Discretizers

Table 1. Comparison of the 12 discretization algorithms used in the research.
Year of publicationName [reference]AbbrevationCharacteristicsCriterion
N/AEqual WidthEWunsupervised, splitting, global, directN/A
N/AEqual FrequencyEFunsupervised, splitting, global, directN/A
1987Maximum Entropy [48]MEsupervised, splitting, global, directInf. Entropy
1987Paterson Niblett [39]PNsupervised, splitting, global, directInf. Entropy
1993IEM [14]IMsupervised, splitting, local, incrementalInf. Entropy
1995CADD [7]CDsupervised, splitting/merging, global, directCAIR
2002Modified Chi2 [42]MCsupervised, merging, global, incrementalChi2
2003FCAIM [27]FCsupervised, splitting, global, incrementalCAIM
2004Khiops [4]Khsupervised, merging, global, incrementalChi2
2004CAIM [26]CMsupervised, splitting, global, incrementalCAIM
2006MODL [5]MOsupervised, merging, global, incrementalMODL
2008CACC [43]CCsupervised, splitting, global, incrementalCACC

Classifiers

Table 2. Comparison and main characteristics of the nine considered Naive Bayes and semi-Naive Bayes classifiers. k is the number of classes, t is the number of training instances, n is the number of attributes, and v is the average number of distinct values for an attribute; tr stands for training and cl stands for classification.
Name [reference]Abb.Year of PublicationKey characteristicsComplexity (tr/cl)
Naive Bayes [30]NB1992minimizes the prediction error by selecting argmax(y, P(y | x));
assumes that the features are independent given the class label;
uses Gaussian distribution to model continuous features;
O(tn) / O(kn)
SBC [31]n/a1994uses forward selection to find a good subset of attributes and then uses this subset to construct a naive Bayes;O(tn3) / O(kn)
FNB [20]FNB1995variant of the NB algorithm which improves the estimation of probability distributions for continuous features using a set of Gaussian kernels;O(tn) / O(kn)
SP-TAN [17]n/a1997assumes that each feature depends on the class label and one other attribute (parent), which is selected based on conditional mutual information;
accepts only discrete or nominal features;
O(tkn3) / O(kn)
LBR [52]LB2000relaxes the assumption of feature independence by choosing a subset of features W, and minimizing the prediction error by selecting ;
accepts only discrete or nominal features;
O(tn) / O(tkn3)
AODE [46]A2005builds a one-dependence classifier for each attribute, in which the attribute is set to be the parent of all other attributes;
accepts only discrete or nominal features;
O(tn2) / O(kn2)
HNB [51]H2005creates a hidden parent for each attribute, which represents the influences from all other attributes;
accepts only discrete or nominal features;
O(tn2+kn2v2) / O(kn2)
WAODE [19]WA2006extends the AODE algorithm by assigning different weights to different tree augmented NB in the aggregate of AODE;
accepts only discrete or nominal features;
O(tn2) / O(kn2)
AODEsr [15]Asr2006extends the AODE algorithm by using LE (Lazy Elimination) technique to eliminate all related attributes at the classification time;
accepts only discrete or nominal features;
O(tn2) / O(kn2)

Datasets

Table 3. Benchmark datasets used in the experiments.
DatasettypeNumber of continuous attributesNumber of attributesNumber of classesNumber of examplesAvg. nbr of distinct values
annealmixed638689823.38
colicmixed722236837.87
credit-amixed6152690124
cylinder-bandsmixed1839254044.36
heart-cmixed613230347.98
hypothyroidmixed72943772130
sickmixed72923772130
vowelmixed101311990444
glassnumerical99721463.8
ionospherenumerical34342351121
page-blocksnumerical101055473665
pendigitsnumerical1616101099299.99
satnumerical36367643375.01
segmentnumerical191972310451
sonarnumerical6060220897.85
vehiclenumerical1818484666.28

Discretizers Comparison

CAIR

Table 4. The average CAIR values associated with the discretization performed by the twelve discretization algorithms on the sixteen benchmark datasets; higher CAIR value indicates better discretization scheme. The values in round brackets indicate standard deviation (over the 10 folds). The values in third row show rank of a given discretization algorithm for a given dataset. Bolded values indicate the best results for a given dataset. Last column shows average rank of a given algorithm over all datasets. Abbreviations for dataset names can be found in Table 3
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Equal Width 0.058 (0.002)
9
0.023 (0.004)
7
0.029 (0.003)
12
0.009 (0.001)
8
0.037 (0.005)
9
0.053 (0.005)
8
0.023 (0.005)
8
0.092 (0.002)
7
0.127 (0.008)
8
0.076 (0.004)
9
0.042 (0.007)
8
0.125 (0.001)
8
0.201 (0.002)
6
0.168 (0.001)
9
0.036 (0.003)
6
0.055 (0.003)
10
8.25
Equal Frequency 0.062 (0.004)
8
0.022 (0.004)
8
0.037 (0.004)
9
0.01 (0.001)
7
0.036 (0.005)
10
0.036 (0.002)
9
0.021 (0.002)
9
0.092 (0.001)
8
0.127 (0.009)
7
0.073 (0.005)
10
0.041 (0.002)
9
0.125 (0.001)
7
0.2 (0.002)
8
0.168 (0.002)
8
0.034 (0.003)
7
0.057 (0.002)
9
8.31
Maximum Entropy 0.012 (0.004)
12
0.01 (0.003)
11
0.034 (0.003)
10
0.006 (0.001)
10
0.022 (0.003)
12
0.026 (0.001)
11
0.014 (0.001)
10
0.086 (0.001)
9
0.073 (0.011)
12
0.068 (0.004)
11
0.035 (0.002)
12
0.12 (0.001)
9
0.159 (0.002)
11
0.159 (0.002)
11
0.023 (0.003)
9
0.044 (0.002)
12
10.75
Paterson - Niblett 0.066 (0.002)
7
0.02 (0.009)
9
0.04 (0.008)
8
0.011 (0.001)
6
0.04 (0.009)
8
0.158 (0.01)
2
0.063 (0.006)
5
0.062 (0.001)
12
0.152 (0.009)
5
0.085 (0.005)
7
0.087 (0.009)
6
0.115 (0.001)
10
0.171 (0.002)
9
0.157 (0.002)
12
0.032 (0.008)
8
0.067 (0.004)
7
7.56
IEM 0.07 (0.006)
6
0.009 (0.008)
12
0.049 (0.008)
7
0.003 (0.003)
12
0.047 (0.007)
6
0.135 (0.011)
6
0.071 (0.006)
4
0.073 (0.003)
11
0.113 (0.015)
9
0.103 (0.009)
4
0.108 (0.01)
5
0.134 (0.001)
2
0.201 (0.001)
7
0.228 (0.002)
5
0.02 (0.008)
11
0.08 (0.005)
4
6.94
CADD 0.018 (0.005)
11
0.026 (0.007)
6
0.053 (0.005)
3
0.016 (0.001)
2
0.04 (0.004)
7
0.015 (0.012)
12
0.008 (0.001)
12
0.099 (0.001)
5
0.103 (0.014)
10
0.111 (0.007)
3
0.037 (0.002)
10
0.138 (0.002)
1
0.211 (0.003)
4
0.187 (0.002)
7
0.074 (0.004)
2
0.063 (0.003)
8
6.44
ModifiedChi2 0.088 (0.004)
1
0.032 (0.02)
5
0.053 (0.006)
2
0.005 (0.002)
11
0.059 (0.006)
2
0.112 (0.012)
7
0.06 (0.018)
7
0.379 (0.001)
1
0.272 (0.009)
1
0.095 (0.027)
5
0.067 (0.006)
7
0.103 (0.001)
12
0.17 (0.04)
10
0.217 (0.001)
6
0.02 (0.005)
10
0.083 (0.005)
1
5.5
CAIM 0.076 (0.004)
4
0.035 (0.009)
3
0.052 (0.007)
4
0.015 (0.001)
3
0.053 (0.007)
3
0.138 (0.009)
4
0.074 (0.006)
2
0.104 (0.002)
3
0.179 (0.008)
4
0.087 (0.004)
6
0.139 (0.01)
2
0.131 (0.001)
5
0.212 (0.003)
2
0.229 (0.002)
3
0.039 (0.006)
3
0.074 (0.004)
5
3.5
FCAIM 0.08 (0.004)
2
0.035 (0.009)
3
0.052 (0.007)
4
0.015 (0.001)
3
0.053 (0.007)
3
0.138 (0.009)
4
0.074 (0.006)
2
0.104 (0.002)
3
0.179 (0.008)
3
0.084 (0.004)
8
0.138 (0.01)
3
0.131 (0.001)
5
0.212 (0.003)
2
0.229 (0.002)
3
0.039 (0.006)
3
0.074 (0.004)
5
3.5
Khiops 0.048 (0.005)
10
0.013 (0.005)
10
0.032 (0.004)
11
0.007 (0.001)
9
0.031 (0.005)
11
0.026 (0.001)
10
0.013 (0.001)
11
0.082 (0.002)
10
0.085 (0.012)
11
0.049 (0.006)
12
0.037 (0.002)
11
0.111 (0.001)
11
0.145 (0.001)
12
0.168 (0.002)
10
0.019 (0.004)
12
0.053 (0.003)
11
10.75
MODL 0.07 (0.005)
5
0.035 (0.012)
2
0.051 (0.007)
6
0.012 (0.002)
5
0.053 (0.007)
5
0.142 (0.007)
3
0.063 (0.016)
6
0.096 (0.003)
6
0.147 (0.011)
6
0.126 (0.009)
2
0.124 (0.008)
4
0.133 (0.001)
3
0.204 (0.001)
5
0.23 (0.003)
2
0.039 (0.007)
5
0.083 (0.005)
3
4.25
CACC 0.079 (0.004)
3
0.056 (0.007)
1
0.055 (0.007)
1
0.027 (0.002)
1
0.063 (0.006)
1
0.16 (0.008)
1
0.077 (0.006)
1
0.336 (0.012)
2
0.23 (0.018)
2
0.127 (0.011)
1
0.145 (0.007)
1
0.131 (0.001)
4
0.214 (0.002)
1
0.235 (0.003)
1
0.079 (0.007)
1
0.083 (0.005)
2
1.5

ENTROPY

Table 5. The average Entropy values associated with the discretization performed by the twelve discretization algorithms on the sixteen benchmark datasets; lower entropy value corresponds to better discretization scheme. The values in round brackets indicate standard deviation (over the 10 folds). The values in third row show rank of a given discretization algorithm for a given dataset. Bolded values indicate the best results for a given dataset. Last column shows average rank of a given algorithm scored over all datasets. Abbreviations for dataset names can be found in Table 3
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Equal Width 2.202 (0.064)
6
2.788 (0.042)
9
3.178 (0.059)
8
2.674 (0.056)
8
3.169 (0.074)
10
2.153 (0.171)
9
2.776 (0.214)
8
6.299 (0.015)
7
3.353 (0.091)
5
4.175 (0.05)
10
2.561 (0.069)
7
5.549 (0.007)
8
4.056 (0.014)
6
4.715 (0.012)
7
4.314 (0.055)
9
3.745 (0.032)
8
7.81
Equal Frequency 2.417 (0.067)
10
3.275 (0.054)
12
4.406 (0.029)
11
3.124 (0.028)
11
3.491 (0.038)
11
3.256 (0.043)
10
4.093 (0.028)
10
6.659 (0.008)
9
4.069 (0.034)
11
4.674 (0.068)
12
4.981 (0.021)
11
5.565 (0.008)
9
4.082 (0.011)
7
5.728 (0.018)
10
4.872 (0.025)
11
4.014 (0.021)
11
10.38
Maximum Entropy 1.849 (0.125)
2
3.024 (0.058)
11
4.581 (0.036)
12
3.245 (0.023)
12
3.504 (0.035)
12
3.843 (0.037)
11
4.716 (0.028)
12
6.694 (0.01)
10
3.504 (0.086)
8
4.654 (0.082)
11
5.631 (0.026)
12
4.722 (0.008)
2
3.826 (0.008)
3
5.875 (0.016)
11
4.893 (0.022)
12
3.964 (0.033)
10
9.44
Paterson - Niblett 2.183 (0.145)
5
1.268 (0.065)
2
1.287 (0.046)
1
1.16 (0.045)
3
1.325 (0.055)
1
0.576 (0.029)
1
0.407 (0.012)
1
4.425 (0.007)
2
2.73 (0.103)
3
1.264 (0.044)
1
0.71 (0.033)
1
4.841 (0.028)
3
3.25 (0.059)
1
3.288 (0.006)
1
1.253 (0.03)
3
3.293 (0.052)
3
2
IEM 1.919 (0.122)
4
1.032 (0.076)
1
1.532 (0.141)
2
1 (0.036)
1
1.437 (0.082)
2
0.909 (0.09)
2
0.847 (0.071)
2
4.196 (0.064)
1
2.418 (0.096)
1
1.584 (0.119)
4
1.743 (0.096)
6
5.383 (0.032)
4
4.492 (0.035)
10
4.219 (0.038)
4
1.145 (0.059)
1
2.957 (0.063)
1
2.88
CADD 1.727 (0.142)
1
2.754 (0.072)
8
4.166 (0.065)
10
2.827 (0.037)
9
3.112 (0.08)
9
1.835 (0.211)
8
3.663 (0.076)
9
6.609 (0.009)
8
3.344 (0.072)
4
4.028 (0.057)
9
4.472 (0.109)
9
4.618 (0.024)
1
3.539 (0.031)
2
5.53 (0.021)
9
4.532 (0.045)
10
3.741 (0.049)
7
7.06
ModifiedChi2 2.875 (0.075)
12
1.492 (0.425)
3
2.527 (0.419)
7
1.057 (0.057)
2
1.872 (0.251)
6
1.495 (0.275)
7
2.032 (0.61)
7
8.63 (0.011)
12
5.217 (0.053)
12
1.747 (0.395)
5
4.389 (0.429)
8
8.138 (0.006)
12
5.789 (1.559)
11
7.814 (0.02)
12
1.179 (0.041)
2
3.851 (0.124)
9
7.94
CAIM 2.273 (0.079)
8
1.533 (0.085)
4
1.79 (0.026)
3
1.367 (0.105)
4
1.77 (0.098)
4
1.206 (0.113)
4
0.888 (0.062)
3
5.588 (0.101)
4
3.481 (0.102)
7
1.396 (0.105)
3
1.24 (0.057)
3
5.518 (0.027)
6
4.048 (0.019)
4
4.123 (0.017)
2
1.719 (0.078)
4
3.44 (0.061)
5
4.25
FCAIM 2.212 (0.084)
7
1.533 (0.085)
4
1.79 (0.026)
3
1.367 (0.105)
4
1.77 (0.098)
4
1.206 (0.113)
4
0.888 (0.062)
3
5.588 (0.101)
4
3.477 (0.103)
6
1.389 (0.115)
2
1.253 (0.062)
4
5.518 (0.027)
6
4.048 (0.019)
4
4.123 (0.017)
2
1.719 (0.078)
4
3.44 (0.061)
5
4.12
Khiops 2.539 (0.091)
11
2.901 (0.154)
10
3.353 (0.069)
9
3.093 (0.058)
10
2.938 (0.1)
8
4.421 (0.078)
12
4.324 (0.049)
11
6.141 (0.05)
6
3.583 (0.045)
9
2.938 (0.078)
8
4.867 (0.052)
10
6.925 (0.016)
11
6.353 (0.025)
12
5.504 (0.041)
8
2.805 (0.054)
8
4.853 (0.049)
12
9.69
MODL 1.853 (0.103)
3
1.642 (0.069)
6
1.939 (0.102)
6
1.498 (0.063)
6
1.761 (0.106)
3
0.926 (0.112)
3
1.001 (0.079)
5
5.003 (0.093)
3
2.721 (0.102)
2
2.337 (0.088)
7
1.503 (0.098)
5
5.503 (0.016)
5
4.407 (0.031)
9
4.295 (0.029)
6
1.73 (0.039)
6
3.273 (0.064)
2
4.81
CACC 2.342 (0.151)
9
2.053 (0.197)
7
1.922 (0.254)
5
2.134 (0.131)
7
2.134 (0.28)
7
1.251 (0.255)
6
1.287 (0.401)
6
7.976 (0.114)
11
3.729 (0.229)
10
1.912 (0.103)
6
1.169 (0.047)
2
5.614 (0.012)
10
4.089 (0.02)
8
4.224 (0.126)
5
2.559 (0.288)
7
3.434 (0.062)
4
6.88

