4/7/5 | 0/10/6 | 0/9/7 | 2/8/6 | 2/9/5 | 1/9/6 | 1/9/6 | 3/9/4 | 0/9/7 | 0/9/7 | 1/9/6 | 0/10/6 | 1/9/6 | 1/9/6 | 1/8/7 | 1/8/7 | 4/7/5 | 1/9/6 | 2/8/6 | 1/11/4 | 1/8/7 | 0/9/7 | 1/8/7 | 0/9/7 | 0/10/6 | 1/11/4 | 1/9/6 | 1/8/7 | 3/10/3 | 1/10/5 | 4/8/4 | 1/12/3 | 0/10/6 | 0/10/6 | 1/9/6 | 0/10/6 | 0/11/5 | 1/8/7 | 1/8/7 | 2/7/7 | 1/9/6 | 0/10/6 | 1/8/7 | 0/12/4 | 0/9/7 | 0/9/7 | 1/7/8 | 0/9/7 | 0/9/7 | 2/10/4 | 2/10/4 | 5/7/4 | 2/12/2 | 0/13/3 | 4/8/4 | - | 0/12/4 | 0/12/4 | 3/9/4 | 0/12/4 | 0/13/3 | 125/647/396 | |
CM | 8/6/2 | 7/6/3 | 8/7/1 | 8/5/3 | 8/5/3 | 7/6/3 | 6/7/3 | 8/7/1 | 7/6/3 | 6/7/3 | 7/6/3 | 8/6/2 | 7/6/3 | 7/6/3 | 8/6/2 | 6/7/3 | 7/6/3 | 6/7/3 | 5/8/3 | 8/7/1 | 6/7/3 | 4/9/3 | 5/8/3 | 7/7/2 | 5/8/3 | 5/8/3 | 7/7/2 | 3/10/3 | 4/9/3 | 7/6/3 | 4/9/3 | 5/10/1 | 5/8/3 | 4/9/3 | 3/10/3 | 5/8/3 | 1/12/3 | 3/10/3 | 4/12/0 | 6/8/2 | 6/9/1 | 7/8/1 | 2/13/1 | 7/9/0 | 6/8/2 | 2/12/2 | 2/12/2 | 2/13/1 | 0/14/2 | 3/11/2 | 3/11/2 | 2/11/3 | 6/7/3 | 6/7/3 | 1/12/3 | 3/12/1 | 4/9/3 | 0/13/3 | 0/12/4 | 3/10/3 | 0/13/3 | 2/10/4 | 5/11/0 | 2/14/0 | 6/10/0 | 6/10/0 | 1/15/0 | 3/13/0 | 4/12/0 | - | 0/16/0 | 4/12/0 | 0/16/0 | 2/13/1 | 335/680/153 | |
FC | 8/6/2 | 7/6/3 | 8/7/1 | 8/5/3 | 8/5/3 | 7/6/3 | 6/7/3 | 8/7/1 | 7/6/3 | 6/7/3 | 7/6/3 | 8/6/2 | 7/6/3 | 7/6/3 | 8/6/2 | 6/7/3 | 7/6/3 | 6/7/3 | 5/8/3 | 8/7/1 | 6/7/3 | 5/8/3 | 5/8/3 | 7/7/2 | 5/8/3 | 5/8/3 | 7/7/2 | 2/11/3 | 4/9/3 | 7/6/3 | 4/9/3 | 5/10/1 | 4/9/3 | 4/9/3 | 3/10/3 | 5/8/3 | 1/12/3 | 3/10/3 | 4/12/0 | 6/8/2 | 6/9/1 | 7/8/1 | 2/13/1 | 7/9/0 | 6/8/2 | 2/12/2 | 2/12/2 | 3/12/1 | 0/14/2 | 3/11/2 | 3/11/2 | 2/11/3 | 6/7/3 | 6/7/3 | 1/12/3 | 3/12/1 | 4/9/3 | 0/13/3 | 0/13/3 | 3/10/3 | 0/13/3 | 2/10/4 | 5/11/0 | 2/14/0 | 6/10/0 | 7/9/0 | 1/15/0 | 3/13/0 | 4/12/0 | 0/16/0 | - | 4/12/0 | 0/16/0 | 2/13/1 | 336/680/152 | |
Kh | 8/4/4 | 6/6/4 | 8/6/2 | 7/6/3 | 9/4/3 | 7/6/3 | 7/6/3 | 8/5/3 | 6/7/3 | 6/7/3 | 6/7/3 | 8/6/2 | 7/5/4 | 6/6/4 | 7/6/3 | 5/8/3 | 6/7/3 | 6/7/3 | 5/7/4 | 5/8/3 | 4/9/3 | 3/10/3 | 3/9/4 | 6/8/2 | 5/6/5 | 3/9/4 | 4/8/4 | 2/10/4 | 5/8/3 | 6/7/3 | 3/9/4 | 4/7/5 | 4/7/5 | 2/10/4 | 2/10/4 | 2/11/3 | 2/9/5 | 2/8/6 | 2/10/4 | 3/9/4 | 5/8/3 | 8/6/2 | 2/11/3 | 5/9/2 | 4/9/3 | 1/12/3 | 1/12/3 | 1/12/3 | 1/10/5 | 2/10/4 | 3/9/4 | 2/9/5 | 3/10/3 | 6/6/4 | 2/8/6 | 3/9/4 | 4/8/4 | 0/9/7 | 0/9/7 | 0/12/4 | 0/10/6 | 2/8/6 | 3/11/2 | 2/11/3 | 4/12/0 | 6/9/1 | 2/10/4 | 6/10/0 | 4/9/3 | 0/12/4 | 0/12/4 | - | 0/12/4 | 2/10/4 | 284/622/262 | |
MO | 7/8/1 | 6/8/2 | 7/7/2 | 8/6/2 | 8/6/2 | 7/6/3 | 7/7/2 | 9/6/1 | 7/7/2 | 6/8/2 | 6/8/2 | 9/5/2 | 6/7/3 | 7/7/2 | 8/5/3 | 6/7/3 | 7/6/3 | 6/7/3 | 5/8/3 | 8/6/2 | 5/8/3 | 4/9/3 | 4/9/3 | 7/7/2 | 6/7/3 | 5/8/3 | 5/8/3 | 4/9/3 | 5/8/3 | 6/7/3 | 5/8/3 | 5/9/2 | 4/9/3 | 4/9/3 | 4/9/3 | 4/9/3 | 3/10/3 | 4/9/3 | 5/9/2 | 5/9/2 | 4/10/2 | 7/8/1 | 3/12/1 | 9/6/1 | 4/10/2 | 2/12/2 | 2/12/2 | 4/9/3 | 1/13/2 | 5/9/2 | 4/8/4 | 3/9/4 | 5/7/4 | 5/7/4 | 2/11/3 | 7/6/3 | 4/9/3 | 0/13/3 | 0/13/3 | 3/8/5 | 0/12/4 | 3/9/4 | 5/11/0 | 4/12/0 | 6/10/0 | 6/10/0 | 2/14/0 | 6/10/0 | 4/12/0 | 0/16/0 | 0/16/0 | 4/12/0 | - | 2/14/0 | 350/655/163 | |
CC | 7/7/2 | 5/8/3 | 6/8/2 | 6/7/3 | 6/7/3 | 6/7/3 | 6/7/3 | 6/9/1 | 6/8/2 | 5/8/3 | 6/7/3 | 8/5/3 | 7/6/3 | 5/8/3 | 7/7/2 | 6/6/4 | 5/7/4 | 4/8/4 | 6/6/4 | 6/7/3 | 4/9/3 | 4/8/4 | 4/8/4 | 5/8/3 | 4/8/4 | 4/8/4 | 5/8/3 | 4/8/4 | 4/8/4 | 5/8/3 | 2/10/4 | 6/7/3 | 2/11/3 | 2/10/4 | 1/11/4 | 4/7/5 | 1/11/4 | 3/9/4 | 4/10/2 | 6/7/3 | 5/8/3 | 6/8/2 | 3/11/2 | 6/9/1 | 3/11/2 | 2/10/4 | 2/10/4 | 3/10/3 | 0/13/3 | 2/11/3 | 2/12/2 | 3/10/3 | 5/8/3 | 4/8/4 | 0/12/4 | 4/10/2 | 4/9/3 | 0/11/5 | 0/11/5 | 3/9/4 | 0/10/6 | 0/11/5 | 4/11/1 | 4/11/1 | 8/7/1 | 5/10/1 | 1/14/1 | 7/8/1 | 3/13/0 | 1/13/2 | 1/13/2 | 4/10/2 | 0/14/2 | - | 288/663/217 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place | |
Original Data | org | 0.88 (0.036) -- (0) -/74 | 0.785 (0.041) -- (0) -/50 | 0.777 (0.021) -- (0) -/74 | 0.707 (0.027) -- (0) -/71 | 0.838 (0.018) -- (0) -/3 | 0.954 (0.003) -- (0) -/44 | 0.924 (0.012) -- (0) -/60 | 0.603 (0.035) -- (0) -/45 | 0.472 (0.051) -- (0) -/74 | 0.826 (0.038) -- (0) -/74 | 0.892 (0.046) -- (0) -/74 | 0.857 (0.005) -- (0) -/70 | 0.795 (0.004) -- (0) -/72 | 0.802 (0.005) -- (0) -/71 | 0.675 (0.06) -- (0) -/64 | 0.443 (0.029) -- (0) -/74 | /62.12 |
org | 0.941 (0.016) ~ (4.173) -/59 | 0.789 (0.032) ~ (0.655) -/45 | 0.812 (0.025) ++ (9.456) -/70 | 0.729 (0.021) ~ (1.737) -/44 | 0.841 (0.025) ~ (1) -/1 | 0.958 (0.006) ~ (1.17) -/42 | 0.953 (0.008) ++ (20.7) -/45 | 0.633 (0.023) ~ (1.288) -/41 | 0.481 (0.056) ~ (0.803) -/73 | 0.902 (0.029) ++ (15.3) -/43 | 0.932 (0.017) ~ (2.068) -/67 | 0.883 (0.005) ++ (13.2) -/61 | 0.819 (0.004) ++ (152) -/62 | 0.837 (0.008) ++ (13.94) -/66 | 0.716 (0.087) ~ (1.187) -/47 | 0.587 (0.032) ++ (18.76) -/69 | /52.19 | |
NB | Equal Width | 0.947 (0.015) ~ (3.997) 5/53 | 0.792 (0.032) ~ (0.647) 5/41 | 0.85 (0.012) ++ (8.542) 10/47 | 0.721 (0.018) ~ (3.673) 9/55 | 0.821 (0.034) ~ (0.988) 10/39 | 0.936 (0.006) -- (9.748) 11/55 | 0.951 (0.014) ~ (2.877) 9/49 | 0.572 (0.019) ~ (1.121) 2/50 | 0.564 (0.071) ~ (2.888) 11/69 | 0.887 (0.016) ~ (3.498) 8/63 | 0.93 (0.005) ~ (1.206) 8/68 | 0.868 (0.003) ++ (7.334) 8/69 | 0.802 (0.005) ++ (11.53) 10/71 | 0.883 (0.009) ++ (53.99) 7/57 | 0.7 (0.038) ~ (1.096) 10/55 | 0.576 (0.018) ++ (16.82) 10/71 | 8.31/57 |
Equal Frequency | 0.939 (0.016) ~ (2.974) 9/62 | 0.788 (0.032) ~ (0.573) 11/48 | 0.854 (0.009) ++ (6.35) 6/35 | 0.726 (0.017) ~ (3.293) 6/49 | 0.826 (0.019) ~ (3.381) 6/23 | 0.966 (0.004) ++ (14.27) 8/37 | 0.962 (0.01) ++ (8.926) 8/41 | 0.569 (0.013) ~ (1.373) 4/53 | 0.641 (0.059) ++ (6.583) 4/39 | 0.871 (0.028) ~ (1.658) 11/71 | 0.905 (0.005) ~ (0.806) 11/72 | 0.869 (0.004) ++ (6.446) 7/68 | 0.803 (0.005) ++ (17.92) 9/70 | 0.881 (0.011) ++ (33.43) 8/58 | 0.716 (0.027) ~ (1.196) 9/48 | 0.595 (0.028) ++ (42.67) 5/65 | 7.62/52.44 | |
Maximum Entropy | 0.904 (0.014) ~ (0.832) 12/73 | 0.79 (0.029) ~ (0.675) 8/44 | 0.855 (0.011) ++ (6.289) 5/30 | 0.721 (0.022) ~ (1.157) 10/58 | 0.815 (0.023) ~ (2.928) 11/47 | 0.949 (0.006) ~ (1.133) 9/48 | 0.943 (0.003) ~ (3.066) 11/53 | 0.579 (0.017) ~ (0.97) 1/48 | 0.595 (0.048) ~ (2.45) 8/57 | 0.881 (0.027) ~ (1.416) 9/67 | 0.908 (0.005) ~ (0.831) 10/71 | 0.844 (0.005) ~ (3.913) 11/73 | 0.771 (0.006) -- (35.41) 12/74 | 0.88 (0.009) ++ (34.91) 10/60 | 0.737 (0.039) ~ (3.271) 5/33 | 0.567 (0.032) ++ (13.9) 11/72 | 8.94/56.75 | |
Paterson - Niblett | 0.94 (0.019) ~ (3.062) 7/60 | 0.795 (0.025) ~ (0.707) 2/38 | 0.847 (0.014) ++ (5.641) 12/52 | 0.74 (0.018) ++ (12.33) 2/30 | 0.825 (0.015) ~ (2.65) 7/31 | 0.979 (0.007) ++ (18.92) 1/18 | 0.972 (0.004) ++ (13.37) 1/19 | 0.316 (0.018) -- (32.3) 11/70 | 0.546 (0.1) ~ (0.7) 12/71 | 0.895 (0.02) ~ (3.311) 4/54 | 0.933 (0.007) ~ (1.474) 7/66 | 0.829 (0.005) -- (45.36) 12/74 | 0.794 (0.005) ~ (0.695) 11/73 | 0.831 (0.022) ~ (1.621) 11/67 | 0.689 (0.037) ~ (0.902) 11/58 | 0.549 (0.029) ++ (109) 12/73 | 7.69/53.38 | |
IEM | 0.959 (0.015) ++ (4.903) 2/45 | 0.791 (0.023) ~ (0.664) 7/43 | 0.861 (0.01) ++ (9.03) 2/14 | 0.718 (0.022) ~ (1.074) 12/61 | 0.828 (0.028) ~ (1.053) 5/14 | 0.976 (0.006) ++ (18.32) 3/25 | 0.97 (0.004) ++ (15.59) 2/23 | 0.504 (0.02) -- (8.12) 9/60 | 0.593 (0.072) ~ (2.02) 9/58 | 0.896 (0.018) ~ (3.356) 3/52 | 0.934 (0.006) ~ (1.387) 5/62 | 0.872 (0.005) ++ (7.981) 2/63 | 0.818 (0.004) ++ (70.08) 4/65 | 0.903 (0.006) ++ (86.79) 2/48 | 0.736 (0.018) ~ (1.6) 6/35 | 0.586 (0.019) ++ (38.13) 9/70 | 5.12/46.12 | |
CADD | 0.912 (0.017) ~ (1.044) 11/72 | 0.793 (0.029) ~ (1.014) 3/39 | 0.85 (0.008) ++ (5.384) 11/49 | 0.73 (0.016) ++ (9.125) 3/40 | 0.807 (0.019) ~ (3.802) 12/53 | 0.923 (0.005) -- (37.49) 12/60 | 0.925 (0.005) ~ (0.758) 12/59 | 0.555 (0.016) ~ (1.844) 8/57 | 0.611 (0.074) ~ (2.702) 6/51 | 0.889 (0.02) ~ (1.757) 6/60 | 0.917 (0.004) ~ (0.947) 9/70 | 0.854 (0.004) ~ (0.756) 9/71 | 0.811 (0.006) ++ (7.98) 8/69 | 0.888 (0.005) ++ (76.92) 6/56 | 0.669 (0.049) ~ (1.04) 12/65 | 0.595 (0.024) ++ (60.21) 6/66 | 8.38/58.56 | |
ModifiedChi2 | 0.964 (0.011) ~ (4.167) 1/38 | 0.793 (0.026) ~ (0.748) 3/39 | 0.852 (0.011) ++ (6.164) 8/42 | 0.719 (0.031) ~ (1.005) 11/60 | 0.822 (0.036) ~ (1.703) 9/37 | 0.973 (0.005) ++ (35.6) 5/31 | 0.97 (0.004) ++ (15.79) 3/24 | 0.275 (0.019) -- (35.59) 12/73 | 0.588 (0.042) ~ (2.85) 10/60 | 0.905 (0.009) ~ (3.193) 1/36 | 0.936 (0.005) ~ (1.475) 1/55 | 0.851 (0.005) ~ (1.61) 10/72 | 0.818 (0.009) ++ (7.646) 3/64 | 0.802 (0.009) ~ (0.776) 12/69 | 0.734 (0.042) ~ (1.059) 7/39 | 0.617 (0.024) ++ (135) 1/61 | 6.06/50 | |
CAIM | 0.939 (0.021) ~ (2.115) 8/61 | 0.788 (0.031) ~ (0.673) 9/46 | 0.859 (0.012) ++ (8.293) 3/23 | 0.725 (0.02) ~ (0.954) 7/50 | 0.828 (0.022) ~ (0.977) 2/8 | 0.972 (0.008) ++ (9.93) 6/33 | 0.968 (0.003) ++ (9.868) 5/29 | 0.563 (0.028) ~ (1.845) 5/54 | 0.651 (0.042) ++ (5.303) 2/34 | 0.875 (0.032) ~ (3.348) 10/70 | 0.934 (0.005) ~ (1.49) 6/64 | 0.871 (0.005) ++ (8.649) 5/66 | 0.818 (0.004) ++ (137) 5/66 | 0.899 (0.006) ++ (72.7) 4/52 | 0.757 (0.052) ~ (3.403) 2/20 | 0.594 (0.036) ++ (15.36) 7/67 | 5.38/46.44 | |
FCAIM | 0.957 (0.014) ~ (3.615) 3/50 | 0.788 (0.031) ~ (0.673) 9/46 | 0.859 (0.012) ++ (8.293) 3/23 | 0.725 (0.02) ~ (0.954) 7/50 | 0.828 (0.022) ~ (0.977) 2/8 | 0.972 (0.008) ++ (9.93) 6/33 | 0.968 (0.003) ++ (9.868) 5/29 | 0.563 (0.028) ~ (1.845) 5/54 | 0.651 (0.043) ~ (4.656) 3/36 | 0.87 (0.037) ~ (3.226) 12/73 | 0.935 (0.005) ~ (1.477) 4/61 | 0.871 (0.005) ++ (8.649) 5/66 | 0.818 (0.004) ++ (137) 5/66 | 0.899 (0.006) ++ (72.7) 4/52 | 0.757 (0.052) ~ (3.403) 2/20 | 0.594 (0.036) ++ (15.36) 7/67 | 5.12/45.88 | |
Khiops | 0.921 (0.018) ~ (1.285) 10/71 | 0.788 (0.033) ~ (0.732) 11/48 | 0.854 (0.015) ++ (4.884) 6/35 | 0.727 (0.02) ~ (2.631) 4/45 | 0.824 (0.03) ~ (1.074) 8/33 | 0.945 (0.007) ~ (2.821) 10/50 | 0.951 (0.006) ++ (4.756) 10/50 | 0.571 (0.024) ~ (1.19) 3/51 | 0.596 (0.051) ~ (3.361) 7/56 | 0.888 (0.015) ~ (2.735) 7/62 | 0.905 (0.005) ~ (0.77) 12/73 | 0.871 (0.004) ++ (5.784) 4/65 | 0.817 (0.005) ++ (51.57) 7/68 | 0.881 (0.009) ++ (39.46) 9/59 | 0.764 (0.059) ~ (2.774) 1/16 | 0.6 (0.03) ++ (31.04) 4/64 | 7.06/52.88 | |
MODL | 0.957 (0.014) ~ (3.906) 4/51 | 0.802 (0.026) ~ (1.118) 1/27 | 0.851 (0.011) ++ (6.36) 9/45 | 0.727 (0.023) ~ (1.109) 5/46 | 0.828 (0.022) ~ (1.615) 4/11 | 0.976 (0.008) ++ (11.44) 2/24 | 0.969 (0.004) ++ (12.21) 4/25 | 0.561 (0.019) ~ (2.168) 7/56 | 0.665 (0.041) ++ (5.176) 1/28 | 0.896 (0.017) ~ (2.615) 2/51 | 0.935 (0.006) ~ (1.536) 3/57 | 0.874 (0.005) ++ (9.112) 1/62 | 0.819 (0.005) ++ (78.71) 1/61 | 0.904 (0.005) ++ (168) 1/47 | 0.742 (0.046) ~ (2.736) 4/29 | 0.604 (0.021) ++ (34.77) 3/63 | 3.25/42.69 | |
CACC | 0.943 (0.022) ~ (2.296) 6/57 | 0.792 (0.03) ~ (0.866) 6/42 | 0.864 (0.006) ++ (12.64) 1/5 | 0.753 (0.019) ~ (3.402) 1/17 | 0.835 (0.028) ~ (1.659) 1/5 | 0.974 (0.007) ++ (14.89) 4/30 | 0.967 (0.004) ++ (9.204) 7/31 | 0.442 (0.03) -- (8.703) 10/63 | 0.628 (0.05) ++ (5.804) 5/43 | 0.891 (0.022) ~ (2.223) 5/58 | 0.936 (0.007) ~ (1.578) 2/56 | 0.871 (0.005) ++ (7.17) 3/64 | 0.819 (0.006) ++ (42.44) 2/63 | 0.901 (0.008) ++ (80.14) 3/50 | 0.731 (0.043) ~ (2.425) 8/41 | 0.605 (0.027) ++ (57.36) 2/62 | 4.12/42.94 | |
LBR | Equal Width | 0.967 (0.013) ~ (3.419) 3/34 | 0.797 (0.023) ~ (0.771) 11/34 | 0.857 (0.015) ++ (12.84) 6/29 | 0.7 (0.025) ~ (1.193) 12/74 | 0.819 (0.034) ~ (1.045) 10/42 | 0.936 (0.006) -- (10.11) 11/56 | 0.966 (0.012) ++ (5.371) 9/34 | 0.667 (0.032) ~ (3.66) 2/37 | 0.563 (0.07) ~ (2.448) 11/70 | 0.887 (0.017) ~ (3.301) 10/64 | 0.939 (0.007) ~ (1.623) 11/54 | 0.955 (0.004) ++ (451) 1/40 | 0.862 (0.007) ++ (97.71) 6/45 | 0.897 (0.008) ++ (63.67) 10/54 | 0.701 (0.035) ~ (1.298) 9/54 | 0.639 (0.033) ++ (33.78) 12/60 | 8.38/48.81 |
Equal Frequency | 0.962 (0.019) ~ (3.288) 6/40 | 0.805 (0.019) ~ (0.9) 10/23 | 0.852 (0.011) ++ (6.716) 11/42 | 0.717 (0.026) ~ (1.266) 8/63 | 0.826 (0.019) ~ (3.381) 6/23 | 0.97 (0.005) ++ (6.575) 8/35 | 0.968 (0.009) ++ (10.58) 8/28 | 0.657 (0.019) ~ (2.523) 4/39 | 0.65 (0.059) ++ (7.747) 4/38 | 0.881 (0.023) ~ (1.622) 11/68 | 0.949 (0.004) ~ (2.2) 8/48 | 0.955 (0.003) ++ (258) 2/41 | 0.863 (0.008) ++ (90.45) 5/44 | 0.9 (0.012) ++ (22.63) 9/51 | 0.714 (0.021) ~ (1.107) 8/50 | 0.667 (0.036) ++ (112) 7/47 | 7.19/42.5 | |
Maximum Entropy | 0.922 (0.018) ~ (1.137) 12/69 | 0.808 (0.013) ~ (0.858) 9/18 | 0.855 (0.011) ++ (6.322) 7/31 | 0.705 (0.03) ~ (1.073) 11/72 | 0.807 (0.029) ~ (4.127) 11/51 | 0.953 (0.005) ~ (0.592) 9/45 | 0.952 (0.009) ++ (4.997) 11/47 | 0.664 (0.025) ~ (3.194) 3/38 | 0.636 (0.032) ++ (5.141) 5/40 | 0.88 (0.027) ~ (1.377) 12/69 | 0.949 (0.007) ~ (1.975) 7/47 | 0.953 (0.003) ++ (135) 4/43 | 0.838 (0.008) ++ (56.02) 10/58 | 0.903 (0.011) ++ (46.34) 8/49 | 0.666 (0.041) ~ (0.773) 12/68 | 0.656 (0.014) ++ (81.65) 10/52 | 8.81/49.81 | |
Paterson - Niblett | 0.958 (0.016) ~ (3.13) 9/47 | 0.809 (0.016) ~ (0.869) 8/16 | 0.853 (0.011) ++ (8.062) 10/38 | 0.725 (0.024) ~ (1.095) 3/50 | 0.825 (0.015) ~ (2.65) 7/31 | 0.983 (0.005) ++ (39.73) 3/6 | 0.973 (0.004) ++ (11.88) 7/10 | 0.448 (0.023) -- (19.11) 11/62 | 0.544 (0.092) ~ (0.777) 12/72 | 0.899 (0.022) ~ (3.606) 3/48 | 0.934 (0.004) ~ (1.527) 12/63 | 0.931 (0.004) ++ (111) 11/51 | 0.84 (0.005) ++ (55.25) 9/57 | 0.85 (0.014) ++ (5.84) 11/65 | 0.693 (0.033) ~ (0.91) 10/56 | 0.665 (0.019) ++ (86.43) 8/49 | 8.38/45.06 | |
IEM | 0.969 (0.01) ~ (4.324) 2/30 | 0.813 (0.017) ~ (1.229) 3/6 | 0.863 (0.009) ++ (9.689) 2/6 | 0.709 (0.024) ~ (2.114) 10/70 | 0.828 (0.028) ~ (1.053) 3/14 | 0.986 (0.003) ++ (80.7) 1/1 | 0.975 (0.004) ++ (15.88) 6/7 | 0.587 (0.027) ~ (0.991) 9/47 | 0.592 (0.075) ~ (1.912) 9/59 | 0.896 (0.018) ~ (3.356) 4/52 | 0.962 (0.003) ~ (2.603) 1/15 | 0.952 (0.003) ++ (171) 5/44 | 0.856 (0.006) ++ (98.39) 8/50 | 0.923 (0.01) ++ (65.41) 5/41 | 0.735 (0.018) ~ (1.535) 5/37 | 0.651 (0.024) ++ (27.51) 11/56 | 5.25/33.44 | |
CADD | 0.924 (0.019) ~ (1.247) 11/68 | 0.813 (0.017) ~ (0.855) 4/7 | 0.851 (0.007) ++ (6.512) 12/44 | 0.73 (0.025) ~ (1.631) 2/40 | 0.807 (0.023) ~ (2.778) 12/52 | 0.924 (0.005) -- (37.85) 12/59 | 0.931 (0.006) ~ (1.578) 12/57 | 0.63 (0.019) ~ (0.903) 6/42 | 0.627 (0.059) ~ (4.534) 8/45 | 0.889 (0.02) ~ (1.757) 9/60 | 0.945 (0.004) ~ (1.718) 10/53 | 0.953 (0.004) ++ (366) 3/42 | 0.865 (0.004) ++ (455) 3/42 | 0.909 (0.013) ++ (105) 6/44 | 0.669 (0.049) ~ (1.04) 11/65 | 0.675 (0.019) ++ (23.74) 5/44 | 7.88/47.75 | |
ModifiedChi2 | 0.969 (0.01) ~ (4.298) 1/29 | 0.818 (0.018) ~ (1.239) 1/1 | 0.855 (0.012) ++ (5.603) 9/33 | 0.71 (0.023) ~ (2.084) 9/69 | 0.823 (0.036) ~ (1.826) 8/34 | 0.982 (0.006) ++ (16.92) 5/10 | 0.975 (0.007) ++ (19.27) 5/6 | 0.275 (0.019) -- (35.59) 12/73 | 0.588 (0.042) ~ (2.85) 10/60 | 0.905 (0.009) ~ (3.193) 2/36 | 0.954 (0.004) ~ (2.279) 6/38 | 0.906 (0.004) ++ (86.63) 12/59 | 0.838 (0.02) ~ (3.074) 11/59 | 0.802 (0.009) ~ (0.776) 12/69 | 0.734 (0.042) ~ (1.059) 6/39 | 0.685 (0.022) ++ (59.34) 1/27 | 6.88/40.12 | |
CAIM | 0.961 (0.015) ~ (3.068) 8/42 | 0.811 (0.027) ~ (1.378) 5/13 | 0.859 (0.013) ++ (7.953) 3/20 | 0.723 (0.025) ~ (1.329) 4/53 | 0.828 (0.022) ~ (1.049) 4/16 | 0.981 (0.004) ++ (69.24) 6/12 | 0.975 (0.004) ++ (15.22) 3/3 | 0.628 (0.025) ~ (1.495) 7/43 | 0.651 (0.042) ++ (5.303) 2/34 | 0.895 (0.029) ~ (3.722) 5/55 | 0.959 (0.003) ~ (2.404) 4/27 | 0.95 (0.004) ++ (148) 6/45 | 0.866 (0.009) ++ (51.82) 1/40 | 0.926 (0.01) ++ (90.62) 3/38 | 0.76 (0.058) ~ (3.958) 2/17 | 0.683 (0.024) ++ (98.34) 2/33 | 4.06/30.69 | |
FCAIM | 0.967 (0.013) ~ (3.549) 4/35 | 0.811 (0.027) ~ (1.378) 5/13 | 0.859 (0.013) ++ (7.953) 3/20 | 0.723 (0.025) ~ (1.329) 4/53 | 0.828 (0.022) ~ (1.049) 4/16 | 0.981 (0.004) ++ (69.24) 6/12 | 0.975 (0.004) ++ (15.22) 3/3 | 0.628 (0.025) ~ (1.495) 7/43 | 0.651 (0.043) ~ (4.656) 3/36 | 0.893 (0.033) ~ (3.256) 7/57 | 0.959 (0.004) ~ (2.409) 5/28 | 0.95 (0.004) ++ (148) 6/45 | 0.866 (0.009) ++ (51.82) 1/40 | 0.926 (0.01) ++ (90.62) 3/38 | 0.76 (0.058) ~ (3.958) 2/17 | 0.683 (0.024) ++ (98.34) 2/33 | 4.06/30.56 | |
Khiops | 0.943 (0.021) ~ (1.718) 10/58 | 0.796 (0.022) ~ (0.582) 12/36 | 0.857 (0.017) ~ (4.366) 5/27 | 0.72 (0.02) ~ (1.407) 6/59 | 0.823 (0.029) ~ (1.491) 9/36 | 0.947 (0.007) ~ (4.034) 10/49 | 0.963 (0.006) ++ (10.51) 10/39 | 0.668 (0.016) ~ (3.018) 1/36 | 0.63 (0.051) ~ (4.048) 6/42 | 0.909 (0.015) ~ (3.548) 1/30 | 0.946 (0.005) ~ (1.672) 9/50 | 0.94 (0.003) ++ (154) 10/50 | 0.828 (0.005) ++ (62.42) 12/60 | 0.907 (0.008) ++ (153) 7/46 | 0.775 (0.034) ~ (4.465) 1/9 | 0.657 (0.028) ++ (72.22) 9/51 | 7.38/42.38 | |
MODL | 0.967 (0.012) ~ (4.538) 4/35 | 0.816 (0.018) ~ (1.525) 2/3 | 0.855 (0.007) ++ (10.3) 7/31 | 0.718 (0.026) ~ (0.963) 7/62 | 0.83 (0.024) ~ (1.473) 2/7 | 0.985 (0.003) ++ (116) 2/3 | 0.977 (0.003) ++ (12.64) 1/1 | 0.64 (0.035) ~ (1.3) 5/40 | 0.663 (0.041) ~ (4.358) 1/29 | 0.895 (0.015) ~ (2.774) 6/56 | 0.962 (0.004) ~ (2.63) 2/18 | 0.949 (0.004) ++ (136) 9/49 | 0.859 (0.006) ++ (60.62) 7/49 | 0.927 (0.007) ++ (119) 2/37 | 0.74 (0.039) ~ (2.398) 4/30 | 0.67 (0.025) ++ (121) 6/46 | 4.19/31 | |
CACC | 0.962 (0.016) ~ (3.179) 6/40 | 0.81 (0.026) ~ (1.611) 7/15 | 0.866 (0.006) ++ (13) 1/2 | 0.754 (0.023) ~ (3.735) 1/16 | 0.836 (0.028) ~ (1.841) 1/4 | 0.983 (0.003) ++ (21.75) 4/7 | 0.977 (0.004) ++ (15.35) 1/1 | 0.451 (0.03) -- (7.168) 10/61 | 0.628 (0.05) ++ (5.804) 7/43 | 0.891 (0.022) ~ (2.155) 8/59 | 0.961 (0.003) ~ (2.476) 3/19 | 0.95 (0.005) ++ (120) 8/47 | 0.864 (0.006) ++ (84.58) 4/43 | 0.928 (0.007) ++ (130) 1/36 | 0.731 (0.043) ~ (2.425) 7/41 | 0.676 (0.023) ++ (39.88) 4/42 | 4.56/29.75 | |
AODE | Equal Width | 0.958 (0.011) ~ (3.485) 9/48 | 0.812 (0.026) ~ (1.413) 4/8 | 0.86 (0.008) ++ (9.786) 11/19 | 0.729 (0.023) ~ (1.602) 10/43 | 0.815 (0.026) ~ (1.928) 10/48 | 0.941 (0.005) -- (5.679) 11/52 | 0.96 (0.011) ++ (5.742) 10/43 | 0.757 (0.01) ++ (15.59) 4/28 | 0.604 (0.069) ~ (3.566) 10/53 | 0.9 (0.016) ~ (3.284) 10/47 | 0.935 (0.006) ~ (1.338) 11/60 | 0.968 (0.002) ++ (413) 5/24 | 0.878 (0.006) ++ (166) 7/22 | 0.891 (0.007) ++ (75.57) 10/55 | 0.744 (0.046) ~ (2.194) 7/27 | 0.645 (0.025) ++ (33.08) 12/59 | 8.81/39.75 |
Equal Frequency | 0.959 (0.012) ~ (4.282) 7/43 | 0.812 (0.025) ~ (1.617) 6/10 | 0.862 (0.009) ++ (6.826) 6/11 | 0.74 (0.022) ~ (1.679) 7/28 | 0.818 (0.023) -- (4.836) 9/44 | 0.967 (0.005) ++ (7.063) 8/36 | 0.967 (0.009) ++ (13.5) 8/33 | 0.759 (0.025) ++ (18.23) 3/27 | 0.693 (0.059) ++ (6.494) 1/8 | 0.904 (0.018) ~ (2.595) 6/39 | 0.954 (0.005) ~ (2.255) 9/39 | 0.969 (0.002) ++ (421) 2/21 | 0.877 (0.006) ++ (201) 8/25 | 0.909 (0.008) ++ (84.61) 9/45 | 0.756 (0.033) ~ (1.556) 5/22 | 0.677 (0.018) ++ (54.86) 9/40 | 6.44/29.44 | |
Maximum Entropy | 0.921 (0.018) ~ (1.219) 12/70 | 0.811 (0.022) ~ (0.863) 7/11 | 0.865 (0.008) ++ (9.569) 2/3 | 0.751 (0.023) ~ (2.227) 2/20 | 0.807 (0.031) ~ (1.821) 11/55 | 0.954 (0.005) ~ (0.623) 9/43 | 0.953 (0.005) ++ (7.654) 11/46 | 0.763 (0.031) ++ (22.03) 2/26 | 0.667 (0.049) ++ (6.777) 6/27 | 0.896 (0.022) ~ (1.902) 12/50 | 0.958 (0.003) ~ (2.328) 7/29 | 0.957 (0.002) ++ (309) 9/37 | 0.855 (0.006) ++ (105) 11/53 | 0.916 (0.008) ++ (65.66) 8/43 | 0.76 (0.052) ~ (1.601) 4/19 | 0.682 (0.02) ++ (76.45) 7/35 | 7.5/35.44 | |
Paterson - Niblett | 0.959 (0.013) ~ (3.621) 8/44 | 0.805 (0.017) ~ (0.874) 12/22 | 0.853 (0.012) ++ (5.614) 12/37 | 0.739 (0.019) ~ (2.572) 9/32 | 0.826 (0.015) ~ (1.505) 7/29 | 0.981 (0.007) ++ (23.67) 1/14 | 0.972 (0.004) ++ (13.58) 4/17 | 0.407 (0.031) -- (23.99) 11/64 | 0.567 (0.098) ~ (0.865) 12/68 | 0.904 (0.022) ~ (4.221) 8/41 | 0.934 (0.004) ~ (1.519) 12/65 | 0.92 (0.003) ++ (116) 12/57 | 0.844 (0.005) ++ (145) 12/55 | 0.853 (0.01) ++ (8.033) 11/64 | 0.686 (0.038) ~ (0.879) 12/60 | 0.672 (0.018) ++ (107) 10/45 | 9.56/44.62 | |
IEM | 0.968 (0.012) ~ (3.981) 2/31 | 0.811 (0.016) ~ (0.924) 8/12 | 0.865 (0.013) ++ (6.007) 3/4 | 0.721 (0.023) ~ (1.127) 11/56 | 0.83 (0.028) ~ (0.777) 2/6 | 0.978 (0.006) ++ (24.21) 3/23 | 0.971 (0.004) ++ (13.75) 7/22 | 0.59 (0.031) ~ (0.71) 9/46 | 0.598 (0.076) ~ (2.085) 11/55 | 0.9 (0.016) ~ (2.655) 9/45 | 0.965 (0.003) ~ (2.641) 1/2 | 0.969 (0.002) ++ (525) 3/22 | 0.882 (0.005) ++ (220) 3/13 | 0.938 (0.008) ++ (79.26) 3/29 | 0.737 (0.02) ~ (1.795) 10/34 | 0.65 (0.019) ++ (40.95) 11/58 | 6/28.62 | |
CADD | 0.93 (0.019) ~ (1.391) 11/66 | 0.817 (0.02) ~ (1.37) 1/2 | 0.862 (0.009) ++ (9.137) 7/12 | 0.746 (0.026) ~ (2.793) 3/22 | 0.805 (0.024) ~ (3.393) 12/56 | 0.926 (0.007) -- (19.3) 12/57 | 0.936 (0.006) ~ (2.355) 12/54 | 0.753 (0.022) ++ (15.55) 5/29 | 0.676 (0.046) ++ (8.012) 5/23 | 0.897 (0.016) ~ (2.158) 11/49 | 0.952 (0.003) ~ (2.029) 10/42 | 0.963 (0.003) ++ (263) 8/35 | 0.88 (0.004) ++ (409) 6/17 | 0.919 (0.006) ++ (100) 7/42 | 0.72 (0.042) ~ (1.345) 11/46 | 0.679 (0.016) ++ (80.32) 8/39 | 8.06/36.94 | |
ModifiedChi2 | 0.97 (0.009) ~ (3.916) 1/28 | 0.814 (0.017) ~ (1.281) 3/5 | 0.862 (0.009) ++ (7.29) 7/12 | 0.721 (0.021) ~ (4.205) 11/56 | 0.828 (0.035) ~ (1.278) 4/19 | 0.975 (0.005) ++ (18.09) 4/26 | 0.974 (0.005) ++ (27.64) 1/8 | 0.331 (0.019) -- (32.67) 12/69 | 0.616 (0.033) ~ (4.502) 9/48 | 0.911 (0.007) ~ (3.7) 3/26 | 0.957 (0.003) ~ (2.42) 8/30 | 0.924 (0.003) ++ (411) 11/56 | 0.861 (0.02) ++ (7.434) 10/48 | 0.804 (0.013) ~ (0.7) 12/68 | 0.738 (0.043) ~ (1.246) 9/32 | 0.699 (0.019) ++ (82.03) 1/14 | 6.62/34.06 | |
CAIM | 0.964 (0.011) ~ (3.602) 6/39 | 0.807 (0.02) ~ (0.916) 9/19 | 0.861 (0.01) ++ (8.065) 9/14 | 0.741 (0.015) ~ (1.897) 5/26 | 0.826 (0.032) ~ (0.881) 5/21 | 0.974 (0.007) ++ (19.32) 6/28 | 0.972 (0.005) ++ (11.85) 5/20 | 0.716 (0.032) ++ (8) 6/30 | 0.683 (0.04) ++ (6.404) 3/18 | 0.908 (0.011) ~ (3.936) 4/32 | 0.96 (0.004) ~ (2.492) 5/23 | 0.967 (0.002) ++ (524) 6/29 | 0.882 (0.005) ++ (401) 4/14 | 0.936 (0.007) ++ (106) 4/32 | 0.773 (0.043) ~ (3.009) 2/10 | 0.689 (0.022) ++ (55.22) 4/23 | 5.19/23.62 | |
FCAIM | 0.968 (0.01) ~ (3.548) 3/32 | 0.807 (0.02) ~ (0.916) 9/19 | 0.861 (0.01) ++ (8.065) 9/14 | 0.741 (0.015) ~ (1.897) 5/26 | 0.826 (0.032) ~ (0.881) 5/21 | 0.974 (0.007) ++ (19.32) 6/28 | 0.972 (0.005) ++ (11.85) 5/20 | 0.716 (0.032) ++ (8) 6/30 | 0.687 (0.042) ++ (5.974) 2/14 | 0.913 (0.011) ~ (4.42) 1/21 | 0.961 (0.004) ~ (2.494) 4/20 | 0.967 (0.002) ++ (524) 6/29 | 0.882 (0.005) ++ (401) 4/14 | 0.936 (0.007) ++ (106) 4/32 | 0.773 (0.043) ~ (3.009) 2/10 | 0.689 (0.022) ++ (55.22) 4/23 | 4.69/22.06 | |
Khiops | 0.945 (0.017) ~ (2.269) 10/55 | 0.806 (0.026) ~ (1.335) 11/21 | 0.863 (0.009) ++ (11.01) 4/7 | 0.744 (0.022) ~ (1.65) 4/23 | 0.819 (0.034) ~ (1.586) 8/43 | 0.95 (0.006) ~ (1.451) 10/47 | 0.963 (0.006) ++ (13.1) 9/36 | 0.771 (0.018) ++ (19.4) 1/25 | 0.661 (0.033) ++ (10.89) 7/30 | 0.912 (0.018) ~ (3.597) 2/22 | 0.962 (0.004) ~ (2.416) 3/16 | 0.957 (0.005) ++ (1093) 10/38 | 0.87 (0.003) ++ (303) 9/35 | 0.926 (0.007) ++ (76.28) 6/40 | 0.778 (0.039) ++ (5.102) 1/8 | 0.692 (0.014) ++ (99.09) 3/18 | 6.12/29 | |
MODL | 0.968 (0.012) ~ (3.567) 3/32 | 0.815 (0.022) ~ (1.396) 2/4 | 0.863 (0.007) ++ (9.027) 4/7 | 0.74 (0.026) ~ (1.195) 7/28 | 0.828 (0.029) ~ (1.183) 3/10 | 0.979 (0.008) ++ (15.05) 2/20 | 0.973 (0.004) ++ (11.14) 2/11 | 0.701 (0.022) ++ (7.219) 8/33 | 0.679 (0.04) ++ (5.48) 4/22 | 0.904 (0.016) ~ (2.89) 5/38 | 0.964 (0.004) ~ (2.563) 2/8 | 0.97 (0.002) ++ (534) 1/20 | 0.884 (0.003) ++ (355) 2/12 | 0.941 (0.005) ++ (163) 1/23 | 0.752 (0.034) ~ (2.705) 6/23 | 0.685 (0.028) ++ (62.92) 6/28 | 3.62/19.94 | |
CACC | 0.964 (0.015) ~ (3.548) 5/37 | 0.812 (0.027) ~ (1.455) 4/8 | 0.867 (0.011) ++ (10.82) 1/1 | 0.766 (0.019) ~ (2.948) 1/8 | 0.839 (0.03) ~ (0.788) 1/2 | 0.975 (0.006) ++ (27.66) 5/27 | 0.972 (0.004) ++ (12.31) 3/16 | 0.571 (0.031) ~ (0.95) 10/51 | 0.654 (0.047) ++ (10.29) 8/33 | 0.904 (0.014) ~ (2.701) 6/39 | 0.96 (0.004) ~ (2.43) 6/26 | 0.969 (0.002) ++ (457) 4/23 | 0.885 (0.005) ++ (366) 1/7 | 0.938 (0.007) ++ (93.88) 2/28 | 0.739 (0.045) ~ (2.957) 8/31 | 0.696 (0.021) ++ (41.05) 2/16 | 4.19/22.06 | |
HNB | Equal Width | 0.98 (0.007) ++ (5.214) 8/21 | 0.696 (0.046) -- (11.29) 6/60 | 0.824 (0.024) ++ (9.472) 9/69 | 0.736 (0.025) ~ (4.373) 8/37 | 0.775 (0.022) -- (10.41) 8/69 | 0.913 (0.008) -- (12.21) 11/61 | 0.946 (0.016) ~ (1.426) 7/51 | 0.823 (0.013) ++ (29.54) 1/4 | 0.613 (0.051) ~ (4.688) 9/49 | 0.9 (0.013) ~ (2.727) 12/46 | 0.945 (0.003) ~ (1.742) 11/52 | 0.972 (0.002) ++ (528) 2/16 | 0.866 (0.006) ++ (130) 10/39 | 0.944 (0.005) ++ (136) 6/18 | 0.743 (0.043) ~ (3.008) 7/28 | 0.654 (0.03) ++ (26) 11/53 | 7.88/42.06 |
Equal Frequency | 0.984 (0.005) ++ (6.774) 3/8 | 0.711 (0.035) ~ (3.016) 3/53 | 0.789 (0.019) ~ (0.735) 11/72 | 0.758 (0.032) ++ (5.614) 3/13 | 0.762 (0.035) -- (9.085) 11/73 | 0.965 (0.004) ++ (4.826) 7/39 | 0.956 (0.007) ++ (9.379) 6/44 | 0.788 (0.019) ++ (26.7) 6/22 | 0.705 (0.046) ++ (6.969) 1/3 | 0.909 (0.015) ~ (2.706) 7/28 | 0.954 (0.003) ~ (2.405) 8/36 | 0.972 (0.002) ++ (423) 1/15 | 0.868 (0.006) ++ (148) 8/37 | 0.937 (0.005) ++ (175) 10/30 | 0.752 (0.04) ~ (1.563) 4/23 | 0.69 (0.022) ++ (40.9) 6/21 | 5.94/32.31 | |
Maximum Entropy | 0.944 (0.015) ~ (2.335) 12/56 | 0.684 (0.049) -- (5.598) 11/73 | 0.783 (0.02) ~ (0.704) 12/73 | 0.762 (0.032) ++ (25.71) 2/12 | 0.751 (0.022) -- (7.588) 12/74 | 0.944 (0.005) ~ (2.447) 9/51 | 0.934 (0.006) ~ (1.128) 9/55 | 0.778 (0.027) ++ (37.64) 7/23 | 0.674 (0.025) ++ (11.17) 7/25 | 0.903 (0.014) ~ (2.357) 10/42 | 0.952 (0.003) ~ (2.139) 9/40 | 0.949 (0.003) ++ (668) 10/48 | 0.844 (0.007) ++ (42.1) 12/56 | 0.943 (0.005) ++ (138) 7/19 | 0.749 (0.041) ~ (2.038) 5/25 | 0.676 (0.016) ++ (105) 10/43 | 9/44.69 | |
Paterson - Niblett | 0.985 (0.005) ++ (6.005) 1/5 | 0.692 (0.034) ~ (3.336) 9/65 | 0.839 (0.017) ~ (4.281) 6/63 | 0.703 (0.026) ~ (3.561) 12/73 | 0.82 (0.019) ~ (1.925) 3/41 | 0.965 (0.016) ~ (1.586) 6/38 | 0.852 (0.019) -- (14.17) 12/74 | 0.575 (0.019) ~ (0.922) 10/49 | 0.581 (0.075) ~ (1.209) 11/66 | 0.924 (0.011) ++ (6.122) 1/1 | 0.927 (0.005) ~ (1.277) 12/69 | 0.919 (0.004) ++ (162) 11/58 | 0.844 (0.007) ++ (31.71) 11/54 | 0.868 (0.008) ++ (26.6) 11/61 | 0.682 (0.031) ~ (0.689) 11/62 | 0.677 (0.021) ++ (52.75) 9/41 | 8.5/51.25 | |