Time

Table 6. The average running time (in milliseconds) associated with the discretization performed by the twelve discretization algorithms on the sixteen benchmark datasets. The values in round brackets indicate standard deviation (over the 10 folds). The values in third row show rank of a given discretization algorithm for a given dataset. Bolded values indicate the best results for a given dataset. Last column shows average rank of a given algorithm scored over all datasets. Abbreviations for dataset names can be found in Table 3
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Equal Width 1.095 (0.153)
3
0.359 (0.039)
2
0.784 (0.11)
1
1.514 (0.202)
1
0.511 (0.43)
3
5.596 (0.876)
2
5.223 (0.117)
2
1.818 (0.184)
1
0.296 (0.026)
2
2.137 (0.36)
1
12.28 (1.563)
1
52.84 (8.61)
2
45.75 (7.455)
1
7.64 (0.055)
1
2.35 (0.173)
2
2.516 (0.027)
2
1.69
Equal Frequency 1.049 (0.166)
1
0.341 (0.046)
1
0.817 (0.143)
2
1.554 (0.123)
2
0.319 (0.045)
1
5.131 (0.552)
1
4.727 (0.438)
1
2.056 (0.025)
2
0.289 (0.019)
1
2.196 (0.376)
2
13.05 (2.151)
2
44.86 (5.504)
1
48.23 (6.334)
2
7.687 (0.061)
2
2.23 (0.212)
1
2.508 (0.01)
1
1.44
Maximum Entropy 1.309 (0.287)
5
1.336 (0.173)
6
17.2 (3.409)
8
11.4 (1.935)
8
2.928 (0.42)
8
15.53 (4.078)
7
62.14 (22.4)
9
44.65 (5.945)
3
3.028 (0.348)
3
66.71 (8.682)
9
335 (56.52)
8
64.39 (2.616)
4
69.37 (3.932)
3
293 (45.88)
8
53.95 (2.84)
8
14.51 (2.415)
8
6.56
Paterson - Niblett 7.204 (0.874)
10
1.921 (0.129)
8
5.075 (0.747)
7
8.292 (1.13)
7
2.435 (0.323)
7
45.13 (13.22)
9
9.039 (1.41)
6
1220 (4.861)
10
19.55 (0.64)
9
36.48 (10.74)
8
545 (107)
9
1225 (64.08)
10
358 (30.33)
10
556 (36.09)
9
39.49 (1.366)
7
40.2 (7.495)
9
8.44
IEM 2.353 (0.28)
7
0.812 (0.033)
5
2.178 (0.192)
5
3.864 (0.478)
5
1.111 (0.152)
5
10.1 (1.304)
5
8.878 (1.515)
5
58.31 (2.886)
6
7.282 (0.77)
4
8.75 (0.603)
5
36.16 (2.401)
5
100 (0.72)
8
119 (35.88)
9
113 (13.29)
5
9.702 (0.359)
5
13.83 (1.835)
7
5.69
CADD 1.895 (0.326)
6
7.301 (1.139)
10
204 (22.14)
12
87.09 (16.5)
11
22.15 (2.933)
12
131 (17.44)
10
354 (63.09)
10
386 (45.68)
9
8.049 (1.392)
5
1107 (281)
12
2147 (0)
10
79.37 (5.338)
7
112 (13.08)
8
2147 (0)
11
618 (19.57)
12
114 (13.4)
10
9.69
ModifiedChi2 35.52 (7.737)
11
28.4 (3.483)
12
102 (5.673)
10
85.79 (14.22)
10
16.92 (2.811)
11
744 (68.02)
11
774 (204)
11
192 (54.41)
8
10.33 (2.732)
7
181 (23.28)
11
3947 (384)
11
9193 (2645)
11
11184 (4036)
12
769 (266)
10
354 (299)
11
203 (22.08)
11
10.5
CAIM 1.291 (0.048)
4
0.508 (0.02)
4
1.095 (0.03)
4
1.913 (0.046)
3
0.584 (0.022)
4
6.494 (0.661)
4
6.706 (0.49)
4
71.74 (34.03)
7
16.16 (2.28)
8
6.503 (0.175)
4
32.3 (1.587)
4
79.09 (25)
6
86.25 (27.69)
5
43.32 (2.254)
4
5.332 (0.819)
4
4.059 (0.12)
4
4.56
FCAIM 1.072 (0.012)
2
0.419 (0.007)
3
0.955 (0.012)
3
2.048 (0.281)
4
0.5 (0.007)
2
6.294 (0.773)
3
5.734 (0.733)
3
49.46 (4.401)
4
9.862 (2.55)
6
4.757 (0.836)
3
20.36 (0.284)
3
59.62 (0.793)
3
89.49 (46.11)
6
29.77 (0.184)
3
4.395 (0.051)
3
3.973 (0.028)
3
3.38
Khiops 6.912 (0.387)
9
2.463 (0.15)
9
3.583 (0.082)
6
4.037 (0.113)
6
1.132 (0.047)
6
10.38 (0.139)
6
9.524 (0.139)
7
54.35 (1.552)
5
20.47 (9.381)
10
16.09 (0.741)
6
113 (7.202)
7
74.77 (0.782)
5
80.54 (0.695)
4
123 (6.012)
6
18.95 (0.348)
6
7.904 (0.105)
5
6.44
MODL 43.98 (4.409)
12
10.2 (0.846)
11
115 (23.09)
11
87.84 (4.445)
12
9.338 (1.089)
10
909 (73.31)
12
865 (116)
12
3549 (286)
12
37.7 (6.081)
11
80.93 (7.322)
10
22160 (3021)
12
9770 (775)
12
6284 (183)
11
9381 (973)
12
77.79 (2.53)
9
363 (42.3)
12
11.31
CACC 2.856 (0.952)
8
1.427 (1.076)
7
23.01 (65.63)
9
22.41 (14.51)
9
5.967 (8.5)
9
15.65 (10.47)
8
31.84 (31.91)
8
2147 (0)
11
64.34 (28.5)
12
16.95 (2.127)
7
92.37 (6.94)
6
156 (0.738)
9
98.47 (7.998)
7
277 (355)
7
222 (98.74)
10
10.78 (1.338)
6
8.31

Avg. nbr of intervals

Table 7. The average number of intervals for a continuous feature associated with the discretization performed by the twelve discretization algorithms on the sixteen benchmark datasets. The values in round brackets indicate standard deviation (over the 10 folds). The values in third row show rank of a given discretization algorithm for a given dataset. Bolded values indicate the smallest number of intervals for a given dataset. Last column shows average rank of a given algorithm scored over all datasets. Abbreviations for dataset names can be found in Table 3
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Equal Width 6 (0)
9
6.714 (0.178)
11
21.17 (0.401)
11
7.856 (0.184)
11
8.617 (0.158)
11
11.29 (0.202)
10
22.11 (0.361)
11
14.03 (0.067)
7
7 (0)
8
20.73 (0.795)
11
44.82 (0.349)
10
10 (0)
5
7 (0)
3
22.63 (0.186)
11
16.76 (0.099)
11
6.683 (0.053)
10
9.38
Equal Frequency 6 (0)
9
6.714 (0.178)
11
21.17 (0.401)
11
7.856 (0.184)
11
8.617 (0.158)
11
11.29 (0.202)
10
22.11 (0.361)
11
14.03 (0.067)
7
7 (0)
8
20.73 (0.795)
11
44.82 (0.349)
10
10 (0)
5
7 (0)
3
22.23 (0.189)
10
16.76 (0.099)
11
6.683 (0.053)
10
9.31
Maximum Entropy 1.933 (0.274)
2
5.586 (0.238)
10
19.12 (0.343)
10
7.15 (0.126)
10
8.383 (0.112)
10
10.7 (0.196)
9
20.74 (0.392)
10
14.03 (0.067)
7
3.467 (0.155)
4
19.21 (1.194)
10
44.48 (0.333)
9
3.969 (0.033)
2
4 (0)
2
22.13 (0.189)
9
16.76 (0.097)
10
5.994 (0.049)
8
7.62
Paterson - Niblett 5.817 (0.346)
7
2.3 (0.171)
6
2 (0)
2
2.167 (0.114)
6
2.033 (0.07)
4
4.957 (0.901)
7
1.286 (0.165)
1
14.98 (0.042)
10
5 (0)
6
2.238 (0.258)
3
8.53 (0.931)
6
19.59 (0.773)
10
11.21 (0.608)
10
6.763 (0.2)
3
2.033 (0.052)
5
4.922 (0.272)
6
5.75
IEM 3.4 (0.402)
4
1.129 (0.081)
1
1.717 (0.209)
1
1.078 (0.065)
1
1.567 (0.086)
1
2.157 (0.171)
1
1.529 (0.096)
2
3.03 (0.177)
1
1.989 (0.269)
1
2.509 (0.164)
4
4.95 (0.314)
2
8.488 (0.21)
3
9.381 (0.252)
9
7.242 (0.197)
4
1.222 (0.08)
1
3.017 (0.126)
1
2.31
CADD 1.833 (0.272)
1
5.357 (0.236)
9
17.82 (0.474)
9
6.572 (0.18)
9
7.567 (0.335)
9
3.8 (0.5)
5
15.71 (0.628)
9
13.99 (0.074)
6
3.367 (0.166)
3
14.75 (0.462)
9
29.15 (1.115)
8
3.938 (0.059)
1
3.853 (0.049)
1
19.41 (0.172)
8
16.16 (0.181)
9
5.811 (0.137)
7
6.44
ModifiedChi2 14.88 (0.599)
12
2.214 (1.311)
4
5.15 (2.636)
7
1.178 (0.101)
2
2.9 (1.019)
6
4.329 (1.167)
6
7.271 (3.889)
7
383 (2.546)
12
44.74 (1.501)
12
2.674 (0.829)
5
48.48 (12.72)
12
98.12 (0.17)
12
38.94 (28.31)
12
295 (2.148)
12
1.267 (0.064)
2
6.656 (0.831)
9
8.25
CAIM 5.983 (0.053)
8
2 (0)
2
2 (0)
2
1.978 (0.029)
3
2 (0)
2
3.429 (0)
3
1.714 (0)
3
11 (0)
4
7.011 (0.035)
10
1.912 (0)
1
5 (0)
3
10 (0)
5
7 (0)
3
6.132 (0.028)
1
2 (0)
3
4 (0)
2
3.44
FCAIM 5.017 (0.214)
6
2 (0)
2
2 (0)
2
1.978 (0.029)
3
2 (0)
2
3.429 (0)
3
1.714 (0)
3
11 (0)
4
6.878 (0.152)
7
1.912 (0)
1
5 (0)
3
10 (0)
5
7 (0)
3
6.132 (0.028)
1
2 (0)
3
4 (0)
2
3.12
Khiops 4.65 (0.183)
5
4.657 (0.443)
8
6.567 (0.326)
8
5.55 (0.26)
7
4.817 (0.364)
7
15.83 (0.663)
12
15.57 (0.495)
8
9.96 (0.363)
3
3.956 (0.107)
5
4.926 (0.208)
8
23.77 (0.76)
7
28.45 (0.444)
11
29.39 (0.414)
11
15.04 (0.517)
7
4.115 (0.126)
7
9.644 (0.246)
12
7.88
MODL 3.233 (0.344)
3
2.257 (0.113)
5
2.617 (0.261)
5
2.033 (0.054)
5
2.183 (0.214)
5
2.243 (0.136)
2
1.986 (0.125)
5
5.73 (0.279)
2
2.944 (0.307)
2
4.144 (0.134)
7
4.76 (0.344)
1
8.875 (0.121)
4
8.717 (0.176)
8
7.289 (0.211)
5
2.235 (0.063)
6
4.006 (0.142)
4
4.31
CACC 6.95 (0.981)
11
4.1 (1.321)
7
4.033 (5.964)
6
6.322 (1.127)
8
5.333 (3.599)
8
5.743 (2.569)
8
5.871 (4.124)
6
306 (15.72)
11
15.42 (4.301)
11
3.244 (0.278)
6
5.05 (0.053)
5
10 (0)
5
7 (0)
3
9.784 (5.852)
6
11.19 (3.615)
8
4.289 (0.11)
5
7.12

Classifiers comparison over multiple datasets

a)

b)

c)

d)

e)

f)

Figure 1. Graphical representation of the Nemenyi test performed for results obtained by NB and FNB run on the sixteen original datasets, and the results for Naive Bayes, LBR, AODE, HNB, WAODE, AODEsr classifiers shown on panels a, b, c, d, e, f, respectively, run on the sixteen datasets discretized by the twelve discretization algorithms. The best result is obtained by the setup with the lowest rank; CD is the critical value which determines whether different setups are statistically different. The sets of classifiers that are not significantly different are shown using the horizontal lines. The considered setups are shown in the x:y form where x denotes a classifier and y denotes a discretization method; Abbrevations for x and y can be found in Table 2 and Table 1, respectively. O denotes the original (raw) data.




Figure 2. Graphical representation of the Nemenyi test performed for results obtained by NB and FNB run on the sixteen original datasets, and the results for the 6 classifiers run on the sixteen datasets discretized by the twelve discretization algorithms. The best result is obtained by the setup with the lowest rank; CD is the critical value which determines whether different setups are statistically different. The sets of classifiers that are not significantly different are shown using the horizontal lines. The considered setups are shown in the x:y form where x denotes a classifier and y denotes a discretization method; Abbrevations for x and y can be found in Table 2 and Table 1, respectively. O denotes the original (raw) data.


Figure 3. WDLC values for all considered setups. The values are based on comparison with all other setups except the setups that include the same classifier. The setups include NB or FNB executed on the sixteen raw datasets and each of the six classifiers on the sixteen datasets discretized by each of the twelve algorithms. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.


Figure 4. WDLC values for all considered setups. The values are based on comparison among setups that are based on the same classifier. The setups include NB or FNB executed on the sixteen raw datasets and each of the six classifiers on the sixteen datasets discretized by each of the twelve algorithms. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.