IEM | 0.983 (0.006) ++ (5.892) 6/12 | 0.667 (0.025) -- (6.212) 12/74 | 0.841 (0.017) ++ (4.974) 5/62 | 0.737 (0.029) ~ (1.521) 7/36 | 0.826 (0.034) ~ (0.771) 1/28 | 0.962 (0.011) ~ (0.98) 8/40 | 0.926 (0.01) ~ (0.618) 10/58 | 0.713 (0.023) ++ (5.557) 9/32 | 0.576 (0.076) ~ (1.818) 12/67 | 0.912 (0.018) ~ (3.937) 6/24 | 0.966 (0.003) ~ (2.857) 1/1 | 0.97 (0.003) ++ (398) 5/19 | 0.876 (0.007) ++ (126) 2/26 | 0.957 (0.008) ++ (119) 1/7 | 0.709 (0.026) ~ (1.07) 9/52 | 0.654 (0.019) ++ (57.09) 12/55 | 6.62/37.06 | |
CADD | 0.946 (0.011) ~ (2.482) 11/54 | 0.7 (0.028) -- (10.53) 5/58 | 0.797 (0.017) ~ (1.678) 10/71 | 0.767 (0.032) ++ (11.28) 1/7 | 0.763 (0.029) -- (11.39) 9/71 | 0.797 (0.037) -- (31.57) 12/74 | 0.92 (0.005) ~ (0.769) 11/61 | 0.776 (0.023) ++ (19.88) 8/24 | 0.679 (0.042) ++ (5.74) 6/21 | 0.901 (0.015) ~ (2.763) 11/44 | 0.95 (0.003) ~ (2.014) 10/44 | 0.957 (0.004) ++ (279) 9/39 | 0.867 (0.004) ++ (830) 9/38 | 0.939 (0.005) ++ (178) 9/24 | 0.709 (0.048) ~ (1.367) 9/52 | 0.679 (0.018) ++ (55.62) 8/37 | 8.62/44.94 | |
ModifiedChi2 | 0.979 (0.009) ++ (4.899) 9/25 | 0.686 (0.016) ~ (3.91) 10/71 | 0.828 (0.015) ++ (4.798) 8/67 | 0.738 (0.028) ~ (2.088) 6/33 | 0.797 (0.033) ~ (3.639) 7/63 | 0.979 (0.005) ++ (15.52) 4/17 | 0.968 (0.007) ++ (10.66) 1/26 | 0.354 (0.012) -- (24.75) 12/68 | 0.612 (0.034) ++ (11.84) 10/50 | 0.918 (0.01) ~ (3.917) 5/9 | 0.957 (0.004) ~ (2.51) 7/32 | 0.897 (0.004) ++ (84.12) 12/60 | 0.869 (0.006) ++ (84.98) 7/36 | 0.762 (0.016) ~ (3.776) 12/72 | 0.724 (0.037) ~ (0.977) 8/43 | 0.704 (0.017) ++ (52.44) 2/6 | 7.5/42.38 | |
CAIM | 0.984 (0.008) ++ (5.922) 2/7 | 0.696 (0.026) ~ (4.39) 7/61 | 0.845 (0.013) ++ (9.153) 3/56 | 0.713 (0.032) ~ (1.882) 10/67 | 0.818 (0.027) ~ (1.85) 4/45 | 0.983 (0.003) ++ (39.26) 1/7 | 0.963 (0.014) ~ (4.442) 4/37 | 0.801 (0.021) ++ (36.93) 3/11 | 0.684 (0.042) ++ (9.87) 4/16 | 0.92 (0.017) ++ (4.758) 4/6 | 0.96 (0.004) ~ (2.536) 5/22 | 0.967 (0.003) ++ (586) 6/27 | 0.873 (0.006) ++ (169) 5/31 | 0.952 (0.006) ++ (153) 4/14 | 0.769 (0.05) ++ (6.302) 2/14 | 0.691 (0.022) ++ (71.56) 4/19 | 4.25/27.5 | |
FCAIM | 0.983 (0.008) ++ (5.799) 4/10 | 0.696 (0.026) ~ (4.39) 7/61 | 0.845 (0.013) ++ (9.153) 3/56 | 0.713 (0.032) ~ (1.882) 10/67 | 0.818 (0.027) ~ (1.85) 4/45 | 0.983 (0.003) ++ (39.26) 1/7 | 0.963 (0.014) ~ (4.442) 4/37 | 0.801 (0.021) ++ (36.93) 3/11 | 0.685 (0.044) ++ (8.887) 3/15 | 0.924 (0.018) ~ (4.701) 2/2 | 0.961 (0.004) ~ (2.491) 4/21 | 0.967 (0.003) ++ (586) 6/27 | 0.873 (0.006) ++ (169) 5/31 | 0.952 (0.006) ++ (153) 4/14 | 0.769 (0.05) ++ (6.302) 2/14 | 0.691 (0.022) ++ (71.56) 4/19 | 4.12/27.31 | |
Khiops | 0.959 (0.011) ~ (3.097) 10/45 | 0.705 (0.034) ~ (4.424) 4/54 | 0.851 (0.018) ++ (9.662) 1/45 | 0.752 (0.028) ~ (3.09) 4/19 | 0.799 (0.023) -- (7.44) 6/61 | 0.938 (0.007) -- (6.057) 10/54 | 0.946 (0.005) ~ (2.325) 8/52 | 0.816 (0.018) ++ (22.97) 2/6 | 0.688 (0.03) ++ (9.659) 2/13 | 0.921 (0.019) ++ (5.038) 3/3 | 0.957 (0.004) ~ (2.293) 6/31 | 0.96 (0.003) ++ (535) 8/36 | 0.876 (0.005) ++ (113) 3/27 | 0.956 (0.005) ++ (186) 3/11 | 0.788 (0.044) ++ (7.177) 1/3 | 0.71 (0.011) ++ (119) 1/2 | 4.5/28.88 | |
MODL | 0.983 (0.008) ++ (5.518) 6/12 | 0.712 (0.027) ~ (4.27) 2/52 | 0.846 (0.014) ++ (6.652) 2/54 | 0.729 (0.027) ~ (2.526) 9/42 | 0.823 (0.028) ~ (1.787) 2/35 | 0.982 (0.006) ++ (9.693) 3/11 | 0.964 (0.01) ~ (3.785) 3/35 | 0.794 (0.022) ++ (22.63) 5/19 | 0.683 (0.044) ++ (4.91) 5/18 | 0.907 (0.018) ~ (2.942) 9/33 | 0.964 (0.004) ~ (2.581) 2/6 | 0.971 (0.003) ++ (529) 3/17 | 0.877 (0.005) ++ (123) 1/24 | 0.957 (0.007) ++ (228) 1/7 | 0.749 (0.038) ~ (2.634) 5/25 | 0.688 (0.023) ++ (103) 7/25 | 4.06/25.94 | |
CACC | 0.983 (0.008) ++ (5.256) 5/11 | 0.718 (0.031) ~ (4.302) 1/51 | 0.832 (0.053) ~ (1.82) 7/65 | 0.75 (0.015) ++ (7.376) 5/21 | 0.763 (0.056) ~ (2.247) 10/72 | 0.978 (0.007) ++ (7.524) 5/22 | 0.968 (0.006) ++ (8.181) 1/26 | 0.406 (0.021) -- (10.02) 11/65 | 0.634 (0.045) ++ (5.685) 8/41 | 0.909 (0.019) ~ (3.467) 8/31 | 0.963 (0.004) ~ (2.586) 3/12 | 0.971 (0.002) ++ (408) 4/18 | 0.875 (0.005) ++ (208) 4/28 | 0.943 (0.015) ++ (91.49) 8/20 | 0.668 (0.039) ~ (0.927) 12/67 | 0.698 (0.015) ++ (72.82) 3/15 | 5.94/35.31 | |
AODEsr | Equal Width | 0.982 (0.005) ++ (6.198) 7/15 | 0.805 (0.035) ~ (0.898) 2/24 | 0.848 (0.016) ++ (7.865) 9/51 | 0.769 (0.024) ++ (9.148) 6/6 | 0.807 (0.022) ~ (4.553) 8/54 | 0.939 (0.006) -- (6.489) 11/53 | 0.962 (0.014) ~ (4.555) 10/42 | 0.821 (0.016) ++ (32.83) 2/5 | 0.618 (0.054) ++ (4.822) 9/47 | 0.881 (0.022) ~ (1.852) 12/66 | 0.946 (0.004) ~ (1.833) 11/51 | 0.976 (0.002) ++ (467) 5/10 | 0.879 (0.005) ++ (373) 7/19 | 0.942 (0.005) ++ (151) 7/21 | 0.688 (0.028) ~ (0.759) 8/59 | 0.651 (0.023) ++ (27.92) 12/57 | 7.88/36.25 |
Equal Frequency | 0.982 (0.008) ++ (6.255) 9/17 | 0.803 (0.026) ~ (0.772) 3/25 | 0.838 (0.018) ~ (3.481) 11/64 | 0.771 (0.021) ++ (5.417) 4/4 | 0.797 (0.022) -- (20.35) 10/62 | 0.972 (0.004) ++ (18.43) 8/32 | 0.967 (0.008) ++ (16.58) 8/32 | 0.794 (0.021) ++ (30.7) 7/17 | 0.716 (0.041) ++ (11.07) 1/1 | 0.913 (0.014) ~ (4.003) 8/20 | 0.951 (0.004) ~ (2.179) 9/43 | 0.977 (0.001) ++ (396) 2/4 | 0.878 (0.005) ++ (562) 8/21 | 0.935 (0.007) ++ (266) 10/34 | 0.539 (0.079) ~ (3.194) 12/73 | 0.684 (0.02) ++ (27.28) 8/29 | 7.38/29.88 | |
Maximum Entropy | 0.928 (0.016) ~ (1.769) 12/67 | 0.802 (0.026) ~ (0.609) 5/27 | 0.85 (0.018) ++ (8.854) 7/48 | 0.771 (0.021) ++ (6.492) 4/4 | 0.793 (0.024) -- (5.479) 11/64 | 0.958 (0.005) ~ (1.228) 9/41 | 0.952 (0.006) ++ (10.38) 11/48 | 0.795 (0.028) ++ (52.74) 6/15 | 0.675 (0.029) ++ (11.63) 7/24 | 0.906 (0.02) ~ (3.562) 11/35 | 0.954 (0.003) ~ (2.154) 8/37 | 0.964 (0.002) ++ (417) 10/34 | 0.856 (0.007) ++ (72.34) 12/51 | 0.938 (0.007) ++ (99.94) 8/26 | 0.577 (0.043) ~ (2.112) 11/71 | 0.68 (0.019) ++ (117) 10/36 | 8.88/39.25 | |
Paterson - Niblett | 0.984 (0.006) ++ (6.514) 5/6 | 0.796 (0.019) ~ (0.651) 12/37 | 0.845 (0.014) ++ (4.955) 10/56 | 0.757 (0.024) ++ (10.92) 10/14 | 0.822 (0.017) ~ (2.516) 5/38 | 0.985 (0.004) ++ (22.08) 1/2 | 0.973 (0.005) ++ (13.51) 4/13 | 0.554 (0.018) ~ (2.014) 10/58 | 0.581 (0.075) ~ (1.272) 12/65 | 0.92 (0.012) ~ (4.011) 1/5 | 0.935 (0.004) ~ (1.534) 12/59 | 0.93 (0.003) ++ (147) 11/52 | 0.862 (0.005) ++ (180) 11/46 | 0.865 (0.008) ++ (18.51) 11/62 | 0.675 (0.03) ~ (0.584) 9/63 | 0.687 (0.025) ++ (51.89) 7/26 | 8.19/37.62 | |
IEM | 0.985 (0.004) ++ (6.972) 4/4 | 0.803 (0.018) ~ (0.746) 4/26 | 0.857 (0.013) ++ (6.178) 5/27 | 0.739 (0.027) ~ (1.81) 11/31 | 0.826 (0.034) ~ (0.827) 4/27 | 0.984 (0.005) ++ (42.97) 2/4 | 0.972 (0.004) ++ (15.84) 7/18 | 0.682 (0.021) ~ (3.554) 9/34 | 0.602 (0.08) ~ (2.225) 10/54 | 0.914 (0.024) ~ (2.857) 6/17 | 0.964 (0.004) ~ (2.681) 1/5 | 0.977 (0.002) ++ (534) 3/6 | 0.888 (0.004) ++ (289) 1/2 | 0.959 (0.008) ++ (118) 2/3 | 0.712 (0.019) ~ (1.215) 7/51 | 0.664 (0.025) ++ (33.44) 11/50 | 5.44/22.44 | |
CADD | 0.932 (0.012) ~ (1.88) 11/65 | 0.798 (0.033) ~ (1.108) 9/32 | 0.829 (0.018) ~ (1.958) 12/66 | 0.781 (0.022) ++ (8.41) 2/2 | 0.78 (0.028) ~ (3.87) 12/67 | 0.924 (0.007) -- (21.33) 12/58 | 0.933 (0.004) ~ (1.455) 12/56 | 0.789 (0.022) ++ (25.17) 8/21 | 0.684 (0.055) ++ (5.447) 6/16 | 0.907 (0.01) ~ (3.286) 10/34 | 0.949 (0.004) ~ (1.912) 10/46 | 0.968 (0.004) ++ (311) 8/25 | 0.88 (0.004) ++ (475) 6/16 | 0.938 (0.005) ++ (218) 9/27 | 0.634 (0.052) ~ (1.098) 10/69 | 0.684 (0.012) ++ (48.59) 9/31 | 9.12/39.44 | |
ModifiedChi2 | 0.984 (0.008) ++ (6.191) 6/8 | 0.801 (0.017) ~ (0.792) 6/29 | 0.85 (0.013) ++ (5.183) 8/49 | 0.738 (0.028) ~ (2.078) 12/35 | 0.812 (0.032) ~ (2.565) 6/49 | 0.979 (0.005) ++ (38.28) 6/19 | 0.974 (0.007) ++ (25.25) 2/9 | 0.308 (0.017) -- (29.79) 12/71 | 0.582 (0.04) ~ (3.995) 11/64 | 0.918 (0.008) ~ (3.434) 2/8 | 0.956 (0.005) ~ (2.489) 7/33 | 0.929 (0.003) ++ (240) 12/55 | 0.871 (0.011) ++ (31) 10/34 | 0.736 (0.012) -- (17.04) 12/74 | 0.735 (0.04) ~ (1.194) 5/37 | 0.709 (0.016) ++ (42) 1/3 | 7.38/36.06 | |
CAIM | 0.985 (0.006) ++ (6.352) 3/3 | 0.799 (0.02) ~ (0.725) 7/30 | 0.86 (0.01) ++ (12.11) 1/17 | 0.764 (0.018) ++ (7.734) 7/9 | 0.828 (0.031) ~ (0.836) 1/12 | 0.98 (0.005) ++ (114) 4/15 | 0.972 (0.005) ++ (13.36) 5/14 | 0.809 (0.028) ++ (28.88) 3/7 | 0.69 (0.039) ++ (11.35) 5/12 | 0.914 (0.013) ~ (3.766) 7/18 | 0.962 (0.003) ~ (2.607) 5/17 | 0.974 (0.002) ++ (438) 6/11 | 0.884 (0.004) ++ (483) 4/8 | 0.956 (0.008) ++ (120) 3/9 | 0.783 (0.035) ~ (3.868) 2/4 | 0.701 (0.016) ++ (65.36) 4/10 | 4.19/12.25 | |
FCAIM | 0.987 (0.004) ++ (6.586) 1/1 | 0.799 (0.02) ~ (0.725) 7/30 | 0.86 (0.01) ++ (12.11) 1/17 | 0.764 (0.018) ++ (7.734) 7/9 | 0.828 (0.031) ~ (0.836) 1/12 | 0.98 (0.005) ++ (114) 4/15 | 0.972 (0.005) ++ (13.36) 5/14 | 0.809 (0.028) ++ (28.88) 3/7 | 0.692 (0.041) ++ (11.58) 4/9 | 0.917 (0.016) ~ (3.424) 3/10 | 0.962 (0.003) ~ (2.55) 4/13 | 0.974 (0.002) ++ (438) 6/11 | 0.884 (0.004) ++ (483) 4/8 | 0.956 (0.008) ++ (120) 3/9 | 0.783 (0.035) ~ (3.868) 2/4 | 0.701 (0.016) ++ (65.36) 4/10 | 3.69/11.19 | |
Khiops | 0.958 (0.012) ~ (3.116) 10/49 | 0.798 (0.027) ~ (0.9) 10/33 | 0.858 (0.013) ++ (15.61) 4/26 | 0.779 (0.014) ++ (8.473) 3/3 | 0.81 (0.027) ~ (3.563) 7/50 | 0.95 (0.008) ~ (1.513) 10/46 | 0.963 (0.004) ++ (11.67) 9/40 | 0.824 (0.019) ++ (47.99) 1/3 | 0.694 (0.029) ++ (10.73) 3/7 | 0.916 (0.026) ~ (4.637) 5/15 | 0.96 (0.005) ~ (2.225) 6/25 | 0.964 (0.003) ++ (534) 9/32 | 0.874 (0.004) ++ (171) 9/30 | 0.95 (0.007) ++ (118) 6/17 | 0.795 (0.041) ++ (5.71) 1/2 | 0.701 (0.015) ++ (119) 3/9 | 6/24.19 | |
MODL | 0.987 (0.005) ++ (6.479) 2/2 | 0.808 (0.025) ~ (1.077) 1/17 | 0.858 (0.012) ++ (6.528) 3/25 | 0.763 (0.028) ~ (3.507) 9/11 | 0.828 (0.028) ~ (1.7) 3/18 | 0.984 (0.005) ++ (31.61) 3/5 | 0.975 (0.004) ++ (11.27) 1/5 | 0.796 (0.023) ++ (25.2) 5/14 | 0.698 (0.047) ++ (6.827) 2/4 | 0.912 (0.017) ~ (3.083) 9/23 | 0.963 (0.004) ~ (2.65) 2/9 | 0.978 (0.002) ++ (352) 1/2 | 0.888 (0.004) ++ (297) 2/3 | 0.959 (0.007) ++ (151) 1/2 | 0.772 (0.027) ~ (3.496) 4/12 | 0.7 (0.02) ++ (138) 6/13 | 3.38/10.31 | |
CACC | 0.982 (0.007) ++ (5.983) 7/15 | 0.797 (0.03) ~ (0.84) 11/34 | 0.852 (0.034) ~ (4.271) 6/39 | 0.781 (0.017) ++ (6.916) 1/1 | 0.801 (0.028) ~ (2.793) 9/59 | 0.979 (0.006) ++ (22.21) 7/21 | 0.973 (0.006) ++ (11.62) 3/12 | 0.395 (0.02) -- (14.91) 11/66 | 0.655 (0.045) ++ (5.964) 8/31 | 0.917 (0.018) ~ (3.643) 4/13 | 0.963 (0.005) ~ (2.524) 3/10 | 0.976 (0.001) ++ (363) 4/9 | 0.885 (0.006) ++ (155) 3/6 | 0.953 (0.007) ++ (350) 5/12 | 0.716 (0.03) ~ (1.298) 6/48 | 0.705 (0.015) ++ (48.78) 2/5 | 5.62/23.81 | |
WAODE | Equal Width | 0.979 (0.005) ++ (5.765) 8/26 | 0.692 (0.037) -- (7.085) 7/65 | 0.843 (0.013) ++ (6.162) 10/60 | 0.743 (0.024) ++ (12.01) 3/24 | 0.799 (0.023) -- (12.93) 8/60 | 0.812 (0.006) -- (618) 11/72 | 0.89 (0.018) ~ (2.532) 6/67 | 0.827 (0.018) ++ (28.88) 1/1 | 0.623 (0.057) ++ (5.735) 9/46 | 0.882 (0.022) ~ (1.858) 11/65 | 0.947 (0.004) ~ (1.844) 11/49 | 0.977 (0.002) ++ (418) 5/8 | 0.878 (0.005) ++ (378) 7/20 | 0.941 (0.006) ++ (120) 7/22 | 0.686 (0.032) ~ (0.907) 9/60 | 0.654 (0.023) ++ (26.43) 12/54 | 7.81/43.69 |
Equal Frequency | 0.979 (0.01) ++ (5.71) 7/24 | 0.684 (0.036) ~ (4.124) 12/72 | 0.842 (0.017) ++ (5.329) 11/61 | 0.742 (0.02) ~ (4.157) 4/25 | 0.789 (0.023) ~ (4.365) 10/66 | 0.885 (0.004) -- (380) 8/69 | 0.895 (0.014) -- (5.854) 3/64 | 0.799 (0.023) ++ (28.11) 5/13 | 0.714 (0.049) ++ (9.045) 1/2 | 0.914 (0.015) ~ (4.111) 7/19 | 0.952 (0.004) ~ (2.211) 9/41 | 0.978 (0.001) ++ (362) 1/1 | 0.877 (0.005) ++ (819) 8/23 | 0.935 (0.006) ++ (250) 10/35 | 0.512 (0.079) ~ (3.615) 12/74 | 0.683 (0.021) ++ (23.83) 9/32 | 7.31/38.81 | |
Maximum Entropy | 0.935 (0.014) ~ (2.303) 12/64 | 0.69 (0.042) ~ (4.111) 11/70 | 0.845 (0.015) ++ (5.713) 8/55 | 0.736 (0.017) ++ (6.25) 6/38 | 0.779 (0.022) -- (19.63) 11/68 | 0.871 (0.005) -- (139) 9/70 | 0.874 (0.006) -- (28.88) 11/72 | 0.795 (0.028) ++ (73.13) 6/15 | 0.67 (0.03) ++ (10.37) 7/26 | 0.87 (0.022) ~ (0.973) 12/72 | 0.954 (0.003) ~ (2.152) 8/35 | 0.964 (0.002) ++ (372) 10/33 | 0.855 (0.007) ++ (70.71) 12/52 | 0.937 (0.006) ++ (110) 9/31 | 0.555 (0.046) ~ (3.161) 11/72 | 0.679 (0.019) ++ (174) 10/38 | 9.56/50.69 | |
Paterson - Niblett | 0.978 (0.009) ++ (5.025) 9/27 | 0.704 (0.033) -- (5.387) 1/55 | 0.845 (0.015) ~ (4.043) 9/59 | 0.717 (0.018) ++ (9.7) 10/64 | 0.82 (0.018) ~ (4.547) 5/40 | 0.899 (0.011) -- (14.09) 7/68 | 0.878 (0.02) ~ (3.102) 10/71 | 0.548 (0.015) ~ (2.153) 10/59 | 0.585 (0.073) ~ (1.262) 11/62 | 0.921 (0.011) ~ (4.159) 1/4 | 0.935 (0.004) ~ (1.538) 12/58 | 0.93 (0.003) ++ (124) 11/53 | 0.861 (0.004) ++ (146) 11/47 | 0.864 (0.01) ++ (16.01) 11/63 | 0.691 (0.023) ~ (0.75) 8/57 | 0.69 (0.02) ++ (76.09) 7/22 | 8.31/50.56 | |
IEM | 0.982 (0.009) ++ (5.543) 2/18 | 0.696 (0.047) ~ (3.415) 4/59 | 0.859 (0.013) ++ (6.001) 3/20 | 0.716 (0.02) ~ (2.864) 11/65 | 0.827 (0.035) ~ (0.827) 1/20 | 0.902 (0.011) -- (13.88) 6/67 | 0.886 (0.016) ~ (3.182) 8/69 | 0.671 (0.016) ~ (3.242) 9/35 | 0.607 (0.086) ~ (2.262) 10/52 | 0.909 (0.02) ~ (3.313) 10/29 | 0.965 (0.004) ~ (2.717) 1/3 | 0.977 (0.002) ++ (472) 3/5 | 0.888 (0.004) ++ (272) 1/1 | 0.958 (0.008) ++ (108) 2/4 | 0.724 (0.028) ~ (1.443) 6/43 | 0.666 (0.022) ++ (29.35) 11/48 | 5.5/33.62 | |
CADD | 0.938 (0.016) ~ (1.883) 11/63 | 0.692 (0.026) ~ (4.473) 6/64 | 0.824 (0.018) ~ (1.838) 12/68 | 0.752 (0.019) ++ (10.68) 2/18 | 0.774 (0.021) -- (6.815) 12/70 | 0.798 (0.011) -- (239) 12/73 | 0.856 (0.008) -- (46.45) 12/73 | 0.793 (0.024) ++ (30.48) 8/20 | 0.682 (0.062) ~ (4.267) 6/20 | 0.911 (0.008) ~ (3.784) 9/26 | 0.949 (0.004) ~ (1.926) 10/45 | 0.967 (0.003) ++ (338) 8/26 | 0.879 (0.004) ++ (618) 6/18 | 0.939 (0.005) ++ (216) 8/25 | 0.632 (0.051) ~ (0.943) 10/70 | 0.684 (0.012) ++ (55.91) 8/30 | 8.75/44.31 | |
ModifiedChi2 | 0.982 (0.009) ++ (5.559) 1/14 | 0.702 (0.026) ~ (4.585) 3/57 | 0.846 (0.018) ~ (3.7) 7/53 | 0.714 (0.022) ~ (2.121) 12/66 | 0.805 (0.035) ~ (2.367) 6/57 | 0.908 (0.006) -- (55.87) 1/62 | 0.903 (0.009) ~ (3.042) 1/62 | 0.286 (0.015) -- (41.36) 12/72 | 0.585 (0.042) ~ (3.781) 11/62 | 0.917 (0.007) ~ (3.551) 3/10 | 0.956 (0.005) ~ (2.413) 7/34 | 0.929 (0.003) ++ (218) 12/54 | 0.871 (0.011) ++ (31.71) 10/33 | 0.746 (0.014) -- (7.382) 12/73 | 0.736 (0.038) ~ (1.288) 5/35 | 0.71 (0.018) ++ (57.39) 1/1 | 6.5/46.56 | |
CAIM | 0.98 (0.011) ++ (5.22) 5/21 | 0.69 (0.033) -- (4.807) 9/68 | 0.863 (0.013) ++ (5.633) 1/7 | 0.727 (0.029) ~ (3.18) 8/47 | 0.826 (0.032) ~ (0.964) 2/25 | 0.904 (0.013) -- (11.51) 4/65 | 0.894 (0.016) ~ (1.903) 4/65 | 0.808 (0.021) ++ (33.25) 3/9 | 0.691 (0.038) ++ (11.01) 5/11 | 0.915 (0.014) ~ (3.518) 6/16 | 0.962 (0.002) ~ (2.637) 5/14 | 0.974 (0.002) ++ (441) 6/13 | 0.884 (0.005) ++ (401) 4/10 | 0.957 (0.009) ++ (123) 3/5 | 0.78 (0.041) ~ (3.837) 2/6 | 0.702 (0.017) ++ (68.41) 3/7 | 4.38/24.31 | |
FCAIM | 0.981 (0.011) ++ (5.207) 3/19 | 0.69 (0.033) -- (4.807) 9/68 | 0.863 (0.013) ++ (5.633) 1/7 | 0.727 (0.029) ~ (3.18) 8/47 | 0.826 (0.032) ~ (0.964) 2/25 | 0.904 (0.013) -- (11.51) 4/65 | 0.894 (0.016) ~ (1.903) 4/65 | 0.808 (0.021) ++ (33.25) 3/9 | 0.692 (0.04) ++ (10.72) 4/10 | 0.917 (0.015) ~ (3.671) 4/12 | 0.963 (0.003) ~ (2.603) 4/11 | 0.974 (0.002) ++ (441) 6/13 | 0.884 (0.005) ++ (401) 4/10 | 0.957 (0.009) ++ (123) 3/5 | 0.78 (0.041) ~ (3.837) 2/6 | 0.702 (0.017) ++ (68.41) 3/7 | 4/23.69 | |
Khiops | 0.956 (0.013) ~ (2.916) 10/52 | 0.692 (0.035) -- (5.055) 8/67 | 0.855 (0.014) ++ (9.885) 4/34 | 0.738 (0.016) ~ (2.725) 5/34 | 0.805 (0.029) -- (5.634) 7/58 | 0.862 (0.009) -- (77.3) 10/71 | 0.885 (0.007) -- (10.2) 9/70 | 0.827 (0.019) ++ (26.97) 2/2 | 0.697 (0.043) ++ (7.232) 3/6 | 0.916 (0.027) ~ (4.635) 5/14 | 0.96 (0.004) ~ (2.244) 6/24 | 0.964 (0.002) ++ (473) 9/31 | 0.874 (0.004) ++ (196) 9/29 | 0.95 (0.006) ++ (147) 6/16 | 0.796 (0.033) ++ (6.21) 1/1 | 0.7 (0.018) ++ (194) 5/12 | 6.19/32.56 | |
MODL | 0.981 (0.01) ++ (4.84) 4/20 | 0.703 (0.039) ~ (2.76) 2/56 | 0.852 (0.017) ~ (3.84) 5/39 | 0.73 (0.024) ~ (2.804) 7/39 | 0.825 (0.032) ~ (1.287) 4/30 | 0.906 (0.006) -- (29.56) 3/64 | 0.89 (0.013) ~ (2.41) 7/68 | 0.794 (0.019) ++ (23.46) 7/18 | 0.698 (0.046) ++ (7.35) 2/4 | 0.911 (0.019) ~ (3.133) 8/25 | 0.965 (0.004) ~ (2.684) 2/4 | 0.977 (0.001) ++ (390) 2/3 | 0.887 (0.004) ++ (265) 2/4 | 0.961 (0.005) ++ (219) 1/1 | 0.77 (0.036) ~ (2.985) 4/13 | 0.695 (0.021) ++ (215) 6/17 | 4.12/25.31 | |
CACC | 0.98 (0.009) ++ (4.971) 6/23 | 0.695 (0.038) ~ (3.175) 5/63 | 0.852 (0.038) ~ (3.394) 6/41 | 0.754 (0.017) ++ (5.101) 1/15 | 0.793 (0.033) ~ (2.111) 9/65 | 0.908 (0.011) -- (11.35) 2/63 | 0.902 (0.011) ~ (1.71) 2/63 | 0.355 (0.013) -- (21.08) 11/67 | 0.655 (0.04) ++ (6.934) 8/32 | 0.918 (0.017) ~ (3.697) 2/7 | 0.964 (0.005) ~ (2.553) 3/7 | 0.977 (0.002) ++ (357) 4/7 | 0.885 (0.006) ++ (168) 3/5 | 0.953 (0.006) ++ (361) 5/13 | 0.721 (0.034) ~ (1.236) 7/45 | 0.709 (0.017) ++ (48.68) 2/4 | 4.75/32.5 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place | |
Original Data | org | 2.632 (0.327) -/11 | 0.713 (0.046) -/11 | 1.381 (0.126) -/36 | 2.59 (0.406) -/13 | 0.636 (0.086) -/50 | 10.6 (1.325) -/14 | 8.834 (0.583) -/13 | 2.696 (0.226) -/17 | 1.429 (0.042) -/47 | 4.411 (4.925) -/46 | 20.51 (9.268) -/62 | 59.36 (8.466) -/45 | 66.66 (8.267) -/26 | 11.98 (1.704) -/31 | 4.717 (0.71) -/38 | 3.909 (0.081) -/55 | /32.19 |
org | 2.608 (0.351) -/10 | 0.739 (0.042) -/13 | 1.498 (0.102) -/45 | 3.021 (0.464) -/22 | 0.689 (0.101) -/55 | 10.61 (1.158) -/15 | 9.881 (0.109) -/17 | 3.41 (0.29) -/27 | 1.551 (0.033) -/49 | 4.272 (1.389) -/45 | 23.85 (7.295) -/67 | 73.34 (12.79) -/47 | 73.1 (2.733) -/32 | 14.91 (2.506) -/37 | 5.201 (0.64) -/40 | 4.499 (0.201) -/59 | /36.25 | |
NB | Equal Width | 1.286 (0.148) 5/5 | 0.31 (0.017) 1/1 | 0.526 (0.331) 9/9 | 0.813 (0.12) 9/9 | 0.231 (0.045) 10/10 | 3.471 (0.052) 2/2 | 3.444 (0.058) 4/4 | 0.536 (0.013) 6/6 | 0.243 (0.014) 2/2 | 0.577 (0.207) 7/7 | 1.934 (0.018) 4/4 | 6.266 (0.297) 4/4 | 8.044 (0.655) 9/9 | 1.86 (0.3) 6/6 | 0.584 (0.022) 8/8 | 0.607 (0.034) 4/4 | 5.62/5.62 |
Equal Frequency | 1.318 (0.308) 9/9 | 0.327 (0.026) 5/5 | 0.412 (0.052) 1/1 | 0.755 (0.042) 6/6 | 0.198 (0.008) 2/2 | 3.566 (0.121) 7/7 | 3.467 (0.105) 6/6 | 0.536 (0.025) 5/5 | 0.259 (0.009) 4/5 | 0.92 (1.198) 11/11 | 1.926 (0.027) 1/1 | 6.465 (0.982) 8/8 | 7.428 (0.219) 1/1 | 2.035 (0.567) 9/9 | 0.601 (0.059) 9/9 | 0.605 (0.024) 2/2 | 5.38/5.44 | |
Maximum Entropy | 1.302 (0.222) 8/8 | 0.323 (0.043) 3/3 | 0.445 (0.078) 5/5 | 0.75 (0.049) 5/5 | 0.203 (0.014) 3/3 | 3.652 (0.453) 9/9 | 3.449 (0.063) 5/5 | 0.532 (0.003) 4/4 | 0.276 (0.033) 6/7 | 0.902 (0.823) 10/10 | 2.148 (0.419) 8/8 | 6.04 (0.152) 1/1 | 7.669 (0.27) 4/4 | 1.866 (0.326) 7/7 | 0.577 (0.028) 7/7 | 0.606 (0.035) 3/3 | 5.5/5.56 | |
Paterson - Niblett | 1.225 (0.208) 2/2 | 0.334 (0.048) 7/7 | 0.443 (0.088) 3/3 | 0.74 (0.037) 3/3 | 0.208 (0.017) 7/7 | 3.511 (0.058) 5/5 | 3.399 (0.103) 2/2 | 0.54 (0.022) 7/7 | 0.264 (0.024) 5/6 | 0.542 (0.346) 6/6 | 4.057 (6.015) 12/16 | 6.297 (0.14) 5/5 | 7.697 (0.231) 5/5 | 1.873 (0.32) 8/8 | 0.53 (0.024) 4/4 | 0.646 (0.085) 8/8 | 5.56/5.88 | |
IEM | 1.282 (0.167) 3/3 | 0.35 (0.055) 9/9 | 0.444 (0.086) 4/4 | 0.769 (0.05) 7/7 | 0.193 (0.011) 1/1 | 3.475 (0.096) 3/3 | 3.398 (0.039) 1/1 | 0.524 (0.021) 2/2 | 0.361 (0.184) 10/13 | 0.468 (0.103) 5/5 | 1.99 (0.177) 6/6 | 6.431 (0.438) 6/6 | 7.92 (0.38) 7/7 | 1.806 (0.292) 3/3 | 0.537 (0.064) 6/6 | 0.647 (0.058) 9/9 | 5.12/5.31 | |
CADD | 2.978 (0.882) 10/12 | 0.726 (0.089) 11/12 | 0.73 (0.269) 11/11 | 0.865 (0.224) 10/10 | 0.207 (0.036) 5/5 | 3.754 (0.704) 10/10 | 3.605 (0.331) 10/10 | 0.594 (0.054) 9/9 | 0.778 (0.244) 11/40 | 1.298 (0.156) 12/12 | 4.026 (2.093) 11/15 | 6.455 (0.106) 7/7 | 8.831 (3.929) 10/10 | 5.027 (1.189) 12/12 | 1.374 (0.339) 12/13 | 0.818 (0.135) 10/10 | 10.06/12.38 | |
ModifiedChi2 | 3.12 (0.635) 11/13 | 0.93 (0.127) 12/25 | 0.802 (0.033) 12/12 | 1.079 (0.04) 12/12 | 0.329 (0.039) 12/12 | 4.524 (0.51) 11/11 | 4.46 (0.637) 11/11 | 1.089 (0.099) 12/12 | 1.352 (1.568) 12/46 | 0.823 (0.14) 9/9 | 3.665 (0.598) 10/14 | 6.727 (0.747) 9/9 | 9.633 (0.477) 11/11 | 3.911 (0.999) 11/11 | 1.352 (0.353) 11/11 | 0.925 (0.082) 11/11 | 11.06/14.38 | |
CAIM | 1.295 (0.24) 7/7 | 0.326 (0.032) 4/4 | 0.458 (0.069) 7/7 | 0.713 (0.095) 2/2 | 0.212 (0.033) 8/8 | 3.483 (0.084) 4/4 | 3.593 (0.386) 9/9 | 0.547 (0.024) 8/8 | 0.281 (0.081) 7/8 | 0.443 (0.034) 3/3 | 2.081 (0.209) 7/7 | 6.082 (0.033) 2/2 | 7.475 (0.28) 2/2 | 1.813 (0.276) 4/4 | 0.523 (0.07) 2/2 | 0.634 (0.076) 6/6 | 5.12/5.19 | |
FCAIM | 1.292 (0.143) 6/6 | 0.317 (0.026) 2/2 | 0.484 (0.074) 8/8 | 0.693 (0.047) 1/1 | 0.22 (0.06) 9/9 | 3.565 (0.117) 6/6 | 3.539 (0.369) 8/8 | 0.528 (0.008) 3/3 | 0.292 (0.045) 8/9 | 0.448 (0.026) 4/4 | 1.93 (0.033) 2/2 | 17.33 (21.44) 12/12 | 7.552 (0.241) 3/3 | 1.799 (0.275) 2/2 | 0.485 (0.018) 1/1 | 0.641 (0.081) 7/7 | 5.12/5.19 | |
Khiops | 1.181 (0.098) 1/1 | 0.332 (0.051) 6/6 | 0.436 (0.086) 2/2 | 0.747 (0.092) 4/4 | 0.208 (0.024) 6/6 | 3.602 (0.384) 8/8 | 3.512 (0.255) 7/7 | 0.516 (0.003) 1/1 | 0.324 (0.174) 9/11 | 0.442 (0.033) 2/2 | 1.93 (0.029) 3/3 | 6.884 (1.392) 10/10 | 8.026 (0.285) 8/8 | 1.859 (0.29) 5/5 | 0.532 (0.062) 5/5 | 0.619 (0.059) 5/5 | 5.12/5.25 | |
MODL | 3.251 (1.823) 12/14 | 0.661 (0.128) 10/10 | 0.652 (0.065) 10/10 | 1.013 (0.1) 11/11 | 0.291 (0.013) 11/11 | 5.008 (1.003) 12/12 | 4.522 (0.585) 12/12 | 0.883 (0.148) 11/11 | 0.255 (0.017) 3/4 | 0.634 (0.04) 8/8 | 3.277 (0.032) 9/12 | 12.06 (6.798) 11/11 | 9.812 (0.599) 12/12 | 3.741 (0.73) 10/10 | 0.727 (0.066) 10/10 | 1.365 (0.664) 12/12 | 10.25/10.62 | |
CACC | 1.285 (0.222) 4/4 | 0.335 (0.042) 8/8 | 0.45 (0.084) 6/6 | 0.794 (0.145) 8/8 | 0.206 (0.02) 4/4 | 3.43 (0.046) 1/1 | 3.443 (0.088) 3/3 | 0.843 (0.052) 10/10 | 0.174 (0.074) 1/1 | 0.44 (0.037) 1/1 | 1.954 (0.032) 5/5 | 6.218 (0.489) 3/3 | 7.699 (0.128) 6/6 | 1.797 (0.287) 1/1 | 0.529 (0.065) 3/3 | 0.599 (0.03) 1/1 | 4.06/4.06 | |
LBR | Equal Width | 11.35 (2.936) 9/53 | 0.873 (0.063) 7/20 | 1.417 (0.162) 10/38 | 3.073 (0.32) 9/23 | 0.657 (0.108) 12/51 | 18.14 (1.186) 4/38 | 10.52 (0.103) 5/23 | 7.51 (0.607) 6/50 | 1.275 (0.128) 5/43 | 4.011 (4.411) 11/44 | 26.15 (6.192) 12/68 | 101 (18.99) 8/60 | 80.34 (46.69) 7/40 | 22.47 (6.626) 11/54 | 2.637 (2.168) 10/24 | 3.461 (0.33) 9/43 | 8.44/42 |
Equal Frequency | 9.124 (1.173) 1/33 | 0.886 (0.055) 9/22 | 1.327 (0.169) 7/32 | 3.162 (0.14) 10/24 | 0.521 (0.07) 3/27 | 20.56 (2.599) 12/52 | 10.63 (0.635) 7/25 | 7.86 (0.609) 9/53 | 1.175 (0.081) 4/42 | 2.326 (0.471) 8/26 | 21.33 (3.359) 8/63 | 90.46 (14.47) 3/52 | 58.57 (2.566) 1/21 | 19.08 (3.035) 9/51 | 2.07 (0.128) 9/21 | 3.274 (0.262) 7/41 | 6.69/36.56 | |
Maximum Entropy | 9.664 (1.321) 4/43 | 0.849 (0.068) 2/15 | 1.356 (0.209) 8/34 | 3.353 (0.932) 12/26 | 0.573 (0.067) 11/44 | 19.39 (2.022) 7/43 | 10.75 (0.863) 8/27 | 7.651 (0.457) 8/52 | 1.688 (0.842) 7/51 | 3.888 (3.869) 10/43 | 22.92 (4.305) 10/65 | 83.17 (15.28) 2/50 | 78.15 (9.5) 6/38 | 18.08 (1.141) 7/48 | 1.888 (0.181) 8/20 | 3.288 (0.254) 8/42 | 7.38/40.06 | |
Paterson - Niblett | 9.878 (1.368) 5/46 | 0.861 (0.114) 4/17 | 1.182 (0.192) 1/17 | 2.928 (0.113) 8/21 | 0.497 (0.07) 2/25 | 20.24 (2.212) 10/49 | 10.37 (0.956) 3/21 | 7.598 (0.478) 7/51 | 1.765 (1.325) 9/55 | 1.834 (0.912) 7/20 | 17.29 (3.053) 6/60 | 95.38 (2.123) 5/55 | 89.28 (2.31) 8/43 | 15.58 (1.447) 4/41 | 1.4 (0.065) 2/14 | 3.212 (0.2) 6/39 | 5.44/35.88 | |
IEM | 9.51 (1.094) 2/40 | 0.885 (0.125) 8/21 | 1.22 (0.175) 3/20 | 2.875 (0.272) 6/19 | 0.525 (0.08) 4/30 | 19.92 (2.85) 9/45 | 9.888 (0.803) 1/18 | 6.503 (0.622) 1/45 | 1.735 (0.815) 8/53 | 1.543 (0.122) 5/17 | 15.06 (2.937) 4/57 | 94.35 (12.86) 4/54 | 99.68 (2.227) 10/51 | 14.94 (0.304) 2/38 | 1.573 (0.162) 6/18 | 3.162 (0.048) 5/38 | 4.88/35.25 | |
CADD | 31.83 (63.6) 12/59 | 0.866 (0.158) 6/19 | 2.305 (3.102) 12/60 | 2.829 (0.176) 4/17 | 0.533 (0.109) 6/32 | 16.87 (1.505) 1/33 | 11.01 (1.96) 10/31 | 8.278 (1.022) 10/54 | 3.461 (4.419) 12/62 | 5.884 (0.447) 12/51 | 23.5 (7.348) 11/66 | 79.93 (7.398) 1/48 | 69.85 (6.216) 5/31 | 21.51 (5.444) 10/53 | 10.01 (9.241) 12/48 | 3.802 (0.905) 11/50 | 8.44/44.62 | |
ModifiedChi2 | 11.63 (4.893) 10/54 | 1.049 (0.068) 12/26 | 1.367 (0.035) 9/35 | 2.759 (0.022) 3/16 | 0.536 (0.051) 7/35 | 18.08 (2.286) 3/37 | 10.08 (1.101) 2/20 | 34.67 (0.86) 12/62 | 2.884 (0.496) 11/58 | 2.834 (2.266) 9/32 | 22.01 (1.597) 9/64 | 206 (8.639) 12/70 | 134 (35.63) 11/55 | 77.91 (3.252) 12/64 | 3.37 (2.58) 11/26 | 3.657 (0.246) 10/46 | 8.94/43.75 | |
CAIM | 10.11 (2.011) 6/47 | 0.86 (0.094) 3/16 | 1.219 (0.166) 2/19 | 2.667 (0.134) 1/14 | 0.487 (0.074) 1/23 | 19.65 (2.926) 8/44 | 10.82 (1.853) 9/29 | 7.06 (0.394) 4/48 | 1.351 (1.416) 6/45 | 1.531 (0.01) 4/16 | 14.6 (1.616) 3/55 | 101 (8.781) 7/59 | 62.97 (4.384) 2/23 | 14.73 (0.938) 1/36 | 1.418 (0.016) 3/15 | 3.035 (0.166) 4/34 | 4/32.69 | |
FCAIM | 10.16 (1.206) 8/49 | 0.911 (0.07) 10/23 | 1.246 (0.22) 4/22 | 2.703 (0.296) 2/15 | 0.527 (0.073) 5/31 | 20.38 (2.815) 11/51 | 10.52 (1.629) 6/24 | 6.93 (0.025) 3/47 | 0.68 (0.096) 1/36 | 1.459 (0.108) 1/13 | 13.79 (2.27) 1/53 | 102 (23.55) 9/63 | 64.49 (5.376) 3/25 | 14.95 (1.354) 3/39 | 1.356 (0.128) 1/12 | 2.964 (0.222) 1/31 | 4.31/33.38 | |
Khiops | 10.16 (1.03) 7/48 | 0.843 (0.099) 1/14 | 1.484 (0.228) 11/43 | 3.347 (0.405) 11/25 | 0.546 (0.086) 10/38 | 19.04 (2.347) 6/42 | 11.06 (1.083) 11/32 | 7.311 (0.436) 5/49 | 2.159 (3.44) 10/57 | 1.565 (0.221) 6/18 | 18.8 (4.003) 7/61 | 122 (14.8) 11/66 | 139 (6.995) 12/57 | 17.53 (1.666) 6/46 | 1.723 (0.276) 7/19 | 3.85 (0.307) 12/52 | 8.31/41.69 | |
MODL | 12.83 (7.557) 11/55 | 0.863 (0.076) 5/18 | 1.289 (0.139) 5/25 | 2.869 (0.343) 5/18 | 0.543 (0.043) 9/37 | 18.25 (3.41) 5/40 | 11.52 (1.968) 12/34 | 6.67 (1.018) 2/46 | 0.718 (0.097) 2/37 | 1.462 (0.139) 2/14 | 15.22 (2.057) 5/58 | 109 (26.51) 10/65 | 94.34 (9.767) 9/49 | 18.95 (9.777) 8/50 | 1.444 (0.132) 4/16 | 2.989 (0.334) 3/33 | 6.06/37.19 | |