Table 8. Number of wins, draws, and losses, respectively, achieved by a setup in a given row when compared against all setups (using all discretization methods) for a given classifier shown in the column. The setups include NB or FNB classifier run on the sixteen raw datasets and each of the six classifiers run on the sixteen datasets discretized by each of the twelve discretization algorithms. Bolded scores show WDLC scores greater than 0.2; underlined scores printed in italic correspond to WDLC scores smaller than -0.2. Gray shading indicates comparison between setups that use the same classifier. The last column contains the aggregated, over all other setups, scores for a given setup. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Original Data Discretized data
NBFNBNBLBRAODEHNBAODEsrWAODEAggregated(W-L)/(W+D+L)
Original DataNB - 0/9/78/108/765/107/805/92/9515/77/1007/75/11028/79/8568/547/553-0.415
FNB7/9/0 - 32/137/238/121/636/112/7425/92/7510/95/8739/88/65127/654/387-0.223
NBEW5/10/11/11/418/138/205/115/723/108/8119/83/905/81/10628/85/7984/631/453-0.316
EF8/8/01/12/322/133/2110/115/677/118/6731/83/7810/90/9243/69/80132/628/408-0.236
ME3/12/11/12/39/106/617/96/895/86/10127/70/959/75/10840/64/88101/521/546-0.381
PN5/9/22/11/315/119/429/118/656/113/7329/89/7411/100/8142/77/73119/636/413-0.252
IM8/7/13/11/233/134/913/122/5713/116/6336/84/7215/98/7945/75/72166/647/355-0.162
CD5/10/11/11/49/111/566/92/945/79/10824/63/1055/76/11128/80/8483/522/563-0.411
MC5/10/12/11/325/122/296/129/579/111/7229/90/7311/96/8538/86/68125/655/388-0.225
CM8/8/03/11/231/145/011/133/4810/123/5935/96/6114/112/6643/85/64155/713/300-0.124
FC7/9/02/12/233/142/111/133/4811/123/5835/93/6415/107/7044/81/67158/700/310-0.13
Kh6/10/01/13/217/124/356/102/845/88/9924/75/937/73/11231/73/8897/558/513-0.356
MO8/8/03/11/242/134/016/126/5011/123/5836/90/6617/100/7547/73/72180/665/323-0.122
CC8/7/13/11/230/136/109/132/5110/119/6333/90/6914/108/7044/81/67151/684/333-0.156
LBREW6/9/15/10/152/126/1416/133/2713/109/7032/100/6014/98/8042/86/64180/671/317-0.117
EF8/8/04/12/068/123/122/134/2016/135/4141/109/4217/118/5752/89/51228/728/2120.014
ME7/9/06/9/153/131/813/126/379/129/5431/101/6010/103/7943/89/60172/697/299-0.109
PN7/8/15/10/154/120/1810/119/4711/125/5636/99/5712/119/6142/93/57177/693/298-0.104
IM7/9/05/11/069/121/235/135/625/138/2946/98/4830/106/5657/84/51274/702/1920.07
CD5/10/14/10/252/116/2415/124/378/116/6831/90/7111/91/9037/94/61163/651/354-0.164
MC5/10/14/10/247/123/229/132/3514/129/4930/114/4817/119/5643/96/53169/733/266-0.083
CM8/8/07/9/087/105/030/143/322/144/2648/116/2826/128/3856/102/34284/755/1290.133
FC7/9/06/10/087/104/130/141/523/143/2648/116/2828/127/3756/101/35285/751/1320.131
Kh5/11/03/13/049/133/1017/124/3514/127/5134/99/5916/103/7343/93/56181/703/284-0.088
MO7/9/06/10/086/105/134/141/124/141/2747/101/4429/115/4855/94/43288/716/1640.106
CC8/7/18/7/178/106/831/136/925/138/2948/109/3527/120/4555/95/42280/718/1700.094
AODEEW7/8/14/11/152/132/839/128/2517/126/3342/103/4716/111/6546/99/47223/718/227-0.003
EF9/6/18/8/085/105/247/136/923/140/1345/123/2425/126/4156/106/30298/750/1200.152
ME8/8/06/10/076/98/1838/128/2618/112/4637/105/5017/114/6149/98/45249/673/2460.003
PN7/8/15/10/152/124/1613/133/4611/111/5434/99/5912/108/7244/82/66178/675/315-0.117
IM7/9/05/10/172/120/052/132/831/133/1257/113/2227/130/3557/105/30308/752/1080.171
CD7/8/16/8/279/92/2147/108/3717/115/4443/102/4721/100/7148/99/45268/632/2680
MC6/9/14/11/153/117/2217/142/3315/125/3637/112/4318/126/4848/103/41198/745/225-0.023
CM9/7/08/8/091/101/061/130/134/140/257/116/1926/133/3358/109/25344/744/800.226
FC9/7/08/8/090/102/062/130/033/142/159/117/1627/138/2758/115/19346/759/630.242
Kh9/7/06/10/087/97/841/140/1123/125/2841/121/3018/132/4254/106/32279/738/1510.11
MO9/7/07/9/088/104/061/131/034/138/456/123/1333/142/1761/115/16349/769/500.256
CC8/8/07/9/077/115/048/136/829/135/1255/120/1725/143/2458/108/26307/774/870.188
HNBEW7/6/34/9/363/96/3347/106/3934/107/5127/120/2917/115/6032/129/31231/688/249-0.015
EF10/5/17/7/291/65/3653/86/5341/101/5028/122/2624/104/6445/105/42299/595/2740.021
ME7/7/27/6/385/59/4844/88/6023/98/7120/101/5514/97/8140/105/47240/561/367-0.109
PN6/9/15/9/244/119/2913/108/7113/96/8313/98/659/93/9022/99/71125/631/412-0.246
IM7/8/15/10/173/98/2159/108/2535/126/3130/126/2026/124/4236/134/22271/734/1630.092
CD7/6/36/6/480/52/6039/89/6425/83/8416/109/5115/86/9123/105/64211/536/421-0.18
MC8/7/15/8/362/89/4120/112/6014/113/6519/117/4017/115/6034/112/46179/673/316-0.117
CM11/5/08/7/198/82/1268/112/1247/126/1938/132/629/131/3251/127/14350/722/960.217
FC10/6/08/7/193/87/1265/115/1245/126/2140/130/628/131/3351/127/14340/729/990.206
Kh9/5/26/8/286/71/3554/101/3736/112/4436/111/2926/108/5848/121/23301/637/2300.061
MO9/7/07/8/186/94/1267/111/1441/138/1343/131/230/138/2452/134/6335/761/720.225
CC9/6/17/7/279/94/1951/116/2533/128/3132/131/1325/126/4146/121/25282/729/1570.107
AODEsrEW9/6/15/10/177/104/1155/118/1944/121/2755/112/2522/126/2856/115/21323/712/1330.163
EF10/5/19/6/194/79/1966/94/3247/123/2251/117/2425/129/2258/113/21360/666/1420.187
ME9/6/16/9/191/73/2851/101/4033/110/4942/103/4714/101/6149/101/42295/604/2690.022
PN9/7/06/9/164/123/526/128/3822/122/4842/106/4413/110/5350/90/52232/695/241-0.008
IM8/8/06/10/082/110/063/128/153/134/567/116/934/131/1162/120/10375/757/360.29
CD7/8/17/7/281/87/2455/101/3631/123/3836/118/3814/109/5347/113/32278/666/2240.046
MC7/7/26/8/267/99/2619/134/3920/131/4132/118/4215/118/4347/105/40213/720/235-0.019
CM11/5/09/7/0104/87/183/107/257/135/074/117/136/138/270/122/0444/718/60.375
FC11/5/09/7/0103/88/186/104/260/131/174/118/038/137/171/121/0452/711/50.383
Kh10/6/07/8/196/87/969/105/1850/120/2255/118/1927/119/3066/105/21380/668/1200.223
MO10/6/08/8/0101/91/081/111/070/122/081/110/146/129/172/120/0469/697/20.4
CC9/6/19/6/195/88/966/116/1049/131/1267/115/1036/125/1571/106/15402/693/730.282
WAODEEW9/4/34/8/469/84/3952/93/4740/98/5434/119/3922/113/5723/121/32253/640/275-0.019
EF8/6/27/7/276/68/4852/85/5539/95/5829/122/4119/112/6124/130/22254/625/289-0.03
ME8/5/36/7/380/52/6043/80/6917/97/7821/98/7311/93/8814/108/54200/540/428-0.195
PN6/8/24/8/451/101/4015/106/7113/100/7918/109/659/86/9711/106/59127/624/417-0.248
IM6/9/14/10/271/92/2957/101/3445/106/4148/113/3128/115/4930/133/13289/679/2000.076
CD6/7/35/7/481/69/4244/96/5225/111/5619/128/4512/112/6816/116/44208/646/314-0.091
MC4/9/34/7/555/77/6011/109/7213/104/7513/118/617/105/8018/118/40125/647/396-0.232
CM8/6/27/6/387/74/3172/88/3251/108/3347/129/1630/127/3533/142/1335/680/1530.156
FC8/6/27/6/387/74/3173/87/3249/110/3348/128/1630/128/3434/141/1336/680/1520.158
Kh8/4/46/6/485/71/3658/94/4038/104/5035/118/3925/107/6029/118/29284/622/2620.019
MO7/8/16/8/287/80/2571/87/3453/104/3551/119/2236/112/4439/137/0350/655/1630.16
CC7/7/25/8/373/87/3259/90/4339/108/4542/118/3225/121/4638/124/14288/663/2170.061