CACC | 9.523 (1.192) 3/41 | 0.922 (0.072) 11/24 | 1.319 (0.221) 6/30 | 2.927 (0.216) 7/20 | 0.543 (0.095) 8/36 | 17.42 (0.162) 2/36 | 10.42 (1.082) 4/22 | 29.41 (1.786) 11/58 | 1.054 (0.295) 3/41 | 1.528 (0.118) 3/15 | 14.21 (2.814) 2/54 | 98.71 (17.91) 6/58 | 67 (3.32) 4/28 | 15.94 (1.739) 5/42 | 1.496 (0.153) 5/17 | 2.968 (0.311) 2/32 | 5.12/34.62 | |
AODE | Equal Width | 8.828 (2.687) 11/30 | 1.248 (0.118) 3/30 | 1.634 (0.3) 11/48 | 10.85 (2.11) 10/38 | 0.689 (0.076) 12/54 | 18.15 (2.182) 12/39 | 10.79 (0.2) 6/28 | 3.263 (0.58) 6/23 | 0.379 (0.087) 6/17 | 7.239 (1.521) 12/54 | 6.256 (0.9) 8/31 | 32.3 (9.755) 9/29 | 57.46 (8.066) 6/19 | 12.03 (2.656) 8/32 | 14.11 (1.39) 12/54 | 2.572 (0.238) 10/23 | 8.88/34.31 |
Equal Frequency | 7.906 (0.999) 4/23 | 1.384 (0.246) 5/35 | 1.628 (0.226) 10/47 | 11.21 (1.995) 12/41 | 0.625 (0.143) 11/49 | 16.44 (0.545) 6/28 | 11.38 (0.847) 8/33 | 3.414 (0.599) 8/28 | 0.377 (0.079) 5/16 | 6.956 (1.698) 10/52 | 7.49 (2.253) 10/34 | 27.95 (6.448) 7/21 | 49.15 (0.282) 3/15 | 13.6 (2.725) 10/35 | 13.96 (1.115) 11/53 | 2.569 (0.241) 9/22 | 8.06/33.25 | |
Maximum Entropy | 8.175 (1.58) 6/25 | 1.472 (0.29) 8/40 | 1.49 (0.255) 9/44 | 10.59 (1.827) 9/36 | 0.566 (0.064) 9/43 | 17.03 (1.393) 10/34 | 13.18 (7.282) 9/35 | 3.462 (0.801) 9/29 | 0.305 (0.07) 2/10 | 6.993 (1.372) 11/53 | 7.097 (0.897) 9/33 | 21.28 (4.803) 1/13 | 48.74 (6.044) 2/14 | 12.25 (0.278) 9/33 | 13.28 (0.192) 9/51 | 2.418 (0.268) 5/17 | 7.31/31.88 | |
Paterson - Niblett | 8.185 (1.553) 7/26 | 1.285 (0.28) 4/31 | 1.113 (0.272) 2/14 | 9.656 (1.37) 5/31 | 0.453 (0.057) 3/15 | 15.97 (0.601) 4/24 | 9.549 (0.356) 1/14 | 3.123 (0.579) 5/22 | 0.372 (0.091) 4/15 | 2.046 (0.703) 3/22 | 3.601 (0.984) 4/13 | 35.38 (8.647) 10/33 | 63.36 (4.856) 8/24 | 5.975 (0.491) 2/14 | 3.965 (0.489) 5/32 | 2.418 (0.197) 6/18 | 4.56/21.75 | |
IEM | 8.32 (1.773) 9/28 | 1.218 (0.134) 2/29 | 1.091 (0.162) 1/13 | 9.506 (2.058) 4/30 | 0.46 (0.101) 6/19 | 16.08 (1.485) 5/26 | 9.591 (0.353) 2/15 | 1.349 (0.282) 1/13 | 0.252 (0.047) 1/3 | 1.755 (0.31) 1/19 | 2.794 (0.472) 1/9 | 27.11 (6.248) 5/19 | 66.86 (4.617) 9/27 | 6.079 (0.554) 4/16 | 3.797 (0.37) 4/28 | 2.197 (0.252) 1/13 | 3.5/19.19 | |
CADD | 9.253 (1.828) 12/34 | 1.585 (0.309) 11/45 | 1.882 (0.454) 12/54 | 10.46 (2.489) 8/35 | 0.579 (0.137) 10/46 | 16.44 (0.122) 7/29 | 18.44 (3.73) 12/47 | 3.672 (0.353) 10/30 | 0.723 (0.081) 10/38 | 5.862 (0.65) 9/50 | 7.904 (1.325) 11/35 | 22.18 (2.201) 2/14 | 45.87 (6.698) 1/13 | 15.02 (1.601) 11/40 | 13.82 (0.979) 10/52 | 2.423 (0.356) 8/20 | 9/36.38 | |
ModifiedChi2 | 8.38 (0.049) 10/29 | 1.526 (0.146) 10/42 | 1.27 (0.064) 4/24 | 7.287 (0.093) 1/27 | 0.492 (0.056) 8/24 | 16.54 (1.85) 8/30 | 16.96 (2.363) 10/42 | 460 (7.38) 12/69 | 5.19 (2.296) 12/68 | 2.66 (0.342) 7/31 | 9.328 (1.41) 12/43 | 196 (6.675) 12/69 | 280 (193) 12/68 | 691 (34.75) 12/71 | 5.101 (0.396) 7/39 | 2.927 (0.179) 11/29 | 9.25/44.06 | |
CAIM | 7.789 (1.434) 1/19 | 1.215 (0.215) 1/28 | 1.313 (0.287) 6/28 | 8.617 (1.592) 3/29 | 0.441 (0.041) 2/14 | 17.1 (3.106) 11/35 | 10.75 (2.043) 5/26 | 2.957 (0.586) 4/20 | 0.401 (0.158) 7/19 | 2.075 (0.486) 4/23 | 4.29 (5.179) 5/18 | 27.66 (5.171) 6/20 | 54.84 (6.061) 5/17 | 5.988 (0.691) 3/15 | 2.603 (0.232) 2/23 | 2.324 (0.214) 3/15 | 4.25/21.81 | |
FCAIM | 7.88 (1.661) 3/22 | 1.427 (0.302) 6/36 | 1.322 (0.256) 7/31 | 10.17 (1.999) 6/32 | 0.458 (0.073) 4/17 | 15.55 (0.123) 3/22 | 10.04 (1.373) 4/19 | 2.92 (0.578) 3/19 | 0.403 (0.093) 8/20 | 1.859 (0.511) 2/21 | 2.853 (0.589) 2/10 | 25.8 (4.199) 4/18 | 53.69 (5.994) 4/16 | 5.865 (0.451) 1/13 | 2.602 (0.238) 1/22 | 2.379 (0.16) 4/16 | 3.88/20.88 | |
Khiops | 8.17 (1.699) 5/24 | 1.485 (0.196) 9/41 | 1.289 (0.243) 5/26 | 11.06 (2.34) 11/40 | 0.475 (0.067) 7/21 | 14.4 (3.524) 2/20 | 10.98 (1.595) 7/30 | 3.326 (0.721) 7/25 | 0.654 (1.17) 9/35 | 2.402 (0.244) 6/28 | 5.187 (1.426) 7/24 | 58.31 (10.05) 11/44 | 217 (4.231) 11/63 | 9.734 (0.842) 7/27 | 3.229 (0.095) 3/25 | 2.938 (0.234) 12/30 | 7.44/31.44 | |
MODL | 7.863 (0.896) 2/21 | 1.654 (0.205) 12/50 | 1.471 (0.222) 8/42 | 8.407 (1.32) 2/28 | 0.459 (0.052) 5/18 | 16.81 (2.497) 9/31 | 17.75 (3.08) 11/45 | 2.231 (0.241) 2/16 | 0.359 (0.058) 3/12 | 2.889 (0.337) 8/34 | 5.041 (0.894) 6/22 | 31.48 (4.311) 8/26 | 67.06 (5.906) 10/29 | 7.295 (0.557) 6/18 | 4.613 (0.515) 6/37 | 2.422 (0.363) 7/19 | 6.56/28 | |
CACC | 8.265 (1.299) 8/27 | 1.46 (0.188) 7/39 | 1.156 (0.122) 3/16 | 10.34 (1.778) 7/33 | 0.43 (0.054) 1/13 | 9.984 (0.219) 1/13 | 9.753 (0.326) 3/16 | 280 (50.94) 11/67 | 1.309 (0.329) 11/44 | 2.078 (0.253) 5/24 | 2.867 (0.872) 3/11 | 25.25 (5.368) 3/17 | 59.62 (3.693) 7/22 | 7.133 (2.359) 5/17 | 6.969 (2.015) 8/45 | 2.25 (0.272) 2/14 | 5.31/26.12 | |
HNB | Equal Width | 48.08 (12.64) 9/68 | 10.75 (1.707) 10/72 | 9.935 (1.337) 9/71 | 138 (33.73) 11/73 | 5.034 (2.801) 12/74 | 30.76 (3.182) 6/67 | 29.13 (5.478) 6/65 | 37.36 (4.605) 7/63 | 4.366 (0.726) 5/63 | 105 (13.45) 10/72 | 43.57 (4.867) 9/71 | 171 (213) 10/68 | 226 (124) 8/65 | 122 (23.42) 9/68 | 280 (25.91) 9/71 | 17.83 (1.236) 7/69 | 8.56/68.75 |
Equal Frequency | 45.54 (4.539) 7/66 | 10.3 (0.653) 9/71 | 12.7 (1.33) 12/74 | 125 (13.68) 8/70 | 4.672 (0.788) 11/73 | 35.29 (6.393) 8/70 | 35.94 (5.743) 10/72 | 45.92 (6.808) 10/66 | 5.301 (2.004) 9/69 | 109 (7.086) 11/73 | 66.12 (5.193) 11/73 | 96.38 (7.583) 4/56 | 189 (0.502) 4/59 | 149 (21.42) 11/70 | 286 (17.56) 10/72 | 20.53 (0.839) 11/73 | 9.12/69.19 | |
Maximum Entropy | 39.49 (5.996) 4/63 | 11.75 (1.767) 12/74 | 12.44 (2.076) 11/73 | 130 (17.68) 9/71 | 4.24 (0.565) 10/72 | 37.51 (6.387) 11/73 | 45.22 (9.028) 12/74 | 40.37 (5) 8/64 | 3.291 (0.456) 3/60 | 113 (14.58) 12/74 | 71.93 (6.668) 12/74 | 57.97 (15.29) 2/43 | 136 (0.433) 2/56 | 145 (9.588) 10/69 | 296 (16.81) 11/73 | 18.51 (1.322) 8/70 | 8.56/67.69 | |
Paterson - Niblett | 46.74 (9.676) 8/67 | 7.344 (1.178) 3/65 | 3.783 (0.862) 2/64 | 92.43 (6.166) 2/64 | 2.186 (0.338) 2/64 | 25.13 (3.564) 2/61 | 21.69 (4.596) 4/61 | 26.22 (1.759) 3/57 | 4.497 (3.933) 6/64 | 13.55 (1.923) 2/62 | 7.932 (1.326) 1/36 | 127 (18.73) 9/67 | 224 (20.2) 7/64 | 28.77 (2.087) 1/57 | 35.82 (2.72) 2/63 | 13.94 (0.74) 5/67 | 3.69/61.44 | |
IEM | 38.98 (5.535) 3/62 | 6.806 (1.164) 1/63 | 3.529 (0.554) 1/63 | 88.39 (5.562) 1/63 | 2.156 (0.505) 1/63 | 23.54 (3.255) 1/60 | 18.95 (2.901) 1/48 | 12.63 (2.21) 1/55 | 1.955 (0.182) 1/56 | 14.6 (2.319) 4/64 | 9.032 (1.97) 4/40 | 81.09 (9.739) 3/49 | 268 (8.372) 10/67 | 36.56 (1.026) 4/60 | 29.66 (2.441) 1/62 | 10.03 (0.861) 1/63 | 2.38/58.62 | |
CADD | 90.74 (156) 11/73 | 10.94 (1.829) 11/73 | 11.11 (0.527) 10/72 | 143 (29.03) 12/74 | 4.027 (0.716) 9/71 | 37.38 (5.094) 10/72 | 42.41 (5.51) 11/73 | 42.23 (2.805) 9/65 | 9.002 (11.07) 10/71 | 86.92 (9.775) 9/71 | 38.96 (1.844) 8/70 | 44.26 (2.85) 1/41 | 128 (6.668) 1/54 | 106 (7.173) 8/67 | 382 (290) 12/74 | 18.78 (2.725) 9/71 | 8.81/68.25 | |
ModifiedChi2 | 85.36 (100) 10/72 | 7.747 (0.792) 5/67 | 5.748 (1.01) 7/69 | 105 (1.117) 5/67 | 2.603 (0.348) 4/66 | 36.84 (3.582) 9/71 | 34.64 (4.16) 9/70 | 3185 (481) 12/74 | 59.44 (18.26) 12/74 | 18.44 (4.403) 5/66 | 54.69 (19.76) 10/72 | 1316 (2.712) 12/74 | 1469 (1117) 12/74 | 4982 (476) 12/74 | 36.63 (5.418) 3/64 | 20.29 (2.061) 10/72 | 8.56/70.38 | |
CAIM | 38.16 (6.099) 2/61 | 7.34 (1.182) 2/64 | 3.784 (0.548) 3/65 | 95.26 (11.77) 3/65 | 2.734 (1.261) 6/68 | 26.53 (6.04) 4/63 | 21.23 (5.52) 3/58 | 30.27 (3.669) 4/59 | 4.703 (0.901) 8/66 | 14.2 (1.299) 3/63 | 8.395 (1.706) 2/37 | 97.7 (12.61) 5/57 | 199 (1.12) 5/61 | 33.01 (0.249) 2/58 | 41.23 (1.89) 5/66 | 14.01 (0.214) 6/68 | 3.94/61.19 | |
FCAIM | 37.49 (6.645) 1/60 | 7.512 (1.228) 4/66 | 4.24 (0.736) 4/66 | 100 (17.34) 4/66 | 2.942 (1.968) 7/69 | 25.28 (6.468) 3/62 | 20.11 (5.352) 2/53 | 31.83 (6.35) 5/60 | 4.632 (0.829) 7/65 | 13.22 (1.692) 1/60 | 8.48 (2.702) 3/38 | 106 (16.68) 8/64 | 206 (13.97) 6/62 | 34.18 (2.276) 3/59 | 41.12 (4.652) 4/65 | 13.61 (0.804) 4/66 | 4.12/61.31 | |
Khiops | 39.71 (6.27) 5/64 | 9.565 (0.601) 8/70 | 8.228 (4.961) 8/70 | 111 (10.72) 7/69 | 2.982 (0.179) 8/70 | 42.67 (8.805) 12/74 | 31.84 (6.193) 8/69 | 32.24 (4.089) 6/61 | 3.391 (0.391) 4/61 | 31.95 (1.386) 8/70 | 36.74 (5.356) 7/69 | 320 (31.01) 11/73 | 1036 (64.13) 11/73 | 97.26 (5.184) 7/66 | 76.68 (5.595) 7/69 | 34.96 (1.071) 12/74 | 8.06/68.88 | |
MODL | 92.51 (159) 12/74 | 8.512 (0.524) 6/68 | 4.956 (0.441) 5/67 | 131 (10.97) 10/72 | 2.481 (0.104) 3/65 | 34.55 (2.957) 7/69 | 30.29 (2.73) 7/67 | 21.86 (2.685) 2/56 | 2.923 (0.312) 2/59 | 26.82 (1.901) 7/69 | 9.213 (0.323) 5/41 | 102 (46.18) 7/62 | 264 (15.74) 9/66 | 91.14 (158) 6/65 | 49.2 (3.375) 6/67 | 13.24 (1.556) 3/65 | 6.06/64.5 | |
CACC | 41.89 (7.819) 6/65 | 8.789 (1.073) 7/69 | 5.121 (3.004) 6/68 | 107 (9.087) 6/68 | 2.666 (0.685) 5/67 | 28.73 (8.285) 5/64 | 22.69 (5.021) 5/63 | 2997 (367) 11/73 | 9.462 (3.439) 11/72 | 20.24 (2.906) 6/68 | 10.21 (6.911) 6/46 | 102 (8.694) 6/61 | 187 (1.229) 3/58 | 40.79 (16.84) 5/61 | 128 (35.33) 8/70 | 13.05 (1.196) 2/64 | 6.12/64.81 | |
AODEsr | Equal Width | 9.373 (1.284) 3/36 | 1.748 (0.171) 8/55 | 2.472 (1.176) 12/61 | 14.21 (0.96) 10/55 | 0.818 (0.1) 11/60 | 21.13 (2.477) 9/56 | 21.12 (1.034) 8/57 | 3.821 (0.28) 7/33 | 0.566 (0.008) 6/32 | 13.39 (2.123) 10/61 | 10.92 (2.091) 9/47 | 31.31 (4.324) 4/25 | 73.78 (5.41) 4/33 | 16.35 (2.418) 8/43 | 23.71 (1.323) 11/58 | 3.112 (0.216) 9/37 | 8.06/46.81 |
Equal Frequency | 10.59 (2.42) 11/51 | 1.755 (0.146) 9/56 | 1.847 (0.135) 9/52 | 15.08 (1.227) 12/58 | 0.768 (0.072) 10/57 | 22.97 (2.434) 12/59 | 21.6 (1.342) 9/59 | 3.854 (0.07) 8/35 | 0.581 (0.037) 7/34 | 15.07 (5.566) 11/65 | 13.38 (1.775) 11/52 | 32.38 (5.034) 6/30 | 68.23 (3.109) 3/30 | 17.33 (1.086) 9/45 | 23.8 (1.693) 12/59 | 3.103 (0.226) 8/36 | 9.19/48.62 | |
Maximum Entropy | 9.413 (0.96) 4/37 | 1.7 (0.11) 7/54 | 2.068 (0.314) 10/56 | 14.94 (1.035) 11/57 | 0.681 (0.071) 9/53 | 21.94 (2.833) 11/58 | 21.66 (1.56) 10/60 | 3.935 (0.282) 9/36 | 0.461 (0.054) 2/24 | 19.56 (14.16) 12/67 | 14.75 (3.299) 12/56 | 24.54 (2.629) 1/15 | 56.15 (3.954) 1/18 | 17.67 (0.909) 10/47 | 22.95 (1.648) 9/56 | 3.077 (0.26) 7/35 | 7.81/45.56 | |
Paterson - Niblett | 9.462 (1.364) 6/39 | 1.584 (0.185) 2/44 | 1.317 (0.227) 1/29 | 13.72 (1.698) 7/51 | 0.525 (0.071) 3/29 | 20.94 (1.53) 8/55 | 19.43 (1.487) 2/50 | 3.71 (0.317) 6/31 | 0.528 (0.072) 4/28 | 3.472 (1.682) 6/41 | 5.97 (0.83) 5/29 | 37.72 (2.422) 10/36 | 85 (4.657) 8/41 | 7.382 (0.404) 1/19 | 3.816 (0.253) 2/29 | 2.715 (0.224) 4/26 | 4.69/36.06 | |
IEM | 9.425 (1.465) 5/38 | 1.617 (0.306) 3/47 | 1.459 (0.226) 5/41 | 12.69 (2.243) 6/45 | 0.519 (0.086) 1/26 | 20.81 (2.448) 7/54 | 20.47 (2.75) 7/56 | 1.684 (0.122) 1/14 | 0.468 (0.173) 3/25 | 4.863 (4.628) 8/47 | 5.096 (0.39) 1/23 | 28.36 (1.804) 3/22 | 93.07 (5.213) 10/48 | 7.458 (0.066) 3/21 | 3.777 (0.465) 1/27 | 2.526 (0.195) 1/21 | 4.06/34.69 | |
CADD | 9.835 (1.425) 9/45 | 1.885 (0.293) 11/58 | 2.099 (0.221) 11/58 | 12.58 (1.538) 5/44 | 0.562 (0.081) 7/42 | 20.11 (2.7) 4/48 | 22.85 (3.851) 12/64 | 4.17 (0.313) 10/39 | 0.765 (0.143) 8/39 | 8.981 (0.536) 9/55 | 9.485 (1.434) 8/44 | 24.87 (1.565) 2/16 | 57.76 (5.068) 2/20 | 18.63 (1.789) 11/49 | 23.32 (4.337) 10/57 | 3.64 (0.813) 11/45 | 8.12/45.19 | |
ModifiedChi2 | 10.39 (0.356) 10/50 | 1.902 (0.104) 12/59 | 1.7 (0.111) 7/49 | 10.4 (0.135) 1/34 | 0.582 (0.057) 8/47 | 20 (1.427) 2/46 | 19.69 (1.399) 3/51 | 524 (37.84) 12/71 | 7.306 (4.578) 12/70 | 3.23 (0.305) 4/39 | 12.48 (2.316) 10/51 | 231 (4.283) 12/72 | 398 (311) 12/72 | 902 (270) 12/73 | 5.668 (0.481) 6/42 | 3.253 (0.328) 10/40 | 8.31/54.12 | |
CAIM | 9.349 (1.071) 2/35 | 1.672 (0.168) 5/51 | 1.352 (0.225) 2/33 | 12.21 (0.843) 3/42 | 0.551 (0.098) 6/40 | 20.09 (1.599) 3/47 | 19.79 (1.672) 4/52 | 3.332 (0.214) 5/26 | 1.665 (3.707) 10/50 | 3.134 (0.126) 3/38 | 5.609 (0.725) 3/26 | 32.86 (0.262) 7/31 | 74.34 (4.482) 5/34 | 7.393 (0.595) 2/20 | 3.914 (0.226) 3/31 | 2.804 (0.023) 5/27 | 4.25/36.44 | |
FCAIM | 9.531 (1.533) 7/42 | 1.554 (0.106) 1/43 | 1.411 (0.264) 3/37 | 10.69 (0.834) 2/37 | 0.522 (0.077) 2/28 | 20.34 (1.551) 5/50 | 19.29 (1.917) 1/49 | 3.278 (0.236) 4/24 | 0.539 (0.161) 5/30 | 3.131 (0.121) 2/37 | 5.755 (1.104) 4/27 | 36.59 (6.242) 9/34 | 76.12 (2.961) 6/35 | 7.563 (0.554) 4/22 | 4.161 (0.318) 4/34 | 2.605 (0.215) 2/24 | 3.81/34.56 | |
Khiops | 9.83 (0.4) 8/44 | 1.692 (0.23) 6/53 | 1.727 (0.332) 8/50 | 13.84 (2.481) 8/53 | 0.548 (0.1) 5/39 | 21.85 (1.633) 10/57 | 22.23 (2.399) 11/62 | 3.077 (0.074) 3/21 | 1.5 (3.236) 9/48 | 3.547 (0.296) 7/42 | 8.701 (1.02) 7/39 | 67.22 (5.212) 11/46 | 350 (19.02) 11/69 | 13.59 (1.059) 7/34 | 5.833 (0.655) 7/44 | 3.882 (0.21) 12/54 | 8.12/47.19 | |
MODL | 10.74 (1.499) 12/52 | 1.821 (0.111) 10/57 | 1.62 (0.098) 6/46 | 12.33 (1.734) 4/43 | 0.535 (0.037) 4/34 | 20.67 (2.563) 6/53 | 20.41 (2.441) 6/55 | 2.846 (0.454) 2/18 | 0.399 (0.067) 1/18 | 3.412 (0.288) 5/40 | 6.252 (0.557) 6/30 | 33.46 (4.064) 8/32 | 90.18 (7.027) 9/44 | 8.83 (1.576) 6/24 | 5.302 (0.386) 5/41 | 2.92 (0.407) 6/28 | 6/38.44 | |
CACC | 9.026 (0.726) 1/32 | 1.629 (0.208) 4/48 | 1.418 (0.267) 4/39 | 14.19 (1.717) 9/54 | 0.901 (1.103) 12/62 | 19.02 (0.4) 1/41 | 20.23 (1.811) 5/54 | 468 (30.28) 11/70 | 1.763 (0.604) 11/54 | 2.983 (0.165) 1/35 | 5.296 (0.529) 2/25 | 31.63 (2.093) 5/27 | 77.08 (0.488) 7/36 | 8.405 (1.616) 5/23 | 10.24 (2.721) 8/49 | 2.627 (0.228) 3/25 | 5.56/42.12 | |
WAODE | Equal Width | 14.02 (3.072) 8/57 | 1.642 (0.292) 8/49 | 1.863 (0.219) 8/53 | 15.72 (2.531) 10/60 | 0.667 (0.052) 8/52 | 16.04 (1.334) 7/25 | 17.6 (2.587) 7/43 | 4.61 (0.663) 7/41 | 0.576 (0.118) 9/33 | 11.67 (2.202) 11/58 | 10.02 (2.13) 8/45 | 40.61 (6.257) 5/37 | 197 (336) 10/60 | 56.13 (120) 11/63 | 23.92 (2.092) 10/60 | 4.008 (0.415) 8/57 | 8.44/49.56 |
Equal Frequency | 13.87 (2.391) 7/56 | 1.675 (0.304) 9/52 | 2.025 (0.359) 9/55 | 17.4 (3.459) 12/62 | 0.827 (0.381) 12/61 | 16.28 (1.42) 8/27 | 18.14 (1.987) 9/46 | 4.652 (0.671) 8/42 | 0.533 (0.039) 7/29 | 12.63 (2.731) 12/59 | 11.22 (0.344) 10/49 | 42.15 (8.04) 8/40 | 88.68 (0.407) 3/42 | 22.6 (4.152) 8/55 | 24.95 (2.705) 11/61 | 4.215 (0.333) 9/58 | 8.88/49.62 | |
Maximum Entropy | 14.37 (2.008) 9/58 | 1.61 (0.382) 7/46 | 2.084 (0.427) 10/57 | 15.42 (2.631) 9/59 | 0.619 (0.136) 7/48 | 15.59 (0.893) 6/23 | 17.62 (4.659) 8/44 | 5.117 (0.861) 9/43 | 0.46 (0.084) 3/22 | 11.65 (1.697) 10/57 | 12.02 (0.361) 11/50 | 31.9 (6.491) 3/28 | 78.62 (0.271) 2/39 | 23.07 (4.094) 9/56 | 21.14 (1.441) 9/55 | 3.785 (0.431) 4/49 | 7.25/45.88 | |
Paterson - Niblett | 8.92 (2.947) 6/31 | 1.292 (0.313) 2/32 | 1.259 (0.355) 4/23 | 13.44 (2.229) 6/50 | 0.465 (0.056) 2/20 | 15.18 (1.945) 5/21 | 15 (2.92) 5/40 | 4.422 (0.632) 6/40 | 0.451 (0.048) 2/21 | 2.369 (0.19) 2/27 | 4.754 (0.236) 4/21 | 54.62 (11.83) 9/42 | 98.5 (6.801) 7/50 | 9.617 (0.771) 2/26 | 3.875 (0.323) 1/30 | 3.727 (0.421) 3/48 | 4.12/32.62 | |
IEM | 7.503 (1.165) 3/17 | 1.172 (0.146) 1/27 | 1.233 (0.295) 3/21 | 13.03 (1.959) 4/48 | 0.456 (0.104) 1/16 | 13.95 (0.586) 2/17 | 14.63 (2.141) 4/39 | 1.892 (0.384) 1/15 | 0.371 (0.088) 1/14 | 2.316 (0.217) 1/25 | 4.342 (0.545) 2/19 | 37.34 (10.09) 4/35 | 104 (1.642) 8/52 | 9.817 (0.181) 4/29 | 3.979 (0.483) 2/33 | 3.505 (0.22) 1/44 | 2.62/28.19 | |
CADD | 62.74 (151) 11/70 | 2.355 (0.39) 12/62 | 2.536 (0.484) 12/62 | 15.99 (3.104) 11/61 | 0.801 (0.162) 11/59 | 31.05 (4.495) 12/68 | 34.88 (6.958) 12/71 | 5.494 (0.499) 10/44 | 5.096 (5.36) 11/67 | 10.97 (1.013) 9/56 | 11.12 (0.76) 9/48 | 30.88 (2.404) 2/24 | 77.85 (0.653) 1/37 | 21.32 (2.339) 7/52 | 55.8 (93.77) 12/68 | 4.708 (1.461) 11/61 | 9.56/56.88 | |
ModifiedChi2 | 61.68 (150) 10/69 | 1.955 (0.132) 10/60 | 1.842 (0.103) 7/51 | 12.93 (0.111) 3/47 | 0.778 (0.086) 10/58 | 29.75 (2.385) 10/65 | 29.93 (2.566) 10/66 | 536 (6.277) 12/72 | 12.42 (5.384) 12/73 | 4.989 (0.618) 7/48 | 16.29 (4.291) 12/59 | 227 (0.903) 12/71 | 389 (302) 12/71 | 855 (46.59) 12/72 | 9.786 (4.167) 7/47 | 4.687 (0.234) 10/60 | 9.75/61.81 | |
CAIM | 7.242 (1.101) 1/15 | 1.316 (0.256) 4/34 | 1.123 (0.134) 1/15 | 12.73 (2.522) 2/46 | 0.535 (0.116) 4/33 | 13.83 (0.395) 1/16 | 14.19 (1.442) 2/37 | 3.935 (0.501) 4/37 | 0.559 (0.076) 8/31 | 2.435 (0.248) 3/29 | 5.854 (3.78) 5/28 | 41.34 (6.714) 7/39 | 92.48 (6.685) 6/47 | 9.342 (0.158) 1/25 | 4.226 (0.025) 3/35 | 3.845 (0.24) 5/51 | 3.56/32.38 | |
FCAIM | 7.584 (1.303) 4/18 | 1.304 (0.239) 3/33 | 1.211 (0.178) 2/18 | 10.98 (1.694) 1/39 | 0.481 (0.06) 3/22 | 14.2 (1.422) 3/18 | 14.33 (1.83) 3/38 | 4.007 (0.686) 5/38 | 0.512 (0.051) 5/26 | 2.464 (0.415) 4/30 | 4.192 (0.061) 1/17 | 40.83 (7.966) 6/38 | 92.2 (6.68) 5/46 | 9.783 (1.003) 3/28 | 4.237 (0.468) 4/36 | 3.867 (0.242) 6/53 | 3.62/31.12 | |
Khiops | 7.824 (2.574) 5/20 | 1.457 (0.193) 6/38 | 1.447 (0.24) 6/40 | 13.75 (2.825) 7/52 | 0.574 (0.11) 6/45 | 16.86 (1.297) 9/32 | 15.52 (0.135) 6/41 | 3.812 (0.859) 2/32 | 0.461 (0.07) 4/23 | 3.087 (0.291) 6/36 | 9.247 (2.09) 7/42 | 84.63 (25.02) 10/51 | 384 (10.88) 11/70 | 16.83 (1.454) 6/44 | 5.822 (0.846) 5/43 | 5.063 (0.063) 12/62 | 6.75/41.94 | |
MODL | 65.05 (161) 12/71 | 2.249 (0.11) 11/61 | 2.111 (0.237) 11/59 | 14.34 (1.817) 8/56 | 0.752 (0.103) 9/56 | 30.13 (3.861) 11/66 | 31.19 (4.237) 11/68 | 3.821 (0.657) 3/34 | 0.523 (0.074) 6/27 | 5.127 (0.634) 8/49 | 6.692 (0.537) 6/32 | 92.79 (181) 11/53 | 104 (11.86) 9/53 | 41.3 (95.65) 10/62 | 8.455 (0.769) 6/46 | 3.982 (0.696) 7/56 | 8.69/53.06 | |
CACC | 7.277 (1.076) 2/16 | 1.432 (0.203) 5/37 | 1.302 (0.325) 5/27 | 13.21 (2.893) 5/49 | 0.561 (0.188) 5/41 | 14.3 (0.548) 4/19 | 14.03 (0.494) 1/36 | 385 (80.94) 11/68 | 1.719 (0.569) 10/52 | 2.857 (0.529) 5/33 | 4.603 (1.162) 3/20 | 28.48 (3.583) 1/23 | 91.02 (4.988) 4/45 | 10.43 (1.798) 5/30 | 10.57 (3.164) 8/50 | 3.663 (0.415) 2/47 | 4.75/37.06 |
Algorithm | anneal | colic | credit-a | cylinder-bands | heart-c | hypothyroid | sick | vowel | glass | ionosphere | page-blocks | pendigits | sat | segment | sonar | vehicle | Avg. place | |
Original Data | org | 38 (5.944) -/13 | 2.463 (0.171) -/13 | 4.351 (0.42) -/16 | 9.141 (1.442) -/13 | 2.359 (0.331) -/38 | 75.32 (11.07) -/13 | 28.64 (0.251) -/13 | 42.2 (2.639) -/37 | 6.57 (0.174) -/61 | 10.29 (2.563) -/15 | 99.08 (17.7) -/58 | 762 (8.368) -/56 | 746 (75.37) -/14 | 147 (18.44) -/45 | 10.58 (1.945) -/15 | 22.79 (0.254) -/18 | /27.38 |
org | 63.89 (11.08) -/26 | 18.4 (1.35) -/62 | 82.35 (8.928) -/62 | 95.48 (10.18) -/62 | 27.49 (3.513) -/62 | 627 (91.55) -/62 | 450 (27.74) -/62 | 1318 (74.35) -/62 | 35.55 (5.574) -/62 | 240 (32.59) -/62 | 2305 (240) -/62 | 15139 (365) -/62 | 7649 (278) -/62 | 3422 (337) -/62 | 266 (57.97) -/63 | 458 (11.33) -/62 | /59.81 | |
NB | Equal Width | 18.93 (2.558) 5/5 | 1.292 (0.095) 3/3 | 2.127 (0.326) 4/4 | 4.258 (0.692) 10/10 | 0.931 (0.254) 11/11 | 36.59 (0.336) 4/4 | 19.37 (0.102) 3/3 | 12.2 (0.109) 4/4 | 1.262 (0.126) 4/4 | 2.68 (0.998) 10/10 | 24.45 (0.499) 5/5 | 154 (7.587) 7/7 | 145 (13.22) 12/12 | 27.01 (0.071) 4/4 | 2.635 (0.184) 11/11 | 6.238 (0.436) 9/9 | 6.62/6.62 |
Equal Frequency | 19.49 (3.808) 7/7 | 1.369 (0.129) 7/7 | 2.026 (0.313) 3/3 | 4.106 (0.262) 8/8 | 0.795 (0.074) 5/5 | 38.84 (3.316) 12/12 | 19.65 (1.251) 5/5 | 12.43 (0.754) 9/9 | 1.9 (0.264) 10/13 | 3.06 (1.285) 12/12 | 24.63 (0.437) 7/7 | 157 (21.17) 11/11 | 140 (1.939) 4/4 | 30.49 (6.011) 12/12 | 2.693 (0.284) 12/12 | 6.335 (0.318) 11/11 | 8.44/8.62 | |
Maximum Entropy | 20.21 (3.022) 10/10 | 1.354 (0.207) 5/5 | 2.235 (0.453) 9/9 | 3.959 (0.338) 5/5 | 0.835 (0.142) 7/7 | 38.14 (5.353) 10/10 | 19.38 (0.257) 4/4 | 12.22 (0.066) 5/5 | 1.95 (0.312) 11/16 | 2.701 (0.4) 11/11 | 26.87 (4.951) 11/11 | 150 (3.079) 5/5 | 142 (3.13) 6/6 | 28.19 (2.285) 9/9 | 2.531 (0.193) 6/6 | 5.963 (0.545) 3/3 | 7.31/7.62 | |
Paterson - Niblett | 18.73 (3.056) 3/3 | 1.4 (0.245) 9/9 | 2.205 (0.476) 6/6 | 4.051 (0.3) 6/6 | 0.839 (0.108) 8/8 | 37.38 (2.165) 7/7 | 19.74 (1.203) 8/8 | 12.48 (0.75) 10/10 | 1.774 (0.103) 8/8 | 2.623 (1.146) 9/9 | 27.83 (4.598) 12/12 | 151 (3.098) 6/6 | 143 (2.739) 10/10 | 27.25 (1.617) 5/5 | 2.583 (0.192) 9/9 | 6.114 (0.874) 6/6 | 7.62/7.62 | |
IEM | 20.45 (2.995) 11/11 | 1.517 (0.32) 12/12 | 2.288 (0.57) 10/10 | 4.275 (0.169) 11/11 | 0.78 (0.069) 3/3 | 37.15 (2.388) 6/6 | 19.31 (0.209) 2/2 | 12.36 (0.725) 7/7 | 2.071 (0.384) 12/19 | 2.475 (0.429) 7/7 | 25.25 (1.657) 9/9 | 154 (10.68) 9/9 | 141 (2.731) 5/5 | 26.68 (0.067) 2/2 | 2.566 (0.344) 7/7 | 6.35 (0.332) 12/12 | 7.81/8.25 | |
CADD | 17.48 (3.406) 2/2 | 1.275 (0.189) 2/2 | 1.946 (0.305) 2/2 | 3.95 (0.789) 4/4 | 0.73 (0.115) 1/1 | 34.91 (5.333) 1/1 | 18.8 (0.51) 1/1 | 12.61 (1.422) 11/11 | 1.271 (0.163) 5/5 | 2.483 (0.279) 8/8 | 23.33 (0.313) 2/2 | 143 (1.462) 2/2 | 137 (19.83) 3/3 | 28.73 (2.912) 10/10 | 2.616 (0.18) 10/10 | 6.008 (0.942) 4/4 | 4.25/4.25 | |
ModifiedChi2 | 16.86 (0.085) 1/1 | 1.154 (0.033) 1/1 | 1.794 (0.021) 1/1 | 3.446 (0.074) 1/1 | 0.792 (0.08) 4/4 | 35.59 (2.323) 2/2 | 19.73 (2.052) 7/7 | 12.3 (0.784) 6/6 | 1.824 (1.48) 9/10 | 2.452 (0.245) 6/6 | 25.01 (2.543) 8/8 | 149 (2.465) 3/3 | 137 (3.74) 2/2 | 27.95 (2.776) 8/8 | 2.507 (0.233) 4/4 | 6.299 (0.465) 10/10 | 4.56/4.62 | |
CAIM | 19.14 (3.076) 6/6 | 1.379 (0.192) 8/8 | 2.22 (0.384) 8/8 | 3.789 (0.517) 3/3 | 0.879 (0.172) 10/10 | 37 (2.326) 5/5 | 21.29 (3.179) 12/12 | 12.39 (0.737) 8/8 | 1.209 (0.167) 2/2 | 2.399 (0.201) 4/4 | 25.72 (1.953) 10/10 | 150 (2.933) 4/4 | 142 (3.3) 9/9 | 26.8 (0.266) 3/3 | 2.572 (0.342) 8/8 | 6.174 (0.518) 8/8 | 6.75/6.75 | |
FCAIM | 20.54 (3.091) 12/12 | 1.332 (0.162) 4/4 | 2.482 (0.441) 12/12 | 3.757 (0.326) 2/2 | 1.121 (0.912) 12/12 | 37.9 (2.93) 8/8 | 20.63 (2.974) 11/11 | 12.19 (0.099) 3/3 | 1.41 (0.209) 6/6 | 2.445 (0.183) 5/5 | 24.2 (0.463) 4/4 | 178 (35.59) 12/12 | 142 (3.346) 7/7 | 27.79 (2.19) 7/7 | 2.395 (0.129) 1/1 | 6.166 (0.525) 7/7 | 7.06/7.06 | |
Khiops | 19.58 (3.773) 9/9 | 1.418 (0.26) 10/10 | 2.185 (0.444) 5/5 | 4.052 (0.59) 7/7 | 0.854 (0.161) 9/9 | 38.24 (5) 11/11 | 20.17 (1.745) 10/10 | 12.16 (0.064) 2/2 | 1.702 (1.255) 7/7 | 2.349 (0.207) 2/2 | 24.55 (0.329) 6/6 | 155 (8.485) 10/10 | 143 (1.328) 11/11 | 28.97 (2.691) 11/11 | 2.524 (0.23) 5/5 | 6.064 (0.558) 5/5 | 7.5/7.5 | |
MODL | 18.81 (2.704) 4/4 | 1.361 (0.083) 6/6 | 2.212 (0.319) 7/7 | 4.148 (0.618) 9/9 | 0.767 (0.079) 2/2 | 38.13 (7.059) 9/9 | 19.96 (1.515) 9/9 | 11.84 (1.741) 1/1 | 1.145 (0.139) 1/1 | 2.387 (0.25) 3/3 | 22.18 (0.447) 1/1 | 136 (1.6) 1/1 | 126 (1.01) 1/1 | 24.93 (1.803) 1/1 | 2.501 (0.419) 3/3 | 5.535 (0.749) 1/1 | 3.69/3.69 | |
CACC | 19.55 (3.449) 8/8 | 1.418 (0.212) 11/11 | 2.301 (0.477) 11/11 | 4.377 (1.037) 12/12 | 0.826 (0.141) 6/6 | 36.51 (0.368) 3/3 | 19.7 (1.25) 6/6 | 14.11 (1.188) 12/12 | 1.226 (0.193) 3/3 | 2.325 (0.234) 1/1 | 24.19 (0.514) 3/3 | 154 (13.46) 8/8 | 142 (3.276) 8/8 | 27.27 (1.676) 6/6 | 2.472 (0.318) 2/2 | 5.934 (0.548) 2/2 | 6.38/6.38 | |
LBR | Equal Width | 114426 (32687) 7/69 | 865 (87.28) 5/67 | 3828 (999) 11/73 | 17621 (6353) 5/67 | 495 (148) 11/73 | 985445 (318856) 5/67 | 442679 (115088) 3/65 | 9827 (1285) 5/67 | 318 (86.08) 9/71 | 1826 (348) 4/66 | 420727 (119005) 11/73 | 1887802 (298381) 8/70 | 2321761 (105191) 9/71 | 136000 (22315) 10/72 | 1372 (340) 7/69 | 11284 (1008) 9/71 | 7.44/69.44 |
Equal Frequency | 119490 (22509) 10/72 | 837 (170) 3/65 | 2546 (325) 3/65 | 16358 (3977) 4/66 | 361 (75.54) 2/64 | 908842 (305631) 4/66 | 397286 (115802) 1/63 | 8128 (736) 1/63 | 154 (13.91) 1/63 | 1269 (222) 3/65 | 82504 (10731) 5/67 | 1836396 (262540) 7/69 | 2097503 (100452) 7/69 | 57158 (2274) 2/64 | 868 (68.49) 3/65 | 8415 (711) 2/64 | 3.62/65.62 | |
Maximum Entropy | 107214 (31310) 5/67 | 756 (74.52) 1/63 | 2300 (279) 1/63 | 12993 (2982) 1/63 | 407 (68.98) 5/67 | 667785 (157937) 1/63 | 527935 (112331) 8/70 | 8476 (901) 3/65 | 185 (32.84) 2/64 | 834 (137) 1/63 | 26663 (3730) 1/63 | 2264733 (309181) 10/72 | 3284122 (70607) 10/72 | 55831 (6695) 1/63 | 896 (118) 4/66 | 9048 (861) 3/65 | 3.56/65.56 | |
Paterson - Niblett | 130910 (24213) 12/74 | 1189 (301) 10/72 | 3920 (799) 12/74 | 24453 (7110) 11/73 | 505 (65.14) 12/74 | 1051876 (355215) 9/71 | 493031 (184144) 6/68 | 29899 (2537) 12/74 | 421 (150) 12/74 | 6525 (1998) 12/74 | 465986 (139392) 12/74 | 4863923 (457494) 12/74 | 6756078 (814576) 12/74 | 237500 (34417) 12/74 | 6848 (428) 12/74 | 13820 (1331) 11/73 | 11.19/73.19 | |
IEM | 97193 (16120) 3/65 | 1205 (277) 11/73 | 3336 (733) 7/69 | 24578 (6338) 12/74 | 359 (64.47) 1/63 | 1058587 (214932) 10/72 | 491601 (101273) 5/67 | 21385 (5014) 11/73 | 241 (37.04) 7/69 | 3886 (407) 8/70 | 213396 (34060) 6/68 | 2006351 (294659) 9/71 | 1789441 (49046) 3/65 | 90398 (7265) 6/68 | 1280 (539) 5/67 | 16871 (1610) 12/74 | 7.25/69.25 | |
CADD | 98697 (28202) 4/66 | 859 (206) 4/66 | 2449 (374) 2/64 | 13275 (3615) 2/64 | 377 (81.2) 3/65 | 729964 (169120) 2/64 | 616306 (70300) 11/73 | 8415 (1238) 2/64 | 409 (644) 11/73 | 911 (115) 2/64 | 47381 (8959) 3/65 | 2270495 (154976) 11/73 | 3350534 (377098) 11/73 | 58556 (3727) 3/65 | 24.78 (1.533) 1/26 | 9341 (1247) 4/66 | 4.75/64.44 | |
ModifiedChi2 | 78935 (3907) 1/63 | 951 (147) 6/68 | 2571 (303) 4/66 | 22487 (4333) 7/69 | 409 (76.38) 6/68 | 1036514 (314194) 8/70 | 405450 (103082) 2/64 | 19483 (605) 9/71 | 265 (81.55) 8/70 | 2670 (792) 6/68 | 79650 (17128) 4/66 | 1297244 (54192) 2/64 | 1292938 (1042216) 2/64 | 176549 (6801) 11/73 | 1302 (255) 6/68 | 10192 (1101) 5/67 | 5.44/67.44 | |
CAIM | 115248 (24401) 8/70 | 1186 (222) 9/71 | 3312 (660) 6/68 | 23416 (6699) 9/71 | 419 (68.65) 7/69 | 1068905 (269125) 12/74 | 566849 (132825) 9/71 | 11662 (1435) 7/69 | 197 (24.8) 3/65 | 6257 (862) 11/73 | 261209 (69258) 9/71 | 1524831 (76257) 3/65 | 2037441 (168889) 6/68 | 94339 (9868) 7/69 | 5090 (959) 10/72 | 10838 (923) 7/69 | 7.69/69.69 | |