Table 9. Number of wins, draws, and losses, respectively, achieved by a setup in a given row when compared against a setup in a given column. The setups include NB or FNB classifier run on the sixteen raw datasets and each of the six classifiers run on the sixteen datasets discretized by each of the twelve discretization algorithms. Bolded scores show WDLC scores greater than 0.2; underlined scores printed in italic correspond to WDLC scores smaller than -0.2. Gray shading indicates comparison between setups that use the same classifier. The last column contains the aggregated, over all other setups, scores for a given setup. Abbrevations for algorithms and classifiers names can be found in Table 1 and Table 2, respectively.
Original DataNBLBRAODEHNBAODEsrWAODE
NBFNBEWEFMEPNIMCDMCCMFCKhMOCCEWEFMEPNIMCDMCCMFCKhMOCCEWEFMEPNIMCDMCCMFCKhMOCCEWEFMEPNIMCDMCCMFCKhMOCCEWEFMEPNIMCDMCCMFCKhMOCCEWEFMEPNIMCDMCCMFCKhMOCCAggregated
Original DataNB - 0/9/71/10/50/8/81/12/32/9/51/7/81/10/51/10/50/8/80/9/70/10/60/8/81/7/81/9/60/8/80/9/71/8/70/9/71/10/51/10/50/8/80/9/70/11/50/9/71/7/81/8/71/6/90/8/81/8/70/9/71/8/71/9/60/7/90/7/90/7/90/7/90/8/83/6/71/5/102/7/71/9/61/8/73/6/71/7/80/5/110/6/102/5/90/7/91/6/91/6/91/5/101/6/90/7/90/8/81/8/72/7/70/5/110/5/110/6/100/6/101/6/93/4/92/6/83/5/82/8/61/9/63/7/63/9/42/6/82/6/84/4/81/8/72/7/768/547/553
FNB7/9/0 - 4/11/13/12/13/12/13/11/22/11/34/11/13/11/22/11/32/12/22/13/12/11/32/11/31/10/50/12/41/9/61/10/50/11/52/10/42/10/40/9/70/10/60/13/30/10/61/7/81/11/40/8/80/10/61/10/51/10/52/8/61/11/40/8/80/8/80/10/60/9/70/9/73/9/42/7/73/6/72/9/51/10/54/6/63/8/51/7/81/7/82/8/61/8/72/7/71/10/51/6/91/9/61/9/60/10/62/7/72/8/60/7/90/7/91/8/70/8/81/6/94/8/42/7/73/7/64/8/42/10/44/7/55/7/43/6/73/6/74/6/62/8/63/8/5127/654/387
NBEW5/10/11/11/4 - 2/13/14/12/02/12/21/13/24/12/03/12/10/13/30/13/31/14/10/13/31/11/40/11/50/9/70/12/41/11/40/11/51/9/62/10/40/8/80/8/80/10/60/9/71/7/80/12/40/9/70/9/71/11/40/10/60/9/72/9/50/7/90/7/90/8/80/8/80/9/71/9/62/5/92/6/82/10/41/9/63/5/84/6/61/5/101/6/91/7/80/8/81/7/80/8/80/6/101/6/90/10/60/8/81/7/82/8/60/4/120/4/120/7/90/7/91/6/93/7/63/6/73/5/83/10/31/9/62/6/85/7/41/7/81/7/82/6/82/7/72/8/684/631/453
EF8/8/01/12/31/13/2 - 6/10/04/11/11/11/45/11/03/10/30/14/20/14/21/14/10/12/41/13/22/9/50/10/61/10/51/10/50/11/52/10/42/10/40/9/70/9/71/10/50/8/81/9/61/11/40/9/70/10/61/11/40/11/52/8/63/9/40/10/60/10/60/9/70/9/70/11/53/8/53/6/75/4/71/10/51/9/66/3/74/7/51/7/81/7/83/6/71/8/72/8/61/9/62/6/81/8/70/9/70/9/72/7/73/7/60/7/90/7/90/8/80/7/91/6/94/6/64/4/85/5/63/8/53/7/64/5/76/5/53/5/83/5/83/6/72/6/83/7/6132/628/408
ME3/12/11/12/30/12/40/10/6 - 2/9/51/8/72/13/12/7/70/9/70/9/71/13/20/7/91/9/60/10/60/7/90/9/72/7/70/9/72/9/52/7/70/7/90/7/90/10/60/7/91/7/80/9/70/6/100/8/82/7/70/8/81/8/72/7/70/6/100/6/100/7/90/6/100/8/83/6/72/5/94/3/91/11/41/8/75/2/94/5/71/6/91/6/92/5/91/7/82/6/80/8/82/4/102/5/90/8/80/8/82/6/82/7/70/6/100/6/100/5/110/6/101/6/93/6/75/3/85/3/83/8/52/7/73/4/95/6/53/5/83/5/83/4/92/6/83/7/6101/521/546
PN5/9/22/11/32/12/21/11/45/9/2 - 0/12/43/9/41/12/30/12/40/12/43/9/40/11/50/10/61/11/40/10/62/9/50/12/41/9/62/9/52/11/30/9/70/9/71/9/60/10/60/10/61/9/60/9/72/8/60/12/40/10/62/8/60/12/40/9/70/9/71/8/70/10/60/9/73/7/64/5/74/5/73/9/42/8/65/4/71/10/51/7/81/9/63/7/61/9/61/9/61/9/62/7/73/7/60/11/50/9/73/6/71/10/50/8/80/8/81/8/70/8/80/9/73/7/64/6/66/4/64/8/43/7/63/7/64/7/53/6/73/6/73/6/73/6/73/7/6119/636/413
IM8/7/13/11/22/13/14/11/17/8/14/12/0 - 7/8/13/12/10/15/10/15/15/10/10/15/11/15/01/12/31/11/41/11/44/9/30/9/73/8/52/11/30/10/60/10/61/11/40/10/60/10/61/12/31/10/53/7/62/11/30/9/73/7/62/11/30/10/60/10/61/9/60/10/60/10/63/9/44/5/74/5/73/9/42/7/76/3/74/8/41/7/81/8/74/6/61/9/63/8/51/8/72/6/84/5/71/11/40/9/73/6/72/9/50/10/60/10/61/8/70/8/81/8/74/6/65/5/66/4/64/8/43/7/64/5/75/6/53/7/63/7/63/6/72/7/73/7/6166/647/355
CD5/10/11/11/40/12/40/11/51/13/24/9/31/8/7 - 2/9/50/10/60/9/70/12/40/9/71/9/60/9/70/8/80/9/72/7/71/7/80/11/52/8/60/6/100/6/100/10/60/5/111/6/90/9/70/5/110/8/82/7/70/7/90/8/83/6/70/5/110/5/110/6/100/5/110/8/82/8/62/5/93/4/93/8/51/6/94/4/83/6/71/4/111/4/111/5/101/4/112/5/90/8/81/5/101/6/90/8/80/7/90/8/82/7/70/6/100/6/100/5/110/6/101/4/112/8/63/6/75/4/72/9/52/7/73/5/84/7/51/7/81/7/83/5/81/6/91/9/683/522/563
MC5/10/12/11/31/12/33/10/37/7/23/12/11/12/35/9/2 - 0/13/30/13/35/8/30/13/30/13/31/11/40/11/52/10/40/13/30/10/62/9/50/14/20/10/60/10/61/12/30/9/70/10/61/11/41/8/73/7/60/11/50/10/63/6/70/12/40/9/70/9/71/9/60/10/60/9/72/10/44/4/85/4/72/10/42/9/55/5/62/9/51/8/71/8/73/6/71/8/71/9/61/10/51/9/64/5/70/10/60/9/73/6/71/9/60/7/90/7/91/8/70/7/90/9/73/8/54/7/54/5/73/8/52/9/55/6/54/9/33/6/73/6/73/7/62/7/72/8/6125/655/388
CM8/8/03/11/23/13/02/14/07/9/04/12/01/15/06/10/03/13/0 - 0/16/04/12/00/16/01/15/02/11/30/12/40/13/32/10/40/12/42/11/32/11/30/10/60/10/62/12/20/11/51/10/51/12/30/10/62/9/52/12/20/12/42/7/72/11/30/10/60/10/61/9/60/10/60/11/53/8/53/7/65/6/53/11/23/8/55/6/54/8/41/9/61/9/64/6/62/8/61/10/52/8/62/7/72/7/71/13/20/11/52/9/53/9/40/10/60/10/61/9/60/10/61/9/64/6/64/7/55/5/64/9/32/9/54/6/66/6/43/7/63/7/63/7/62/8/63/8/5155/713/300
FC7/9/02/12/23/13/02/14/07/9/04/12/01/15/07/9/03/13/00/16/0 - 5/11/00/15/11/15/02/11/30/12/40/13/32/10/40/12/42/11/32/11/30/10/60/10/62/12/20/11/51/10/51/12/30/11/53/8/52/12/20/12/42/7/72/11/30/10/60/10/61/9/60/10/60/11/53/8/53/6/75/6/53/11/23/8/55/6/54/8/41/8/71/8/74/6/62/8/61/10/52/8/62/8/63/6/71/13/20/11/52/9/53/8/50/9/70/9/71/9/60/9/71/8/73/8/54/7/56/4/64/9/32/9/55/5/66/5/53/6/73/6/73/7/62/8/63/7/6158/700/310
Kh6/10/01/13/21/14/11/14/12/13/14/9/31/10/54/12/03/8/50/12/40/11/5 - 0/9/71/12/30/11/50/8/80/12/41/9/60/9/72/10/42/7/70/6/100/6/100/11/50/6/101/7/80/11/50/6/100/8/81/8/70/9/72/7/72/7/70/5/110/6/100/7/90/6/100/8/83/7/63/4/92/6/82/10/41/8/75/4/73/6/71/5/101/6/92/6/80/7/91/6/90/8/81/5/101/5/100/8/80/8/82/7/72/7/70/4/120/5/110/6/100/5/111/5/102/7/73/5/84/5/72/8/63/7/62/6/84/7/52/6/82/6/82/6/82/5/93/5/897/558/513
MO8/8/03/11/23/13/04/12/09/7/05/11/01/15/07/9/03/13/00/16/01/15/07/9/0 - 2/14/03/9/40/13/32/10/42/11/30/12/43/9/42/11/30/10/61/9/61/13/21/9/61/10/51/12/30/11/53/8/52/11/30/12/42/9/52/11/30/10/60/10/61/8/70/10/60/11/53/8/53/6/75/5/63/11/22/9/56/5/54/8/41/8/71/8/74/6/61/9/63/7/62/10/42/7/74/6/61/11/40/10/62/7/73/8/50/9/70/9/72/7/70/9/71/7/84/8/44/6/66/4/64/8/43/6/74/6/66/5/53/6/73/6/74/5/73/7/63/6/7180/665/323
CC8/7/13/11/24/11/12/13/16/9/16/10/00/15/16/9/13/13/00/15/10/15/13/12/10/14/2 - 2/11/30/12/40/13/31/11/40/10/63/10/32/12/20/10/60/10/61/13/20/10/60/10/61/12/30/11/52/8/61/11/40/10/62/8/62/11/30/10/60/10/62/8/60/10/60/10/64/8/43/7/64/5/73/9/42/9/55/5/64/8/41/8/71/8/74/5/71/9/61/9/61/10/52/9/52/7/71/11/40/11/52/9/52/10/41/7/81/7/82/7/70/9/70/11/54/7/55/6/55/4/74/8/43/8/53/8/55/7/43/6/73/6/74/6/62/7/73/8/5151/684/333
LBREW6/9/15/10/15/11/05/9/26/10/04/11/13/12/17/9/04/11/13/11/23/11/25/11/04/9/33/11/2 - 0/14/22/13/14/11/11/12/33/12/13/12/10/12/40/12/42/12/20/12/41/11/40/12/40/10/62/7/74/10/21/9/62/9/53/10/30/7/90/7/90/9/70/10/61/9/63/10/32/9/54/7/56/9/12/9/54/8/45/9/21/8/71/8/71/9/61/7/82/7/70/11/51/8/73/7/64/10/20/10/62/7/73/12/10/5/110/5/110/8/80/7/91/8/74/7/54/6/66/6/45/10/12/10/43/7/66/10/02/6/82/6/83/6/73/5/82/7/7180/671/317
EF8/8/04/12/07/9/06/10/09/7/06/10/04/11/18/8/05/11/04/12/04/12/08/8/03/13/04/12/02/14/0 - 3/13/06/10/01/11/43/13/03/12/10/12/40/12/43/12/10/13/31/12/31/12/30/12/42/12/25/11/01/11/43/9/43/13/00/10/60/11/50/13/30/10/61/11/43/10/34/9/36/6/46/10/02/10/46/7/35/11/01/8/71/9/63/11/21/10/53/8/51/10/52/8/62/11/34/11/10/11/53/9/44/12/00/9/70/9/70/10/60/8/81/10/55/7/44/6/66/6/47/9/03/8/54/9/37/9/03/7/63/7/63/8/53/7/64/6/6228/728/212
ME7/9/06/9/14/12/05/10/17/9/05/9/24/11/17/9/04/10/23/13/03/13/04/12/04/10/23/13/01/13/20/13/3 - 3/11/20/10/62/13/13/11/21/10/51/10/51/15/00/10/61/10/50/13/30/13/30/13/33/10/31/8/71/12/33/10/30/10/60/10/60/12/40/9/71/9/62/9/52/9/54/8/46/9/11/10/54/8/45/7/41/8/71/8/72/8/61/9/62/8/60/10/61/8/70/10/63/8/50/9/72/9/53/9/40/7/90/7/90/10/60/7/91/9/62/8/64/7/53/9/46/8/23/8/53/9/46/8/23/6/73/6/73/7/63/6/74/7/5172/697/299
PN7/8/15/10/14/11/15/10/17/7/24/12/03/9/47/7/23/13/04/10/24/10/26/9/13/11/24/11/11/11/40/10/62/11/3 - 0/10/62/9/53/12/10/11/50/11/52/11/30/11/50/12/41/11/40/11/53/8/51/15/00/10/63/8/52/13/10/10/60/10/61/8/70/10/60/11/53/8/55/5/65/6/54/10/22/9/55/5/65/9/21/9/61/9/63/8/51/10/51/11/41/10/52/9/53/9/40/13/30/11/53/7/62/12/20/9/70/9/71/8/70/10/60/12/43/8/54/7/55/6/53/11/23/8/53/8/55/9/23/7/63/7/63/7/63/7/64/8/4177/693/298
IM7/9/05/11/05/11/05/11/07/9/06/9/17/9/08/7/16/10/04/12/04/12/07/9/04/12/06/10/03/12/14/11/16/10/06/10/0 - 5/9/24/12/00/16/01/15/05/9/20/16/01/15/04/9/31/12/33/12/15/11/01/13/25/7/44/12/00/12/40/12/41/13/20/13/31/12/34/7/56/6/45/8/36/9/12/8/67/6/35/9/21/9/61/10/55/6/51/10/53/10/32/9/55/6/55/8/34/10/20/11/55/7/45/9/20/11/50/10/63/8/50/8/81/9/65/6/56/6/47/6/37/6/33/8/56/6/46/9/13/8/53/8/54/7/53/8/54/6/6274/702/192
CD5/10/14/10/26/9/14/10/25/9/25/9/25/8/35/11/05/9/23/11/23/11/24/10/24/9/33/10/31/12/30/13/31/13/25/9/22/9/5 - 3/10/30/13/30/12/42/11/30/11/51/11/40/11/50/10/60/12/45/9/20/9/70/11/53/9/40/9/70/8/80/11/50/7/90/10/62/10/42/7/74/8/47/7/21/8/74/9/35/7/41/6/91/6/91/9/61/5/102/8/60/10/61/8/71/8/74/9/30/8/80/9/74/8/40/6/100/6/100/8/80/6/101/5/102/9/54/7/55/7/45/10/12/8/63/9/46/9/11/7/81/7/83/8/52/6/83/7/6163/651/354
MC5/10/14/10/24/10/24/10/27/7/23/11/23/11/26/8/22/14/03/11/23/11/27/7/23/11/22/12/21/12/31/12/32/11/31/12/30/12/43/10/3 - 0/13/30/13/31/12/30/12/40/13/33/9/41/11/43/9/41/11/41/11/43/8/50/13/30/11/50/11/52/11/30/12/40/12/42/10/45/6/54/7/53/10/32/10/44/7/53/11/21/11/41/12/33/8/51/12/31/10/52/10/42/9/54/7/51/11/40/12/44/7/51/12/30/10/60/10/63/8/50/11/50/12/44/8/44/7/55/6/54/9/33/9/44/8/44/9/33/7/63/7/63/9/43/8/53/9/4169/733/266
CM8/8/07/9/08/8/07/9/09/7/07/9/06/10/010/6/06/10/06/10/06/10/010/6/06/10/06/10/04/12/04/12/05/10/15/11/00/16/03/13/03/13/0 - 0/16/05/10/10/15/11/15/04/10/22/11/33/11/24/12/00/13/34/9/33/12/10/13/30/13/31/14/10/13/31/13/24/9/36/7/36/8/27/9/03/9/46/9/16/10/01/12/31/12/34/9/32/10/42/12/23/10/34/8/45/8/34/12/00/11/53/11/24/12/00/11/50/11/52/10/40/13/31/11/45/8/35/9/27/7/27/9/03/8/56/8/27/9/03/9/43/8/53/10/33/9/44/8/4284/755/129
FC7/9/06/10/08/8/07/9/09/7/07/9/06/10/010/6/06/10/06/10/06/10/010/6/06/9/16/10/04/12/04/12/05/10/15/11/00/15/14/12/03/13/00/16/0 - 4/11/10/15/11/14/14/10/22/11/33/11/24/12/00/13/34/9/33/12/10/13/30/13/32/13/10/13/31/13/24/9/36/7/36/8/27/9/03/9/46/9/16/10/01/12/31/12/34/9/32/10/42/12/23/10/34/9/35/8/34/12/00/12/44/10/24/12/00/11/50/11/53/9/40/12/41/11/44/9/35/9/27/7/27/9/03/8/56/8/27/9/03/8/53/8/54/9/33/9/44/8/4285/751/132