FCAIM | 118205 (30461) 9/71 | 1215 (213) 12/74 | 3377 (794) 8/70 | 23432 (6592) 10/72 | 455 (78.53) 9/71 | 1059542 (258519) 11/73 | 574660 (132875) 10/72 | 11349 (1161) 6/68 | 197 (27.3) 4/66 | 5851 (695) 10/72 | 243851 (43438) 8/70 | 1807337 (233766) 6/68 | 2036768 (158672) 5/67 | 94788 (11645) 8/70 | 4758 (733) 9/71 | 10615 (956) 6/68 | 8.19/70.19 | |
Khiops | 108065 (21205) 6/68 | 816 (134) 2/64 | 3095 (720) 5/67 | 14657 (2538) 3/65 | 383 (73.39) 4/66 | 738887 (217569) 3/65 | 623800 (87104) 12/74 | 9686 (644) 4/66 | 234 (27.27) 6/68 | 2341 (309) 5/67 | 29851 (5760) 2/64 | 1063435 (120985) 1/63 | 597318 (21667) 1/63 | 59394 (9072) 4/66 | 3505 (705) 8/70 | 4618 (461) 1/63 | 4.19/66.19 | |
MODL | 90267 (15639) 2/64 | 1064 (237) 7/69 | 3566 (759) 10/72 | 22535 (5354) 8/70 | 487 (57.83) 10/72 | 1007349 (192093) 7/69 | 496859 (123583) 7/69 | 15935 (2877) 8/70 | 372 (114) 10/72 | 2914 (531) 7/69 | 238639 (33077) 7/69 | 1753912 (217610) 5/67 | 2262224 (271586) 8/70 | 87506 (10660) 5/67 | 5547 (1474) 11/73 | 13540 (1752) 10/72 | 7.62/69.62 | |
CACC | 120221 (24121) 11/73 | 1123 (224) 8/70 | 3487 (679) 9/71 | 19636 (5820) 6/68 | 433 (86.24) 8/70 | 999769 (243104) 6/68 | 462614 (104380) 4/66 | 21076 (1145) 10/72 | 234 (34.12) 5/67 | 4221 (407) 9/71 | 267925 (68543) 10/72 | 1540159 (245794) 4/66 | 1889278 (83868) 4/66 | 95883 (9956) 9/71 | 404 (1227) 2/64 | 10933 (1444) 8/70 | 7.06/69.06 | |
AODE | Equal Width | 116 (29.01) 9/43 | 3.321 (0.244) 1/14 | 4.749 (0.678) 6/19 | 21.37 (2.928) 6/20 | 1.735 (0.138) 8/20 | 150 (10.77) 9/24 | 71.29 (0.176) 4/17 | 30.58 (3.851) 4/16 | 1.877 (0.314) 2/11 | 14.73 (2.049) 9/25 | 46 (4.615) 6/18 | 463 (87.05) 8/24 | 924 (215) 10/37 | 133 (22.79) 9/32 | 30.7 (4.486) 10/40 | 23.46 (3.068) 8/21 | 6.81/23.81 |
Equal Frequency | 95.67 (15.54) 5/39 | 3.668 (0.677) 5/18 | 4.848 (0.605) 8/21 | 21.13 (2.235) 3/16 | 1.617 (0.291) 7/19 | 143 (4.238) 5/19 | 73.88 (4.355) 8/21 | 31.3 (4.031) 6/18 | 1.9 (0.318) 4/14 | 14.41 (1.613) 8/24 | 67.85 (11.27) 9/37 | 460 (56.25) 7/23 | 789 (0.917) 2/16 | 147 (26.53) 11/44 | 24.35 (4.857) 8/23 | 23.51 (3.008) 9/22 | 6.56/23.38 | |
Maximum Entropy | 95.27 (12.93) 4/38 | 3.85 (0.688) 6/19 | 4.395 (0.606) 5/18 | 22.47 (6.403) 9/24 | 1.456 (0.15) 2/14 | 147 (7.545) 7/22 | 72.91 (4.359) 6/19 | 31.92 (4.756) 7/19 | 1.999 (0.361) 6/17 | 14.25 (1.574) 7/22 | 69.94 (4.848) 10/40 | 397 (33.81) 1/13 | 750 (35.71) 1/15 | 133 (1.86) 8/31 | 21.81 (0.152) 7/22 | 22.02 (3.724) 4/16 | 5.62/21.81 | |
Paterson - Niblett | 93.83 (11.39) 3/37 | 3.653 (0.755) 4/17 | 4.292 (0.719) 3/15 | 21.27 (2.082) 5/19 | 1.482 (0.151) 4/16 | 141 (1.769) 3/17 | 70.98 (0.579) 2/15 | 26.79 (2.337) 1/13 | 2.142 (0.408) 8/20 | 10.22 (0.489) 2/14 | 42.28 (6.231) 4/16 | 474 (44.63) 9/27 | 835 (37.1) 6/24 | 97.2 (12.17) 1/13 | 16.37 (0.772) 5/20 | 23.46 (3.078) 7/20 | 4.19/18.94 | |
IEM | 98.31 (14.24) 8/42 | 3.406 (0.374) 2/15 | 4.245 (0.447) 2/14 | 21.18 (3.737) 4/18 | 1.516 (0.271) 6/18 | 143 (7.212) 4/18 | 71.21 (0.721) 3/16 | 27.27 (3.893) 2/14 | 1.89 (0.272) 3/12 | 9.936 (0.58) 1/13 | 39.39 (3.164) 1/13 | 413 (13.62) 3/15 | 874 (33.19) 8/28 | 99.19 (12.01) 3/15 | 16.16 (0.545) 1/16 | 22.68 (3.545) 5/17 | 3.5/17.75 | |
CADD | 155 (33.49) 12/57 | 4.617 (0.98) 11/24 | 6.525 (1.277) 11/31 | 30.32 (6.836) 12/30 | 1.999 (0.481) 10/23 | 177 (0.341) 10/31 | 100 (21.49) 10/32 | 42.35 (5.63) 10/38 | 2.905 (0.254) 11/40 | 17.23 (2.678) 12/40 | 72.96 (7.815) 11/44 | 406 (27.63) 2/14 | 805 (207) 3/17 | 145 (17.51) 10/42 | 34.77 (3.87) 12/44 | 20.85 (4.265) 2/14 | 9.31/32.56 | |
ModifiedChi2 | 116 (0.198) 10/44 | 3.85 (0.077) 7/20 | 5.003 (0.038) 9/22 | 22.99 (0.183) 10/25 | 2.199 (0.348) 12/29 | 193 (32.22) 11/35 | 101 (18.68) 11/33 | 178 (12.09) 12/60 | 4.21 (0.242) 12/55 | 15.6 (2.947) 10/31 | 79.32 (7.498) 12/49 | 2081 (126) 12/60 | 2993 (1950) 12/59 | 571 (123) 12/60 | 31.01 (3.329) 11/41 | 24.9 (0.085) 12/25 | 10.94/40.5 | |
CAIM | 93.7 (12.75) 2/36 | 3.47 (0.553) 3/16 | 4.835 (0.923) 7/20 | 19.5 (2.263) 1/14 | 1.877 (1.479) 9/21 | 149 (19.43) 8/23 | 74.24 (6.026) 9/22 | 29.2 (4.745) 3/15 | 1.911 (0.29) 5/15 | 11.04 (1.537) 6/19 | 39.9 (3.971) 2/14 | 439 (35.84) 6/20 | 829 (40.18) 5/21 | 101 (16.3) 5/17 | 16.18 (0.576) 3/18 | 23.43 (3.103) 6/19 | 5/19.38 | |
FCAIM | 93.13 (14.06) 1/34 | 3.993 (0.878) 8/21 | 5.406 (1.537) 10/23 | 21.76 (3.223) 7/21 | 1.506 (0.163) 5/17 | 140 (0.337) 1/15 | 72.11 (3.707) 5/18 | 30.96 (7.663) 5/17 | 2.005 (0.351) 7/18 | 10.47 (1.539) 4/17 | 43.12 (11.64) 5/17 | 435 (37.85) 5/18 | 822 (40.02) 4/19 | 97.97 (12.14) 2/14 | 16.18 (0.572) 2/17 | 24.16 (2.312) 11/24 | 5.12/19.38 | |
Khiops | 97.46 (14.69) 7/41 | 4.076 (0.575) 10/23 | 4.382 (0.658) 4/17 | 22.01 (4.725) 8/22 | 1.48 (0.153) 3/15 | 144 (5.366) 6/20 | 73.36 (4.7) 7/20 | 32.63 (6.653) 8/20 | 1.818 (0.164) 1/9 | 10.6 (0.404) 5/18 | 51.95 (10.28) 7/19 | 748 (52.25) 11/55 | 2492 (57.11) 11/58 | 116 (11.67) 7/21 | 16.26 (0.064) 4/19 | 23.82 (3.087) 10/23 | 6.81/25 | |
MODL | 142 (27.51) 11/53 | 5.27 (0.65) 12/25 | 7.065 (0.915) 12/44 | 28.8 (5.407) 11/28 | 2.124 (0.356) 11/26 | 199 (40.14) 12/37 | 110 (24.76) 12/38 | 34.16 (5.157) 9/21 | 2.727 (0.411) 10/30 | 16.91 (2.556) 11/38 | 59.64 (10.51) 8/24 | 489 (83.79) 10/29 | 921 (156) 9/36 | 99.38 (15.85) 4/16 | 30.16 (4.632) 9/38 | 19.55 (3.62) 1/13 | 9.5/31 | |
CACC | 96.23 (11.15) 6/40 | 3.996 (0.464) 9/22 | 4.232 (0.376) 1/13 | 20.76 (2.069) 2/15 | 1.359 (0.014) 1/13 | 141 (0.628) 2/16 | 70.81 (0.224) 1/14 | 149 (21.86) 11/56 | 2.192 (0.333) 9/21 | 10.34 (0.417) 3/16 | 40.26 (6.125) 3/15 | 422 (15.58) 4/16 | 864 (24.5) 7/27 | 103 (15.04) 6/18 | 19.66 (2.025) 6/21 | 21.96 (3.77) 3/15 | 4.62/21.12 | |
HNB | Equal Width | 151 (50.72) 9/55 | 7.769 (1.069) 8/45 | 6.984 (0.941) 7/42 | 36.09 (6.335) 10/56 | 2.672 (0.844) 8/43 | 239 (18.41) 2/49 | 119 (13.82) 3/50 | 40.33 (5.952) 5/34 | 2.688 (0.423) 5/28 | 20.05 (4.807) 8/49 | 63.77 (7.174) 5/31 | 513 (114) 9/31 | 896 (214) 8/30 | 185 (44.97) 9/55 | 61.52 (16) 12/62 | 35.33 (6.235) 6/52 | 7.12/44.5 |
Equal Frequency | 91.1 (6.923) 5/31 | 6.918 (0.567) 1/29 | 7.159 (0.764) 8/47 | 34.5 (4.649) 8/52 | 2.364 (0.35) 7/39 | 247 (24.63) 5/52 | 121 (14.08) 5/52 | 46.3 (7.21) 8/41 | 2.599 (0.331) 2/24 | 19.35 (3.405) 7/48 | 76.32 (11.31) 10/47 | 439 (19.2) 3/21 | 827 (1.432) 3/20 | 202 (42.58) 11/57 | 45.33 (2.2) 8/56 | 37.91 (4.069) 9/57 | 6.25/42.06 | |
Maximum Entropy | 85.35 (10.23) 1/27 | 8.002 (1.166) 9/46 | 6.901 (1.19) 6/41 | 34.1 (3.919) 7/49 | 2.154 (0.266) 3/27 | 252 (26.81) 10/57 | 138 (21.47) 10/57 | 39.38 (5.613) 2/26 | 2.632 (0.441) 3/25 | 20.5 (2.294) 9/50 | 72.75 (9.099) 9/43 | 433 (50.53) 1/17 | 742 (1.478) 1/13 | 186 (30.43) 10/56 | 46.66 (3.18) 9/57 | 32.49 (6.569) 3/42 | 5.81/39.56 | |
Paterson - Niblett | 90.19 (6.286) 4/30 | 7.169 (1.036) 2/31 | 6.385 (0.988) 4/28 | 32.58 (3.607) 5/40 | 2.326 (0.311) 6/35 | 244 (27.81) 3/50 | 128 (18.29) 8/55 | 36.61 (2.497) 1/22 | 2.791 (0.425) 9/35 | 15.64 (1.955) 2/33 | 58.07 (5.628) 1/22 | 468 (26.63) 5/25 | 854 (43.47) 6/25 | 144 (20.81) 5/41 | 28.2 (2.21) 2/33 | 37.87 (4.055) 8/56 | 4.44/35.06 | |
IEM | 93.03 (10.52) 7/33 | 7.672 (3.243) 7/44 | 5.984 (0.655) 1/25 | 31.8 (6.096) 2/36 | 2.211 (0.351) 4/31 | 235 (20.52) 1/48 | 118 (10.49) 2/49 | 39.56 (5.801) 3/30 | 2.448 (0.235) 1/23 | 14.2 (1.397) 1/21 | 65.42 (9.906) 6/34 | 438 (28.52) 2/19 | 913 (9.258) 9/34 | 140 (1.1) 3/37 | 25.24 (0.672) 1/28 | 35.08 (6.159) 4/50 | 3.38/33.88 | |
CADD | 199 (46.33) 11/60 | 10.23 (2.9) 11/59 | 8.024 (1.097) 11/57 | 46.79 (12.23) 11/60 | 2.981 (0.729) 9/45 | 330 (77.64) 12/61 | 161 (37.01) 12/60 | 60.72 (10.15) 10/53 | 3.556 (0.572) 10/47 | 29.63 (4.864) 12/61 | 79.54 (8.389) 11/50 | 524 (37.09) 10/33 | 812 (197) 2/18 | 129 (7.026) 1/27 | 60.02 (16.02) 11/61 | 35.22 (7.809) 5/51 | 9.31/50.19 | |
ModifiedChi2 | 167 (0.433) 10/59 | 8.308 (0.141) 10/49 | 7.668 (0.018) 10/53 | 35.35 (0.327) 9/53 | 3.192 (0.552) 10/48 | 247 (114) 6/53 | 79.91 (4.315) 1/23 | 161 (2.451) 12/58 | 5.364 (0.071) 12/58 | 23.26 (5.091) 10/54 | 94.91 (19.18) 12/56 | 1784 (23.2) 12/59 | 2249 (1278) 11/54 | 496 (69.45) 12/58 | 38.39 (8.065) 7/48 | 39.34 (0.064) 11/60 | 9.69/52.69 | |
CAIM | 89.2 (11.28) 3/29 | 7.273 (1.039) 3/33 | 6.205 (0.754) 3/27 | 32.54 (4.034) 4/39 | 3.844 (3.237) 12/59 | 249 (33.3) 7/54 | 129 (20.71) 9/56 | 41.88 (5.462) 6/36 | 2.763 (0.437) 7/33 | 16.75 (1.467) 5/37 | 60.93 (6.904) 2/25 | 457 (28.29) 4/22 | 831 (2.133) 4/22 | 138 (0.547) 2/36 | 30.2 (1.434) 5/39 | 39.14 (0.024) 10/58 | 5.38/37.81 | |
FCAIM | 88.46 (11.24) 2/28 | 7.38 (1) 5/37 | 7.274 (1.267) 9/52 | 33.22 (5.484) 6/44 | 2.319 (0.298) 5/34 | 244 (39.52) 4/51 | 122 (16.85) 6/53 | 44.04 (9.004) 7/40 | 2.763 (0.432) 6/32 | 15.87 (1.901) 3/34 | 61.14 (6.857) 3/26 | 469 (64.23) 6/26 | 856 (53.6) 7/26 | 152 (27.86) 6/46 | 29.71 (2.73) 4/37 | 36.57 (5.435) 7/55 | 5.38/38.81 | |
Khiops | 91.13 (12.16) 6/32 | 7.366 (0.587) 4/35 | 6.742 (1.086) 5/38 | 31.71 (3.87) 1/35 | 2.079 (0.166) 1/24 | 252 (38.97) 8/55 | 120 (16.65) 4/51 | 40.04 (5.547) 4/31 | 2.666 (0.31) 4/26 | 16.49 (0.89) 4/36 | 65.97 (10.06) 7/35 | 651 (68.55) 11/46 | 2448 (162) 12/57 | 178 (27.62) 8/53 | 28.22 (2.215) 3/34 | 39.51 (0.116) 12/61 | 5.88/40.56 | |
MODL | 209 (44.6) 12/62 | 11.97 (1.817) 12/61 | 9.547 (1.89) 12/60 | 57.31 (6.898) 12/61 | 3.482 (0.473) 11/53 | 317 (63.32) 11/60 | 159 (31.77) 11/59 | 59.89 (12.53) 9/52 | 3.912 (0.669) 11/54 | 24.64 (5.362) 11/58 | 70.57 (0.12) 8/41 | 487 (122) 7/28 | 1017 (226) 10/42 | 161 (33.74) 7/48 | 48.56 (9.858) 10/58 | 31.92 (6.923) 2/40 | 9.75/52.31 | |
CACC | 93.33 (10.92) 8/35 | 7.401 (0.765) 6/38 | 6.119 (0.357) 2/26 | 31.96 (3.445) 3/38 | 2.119 (0.277) 2/25 | 252 (43.47) 9/56 | 124 (13.63) 7/54 | 137 (20.06) 11/55 | 2.764 (0.426) 8/34 | 16.91 (1.676) 6/39 | 63.5 (8.038) 4/30 | 493 (43.19) 8/30 | 833 (0.957) 5/23 | 141 (3.439) 4/38 | 31.79 (3.196) 6/42 | 31.44 (6.632) 1/39 | 5.62/37.62 | |
AODEsr | Equal Width | 58.4 (8.966) 7/20 | 8.697 (1.22) 9/55 | 7.895 (0.676) 9/55 | 32.94 (4.066) 7/43 | 4.274 (0.585) 12/61 | 175 (26.12) 7/29 | 91.42 (7.772) 6/29 | 50.57 (5.253) 8/48 | 3.893 (0.329) 9/52 | 22.35 (3.239) 8/51 | 63.4 (13.06) 1/29 | 667 (77.95) 7/50 | 1284 (103) 5/48 | 135 (16.5) 7/33 | 50.08 (10.66) 11/59 | 29.73 (4.122) 5/31 | 7.38/43.31 |
Equal Frequency | 63.64 (11.51) 12/25 | 9.012 (0.948) 11/57 | 7.084 (0.418) 4/46 | 34.45 (2.827) 10/51 | 4.146 (0.527) 11/60 | 181 (20.35) 9/32 | 88.24 (10.07) 4/27 | 48.92 (0.121) 4/44 | 4.474 (0.051) 10/56 | 22.86 (3.535) 10/53 | 115 (15.58) 11/60 | 656 (63.01) 6/49 | 1197 (40.67) 2/45 | 160 (13.72) 10/47 | 40.16 (3.869) 9/50 | 34.82 (4.869) 11/49 | 8.38/46.94 | |
Maximum Entropy | 56.82 (6.891) 4/17 | 8.951 (0.992) 10/56 | 7.898 (1.054) 10/56 | 33.71 (2.566) 9/47 | 3.597 (0.628) 7/55 | 146 (18.92) 2/21 | 81.97 (9.92) 1/24 | 50.54 (5.093) 7/47 | 3.503 (0.759) 4/45 | 22.72 (3.22) 9/52 | 122 (23.27) 12/61 | 622 (39.66) 2/44 | 1168 (58.3) 1/44 | 164 (13.27) 11/50 | 39.09 (3.694) 8/49 | 32.43 (5.049) 8/41 | 6.56/44.31 | |
Paterson - Niblett | 60.12 (10.27) 9/22 | 8.626 (1.44) 8/54 | 6.479 (0.801) 1/30 | 31.25 (1.498) 5/32 | 3.29 (0.658) 3/49 | 199 (21.57) 12/36 | 95 (14.53) 7/30 | 48.71 (5.376) 3/43 | 3.806 (0.454) 7/49 | 16.08 (1.756) 3/35 | 71.54 (15.23) 2/42 | 654 (27.67) 4/47 | 1283 (11.79) 4/47 | 124 (11.66) 5/25 | 24.76 (2.336) 3/25 | 27.01 (3.603) 2/27 | 4.88/37.06 | |
IEM | 56.97 (7.103) 5/18 | 8.594 (1.415) 7/53 | 7.187 (0.884) 5/48 | 22.33 (2.123) 2/23 | 2.645 (0.426) 1/42 | 175 (23.89) 6/28 | 105 (16.7) 10/35 | 38.09 (7.703) 1/24 | 2.435 (1.266) 1/22 | 13.4 (1.78) 1/20 | 74.4 (7.665) 3/46 | 630 (33.23) 3/45 | 1318 (52.2) 8/51 | 113 (2.976) 1/19 | 7.431 (2.888) 2/14 | 25.12 (3.912) 1/26 | 3.56/32.12 | |
CADD | 53.31 (7.875) 2/15 | 8.154 (1.476) 3/47 | 8.893 (1.255) 11/58 | 37.01 (4.923) 11/57 | 3.17 (0.593) 2/47 | 153 (25.28) 3/25 | 87.27 (13.63) 3/26 | 53.07 (8.24) 10/50 | 3.317 (0.63) 3/44 | 26 (4.395) 12/59 | 78.69 (8.295) 4/48 | 619 (33.4) 1/43 | 1230 (226) 3/46 | 136 (12.4) 8/34 | 52.12 (10.32) 12/60 | 31.19 (6.055) 7/35 | 5.94/43.38 | |
ModifiedChi2 | 50.6 (2.114) 1/14 | 6.544 (0.226) 2/27 | 7.188 (0.192) 6/49 | 21.15 (1.282) 1/17 | 3.452 (0.67) 4/51 | 168 (25.74) 5/27 | 89.28 (6.054) 5/28 | 213 (47.22) 12/61 | 5.528 (0.059) 11/59 | 17.28 (8.421) 4/41 | 110 (11.06) 10/59 | 2391 (103) 12/61 | 4050 (2431) 12/61 | 662 (81.89) 12/61 | 7.271 (1.976) 1/13 | 33.42 (4.951) 10/44 | 6.75/42.06 | |
CAIM | 60.19 (6.57) 10/23 | 9.201 (0.949) 12/58 | 6.995 (1.073) 2/43 | 29.26 (2.705) 4/29 | 3.79 (0.744) 10/58 | 188 (26.2) 10/33 | 109 (15.66) 12/37 | 49.47 (5.267) 5/45 | 5.819 (6.305) 12/60 | 19.15 (1.424) 7/47 | 93.62 (14.28) 7/54 | 672 (16.01) 8/51 | 1287 (58.34) 6/49 | 123 (16.29) 4/24 | 34.1 (3.965) 4/43 | 32.51 (1.469) 9/43 | 7.62/43.56 | |
FCAIM | 59.43 (9.397) 8/21 | 8.537 (1.003) 6/52 | 7.273 (1.106) 7/51 | 27.95 (1.672) 3/26 | 3.603 (0.644) 8/56 | 193 (24.25) 11/34 | 99.2 (9.779) 8/31 | 49.52 (5.296) 6/46 | 3.761 (0.645) 6/48 | 18.79 (1.691) 6/46 | 89.58 (16.85) 6/52 | 687 (66.44) 10/53 | 1313 (39.33) 7/50 | 127 (19.19) 6/26 | 35.61 (2.428) 5/45 | 28.36 (4.759) 3/28 | 6.62/41.56 | |