Kh5/11/03/13/06/10/05/10/16/10/06/9/14/11/16/10/03/12/12/12/22/12/25/11/02/13/12/13/12/12/21/12/30/15/13/11/22/9/53/11/23/12/11/10/51/11/4 - 0/12/41/9/61/12/30/12/40/12/44/10/22/9/53/8/53/12/10/11/50/10/60/11/50/10/61/10/53/8/53/8/53/9/45/10/13/8/56/5/54/9/31/9/61/8/72/9/51/7/82/9/52/9/52/6/81/9/63/10/31/9/63/7/63/11/20/8/80/7/90/9/70/9/71/9/64/8/44/7/54/8/47/8/13/8/54/8/46/9/12/7/72/7/72/8/62/7/73/8/5181/703/284
MO7/9/06/10/07/9/08/8/09/7/06/10/06/10/011/5/07/9/05/11/05/11/010/6/06/9/16/10/04/12/03/13/06/10/05/11/00/16/05/11/04/12/01/15/01/15/04/12/0 - 1/14/13/10/32/11/33/11/26/10/00/14/24/9/33/13/01/12/30/13/32/12/20/12/40/14/24/8/46/6/47/7/27/8/12/8/66/8/25/11/01/9/61/10/54/7/51/9/63/10/33/9/44/7/56/8/24/10/20/12/44/8/43/12/10/12/40/11/54/7/50/9/71/10/54/8/45/7/47/7/27/8/13/9/45/8/36/10/03/8/53/8/55/6/53/7/64/8/4288/716/164
CC8/7/18/7/18/7/16/9/18/7/16/10/06/10/09/6/16/10/05/10/15/10/18/7/15/10/16/10/04/11/13/12/15/10/14/12/00/15/14/11/13/13/00/15/11/14/16/9/11/14/1 - 4/9/31/12/34/10/24/12/01/12/35/9/23/13/00/12/40/12/42/13/10/12/41/12/35/8/36/7/36/6/47/8/12/10/46/8/26/9/11/11/41/11/45/8/31/12/32/11/32/10/44/8/45/8/33/12/10/12/43/10/33/13/02/8/62/8/62/10/40/11/51/10/55/7/46/7/37/5/46/9/13/9/45/8/36/9/13/8/53/8/54/9/33/8/54/8/4280/718/170
AODEEW7/8/14/11/14/12/04/11/17/9/06/9/13/12/17/9/04/11/13/12/13/12/15/11/03/12/13/12/14/12/03/12/13/13/04/11/13/9/45/11/04/9/32/10/42/10/43/12/13/10/33/9/4 - 0/13/33/9/44/11/11/12/33/11/23/10/30/12/40/12/41/12/31/12/31/12/34/9/34/6/64/9/37/8/13/10/36/6/45/9/22/9/52/9/52/9/51/11/42/8/60/11/51/9/64/7/54/10/21/10/51/12/33/10/30/8/80/7/91/10/50/8/81/9/64/8/44/7/56/8/26/10/03/9/43/10/36/9/12/7/72/7/74/8/43/8/53/8/5223/718/227
EF9/6/18/8/07/9/07/9/010/6/07/9/05/10/111/5/07/8/16/10/05/11/010/6/05/11/05/11/06/10/04/12/03/13/05/11/03/12/16/10/04/11/13/11/23/11/24/12/03/11/23/12/13/13/0 - 3/13/05/11/01/13/23/13/04/11/11/13/20/14/21/14/11/12/31/13/23/10/35/7/46/9/17/9/03/11/27/8/15/10/11/11/41/12/33/11/21/13/23/12/12/11/33/8/54/9/35/11/01/10/54/10/24/10/20/13/30/12/41/12/30/10/61/10/54/9/35/7/47/8/18/8/04/8/44/10/27/8/13/10/33/11/24/10/23/9/44/8/4298/750/120
ME8/8/06/10/07/9/06/10/08/8/06/8/26/7/38/8/06/7/35/9/25/8/38/8/05/8/36/8/27/7/22/12/23/13/05/8/31/12/34/12/04/9/32/11/32/11/34/12/02/11/32/10/44/9/30/13/3 - 5/8/31/9/63/12/13/10/30/10/60/10/60/14/21/8/71/9/63/9/42/9/55/8/37/8/13/9/44/8/45/8/31/8/71/8/72/10/41/10/53/10/33/8/51/9/61/12/34/9/31/9/62/10/44/9/30/10/60/10/60/10/60/9/71/9/64/7/54/7/54/10/27/8/14/8/43/8/57/8/13/9/43/9/43/8/53/8/54/8/4249/673/246
PN7/8/15/10/14/11/14/11/17/7/24/12/03/11/27/7/25/11/02/12/22/12/27/8/13/11/24/11/12/10/40/11/53/10/30/15/10/11/52/9/54/11/10/12/40/12/42/10/40/10/60/12/41/11/40/11/53/8/5 - 1/10/53/7/62/13/10/10/60/10/61/9/60/11/50/11/53/8/54/6/65/7/44/9/32/8/65/6/54/10/21/9/61/9/63/8/51/9/61/10/51/9/62/8/64/8/40/10/60/10/62/8/62/10/40/9/70/9/71/8/70/8/80/11/53/8/54/6/66/6/43/8/53/7/65/6/55/7/43/6/73/6/73/7/63/7/63/8/5178/675/315
IM7/9/05/10/16/10/05/11/08/8/06/10/07/9/09/7/06/10/04/12/04/12/07/9/04/12/06/10/06/9/14/11/17/8/16/10/02/13/17/9/04/11/13/13/03/13/05/9/22/14/03/12/13/12/12/13/16/9/15/10/1 - 6/8/23/12/10/15/10/15/14/11/10/15/12/13/15/9/26/9/17/7/26/10/03/11/28/6/26/9/12/11/33/10/36/7/31/13/24/11/12/11/32/12/27/7/24/11/10/12/45/9/23/12/10/12/41/11/42/11/30/10/61/12/35/8/35/9/29/6/17/8/13/10/35/10/16/9/13/9/43/9/44/9/33/8/54/10/2308/752/108
CD7/8/16/8/27/9/06/8/27/8/16/8/26/7/38/8/07/6/37/7/27/7/27/7/25/9/26/8/25/9/24/9/33/12/15/8/34/7/55/11/05/8/33/9/43/9/45/8/33/9/42/9/52/11/30/13/31/12/36/7/32/8/6 - 4/8/40/11/50/11/51/13/20/10/61/11/45/7/43/7/65/9/28/6/22/9/57/7/25/8/32/10/42/10/41/12/31/9/62/8/63/8/52/9/52/10/46/7/31/8/71/11/44/9/30/8/80/8/81/8/70/6/101/8/75/7/45/8/36/9/16/9/13/7/65/8/36/8/21/10/51/10/55/7/42/9/53/7/6268/632/268
MC6/9/14/11/15/9/24/9/37/7/24/12/03/11/27/6/34/12/03/11/23/11/27/7/23/11/23/11/23/10/30/13/33/10/31/13/20/12/44/9/33/13/01/12/31/12/31/12/30/13/30/13/33/10/31/11/43/10/31/13/21/12/34/8/4 - 0/12/40/12/42/11/30/13/30/13/33/10/34/8/45/6/54/9/32/11/36/5/55/11/01/11/41/11/44/8/41/11/41/11/43/9/42/9/54/7/51/12/30/12/43/8/51/14/10/12/40/12/44/7/50/11/50/13/34/8/45/7/45/7/44/10/24/9/35/7/44/11/13/8/53/9/45/7/43/9/43/11/2198/745/225
CM9/7/08/8/09/7/06/10/010/6/07/9/06/10/011/5/07/9/06/10/06/10/011/5/06/10/06/10/09/7/06/10/06/10/06/10/04/12/07/9/05/11/03/13/03/13/05/11/03/12/14/12/04/12/02/13/16/10/06/10/01/15/05/11/04/12/0 - 0/16/05/10/10/16/01/15/05/9/25/9/27/9/09/6/13/11/210/6/06/10/02/11/32/11/34/10/21/13/23/11/23/10/32/11/35/9/25/10/10/13/34/11/14/11/10/12/40/12/42/11/30/12/41/11/45/9/25/9/28/8/08/7/13/10/35/11/07/8/13/9/43/9/44/10/23/9/44/10/2344/744/80
FC9/7/08/8/09/7/06/10/010/6/07/9/06/10/011/5/07/9/06/10/06/10/010/6/06/10/06/10/09/7/05/11/06/10/06/10/04/12/08/8/05/11/03/13/03/13/06/10/03/13/04/12/04/12/02/14/06/10/06/10/01/15/05/11/04/12/00/16/0 - 4/11/10/16/01/15/05/9/25/10/17/9/09/6/13/12/110/6/06/10/02/11/33/11/25/9/21/13/23/11/23/10/32/12/25/9/25/11/00/14/24/11/14/12/00/13/30/12/43/10/30/12/41/12/35/9/25/9/28/8/08/8/03/11/25/11/07/9/03/10/33/10/34/10/23/9/44/11/1346/759/63
Kh9/7/06/10/08/8/07/9/09/7/07/8/16/9/110/6/06/9/16/9/16/9/19/7/07/8/16/8/27/9/03/13/04/12/07/8/12/13/15/11/03/11/21/14/11/13/25/11/02/12/21/13/23/12/11/14/12/14/06/9/11/11/42/13/13/11/21/10/51/11/4 - 1/11/42/9/54/9/32/11/36/9/18/7/12/11/36/10/05/9/21/11/41/11/42/12/21/11/43/10/31/12/31/12/31/15/04/10/21/10/54/11/14/10/20/10/60/10/60/12/40/11/52/9/55/7/45/9/24/12/07/8/14/8/45/11/07/8/13/8/53/8/53/11/23/9/45/7/4279/738/151
MO9/7/07/9/08/8/07/9/010/6/06/10/06/10/011/5/06/10/06/10/06/10/010/6/06/10/06/10/06/10/06/10/07/9/06/10/03/13/09/7/04/12/03/13/03/13/06/10/04/12/04/12/03/12/13/12/17/8/15/11/01/15/06/10/03/13/00/16/00/16/04/11/1 - 2/14/06/9/15/10/17/8/17/9/03/12/18/7/16/10/02/12/22/12/26/8/21/13/23/13/03/11/22/12/27/7/26/10/00/14/25/10/14/12/00/15/10/15/14/10/20/13/32/13/15/9/25/9/28/7/18/8/04/10/26/9/17/9/03/12/13/12/15/9/23/10/34/11/1349/769/50
CC8/8/07/9/07/9/05/11/08/8/07/9/06/10/08/8/07/9/05/11/05/11/08/8/05/11/06/10/06/9/14/11/16/9/15/11/03/12/16/10/04/12/02/13/12/13/15/10/12/14/03/12/13/12/12/13/16/9/15/11/01/13/24/11/13/13/00/15/10/15/15/9/20/14/2 - 5/9/25/9/27/8/17/9/02/11/37/8/17/9/02/12/22/12/26/8/22/12/23/13/03/11/22/12/25/10/14/11/10/12/43/12/14/12/00/13/30/13/33/11/20/12/41/14/15/9/26/8/27/8/17/8/13/9/45/10/16/10/03/10/33/10/36/8/23/9/44/9/3307/774/87
HNBEW7/6/34/9/36/9/15/8/37/6/36/7/34/9/36/8/24/10/25/8/35/8/36/7/35/8/34/8/43/10/33/10/35/9/25/8/35/7/44/10/24/10/23/9/43/9/45/8/34/8/43/8/53/9/43/10/34/9/35/8/32/9/54/7/53/10/32/9/52/9/53/9/41/9/62/9/5 - 1/13/25/8/36/8/21/12/34/11/13/12/12/11/32/10/42/11/30/12/41/12/30/11/52/9/53/9/44/8/41/10/52/11/33/11/20/9/70/9/71/10/50/8/81/10/52/12/23/12/15/9/24/10/22/11/34/11/14/11/10/12/40/12/44/10/22/9/52/10/4231/688/249
EF10/5/17/7/29/5/27/6/39/5/27/5/47/5/49/5/28/4/46/7/37/6/39/4/37/6/36/7/35/9/23/9/45/9/26/5/54/6/67/7/25/6/53/7/63/7/65/8/34/6/63/7/66/6/44/7/55/9/26/6/41/9/66/7/34/8/42/9/51/10/53/11/21/10/52/9/52/13/1 - 5/11/07/9/01/11/44/12/03/11/21/11/41/11/43/11/20/10/61/12/32/8/62/11/34/10/24/8/41/7/84/10/24/8/40/8/80/8/82/10/40/8/81/8/73/10/33/10/37/8/16/8/23/8/54/11/16/9/12/8/62/8/64/9/32/9/53/7/6299/595/274
ME7/7/27/6/38/6/27/4/59/3/47/5/47/5/49/4/37/4/55/6/55/6/58/6/26/5/57/5/45/7/44/6/64/8/45/6/53/8/54/8/45/7/42/8/62/8/64/9/32/7/74/6/63/9/41/9/63/8/54/7/52/7/72/9/55/6/50/9/70/9/71/9/61/8/71/8/73/8/50/11/5 - 6/8/21/11/43/12/14/7/51/8/71/8/70/9/70/10/61/9/61/9/61/8/71/8/74/7/51/7/81/12/34/8/40/7/90/7/90/10/60/8/81/6/92/10/43/10/35/8/37/6/34/7/52/12/27/8/11/9/61/9/63/8/52/10/43/8/5240/561/367
PN6/9/15/9/24/10/25/10/14/11/14/9/34/9/35/8/34/10/22/11/32/11/34/10/22/11/34/9/31/9/60/10/61/9/62/10/41/9/62/7/73/10/30/9/70/9/71/10/51/8/71/8/71/8/70/9/71/8/73/9/40/10/62/6/83/9/41/6/91/6/91/7/80/9/70/9/72/8/60/9/72/8/6 - 1/9/63/6/73/11/20/10/60/10/61/8/70/10/61/9/60/8/81/7/82/7/70/10/60/9/72/6/82/10/40/7/90/7/91/6/90/8/81/8/71/8/72/7/74/7/51/13/21/9/63/7/63/10/31/8/71/8/72/6/81/8/72/8/6125/631/412
IM7/8/15/10/16/9/16/9/17/8/16/8/27/7/29/6/15/9/25/8/35/8/37/8/15/9/25/9/25/9/24/10/25/10/15/9/26/8/27/8/14/10/24/9/34/9/35/8/36/8/24/10/23/10/32/11/34/9/36/8/22/11/35/9/23/11/22/11/31/12/33/11/21/12/33/11/23/12/14/11/14/11/16/9/1 - 4/11/14/10/20/13/30/13/34/10/20/12/41/14/12/10/42/11/35/9/25/7/41/11/44/10/23/11/21/12/30/13/32/10/40/9/71/11/42/13/13/11/26/9/16/9/11/12/35/10/15/10/11/13/21/13/23/11/21/12/32/11/3271/734/163
CD7/6/36/6/48/5/37/3/69/2/57/4/57/3/68/4/46/5/55/6/55/6/57/4/55/5/66/5/54/8/43/7/64/8/46/5/53/6/73/9/45/7/41/9/61/9/65/5/62/8/62/8/64/6/61/8/74/8/45/6/52/6/82/7/75/5/60/6/100/6/100/10/61/7/81/8/71/11/40/12/41/12/37/6/31/11/4 - 3/8/51/10/51/10/50/10/60/10/61/9/61/7/81/7/81/11/44/7/51/7/82/9/54/6/60/7/90/7/90/9/70/5/111/4/112/9/52/9/53/10/35/8/32/7/71/12/34/8/40/9/70/9/72/9/51/6/91/9/6211/536/421
MC8/7/15/8/36/6/45/7/47/5/45/10/14/8/47/6/35/9/24/8/44/8/47/6/34/8/44/8/42/9/50/11/54/7/52/9/52/9/54/7/52/11/30/10/60/10/63/9/40/11/51/9/62/9/51/10/53/8/52/10/41/9/63/8/50/11/50/10/60/10/62/9/50/10/60/9/71/12/32/11/35/7/42/11/32/10/45/8/3 - 0/11/50/11/52/10/40/13/30/13/32/9/52/9/54/7/51/11/40/10/64/8/42/12/20/9/70/9/72/9/50/10/60/12/43/10/33/10/35/7/43/10/32/8/64/9/33/12/12/8/62/8/63/9/42/10/42/11/3179/673/316
CM11/5/08/7/110/5/18/7/19/6/18/7/18/7/111/4/17/8/16/9/17/8/110/5/17/8/17/8/17/8/17/8/17/8/16/9/16/9/19/6/14/11/13/12/13/12/16/9/16/9/14/11/15/9/24/11/17/8/16/9/13/11/24/10/24/11/13/11/23/11/24/11/12/12/22/12/23/11/24/11/17/8/16/10/03/13/05/10/15/11/0 - 0/16/03/12/11/15/01/15/04/9/33/11/26/8/24/11/11/12/33/11/25/10/10/12/40/12/42/12/20/12/41/11/45/9/25/10/18/8/06/10/04/10/24/12/06/10/02/12/22/12/23/12/12/12/24/10/2350/722/96
FC10/6/08/7/19/6/18/7/19/6/16/9/17/8/111/4/17/8/16/9/17/8/19/6/17/8/17/8/17/8/16/9/17/8/16/9/15/10/19/6/13/12/13/12/13/12/17/8/15/10/14/11/15/9/23/12/17/8/16/9/13/10/34/10/24/11/13/11/22/11/34/11/12/12/22/12/24/10/24/11/17/8/16/10/03/13/05/10/15/11/00/16/0 - 4/11/11/15/01/15/05/8/33/11/25/9/24/11/11/12/33/11/24/11/10/12/40/12/42/12/20/11/51/11/45/9/25/10/18/8/06/10/04/10/24/12/06/10/02/12/22/12/23/12/12/12/24/10/2340/729/99
Kh9/5/26/8/28/7/17/6/39/5/26/7/36/6/410/5/17/6/36/6/46/6/48/6/26/6/47/5/46/9/12/11/36/8/25/8/35/6/56/9/15/8/33/9/43/9/45/9/25/7/43/8/55/9/22/11/34/10/25/8/33/7/63/12/14/8/42/10/42/9/52/12/22/8/62/8/63/11/22/11/37/9/07/8/12/10/46/10/04/10/21/12/31/11/4 - 0/10/63/9/43/11/23/9/45/8/35/7/41/8/73/11/24/8/40/9/70/9/70/12/41/7/81/9/65/10/14/11/17/8/17/8/13/9/45/10/16/9/11/13/21/12/33/12/13/9/43/10/3301/637/230
MO9/7/07/8/18/8/07/8/18/7/16/9/16/9/111/4/17/8/16/8/26/8/29/7/06/9/16/9/18/7/15/10/16/9/15/10/15/10/110/5/13/12/14/10/24/10/28/7/16/9/13/12/14/11/12/13/15/10/16/9/12/13/16/9/14/11/12/13/12/13/14/11/12/13/12/12/24/12/06/10/06/10/06/10/04/12/06/10/03/13/00/15/10/15/16/10/0 - 2/14/02/11/32/13/16/9/15/9/21/12/35/9/24/11/10/14/20/14/24/9/30/14/21/13/25/9/24/12/08/8/07/9/03/11/25/11/06/10/02/14/02/14/05/10/12/13/13/13/0335/761/72
CC9/6/17/7/28/7/16/8/28/6/26/9/15/8/39/5/26/9/15/10/15/10/19/6/16/7/36/9/17/7/25/8/36/8/24/11/13/10/36/8/25/10/12/12/22/12/25/9/23/10/33/11/26/8/21/12/33/10/35/10/11/11/46/8/24/11/12/11/32/11/33/10/30/13/30/13/33/12/13/12/16/9/16/9/11/14/16/9/13/13/00/15/10/15/14/9/30/14/2 - 3/11/22/11/35/8/34/10/20/11/55/10/13/12/10/11/50/11/53/9/40/10/60/12/44/10/24/10/27/8/17/8/12/11/34/11/15/11/02/11/32/11/34/10/22/9/53/11/2282/729/157
AODEsrEW9/6/15/10/18/8/06/9/18/8/06/9/17/8/18/8/05/10/16/8/26/8/28/8/04/10/25/10/15/11/05/10/16/10/05/10/15/9/26/10/04/10/23/10/33/10/35/9/24/9/34/10/25/11/03/11/25/8/36/9/13/11/25/8/34/9/33/10/33/10/33/12/12/11/32/11/35/11/06/8/26/9/18/8/04/10/28/7/15/9/23/9/43/8/52/11/33/11/22/11/3 - 2/12/24/10/25/10/11/12/34/11/14/10/20/12/40/12/41/13/20/12/41/12/34/12/05/10/18/7/19/7/04/9/35/11/07/8/12/11/32/11/34/9/34/8/42/12/2323/712/133
EF10/5/19/6/110/6/08/6/210/4/27/7/28/6/210/5/16/9/17/7/26/8/210/5/17/7/25/9/27/8/16/8/27/8/15/9/25/6/57/8/15/9/24/8/43/9/48/6/25/7/44/8/46/9/15/8/36/9/16/8/22/12/25/9/25/9/23/11/22/12/23/12/12/12/22/12/25/9/23/11/27/8/18/7/13/11/28/7/15/9/22/11/32/11/34/9/31/13/23/11/22/12/2 - 5/11/05/10/11/12/34/11/14/9/30/14/20/14/23/11/20/13/31/12/34/10/24/12/06/10/09/5/25/8/35/10/17/8/13/11/23/11/25/9/24/9/33/10/3360/666/142
ME9/6/16/9/19/6/17/8/19/5/26/7/37/5/49/6/17/5/47/7/27/6/310/5/16/6/47/7/26/7/33/11/26/10/04/9/33/8/57/8/15/7/43/8/53/8/56/9/12/8/63/8/55/7/43/9/43/12/14/8/42/7/74/10/25/7/42/9/52/9/50/15/12/7/71/10/54/9/32/10/47/8/17/7/22/9/54/11/15/7/42/8/62/9/53/8/51/9/63/8/52/10/40/11/5 - 4/9/31/8/72/13/14/8/40/8/80/8/80/11/50/8/81/7/84/8/44/9/33/13/08/6/24/7/53/12/17/7/23/7/63/7/63/10/34/7/53/8/5295/604/269
PN9/7/06/9/16/10/07/9/08/8/05/11/04/11/18/8/06/10/02/13/12/13/18/8/04/11/14/11/12/10/41/11/45/8/33/13/02/10/43/9/44/11/10/12/40/12/43/10/32/10/41/12/32/10/40/11/53/9/46/10/01/11/43/7/63/12/11/10/50/11/52/10/40/10/61/11/44/8/44/8/45/7/46/10/04/7/55/7/44/11/11/11/41/11/44/7/52/9/52/10/41/10/51/10/53/9/4 - 0/11/53/8/52/13/10/10/60/9/72/9/50/10/61/11/44/7/54/7/55/7/45/11/04/7/54/7/56/9/13/7/63/7/64/6/64/7/54/8/4232/695/241
IM8/8/06/10/08/8/07/9/08/8/07/9/07/9/09/7/07/9/05/11/05/11/08/8/06/10/05/11/06/10/05/11/07/9/05/11/05/11/08/8/04/12/05/11/04/12/06/9/14/12/04/12/05/10/15/10/16/9/16/10/04/12/07/8/14/12/03/13/02/14/05/10/12/14/04/12/05/10/18/7/18/7/17/9/04/11/18/7/16/10/03/12/13/12/17/8/13/12/15/11/03/12/13/12/17/8/15/11/0 - 7/8/14/12/00/15/10/15/14/11/10/13/31/14/15/10/16/9/18/7/18/8/03/13/07/8/16/10/03/12/13/12/16/8/23/11/24/12/0375/757/36
CD7/8/17/7/28/7/17/7/28/6/27/6/37/6/38/8/07/6/35/9/25/9/27/7/27/7/25/9/27/7/24/9/35/9/26/7/34/7/57/9/05/7/42/11/32/10/46/7/34/8/43/10/33/12/12/10/44/10/26/8/22/9/54/11/15/8/31/11/41/11/41/11/41/10/51/12/33/11/22/10/43/12/18/6/22/10/45/9/24/8/42/11/32/11/32/11/32/9/51/10/51/11/41/11/41/13/25/8/31/8/7 - 4/9/30/11/50/11/50/11/50/8/81/8/73/10/35/9/26/10/08/7/14/7/53/13/07/8/11/12/31/12/34/9/33/6/72/10/4278/666/224
MC7/7/26/8/26/8/26/7/37/7/25/10/15/9/27/7/26/9/14/9/35/8/37/7/25/8/34/10/21/12/30/12/44/9/32/12/22/9/54/8/43/12/10/12/40/12/42/11/31/12/30/13/33/10/32/10/43/9/44/10/21/12/33/9/41/14/11/11/40/12/42/10/40/12/40/12/42/11/34/8/44/8/44/10/22/11/36/6/42/12/21/10/51/11/44/8/41/11/41/12/32/10/43/9/44/8/41/13/20/12/43/9/4 - 0/12/40/12/42/10/40/11/50/12/44/8/44/8/46/6/44/10/23/10/36/7/34/12/03/9/43/9/44/8/43/9/43/9/4213/720/235
CM11/5/09/7/012/4/09/7/010/6/08/8/06/10/010/6/09/7/06/10/07/9/012/4/07/9/08/7/111/5/07/9/09/7/07/9/05/11/010/6/06/10/05/11/05/11/08/8/04/12/06/8/28/8/03/13/06/10/07/9/04/12/08/8/04/12/04/12/03/13/06/10/01/15/03/13/07/9/08/8/09/7/09/7/03/12/19/7/07/9/04/12/04/12/07/9/02/14/05/11/04/12/02/14/08/8/06/10/01/15/05/11/04/12/0 - 0/15/14/12/00/16/02/13/16/10/06/10/010/6/010/6/04/12/06/10/07/9/03/13/03/13/07/9/03/13/05/11/0444/718/6
FC11/5/09/7/012/4/09/7/010/6/08/8/06/10/010/6/09/7/06/10/07/9/011/5/07/9/08/7/111/5/07/9/09/7/07/9/06/10/010/6/06/10/05/11/05/11/09/7/05/11/06/8/29/7/04/12/06/10/07/9/04/11/18/8/04/12/04/12/04/12/06/10/01/15/03/13/07/9/08/8/09/7/09/7/03/13/09/7/07/9/04/12/04/12/07/9/02/14/05/11/04/12/02/14/08/8/07/9/01/15/05/11/04/12/01/15/0 - 4/12/00/16/02/13/16/10/06/10/010/6/010/6/04/12/06/10/07/9/04/12/03/13/07/9/03/13/05/11/0452/711/5
Kh10/6/07/8/19/7/08/8/011/5/07/8/17/8/111/5/07/8/16/9/16/9/110/6/07/7/27/7/28/8/06/10/06/10/07/8/15/8/38/8/05/8/34/10/24/9/37/9/05/7/44/10/25/10/13/12/16/10/07/8/13/11/27/8/15/7/43/11/23/10/34/12/02/10/42/11/35/10/14/10/26/10/09/6/14/10/27/9/05/9/22/12/22/12/24/12/03/9/44/9/32/13/12/11/35/11/05/9/21/11/45/11/04/10/20/12/40/12/4 - 1/9/62/10/46/8/25/9/28/8/09/6/15/8/36/10/08/7/13/10/33/10/34/12/05/8/34/9/3380/668/120
MO10/6/08/8/09/7/09/7/010/6/08/8/08/8/010/6/09/7/06/10/07/9/011/5/07/9/07/9/09/7/08/8/09/7/06/10/08/8/010/6/05/11/03/13/04/12/07/9/07/9/05/11/08/8/06/10/07/9/08/8/06/10/010/6/05/11/04/12/04/12/05/11/03/13/04/12/08/8/08/8/08/8/08/8/07/9/011/5/06/10/04/12/05/11/08/7/12/14/06/10/04/12/03/13/08/8/06/10/03/13/08/8/05/11/00/16/00/16/06/9/1 - 3/13/06/10/06/10/09/7/09/7/05/11/08/8/07/9/03/13/03/13/06/10/04/12/06/10/0469/697/2
CC9/6/19/6/19/6/19/6/19/6/17/9/07/8/111/4/17/9/06/9/17/8/110/5/18/7/15/11/07/8/15/10/16/9/14/12/06/9/110/5/14/12/04/11/14/11/16/9/15/10/15/10/16/9/15/10/16/9/15/11/03/12/17/8/13/13/04/11/13/12/15/9/21/13/21/14/15/10/17/8/19/6/17/8/14/11/111/4/14/12/04/11/14/11/16/9/12/13/14/12/03/12/13/12/18/7/14/11/11/14/17/8/14/12/01/13/21/13/24/10/20/13/3 - 5/10/16/9/19/6/18/7/14/11/19/6/17/9/04/10/24/10/26/8/24/9/35/11/0402/693/73
WAODEEW9/4/34/8/46/7/36/6/47/6/36/7/36/6/46/8/25/8/36/6/45/8/37/7/24/8/45/7/45/7/44/7/56/8/25/8/35/6/55/9/24/8/43/8/53/9/44/8/44/8/44/7/54/8/43/9/45/7/45/8/33/8/54/7/54/8/42/9/52/9/54/7/52/9/52/9/52/12/23/10/34/10/27/8/11/13/25/9/23/10/32/9/52/9/51/10/52/9/52/10/40/12/42/10/44/8/45/7/41/10/53/10/34/8/40/10/60/10/62/8/60/10/61/10/5 - 2/12/24/10/26/9/12/11/32/14/04/10/20/11/50/11/52/11/30/11/51/11/4253/640/275
EF8/6/27/7/27/6/38/4/48/3/56/6/46/5/57/6/35/7/45/7/45/7/48/5/36/6/45/6/56/6/46/6/45/7/45/7/44/6/65/7/45/7/42/9/52/9/55/7/44/7/53/7/65/7/44/7/55/7/46/6/42/9/53/8/54/7/52/9/52/9/52/9/52/9/52/8/61/12/33/10/33/10/37/7/22/11/35/9/23/10/31/10/51/10/51/11/40/12/42/10/41/10/50/12/43/9/45/7/41/9/62/9/54/8/40/10/60/10/62/9/50/10/61/9/62/12/2 - 4/12/05/10/11/13/24/11/14/10/20/14/20/14/23/11/20/12/41/11/4254/625/289
ME8/5/36/7/38/5/36/5/58/3/56/4/66/4/67/4/57/5/46/5/56/4/67/5/46/4/67/4/54/6/64/6/64/9/35/6/53/6/74/7/55/6/52/7/72/7/74/8/42/7/74/5/72/8/61/8/72/10/44/6/61/6/91/9/64/7/50/8/80/8/80/12/41/7/81/8/72/9/51/8/73/8/55/7/41/9/63/10/34/7/50/8/80/8/81/8/70/8/81/8/71/7/80/10/60/13/34/7/51/7/80/10/64/6/60/6/100/6/100/8/80/7/91/6/92/10/40/12/4 - 4/9/31/9/62/12/24/7/50/10/60/10/60/12/40/10/61/7/8200/540/428
PN6/8/24/8/43/10/35/8/35/8/34/8/44/8/45/9/25/8/33/9/43/9/46/8/24/8/44/8/41/10/50/9/72/8/62/11/33/6/71/10/53/9/40/9/70/9/71/8/71/8/71/9/60/10/60/8/81/8/75/8/31/8/71/9/62/10/41/7/80/8/81/8/70/8/81/8/72/10/42/8/63/6/72/13/11/9/63/8/53/10/30/10/60/10/61/8/70/9/71/8/70/7/92/5/92/6/80/11/50/8/81/7/82/10/40/6/100/6/101/6/90/7/91/7/81/9/61/10/53/9/4 - 0/10/62/8/62/12/20/10/60/9/71/9/60/10/61/10/5127/624/417
IM6/9/14/10/26/9/16/7/37/7/26/7/36/7/37/7/25/9/25/9/25/9/26/7/37/6/35/8/34/10/25/8/35/8/35/8/35/8/36/8/24/9/35/8/35/8/35/8/34/9/34/9/34/9/34/8/44/8/46/7/33/10/36/7/33/9/43/10/32/11/34/8/42/10/44/9/33/11/25/8/35/7/46/9/13/12/17/7/26/8/22/10/42/10/44/9/32/11/33/11/23/9/43/8/55/7/45/7/40/13/35/7/43/10/30/12/40/12/43/8/50/11/51/11/43/11/22/13/16/9/16/10/0 - 5/9/23/13/00/15/10/15/14/10/20/14/21/14/1289/679/200
CD6/7/35/7/48/6/27/5/49/4/36/7/37/5/48/5/35/6/56/6/46/5/58/6/26/6/45/8/36/7/33/9/44/9/35/8/34/6/64/9/34/8/42/8/62/8/64/8/43/8/53/8/53/10/32/10/45/8/35/6/51/10/53/8/54/7/50/11/50/11/50/11/51/9/61/10/51/11/41/11/42/12/26/7/31/10/53/12/13/9/40/12/40/12/41/10/50/11/51/11/40/11/51/10/51/12/35/7/41/8/70/13/33/7/60/10/60/10/60/10/60/8/81/6/90/14/21/11/42/12/26/8/22/9/5 - 4/8/40/13/30/13/30/10/60/10/61/8/7208/646/314
MC4/9/34/7/54/7/55/5/65/6/55/7/45/6/55/7/43/9/44/6/65/5/65/7/45/5/64/7/50/10/60/9/72/8/62/9/51/9/61/9/63/9/40/9/70/9/71/9/60/10/61/9/61/9/61/8/71/8/74/7/51/9/62/8/61/11/41/8/70/9/71/8/70/9/70/10/61/11/41/9/61/8/73/10/31/10/54/8/41/12/30/10/60/10/61/9/60/10/60/11/51/8/71/8/72/7/71/9/60/10/61/8/70/12/40/9/70/9/71/7/80/9/70/9/72/10/42/10/45/7/42/12/20/13/34/8/4 - 0/12/40/12/43/9/40/12/40/13/3125/647/396
CM8/6/27/6/38/7/18/5/38/5/37/6/36/7/38/7/17/6/36/7/37/6/38/6/27/6/37/6/38/6/26/7/37/6/36/7/35/8/38/7/16/7/34/9/35/8/37/7/25/8/35/8/37/7/23/10/34/9/37/6/34/9/35/10/15/8/34/9/33/10/35/8/31/12/33/10/34/12/06/8/26/9/17/8/12/13/17/9/06/8/22/12/22/12/22/13/10/14/23/11/23/11/22/11/36/7/36/7/31/12/33/12/14/9/30/13/30/12/43/10/30/13/32/10/45/11/02/14/06/10/06/10/01/15/03/13/04/12/0 - 0/16/04/12/00/16/02/13/1335/680/153
FC8/6/27/6/38/7/18/5/38/5/37/6/36/7/38/7/17/6/36/7/37/6/38/6/27/6/37/6/38/6/26/7/37/6/36/7/35/8/38/7/16/7/35/8/35/8/37/7/25/8/35/8/37/7/22/11/34/9/37/6/34/9/35/10/14/9/34/9/33/10/35/8/31/12/33/10/34/12/06/8/26/9/17/8/12/13/17/9/06/8/22/12/22/12/23/12/10/14/23/11/23/11/22/11/36/7/36/7/31/12/33/12/14/9/30/13/30/13/33/10/30/13/32/10/45/11/02/14/06/10/07/9/01/15/03/13/04/12/00/16/0 - 4/12/00/16/02/13/1336/680/152
Kh8/4/46/6/48/6/27/6/39/4/37/6/37/6/38/5/36/7/36/7/36/7/38/6/27/5/46/6/47/6/35/8/36/7/36/7/35/7/45/8/34/9/33/10/33/9/46/8/25/6/53/9/44/8/42/10/45/8/36/7/33/9/44/7/54/7/52/10/42/10/42/11/32/9/52/8/62/10/43/9/45/8/38/6/22/11/35/9/24/9/31/12/31/12/31/12/31/10/52/10/43/9/42/9/53/10/36/6/42/8/63/9/44/8/40/9/70/9/70/12/40/10/62/8/63/11/22/11/34/12/06/9/12/10/46/10/04/9/30/12/40/12/4 - 0/12/42/10/4284/622/262
MO7/8/16/8/27/7/28/6/28/6/27/6/37/7/29/6/17/7/26/8/26/8/29/5/26/7/37/7/28/5/36/7/37/6/36/7/35/8/38/6/25/8/34/9/34/9/37/7/26/7/35/8/35/8/34/9/35/8/36/7/35/8/35/9/24/9/34/9/34/9/34/9/33/10/34/9/35/9/25/9/24/10/27/8/13/12/19/6/14/10/22/12/22/12/24/9/31/13/25/9/24/8/43/9/45/7/45/7/42/11/37/6/34/9/30/13/30/13/33/8/50/12/43/9/45/11/04/12/06/10/06/10/02/14/06/10/04/12/00/16/00/16/04/12/0 - 2/14/0350/655/163
CC7/7/25/8/36/8/26/7/36/7/36/7/36/7/36/9/16/8/25/8/36/7/38/5/37/6/35/8/37/7/26/6/45/7/44/8/46/6/46/7/34/9/34/8/44/8/45/8/34/8/44/8/45/8/34/8/44/8/45/8/32/10/46/7/32/11/32/10/41/11/44/7/51/11/43/9/44/10/26/7/35/8/36/8/23/11/26/9/13/11/22/10/42/10/43/10/30/13/32/11/32/12/23/10/35/8/34/8/40/12/44/10/24/9/30/11/50/11/53/9/40/10/60/11/54/11/14/11/18/7/15/10/11/14/17/8/13/13/01/13/21/13/24/10/20/14/2 - 288/663/217