Khiops | 63.55 (2.59) 11/24 | 8.338 (1.746) 4/50 | 7.691 (1.318) 8/54 | 33.55 (5.325) 8/45 | 3.629 (0.719) 9/57 | 135 (16.65) 1/14 | 83.1 (10.16) 2/25 | 48.08 (0.159) 2/42 | 3.833 (0.644) 8/50 | 18.24 (2.014) 5/45 | 94.68 (13.83) 8/55 | 837 (38.47) 11/57 | 3459 (182) 11/60 | 145 (17.11) 9/43 | 37.82 (4.287) 7/47 | 39.31 (3.45) 12/59 | 7.25/45.44 | |
MODL | 56.37 (8.213) 3/16 | 8.393 (1.243) 5/51 | 9.873 (1.423) 12/61 | 38.1 (7.754) 12/58 | 3.494 (0.702) 6/54 | 177 (29.71) 8/30 | 103 (18.91) 9/34 | 51.76 (12.9) 9/49 | 3.539 (0.79) 5/46 | 24.47 (4.058) 11/57 | 96.51 (6.924) 9/57 | 680 (41.23) 9/52 | 1363 (141) 10/53 | 116 (15.49) 2/20 | 43.2 (6.244) 10/53 | 29.58 (4.813) 4/30 | 7.75/45.06 | |
CACC | 57.51 (7.048) 6/19 | 6.212 (0.711) 1/26 | 7.079 (1.082) 3/45 | 32.94 (4.075) 6/42 | 3.454 (0.553) 5/52 | 163 (3.057) 4/26 | 107 (13.65) 11/36 | 161 (12.93) 11/57 | 2.993 (0.42) 2/43 | 14.31 (1.485) 2/23 | 86.39 (13.31) 5/51 | 654 (33.68) 5/48 | 1328 (1.899) 9/52 | 123 (14.26) 3/23 | 36.08 (3.633) 6/46 | 29.81 (4.834) 6/32 | 5.31/38.81 | |
WAODE | Equal Width | 155 (44.22) 10/56 | 7.626 (1.067) 9/42 | 6.584 (0.535) 5/34 | 33.64 (3.459) 7/46 | 2.407 (0.128) 8/40 | 231 (8.408) 10/47 | 114 (4.223) 3/41 | 40.21 (4.857) 7/33 | 2.816 (0.352) 5/37 | 17.91 (2.05) 7/42 | 64.41 (8.36) 6/32 | 570 (52.21) 8/40 | 986 (294) 8/40 | 163 (37.02) 8/49 | 42.76 (9.839) 10/52 | 31.31 (5.643) 6/38 | 7.31/41.81 |
Equal Frequency | 131 (10.96) 5/49 | 7.606 (0.972) 8/41 | 6.853 (0.902) 9/39 | 35.51 (4.271) 10/54 | 3.307 (3.311) 12/50 | 230 (5.432) 9/46 | 115 (2.314) 4/42 | 39.5 (5.246) 4/28 | 2.685 (0.164) 1/27 | 18.1 (1.679) 9/44 | 66.89 (2.698) 8/36 | 573 (56.71) 9/41 | 876 (0.504) 1/29 | 176 (37.17) 10/52 | 29.08 (1.294) 8/36 | 33.5 (4.611) 7/45 | 7.12/41.19 | |
Maximum Entropy | 138 (9.177) 8/52 | 7.629 (1.14) 10/43 | 6.862 (0.718) 10/40 | 33.78 (3.489) 8/48 | 2.267 (0.288) 5/33 | 227 (4.129) 5/42 | 117 (12.65) 10/48 | 42.52 (6.199) 9/39 | 2.935 (0.414) 8/41 | 18.01 (1.921) 8/43 | 69.79 (1.103) 10/39 | 532 (9.817) 2/34 | 915 (0.418) 5/35 | 178 (36.88) 11/54 | 28.3 (1.285) 7/35 | 29.14 (5.618) 1/29 | 7.31/40.94 | |
Paterson - Niblett | 137 (24.61) 7/51 | 7.362 (1.066) 4/34 | 6.645 (0.989) 7/36 | 31.84 (1.936) 5/37 | 2.518 (0.957) 9/41 | 230 (8.028) 7/44 | 117 (7.467) 9/47 | 40.12 (4.552) 6/32 | 2.73 (0.221) 3/31 | 15.27 (1.443) 3/28 | 57.95 (0.263) 1/20 | 565 (6.894) 7/39 | 992 (144) 9/41 | 137 (18.13) 5/35 | 24.4 (1.052) 1/24 | 31.29 (5.695) 5/37 | 5.5/36.06 | |
IEM | 129 (11.99) 2/46 | 6.951 (0.447) 2/30 | 6.611 (0.918) 6/35 | 34.3 (4.291) 9/50 | 2.201 (0.272) 3/30 | 227 (2.574) 4/41 | 116 (6.951) 8/46 | 39.47 (4.674) 3/27 | 2.858 (0.392) 6/38 | 14.82 (1.142) 1/26 | 59.01 (3.414) 3/23 | 543 (13.44) 3/35 | 975 (3.143) 7/39 | 132 (0.42) 3/29 | 25.9 (2.323) 6/32 | 34.55 (3.522) 8/46 | 4.62/35.81 | |
CADD | 142 (22.8) 9/54 | 6.566 (0.783) 1/28 | 5.874 (0.743) 1/24 | 28.76 (3.449) 1/27 | 1.963 (0.29) 1/22 | 215 (21.6) 1/38 | 114 (15.83) 2/40 | 37.8 (2.784) 1/23 | 3.866 (0.567) 10/51 | 26.54 (2.623) 12/60 | 73.51 (0.904) 11/45 | 514 (67) 1/32 | 953 (128) 6/38 | 121 (7.829) 1/22 | 44.99 (10.87) 12/55 | 30.24 (7.196) 2/33 | 4.5/37 | |
ModifiedChi2 | 165 (0.191) 11/58 | 8.273 (1.143) 11/48 | 7.204 (0.027) 11/50 | 35.58 (0.052) 11/55 | 3.033 (0.535) 11/46 | 299 (54.89) 11/58 | 150 (27.46) 11/58 | 178 (42.31) 12/59 | 5.098 (0.453) 12/57 | 23.3 (4.043) 10/55 | 91.02 (19.49) 12/53 | 1563 (8.093) 12/58 | 2391 (1263) 12/56 | 516 (69.26) 12/59 | 41.64 (8.692) 9/51 | 35.71 (0.032) 11/53 | 11.19/54.62 | |
CAIM | 128 (6.811) 1/45 | 7.454 (0.883) 7/40 | 6.568 (0.987) 4/33 | 32.71 (2.896) 6/41 | 2.34 (0.321) 6/36 | 226 (1.879) 3/40 | 115 (5.639) 5/43 | 39.54 (2.799) 5/29 | 2.863 (0.306) 7/39 | 15.27 (0.823) 4/29 | 62.27 (7.144) 5/28 | 574 (47.8) 10/42 | 913 (70.04) 4/33 | 131 (0.24) 2/28 | 25.48 (0.099) 4/30 | 34.61 (3.467) 10/48 | 5.19/36.5 | |
FCAIM | 135 (13.36) 6/50 | 7.411 (0.883) 6/39 | 6.557 (0.532) 3/32 | 30.4 (1.628) 2/31 | 2.212 (0.184) 4/32 | 230 (14.8) 8/45 | 116 (6.218) 6/44 | 40.83 (7.052) 8/35 | 2.693 (0.197) 2/29 | 15.61 (1.657) 6/32 | 58 (0.399) 2/21 | 553 (20.43) 5/37 | 912 (69.17) 3/32 | 142 (24.43) 6/39 | 25.26 (1.915) 3/29 | 34.59 (3.492) 9/47 | 4.94/35.88 | |
Khiops | 131 (11.64) 4/48 | 7.267 (0.491) 3/32 | 6.689 (0.714) 8/37 | 31.4 (3.268) 3/33 | 2.349 (0.28) 7/37 | 228 (4.184) 6/43 | 116 (5.762) 7/45 | 39.16 (4.149) 2/25 | 2.793 (0.338) 4/36 | 14.96 (0.664) 2/27 | 64.6 (7.982) 7/33 | 724 (63.26) 11/54 | 2375 (64.02) 11/55 | 167 (30.62) 9/51 | 25.75 (2.59) 5/31 | 36 (0.043) 12/54 | 6.31/40.06 | |
MODL | 204 (42.51) 12/61 | 11.19 (1.15) 12/60 | 9.388 (1.637) 12/59 | 39.5 (7.732) 12/59 | 2.949 (0.594) 10/44 | 303 (62.94) 12/59 | 165 (36.42) 12/61 | 57.19 (10.06) 10/51 | 3.898 (0.628) 11/53 | 23.82 (4.479) 11/56 | 69.27 (8.394) 9/38 | 553 (65.21) 6/38 | 1029 (187) 10/43 | 144 (24.22) 7/40 | 44.33 (6.99) 11/54 | 30.47 (6.141) 3/34 | 10/50.62 | |
CACC | 131 (8.744) 3/47 | 7.379 (0.658) 5/36 | 6.454 (0.517) 2/29 | 31.44 (3.227) 4/34 | 2.194 (0.2) 2/28 | 225 (0.474) 2/39 | 113 (0.238) 1/39 | 132 (15.51) 11/54 | 2.978 (0.369) 9/42 | 15.39 (0.877) 5/30 | 61.45 (6.945) 4/27 | 552 (20.34) 4/36 | 897 (52.01) 2/31 | 132 (2.502) 4/30 | 25.15 (1.504) 2/27 | 31.28 (5.687) 4/36 | 4/35.31 |
[1] Abraham R, Simha JB, Iyengar S (2007) A comparative analysis of discretization methods for medical datamining with Naive Bayesian classifier. In: Proceedings of 9th Conf. Information Technology, pp 235-236
[2] Alpaydin E (1999) Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11, pp 1885 - 1892
[3] Asuncion A, Newman DJ (2007) UCI Machine Learning Repository. Irvine, CA: Univ. of California, School of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html
[4] Boulle M (2004) Khiops: A Statistical Discretization Method of Continuous Attributes. Machine Learning (55), pp 53 - 69
[5] Boulle M (2006) MODL: A Bayes optimal discretization method for continuous attributes. Machine Learning, 65 (1), pp 131-165
[6] Catlett J (1991) On changing continuous attributes into ordered discrete attributes. In: Proceedings of European Working Session on Learning, pp. 164-178
[7] Ching J, Wong A, Chan K. (1995) Class-Dependent Discretization for Inductive Learning from Continuous and Mixed Mode Data. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17 (7), pp 641-651
[8] Cios KJ, Kurgan L (2001) Hybrid inductive machine learning: an overview of clip algorithms. New Learning Paradigms in Soft Computing, L.C. Jain, J. Kacprzyk, ed., pp. 276-322, Physica-Verlag (Springer)
[9] Cios KJ, Kurgan L (2004) CLIP4: hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences, 163(1-3), pp.37-83
[10] Clark P, Niblett T (1989) The CN2 algorithm. Machine Learning, 3, pp. 261-283
[11] Demsar J (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, pp. 1 - 30
[12] Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of continuous features. In: Proceedings of 12th Int. Conf. Machine Learning, pp.194-202
[13] Fayyad U, Irani K (1992) On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8, pp. 87-102
[14] Fayyad UM, Irani KB (1993) Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, San Francisco: Morgan - Kaufmann, pp. 1022-1027
[15] Zheng F, Webb GI (2006) Efficient Lazy Elimination for Averaged-One Dependence Estimators. In: Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006), pp. 1113-1120
[16] Flores JL, Inza I, LarranĖaga P (2007) Wrapper discretization by means of estimation of distribution algorithms. Intelligent Data Analysis, 11(5), pp. 525-545
[17] Friedman N, Geiger D, Goldszmidt M (1997) Bayesian Network Classifiers. Machine Learning, Vol. 29, pp. 131-163
[18] Iman RL, Davenport JM (1980) Approximations of the critical region of the Friedman statistic. Communications in Statistics, pp. 571 - 595
[19] Jiang L, Zhang H (2006) Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, pp. 970-974
[20] John GH, Langley P (1995) Estimating Continuous Distributions in Bayesian Classifiers. In: Proceedings of 11th Conf. Uncertainty in Artificial Intelligence, pp. 338-345
[21] Kaufman KA, Michalski RS (1999) Learning from inconsistent and noisy data: the AQ18 approach. In: Proceedings of the 11th Int. Symp. Methodologies for Intelligent Systems,
[22] Keogh E, Pazzani M (1999) Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proceedings of the Int. Workshop Artificial Intelligence and Statistics, pp. 225-230
[23] Kerber R (1992) ChiMerge: discretization of numeric attributes. In: Proceedings of the 9th Int. Conf. Artificial Intelligence, pp. 123-128
[24] Kohavi R, Sahami M (1996) Error-based and entropy-based discretization of continuous features. In: In: Proceedings of the 2nd Int. Conf. Knowledge Discovery and Data Mining, pp. 114-119
[25] Kujala J, Elomaa T (2007) Improved algorithms for univariate discretization of continuous features. In: Proceeding of the Principles and Practice of Knowledge Discovery in Databases, LNCS 4702, pp. 188-199
[26] Kurgan L, Cios K (2004) CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering, 16 (2), pp. 145-153
[27] Kurgan L, Cios K (2003) Fast Class-Attribute Interdependence Maximization (CAIM) Discretization Algorithm. In: Proceeding of International Conference on Machine Learning and Applications, pp. 30 - 36
[28] Kurgan L, Cios KJ (2001) Discretization algorithm that uses class-attribute interdependence maximization. In: Proceedings of 2001 Int. Conf. Artif. Intelligence, pp. 980-987
[29] Kurgan L, Cios KJ, Dick S (2006) Highly scalable and robust rule learner: performance evaluation and comparison. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 36(1), pp. 32-53
[30] Langley P, Iba W, Thomas K (1992) An analysis of Bayesian classifiers. In: Proceedings of the Tenth National Conference of Artificial Intelligence. AAAI Press, pp. 223-228
[31] Langley P, Sage S (1994) Induction of selective Bayesian classifiers. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 339-406
[32] Lee CH (2007) A Hellinger-based discretization method for numeric attributes in classification learning. Knowledge-Based Systems, 20(4), pp. 419-425
[33] Liu H, Hussain F, Tan C, Dash M (2002). Discretization: an enabling technique. Journal of Data Mining and Knowledge Discovery , 6 (4), pp. 393 - 423
[34] Liu H, Setiono R (1997) Feature Selection via Discretization. IEEE Trans. Knowledge and Data Eng., vol. 9, no. 4, pp. 642-645
[35] Liu X, Wang H (2005) A discretization algorithm based on a heterogeneity criterion. IEEE Trans. on Data and Knowledge Engineering, 17(9), pp.1166-1173
[36] Mehta S, Parthasarathy S, Yang H (2005) Toward unsupervised correlation preserving discretization. IEEE Trans. on Knowledge and Data Engineering, 17(9), pp. 1174-1185
[37] Mizianty MJ, Kurgan LA, Ogiela M, 2008. Comparative Analysis of the Impact of Discretization on the Classification with Naive Bayes and Semi-Naive Bayes Classifiers, 7th International Conference on Machine Learning and Applications (ICMLA'08), San Diego, CA, U.S.A., accepted
[38] Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University
[39] Paterson A, Niblett T (1987) ACLS Manual. Edinburgh: Intelligent Terminals, Ltd.
[40] Quinlan JR (1993) C4.5 Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers.
[41] Su CT, Hsu JH (2005) An Extended Chi2 algorithm for discretization of real value attributes. IEEE Trans. on Knowledge and Data Engineering, 17(3), pp. 437-441
[42] Tay EH, Shen L (2002) A Modified Chi2 Algorithm for Discretization. IEEE Trans. Knowledge and Data Eng., vol. 14, no. 3, pp. 666-670
[43] Tsai CJ, Lee CI, Yang WP (2008) A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Sciences (178), pp. 714-731
[44] Wang K, Liu B (1998) Concurrent discretization of multiple attributes. Pacific-Rim Conf Artificial Intelligence, pp.250-259
[45] Wang Z, Webb GI (2002) Comparison of lazy Bayesian rule and tree-augmented Bayesian learning. In: Proceeding of the IEEE Int. Conf. Data Mining, pp. 775-778
[46] Webb GI, Boughton J, Wang Z (2005) Not so naive bayes: Aggregating onedependence estimators. Machine Learning, Vol. 58, pp. 5-24
[47] Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques. 2nd edition, Morgan Kaufmann
[48] Wong AKC, Chiu DKY (1987) Synthesizing Statistical Knowledge from Incomplete Mixed-Mode Data. IEEE Trans. Pattern Analysis and Machine Intelligence, 9, 796-805
[49] Wu X (1996) A Bayesian discretizer for real-valued attributes. Computer Journal, 39(8), pp. 688-691
[50] Wu X, Kumar V, Quinlan JR, et al. (2008) Top 10 algorithms in data mining. Knowledge and Information Systems, 14, pp. 1-37
[51] Zhang H, Jiang L, Su J (2005) Hidden Naive Bayes. In: Proceeding of the Twentieth National Conference on Artificial Intelligence, pp. 919-924
[52] Zheng Z, Webb GI (2000) Lazy learning of Bayesian Rules. Machine Learning, 41:1, pp. 53 - 84