Time comparison

Time plots for all the datasets included in our study. The y axis gives the time in ms; the x axis lists all setups including NB and FNB executed on the raw data and the six classifiers run on the data discretized by each of the twelve algorithms. Black bars show time of the discretization process on the training fold; white color represents the time to train the classification model on the training fold; gray color denotes the time needed to classify the test fold. Training and test folds have the same number of instances. Abbrevations for algorithms, classifiers and datasets names can be found in Table 1, Table 2 and Table 3, respectively.

anneal

colic

credit-a

cylinder-bands

heart-c

hypothyroid

sick

vowel

glass

ionosphere

page-blocks

pendigits

sat

segment

sonar

vehicle

Classifiers

Accuracies

Table 10. Classifier accuracy, achieved by a setup in a given row for a dataset in a given column. Abbrevations for algorithms, classifiers and datasets names can be found in Table 1, Table 2 and Table 3, respectively.
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Original Data org 0.88 (0.036)
-- (0)
-/74
0.785 (0.041)
-- (0)
-/50
0.777 (0.021)
-- (0)
-/74
0.707 (0.027)
-- (0)
-/71
0.838 (0.018)
-- (0)
-/3
0.954 (0.003)
-- (0)
-/44
0.924 (0.012)
-- (0)
-/60
0.603 (0.035)
-- (0)
-/45
0.472 (0.051)
-- (0)
-/74
0.826 (0.038)
-- (0)
-/74
0.892 (0.046)
-- (0)
-/74
0.857 (0.005)
-- (0)
-/70
0.795 (0.004)
-- (0)
-/72
0.802 (0.005)
-- (0)
-/71
0.675 (0.06)
-- (0)
-/64
0.443 (0.029)
-- (0)
-/74
/62.12
org 0.941 (0.016)
~ (4.173)
-/59
0.789 (0.032)
~ (0.655)
-/45
0.812 (0.025)
++ (9.456)
-/70
0.729 (0.021)
~ (1.737)
-/44
0.841 (0.025)
~ (1)
-/1
0.958 (0.006)
~ (1.17)
-/42
0.953 (0.008)
++ (20.7)
-/45
0.633 (0.023)
~ (1.288)
-/41
0.481 (0.056)
~ (0.803)
-/73
0.902 (0.029)
++ (15.3)
-/43
0.932 (0.017)
~ (2.068)
-/67
0.883 (0.005)
++ (13.2)
-/61
0.819 (0.004)
++ (152)
-/62
0.837 (0.008)
++ (13.94)
-/66
0.716 (0.087)
~ (1.187)
-/47
0.587 (0.032)
++ (18.76)
-/69
/52.19
NB Equal Width 0.947 (0.015)
~ (3.997)
5/53
0.792 (0.032)
~ (0.647)
5/41
0.85 (0.012)
++ (8.542)
10/47
0.721 (0.018)
~ (3.673)
9/55
0.821 (0.034)
~ (0.988)
10/39
0.936 (0.006)
-- (9.748)
11/55
0.951 (0.014)
~ (2.877)
9/49
0.572 (0.019)
~ (1.121)
2/50
0.564 (0.071)
~ (2.888)
11/69
0.887 (0.016)
~ (3.498)
8/63
0.93 (0.005)
~ (1.206)
8/68
0.868 (0.003)
++ (7.334)
8/69
0.802 (0.005)
++ (11.53)
10/71
0.883 (0.009)
++ (53.99)
7/57
0.7 (0.038)
~ (1.096)
10/55
0.576 (0.018)
++ (16.82)
10/71
8.31/57
Equal Frequency 0.939 (0.016)
~ (2.974)
9/62
0.788 (0.032)
~ (0.573)
11/48
0.854 (0.009)
++ (6.35)
6/35
0.726 (0.017)
~ (3.293)
6/49
0.826 (0.019)
~ (3.381)
6/23
0.966 (0.004)
++ (14.27)
8/37
0.962 (0.01)
++ (8.926)
8/41
0.569 (0.013)
~ (1.373)
4/53
0.641 (0.059)
++ (6.583)
4/39
0.871 (0.028)
~ (1.658)
11/71
0.905 (0.005)
~ (0.806)
11/72
0.869 (0.004)
++ (6.446)
7/68
0.803 (0.005)
++ (17.92)
9/70
0.881 (0.011)
++ (33.43)
8/58
0.716 (0.027)
~ (1.196)
9/48
0.595 (0.028)
++ (42.67)
5/65
7.62/52.44
Maximum Entropy 0.904 (0.014)
~ (0.832)
12/73
0.79 (0.029)
~ (0.675)
8/44
0.855 (0.011)
++ (6.289)
5/30
0.721 (0.022)
~ (1.157)
10/58
0.815 (0.023)
~ (2.928)
11/47
0.949 (0.006)
~ (1.133)
9/48
0.943 (0.003)
~ (3.066)
11/53
0.579 (0.017)
~ (0.97)
1/48
0.595 (0.048)
~ (2.45)
8/57
0.881 (0.027)
~ (1.416)
9/67
0.908 (0.005)
~ (0.831)
10/71
0.844 (0.005)
~ (3.913)
11/73
0.771 (0.006)
-- (35.41)
12/74
0.88 (0.009)
++ (34.91)
10/60
0.737 (0.039)
~ (3.271)
5/33
0.567 (0.032)
++ (13.9)
11/72
8.94/56.75
Paterson - Niblett 0.94 (0.019)
~ (3.062)
7/60
0.795 (0.025)
~ (0.707)
2/38
0.847 (0.014)
++ (5.641)
12/52
0.74 (0.018)
++ (12.33)
2/30
0.825 (0.015)
~ (2.65)
7/31
0.979 (0.007)
++ (18.92)
1/18
0.972 (0.004)
++ (13.37)
1/19
0.316 (0.018)
-- (32.3)
11/70
0.546 (0.1)
~ (0.7)
12/71
0.895 (0.02)
~ (3.311)
4/54
0.933 (0.007)
~ (1.474)
7/66
0.829 (0.005)
-- (45.36)
12/74
0.794 (0.005)
~ (0.695)
11/73
0.831 (0.022)
~ (1.621)
11/67
0.689 (0.037)
~ (0.902)
11/58
0.549 (0.029)
++ (109)
12/73
7.69/53.38
IEM 0.959 (0.015)
++ (4.903)
2/45
0.791 (0.023)
~ (0.664)
7/43
0.861 (0.01)
++ (9.03)
2/14
0.718 (0.022)
~ (1.074)
12/61
0.828 (0.028)
~ (1.053)
5/14
0.976 (0.006)
++ (18.32)
3/25
0.97 (0.004)
++ (15.59)
2/23
0.504 (0.02)
-- (8.12)
9/60
0.593 (0.072)
~ (2.02)
9/58
0.896 (0.018)
~ (3.356)
3/52
0.934 (0.006)
~ (1.387)
5/62
0.872 (0.005)
++ (7.981)
2/63
0.818 (0.004)
++ (70.08)
4/65
0.903 (0.006)
++ (86.79)
2/48
0.736 (0.018)
~ (1.6)
6/35
0.586 (0.019)
++ (38.13)
9/70
5.12/46.12
CADD 0.912 (0.017)
~ (1.044)
11/72
0.793 (0.029)
~ (1.014)
3/39
0.85 (0.008)
++ (5.384)
11/49
0.73 (0.016)
++ (9.125)
3/40
0.807 (0.019)
~ (3.802)
12/53
0.923 (0.005)
-- (37.49)
12/60
0.925 (0.005)
~ (0.758)
12/59
0.555 (0.016)
~ (1.844)
8/57
0.611 (0.074)
~ (2.702)
6/51
0.889 (0.02)
~ (1.757)
6/60
0.917 (0.004)
~ (0.947)
9/70
0.854 (0.004)
~ (0.756)
9/71
0.811 (0.006)
++ (7.98)
8/69
0.888 (0.005)
++ (76.92)
6/56
0.669 (0.049)
~ (1.04)
12/65
0.595 (0.024)
++ (60.21)
6/66
8.38/58.56
ModifiedChi2 0.964 (0.011)
~ (4.167)
1/38
0.793 (0.026)
~ (0.748)
3/39
0.852 (0.011)
++ (6.164)
8/42
0.719 (0.031)
~ (1.005)
11/60
0.822 (0.036)
~ (1.703)
9/37
0.973 (0.005)
++ (35.6)
5/31
0.97 (0.004)
++ (15.79)
3/24
0.275 (0.019)
-- (35.59)
12/73
0.588 (0.042)
~ (2.85)
10/60
0.905 (0.009)
~ (3.193)
1/36
0.936 (0.005)
~ (1.475)
1/55
0.851 (0.005)
~ (1.61)
10/72
0.818 (0.009)
++ (7.646)
3/64
0.802 (0.009)
~ (0.776)
12/69
0.734 (0.042)
~ (1.059)
7/39
0.617 (0.024)
++ (135)
1/61
6.06/50
CAIM 0.939 (0.021)
~ (2.115)
8/61
0.788 (0.031)
~ (0.673)
9/46
0.859 (0.012)
++ (8.293)
3/23
0.725 (0.02)
~ (0.954)
7/50
0.828 (0.022)
~ (0.977)
2/8
0.972 (0.008)
++ (9.93)
6/33
0.968 (0.003)
++ (9.868)
5/29
0.563 (0.028)
~ (1.845)
5/54
0.651 (0.042)
++ (5.303)
2/34
0.875 (0.032)
~ (3.348)
10/70
0.934 (0.005)
~ (1.49)
6/64
0.871 (0.005)
++ (8.649)
5/66
0.818 (0.004)
++ (137)
5/66
0.899 (0.006)
++ (72.7)
4/52
0.757 (0.052)
~ (3.403)
2/20
0.594 (0.036)
++ (15.36)
7/67
5.38/46.44
FCAIM 0.957 (0.014)
~ (3.615)
3/50
0.788 (0.031)
~ (0.673)
9/46
0.859 (0.012)
++ (8.293)
3/23
0.725 (0.02)
~ (0.954)
7/50
0.828 (0.022)
~ (0.977)
2/8
0.972 (0.008)
++ (9.93)
6/33
0.968 (0.003)
++ (9.868)
5/29
0.563 (0.028)
~ (1.845)
5/54
0.651 (0.043)
~ (4.656)
3/36
0.87 (0.037)
~ (3.226)
12/73
0.935 (0.005)
~ (1.477)
4/61
0.871 (0.005)
++ (8.649)
5/66
0.818 (0.004)
++ (137)
5/66
0.899 (0.006)
++ (72.7)
4/52
0.757 (0.052)
~ (3.403)
2/20
0.594 (0.036)
++ (15.36)
7/67
5.12/45.88
Khiops 0.921 (0.018)
~ (1.285)
10/71
0.788 (0.033)
~ (0.732)
11/48
0.854 (0.015)
++ (4.884)
6/35
0.727 (0.02)
~ (2.631)
4/45
0.824 (0.03)
~ (1.074)
8/33
0.945 (0.007)
~ (2.821)
10/50
0.951 (0.006)
++ (4.756)
10/50
0.571 (0.024)
~ (1.19)
3/51
0.596 (0.051)
~ (3.361)
7/56
0.888 (0.015)
~ (2.735)
7/62
0.905 (0.005)
~ (0.77)
12/73
0.871 (0.004)
++ (5.784)
4/65
0.817 (0.005)
++ (51.57)
7/68
0.881 (0.009)
++ (39.46)
9/59
0.764 (0.059)
~ (2.774)
1/16
0.6 (0.03)
++ (31.04)
4/64
7.06/52.88
MODL 0.957 (0.014)
~ (3.906)
4/51
0.802 (0.026)
~ (1.118)
1/27
0.851 (0.011)
++ (6.36)
9/45
0.727 (0.023)
~ (1.109)
5/46
0.828 (0.022)
~ (1.615)
4/11
0.976 (0.008)
++ (11.44)
2/24
0.969 (0.004)
++ (12.21)
4/25
0.561 (0.019)
~ (2.168)
7/56
0.665 (0.041)
++ (5.176)
1/28
0.896 (0.017)
~ (2.615)
2/51
0.935 (0.006)
~ (1.536)
3/57
0.874 (0.005)
++ (9.112)
1/62
0.819 (0.005)
++ (78.71)
1/61
0.904 (0.005)
++ (168)
1/47
0.742 (0.046)
~ (2.736)
4/29
0.604 (0.021)
++ (34.77)
3/63
3.25/42.69
CACC 0.943 (0.022)
~ (2.296)
6/57
0.792 (0.03)
~ (0.866)
6/42
0.864 (0.006)
++ (12.64)
1/5
0.753 (0.019)
~ (3.402)
1/17
0.835 (0.028)
~ (1.659)
1/5
0.974 (0.007)
++ (14.89)
4/30
0.967 (0.004)
++ (9.204)
7/31
0.442 (0.03)
-- (8.703)
10/63
0.628 (0.05)
++ (5.804)
5/43
0.891 (0.022)
~ (2.223)
5/58
0.936 (0.007)
~ (1.578)
2/56
0.871 (0.005)
++ (7.17)
3/64
0.819 (0.006)
++ (42.44)
2/63
0.901 (0.008)
++ (80.14)
3/50
0.731 (0.043)
~ (2.425)
8/41
0.605 (0.027)
++ (57.36)
2/62
4.12/42.94
LBR Equal Width 0.967 (0.013)
~ (3.419)
3/34
0.797 (0.023)
~ (0.771)
11/34
0.857 (0.015)
++ (12.84)
6/29
0.7 (0.025)
~ (1.193)
12/74
0.819 (0.034)
~ (1.045)
10/42
0.936 (0.006)
-- (10.11)
11/56
0.966 (0.012)
++ (5.371)
9/34
0.667 (0.032)
~ (3.66)
2/37
0.563 (0.07)
~ (2.448)
11/70
0.887 (0.017)
~ (3.301)
10/64
0.939 (0.007)
~ (1.623)
11/54
0.955 (0.004)
++ (451)
1/40
0.862 (0.007)
++ (97.71)
6/45
0.897 (0.008)
++ (63.67)
10/54
0.701 (0.035)
~ (1.298)
9/54
0.639 (0.033)
++ (33.78)
12/60
8.38/48.81
Equal Frequency 0.962 (0.019)
~ (3.288)
6/40
0.805 (0.019)
~ (0.9)
10/23
0.852 (0.011)
++ (6.716)
11/42
0.717 (0.026)
~ (1.266)
8/63
0.826 (0.019)
~ (3.381)
6/23
0.97 (0.005)
++ (6.575)
8/35
0.968 (0.009)
++ (10.58)
8/28
0.657 (0.019)
~ (2.523)
4/39
0.65 (0.059)
++ (7.747)
4/38
0.881 (0.023)
~ (1.622)
11/68
0.949 (0.004)
~ (2.2)
8/48
0.955 (0.003)
++ (258)
2/41
0.863 (0.008)
++ (90.45)
5/44
0.9 (0.012)
++ (22.63)
9/51
0.714 (0.021)
~ (1.107)
8/50
0.667 (0.036)
++ (112)
7/47
7.19/42.5
Maximum Entropy 0.922 (0.018)
~ (1.137)
12/69
0.808 (0.013)
~ (0.858)
9/18
0.855 (0.011)
++ (6.322)
7/31
0.705 (0.03)
~ (1.073)
11/72
0.807 (0.029)
~ (4.127)
11/51
0.953 (0.005)
~ (0.592)
9/45
0.952 (0.009)
++ (4.997)
11/47
0.664 (0.025)
~ (3.194)
3/38
0.636 (0.032)
++ (5.141)
5/40
0.88 (0.027)
~ (1.377)
12/69
0.949 (0.007)
~ (1.975)
7/47
0.953 (0.003)
++ (135)
4/43
0.838 (0.008)
++ (56.02)
10/58
0.903 (0.011)
++ (46.34)
8/49
0.666 (0.041)
~ (0.773)
12/68
0.656 (0.014)
++ (81.65)
10/52
8.81/49.81
Paterson - Niblett 0.958 (0.016)
~ (3.13)
9/47
0.809 (0.016)
~ (0.869)
8/16
0.853 (0.011)
++ (8.062)
10/38
0.725 (0.024)
~ (1.095)
3/50
0.825 (0.015)
~ (2.65)
7/31
0.983 (0.005)
++ (39.73)
3/6
0.973 (0.004)
++ (11.88)
7/10
0.448 (0.023)
-- (19.11)
11/62
0.544 (0.092)
~ (0.777)
12/72
0.899 (0.022)
~ (3.606)
3/48
0.934 (0.004)
~ (1.527)
12/63
0.931 (0.004)
++ (111)
11/51
0.84 (0.005)
++ (55.25)
9/57
0.85 (0.014)
++ (5.84)
11/65
0.693 (0.033)
~ (0.91)
10/56
0.665 (0.019)
++ (86.43)
8/49
8.38/45.06
IEM 0.969 (0.01)
~ (4.324)
2/30
0.813 (0.017)
~ (1.229)
3/6
0.863 (0.009)
++ (9.689)
2/6
0.709 (0.024)
~ (2.114)
10/70
0.828 (0.028)
~ (1.053)
3/14
0.986 (0.003)
++ (80.7)
1/1
0.975 (0.004)
++ (15.88)
6/7
0.587 (0.027)
~ (0.991)
9/47
0.592 (0.075)
~ (1.912)
9/59
0.896 (0.018)
~ (3.356)
4/52
0.962 (0.003)
~ (2.603)
1/15
0.952 (0.003)
++ (171)
5/44
0.856 (0.006)
++ (98.39)
8/50
0.923 (0.01)
++ (65.41)
5/41
0.735 (0.018)
~ (1.535)
5/37
0.651 (0.024)
++ (27.51)
11/56
5.25/33.44
CADD 0.924 (0.019)
~ (1.247)
11/68
0.813 (0.017)
~ (0.855)
4/7
0.851 (0.007)
++ (6.512)
12/44
0.73 (0.025)
~ (1.631)
2/40
0.807 (0.023)
~ (2.778)
12/52
0.924 (0.005)
-- (37.85)
12/59
0.931 (0.006)
~ (1.578)
12/57
0.63 (0.019)
~ (0.903)
6/42
0.627 (0.059)
~ (4.534)
8/45
0.889 (0.02)
~ (1.757)
9/60
0.945 (0.004)
~ (1.718)
10/53
0.953 (0.004)
++ (366)
3/42
0.865 (0.004)
++ (455)
3/42
0.909 (0.013)
++ (105)
6/44
0.669 (0.049)
~ (1.04)
11/65
0.675 (0.019)
++ (23.74)
5/44
7.88/47.75
ModifiedChi2 0.969 (0.01)
~ (4.298)
1/29
0.818 (0.018)
~ (1.239)
1/1
0.855 (0.012)
++ (5.603)
9/33
0.71 (0.023)
~ (2.084)
9/69
0.823 (0.036)
~ (1.826)
8/34
0.982 (0.006)
++ (16.92)
5/10
0.975 (0.007)
++ (19.27)
5/6
0.275 (0.019)
-- (35.59)
12/73
0.588 (0.042)
~ (2.85)
10/60
0.905 (0.009)
~ (3.193)
2/36
0.954 (0.004)
~ (2.279)
6/38
0.906 (0.004)
++ (86.63)
12/59
0.838 (0.02)
~ (3.074)
11/59
0.802 (0.009)
~ (0.776)
12/69
0.734 (0.042)
~ (1.059)
6/39
0.685 (0.022)
++ (59.34)
1/27
6.88/40.12
CAIM 0.961 (0.015)
~ (3.068)
8/42
0.811 (0.027)
~ (1.378)
5/13
0.859 (0.013)
++ (7.953)
3/20
0.723 (0.025)
~ (1.329)
4/53
0.828 (0.022)
~ (1.049)
4/16
0.981 (0.004)
++ (69.24)
6/12
0.975 (0.004)
++ (15.22)
3/3
0.628 (0.025)
~ (1.495)
7/43
0.651 (0.042)
++ (5.303)
2/34
0.895 (0.029)
~ (3.722)
5/55
0.959 (0.003)
~ (2.404)
4/27
0.95 (0.004)
++ (148)
6/45
0.866 (0.009)
++ (51.82)
1/40
0.926 (0.01)
++ (90.62)
3/38
0.76 (0.058)
~ (3.958)
2/17
0.683 (0.024)
++ (98.34)
2/33
4.06/30.69
FCAIM 0.967 (0.013)
~ (3.549)
4/35
0.811 (0.027)
~ (1.378)
5/13
0.859 (0.013)
++ (7.953)
3/20
0.723 (0.025)
~ (1.329)
4/53
0.828 (0.022)
~ (1.049)
4/16
0.981 (0.004)
++ (69.24)
6/12
0.975 (0.004)
++ (15.22)
3/3
0.628 (0.025)
~ (1.495)
7/43
0.651 (0.043)
~ (4.656)
3/36
0.893 (0.033)
~ (3.256)
7/57
0.959 (0.004)
~ (2.409)
5/28
0.95 (0.004)
++ (148)
6/45
0.866 (0.009)
++ (51.82)
1/40
0.926 (0.01)
++ (90.62)
3/38
0.76 (0.058)
~ (3.958)
2/17
0.683 (0.024)
++ (98.34)
2/33
4.06/30.56
Khiops 0.943 (0.021)
~ (1.718)
10/58
0.796 (0.022)
~ (0.582)
12/36
0.857 (0.017)
~ (4.366)
5/27
0.72 (0.02)
~ (1.407)
6/59
0.823 (0.029)
~ (1.491)
9/36
0.947 (0.007)
~ (4.034)
10/49
0.963 (0.006)
++ (10.51)
10/39
0.668 (0.016)
~ (3.018)
1/36
0.63 (0.051)
~ (4.048)
6/42
0.909 (0.015)
~ (3.548)
1/30
0.946 (0.005)
~ (1.672)
9/50
0.94 (0.003)
++ (154)
10/50
0.828 (0.005)
++ (62.42)
12/60
0.907 (0.008)
++ (153)
7/46
0.775 (0.034)
~ (4.465)
1/9
0.657 (0.028)
++ (72.22)
9/51
7.38/42.38
MODL 0.967 (0.012)
~ (4.538)
4/35
0.816 (0.018)
~ (1.525)
2/3
0.855 (0.007)
++ (10.3)
7/31
0.718 (0.026)
~ (0.963)
7/62
0.83 (0.024)
~ (1.473)
2/7
0.985 (0.003)
++ (116)
2/3
0.977 (0.003)
++ (12.64)
1/1
0.64 (0.035)
~ (1.3)
5/40
0.663 (0.041)
~ (4.358)
1/29
0.895 (0.015)
~ (2.774)
6/56
0.962 (0.004)
~ (2.63)
2/18
0.949 (0.004)
++ (136)
9/49
0.859 (0.006)
++ (60.62)
7/49
0.927 (0.007)
++ (119)
2/37
0.74 (0.039)
~ (2.398)
4/30
0.67 (0.025)
++ (121)
6/46
4.19/31
CACC 0.962 (0.016)
~ (3.179)
6/40
0.81 (0.026)
~ (1.611)
7/15
0.866 (0.006)
++ (13)
1/2
0.754 (0.023)
~ (3.735)
1/16
0.836 (0.028)
~ (1.841)
1/4
0.983 (0.003)
++ (21.75)
4/7
0.977 (0.004)
++ (15.35)
1/1
0.451 (0.03)
-- (7.168)
10/61
0.628 (0.05)
++ (5.804)
7/43
0.891 (0.022)
~ (2.155)
8/59
0.961 (0.003)
~ (2.476)
3/19
0.95 (0.005)
++ (120)
8/47
0.864 (0.006)
++ (84.58)
4/43
0.928 (0.007)
++ (130)
1/36
0.731 (0.043)
~ (2.425)
7/41
0.676 (0.023)
++ (39.88)
4/42
4.56/29.75
AODE Equal Width 0.958 (0.011)
~ (3.485)
9/48
0.812 (0.026)
~ (1.413)
4/8
0.86 (0.008)
++ (9.786)
11/19
0.729 (0.023)
~ (1.602)
10/43
0.815 (0.026)
~ (1.928)
10/48
0.941 (0.005)
-- (5.679)
11/52
0.96 (0.011)
++ (5.742)
10/43
0.757 (0.01)
++ (15.59)
4/28
0.604 (0.069)
~ (3.566)
10/53
0.9 (0.016)
~ (3.284)
10/47
0.935 (0.006)
~ (1.338)
11/60
0.968 (0.002)
++ (413)
5/24
0.878 (0.006)
++ (166)
7/22
0.891 (0.007)
++ (75.57)
10/55
0.744 (0.046)
~ (2.194)
7/27
0.645 (0.025)
++ (33.08)
12/59
8.81/39.75
Equal Frequency 0.959 (0.012)
~ (4.282)
7/43
0.812 (0.025)
~ (1.617)
6/10
0.862 (0.009)
++ (6.826)
6/11
0.74 (0.022)
~ (1.679)
7/28
0.818 (0.023)
-- (4.836)
9/44
0.967 (0.005)
++ (7.063)
8/36
0.967 (0.009)
++ (13.5)
8/33
0.759 (0.025)
++ (18.23)
3/27
0.693 (0.059)
++ (6.494)
1/8
0.904 (0.018)
~ (2.595)
6/39
0.954 (0.005)
~ (2.255)
9/39
0.969 (0.002)
++ (421)
2/21
0.877 (0.006)
++ (201)
8/25
0.909 (0.008)
++ (84.61)
9/45
0.756 (0.033)
~ (1.556)
5/22
0.677 (0.018)
++ (54.86)
9/40
6.44/29.44
Maximum Entropy 0.921 (0.018)
~ (1.219)
12/70
0.811 (0.022)
~ (0.863)
7/11
0.865 (0.008)
++ (9.569)
2/3
0.751 (0.023)
~ (2.227)
2/20
0.807 (0.031)
~ (1.821)
11/55
0.954 (0.005)
~ (0.623)
9/43
0.953 (0.005)
++ (7.654)
11/46
0.763 (0.031)
++ (22.03)
2/26
0.667 (0.049)
++ (6.777)
6/27
0.896 (0.022)
~ (1.902)
12/50
0.958 (0.003)
~ (2.328)
7/29
0.957 (0.002)
++ (309)
9/37
0.855 (0.006)
++ (105)
11/53
0.916 (0.008)
++ (65.66)
8/43
0.76 (0.052)
~ (1.601)
4/19
0.682 (0.02)
++ (76.45)
7/35
7.5/35.44
Paterson - Niblett 0.959 (0.013)
~ (3.621)
8/44
0.805 (0.017)
~ (0.874)
12/22
0.853 (0.012)
++ (5.614)
12/37
0.739 (0.019)
~ (2.572)
9/32
0.826 (0.015)
~ (1.505)
7/29
0.981 (0.007)
++ (23.67)
1/14
0.972 (0.004)
++ (13.58)
4/17
0.407 (0.031)
-- (23.99)
11/64
0.567 (0.098)
~ (0.865)
12/68
0.904 (0.022)
~ (4.221)
8/41
0.934 (0.004)
~ (1.519)
12/65
0.92 (0.003)
++ (116)
12/57
0.844 (0.005)
++ (145)
12/55
0.853 (0.01)
++ (8.033)
11/64
0.686 (0.038)
~ (0.879)
12/60
0.672 (0.018)
++ (107)
10/45
9.56/44.62
IEM 0.968 (0.012)
~ (3.981)
2/31
0.811 (0.016)
~ (0.924)
8/12
0.865 (0.013)
++ (6.007)
3/4
0.721 (0.023)
~ (1.127)
11/56
0.83 (0.028)
~ (0.777)
2/6
0.978 (0.006)
++ (24.21)
3/23
0.971 (0.004)
++ (13.75)
7/22
0.59 (0.031)
~ (0.71)
9/46
0.598 (0.076)
~ (2.085)
11/55
0.9 (0.016)
~ (2.655)
9/45
0.965 (0.003)
~ (2.641)
1/2
0.969 (0.002)
++ (525)
3/22
0.882 (0.005)
++ (220)
3/13
0.938 (0.008)
++ (79.26)
3/29
0.737 (0.02)
~ (1.795)
10/34
0.65 (0.019)
++ (40.95)
11/58
6/28.62
CADD 0.93 (0.019)
~ (1.391)
11/66
0.817 (0.02)
~ (1.37)
1/2
0.862 (0.009)
++ (9.137)
7/12
0.746 (0.026)
~ (2.793)
3/22
0.805 (0.024)
~ (3.393)
12/56
0.926 (0.007)
-- (19.3)
12/57
0.936 (0.006)
~ (2.355)
12/54
0.753 (0.022)
++ (15.55)
5/29
0.676 (0.046)
++ (8.012)
5/23
0.897 (0.016)
~ (2.158)
11/49
0.952 (0.003)
~ (2.029)
10/42
0.963 (0.003)
++ (263)
8/35
0.88 (0.004)
++ (409)
6/17
0.919 (0.006)
++ (100)
7/42
0.72 (0.042)
~ (1.345)
11/46
0.679 (0.016)
++ (80.32)
8/39
8.06/36.94
ModifiedChi2 0.97 (0.009)
~ (3.916)
1/28
0.814 (0.017)
~ (1.281)
3/5
0.862 (0.009)
++ (7.29)
7/12
0.721 (0.021)
~ (4.205)
11/56
0.828 (0.035)
~ (1.278)
4/19
0.975 (0.005)
++ (18.09)
4/26
0.974 (0.005)
++ (27.64)
1/8
0.331 (0.019)
-- (32.67)
12/69
0.616 (0.033)
~ (4.502)
9/48
0.911 (0.007)
~ (3.7)
3/26
0.957 (0.003)
~ (2.42)
8/30
0.924 (0.003)
++ (411)
11/56
0.861 (0.02)
++ (7.434)
10/48
0.804 (0.013)
~ (0.7)
12/68
0.738 (0.043)
~ (1.246)
9/32
0.699 (0.019)
++ (82.03)
1/14
6.62/34.06
CAIM 0.964 (0.011)
~ (3.602)
6/39
0.807 (0.02)
~ (0.916)
9/19
0.861 (0.01)
++ (8.065)
9/14
0.741 (0.015)
~ (1.897)
5/26
0.826 (0.032)
~ (0.881)
5/21
0.974 (0.007)
++ (19.32)
6/28
0.972 (0.005)
++ (11.85)
5/20
0.716 (0.032)
++ (8)
6/30
0.683 (0.04)
++ (6.404)
3/18
0.908 (0.011)
~ (3.936)
4/32
0.96 (0.004)
~ (2.492)
5/23
0.967 (0.002)
++ (524)
6/29
0.882 (0.005)
++ (401)
4/14
0.936 (0.007)
++ (106)
4/32
0.773 (0.043)
~ (3.009)
2/10
0.689 (0.022)
++ (55.22)
4/23
5.19/23.62
FCAIM 0.968 (0.01)
~ (3.548)
3/32
0.807 (0.02)
~ (0.916)
9/19
0.861 (0.01)
++ (8.065)
9/14
0.741 (0.015)
~ (1.897)
5/26
0.826 (0.032)
~ (0.881)
5/21
0.974 (0.007)
++ (19.32)
6/28
0.972 (0.005)
++ (11.85)
5/20
0.716 (0.032)
++ (8)
6/30
0.687 (0.042)
++ (5.974)
2/14
0.913 (0.011)
~ (4.42)
1/21
0.961 (0.004)
~ (2.494)
4/20
0.967 (0.002)
++ (524)
6/29
0.882 (0.005)
++ (401)
4/14
0.936 (0.007)
++ (106)
4/32
0.773 (0.043)
~ (3.009)
2/10
0.689 (0.022)
++ (55.22)
4/23
4.69/22.06
Khiops 0.945 (0.017)
~ (2.269)
10/55
0.806 (0.026)
~ (1.335)
11/21
0.863 (0.009)
++ (11.01)
4/7
0.744 (0.022)
~ (1.65)
4/23
0.819 (0.034)
~ (1.586)
8/43
0.95 (0.006)
~ (1.451)
10/47
0.963 (0.006)
++ (13.1)
9/36
0.771 (0.018)
++ (19.4)
1/25
0.661 (0.033)
++ (10.89)
7/30
0.912 (0.018)
~ (3.597)
2/22
0.962 (0.004)
~ (2.416)
3/16
0.957 (0.005)
++ (1093)
10/38
0.87 (0.003)
++ (303)
9/35
0.926 (0.007)
++ (76.28)
6/40
0.778 (0.039)
++ (5.102)
1/8
0.692 (0.014)
++ (99.09)
3/18
6.12/29
MODL 0.968 (0.012)
~ (3.567)
3/32
0.815 (0.022)
~ (1.396)
2/4
0.863 (0.007)
++ (9.027)
4/7
0.74 (0.026)
~ (1.195)
7/28
0.828 (0.029)
~ (1.183)
3/10
0.979 (0.008)
++ (15.05)
2/20
0.973 (0.004)
++ (11.14)
2/11
0.701 (0.022)
++ (7.219)
8/33
0.679 (0.04)
++ (5.48)
4/22
0.904 (0.016)
~ (2.89)
5/38
0.964 (0.004)
~ (2.563)
2/8
0.97 (0.002)
++ (534)
1/20
0.884 (0.003)
++ (355)
2/12
0.941 (0.005)
++ (163)
1/23
0.752 (0.034)
~ (2.705)
6/23
0.685 (0.028)
++ (62.92)
6/28
3.62/19.94
CACC 0.964 (0.015)
~ (3.548)
5/37
0.812 (0.027)
~ (1.455)
4/8
0.867 (0.011)
++ (10.82)
1/1
0.766 (0.019)
~ (2.948)
1/8
0.839 (0.03)
~ (0.788)
1/2
0.975 (0.006)
++ (27.66)
5/27
0.972 (0.004)
++ (12.31)
3/16
0.571 (0.031)
~ (0.95)
10/51
0.654 (0.047)
++ (10.29)
8/33
0.904 (0.014)
~ (2.701)
6/39
0.96 (0.004)
~ (2.43)
6/26
0.969 (0.002)
++ (457)
4/23
0.885 (0.005)
++ (366)
1/7
0.938 (0.007)
++ (93.88)
2/28
0.739 (0.045)
~ (2.957)
8/31
0.696 (0.021)
++ (41.05)
2/16
4.19/22.06
HNB Equal Width 0.98 (0.007)
++ (5.214)
8/21
0.696 (0.046)
-- (11.29)
6/60
0.824 (0.024)
++ (9.472)
9/69
0.736 (0.025)
~ (4.373)
8/37
0.775 (0.022)
-- (10.41)
8/69
0.913 (0.008)
-- (12.21)
11/61
0.946 (0.016)
~ (1.426)
7/51
0.823 (0.013)
++ (29.54)
1/4
0.613 (0.051)
~ (4.688)
9/49
0.9 (0.013)
~ (2.727)
12/46
0.945 (0.003)
~ (1.742)
11/52
0.972 (0.002)
++ (528)
2/16
0.866 (0.006)
++ (130)
10/39
0.944 (0.005)
++ (136)
6/18
0.743 (0.043)
~ (3.008)
7/28
0.654 (0.03)
++ (26)
11/53
7.88/42.06
Equal Frequency 0.984 (0.005)
++ (6.774)
3/8
0.711 (0.035)
~ (3.016)
3/53
0.789 (0.019)
~ (0.735)
11/72
0.758 (0.032)
++ (5.614)
3/13
0.762 (0.035)
-- (9.085)
11/73
0.965 (0.004)
++ (4.826)
7/39
0.956 (0.007)
++ (9.379)
6/44
0.788 (0.019)
++ (26.7)
6/22
0.705 (0.046)
++ (6.969)
1/3
0.909 (0.015)
~ (2.706)
7/28
0.954 (0.003)
~ (2.405)
8/36
0.972 (0.002)
++ (423)
1/15
0.868 (0.006)
++ (148)
8/37
0.937 (0.005)
++ (175)
10/30
0.752 (0.04)
~ (1.563)
4/23
0.69 (0.022)
++ (40.9)
6/21
5.94/32.31
Maximum Entropy 0.944 (0.015)
~ (2.335)
12/56
0.684 (0.049)
-- (5.598)
11/73
0.783 (0.02)
~ (0.704)
12/73
0.762 (0.032)
++ (25.71)
2/12
0.751 (0.022)
-- (7.588)
12/74
0.944 (0.005)
~ (2.447)
9/51
0.934 (0.006)
~ (1.128)
9/55
0.778 (0.027)
++ (37.64)
7/23
0.674 (0.025)
++ (11.17)
7/25
0.903 (0.014)
~ (2.357)
10/42
0.952 (0.003)
~ (2.139)
9/40
0.949 (0.003)
++ (668)
10/48
0.844 (0.007)
++ (42.1)
12/56
0.943 (0.005)
++ (138)
7/19
0.749 (0.041)
~ (2.038)
5/25
0.676 (0.016)
++ (105)
10/43
9/44.69
Paterson - Niblett 0.985 (0.005)
++ (6.005)
1/5
0.692 (0.034)
~ (3.336)
9/65
0.839 (0.017)
~ (4.281)
6/63
0.703 (0.026)
~ (3.561)
12/73
0.82 (0.019)
~ (1.925)
3/41
0.965 (0.016)
~ (1.586)
6/38
0.852 (0.019)
-- (14.17)
12/74
0.575 (0.019)
~ (0.922)
10/49
0.581 (0.075)
~ (1.209)
11/66
0.924 (0.011)
++ (6.122)
1/1
0.927 (0.005)
~ (1.277)
12/69
0.919 (0.004)
++ (162)
11/58
0.844 (0.007)
++ (31.71)
11/54
0.868 (0.008)
++ (26.6)
11/61
0.682 (0.031)
~ (0.689)
11/62
0.677 (0.021)
++ (52.75)
9/41
8.5/51.25
IEM 0.983 (0.006)
++ (5.892)
6/12
0.667 (0.025)
-- (6.212)
12/74
0.841 (0.017)
++ (4.974)
5/62
0.737 (0.029)
~ (1.521)
7/36
0.826 (0.034)
~ (0.771)
1/28
0.962 (0.011)
~ (0.98)
8/40
0.926 (0.01)
~ (0.618)
10/58
0.713 (0.023)
++ (5.557)
9/32
0.576 (0.076)
~ (1.818)
12/67
0.912 (0.018)
~ (3.937)
6/24
0.966 (0.003)
~ (2.857)
1/1
0.97 (0.003)
++ (398)
5/19
0.876 (0.007)
++ (126)
2/26
0.957 (0.008)
++ (119)
1/7
0.709 (0.026)
~ (1.07)
9/52
0.654 (0.019)
++ (57.09)
12/55
6.62/37.06
CADD 0.946 (0.011)
~ (2.482)
11/54
0.7 (0.028)
-- (10.53)
5/58
0.797 (0.017)
~ (1.678)
10/71
0.767 (0.032)
++ (11.28)
1/7
0.763 (0.029)
-- (11.39)
9/71
0.797 (0.037)
-- (31.57)
12/74
0.92 (0.005)
~ (0.769)
11/61
0.776 (0.023)
++ (19.88)
8/24
0.679 (0.042)
++ (5.74)
6/21
0.901 (0.015)
~ (2.763)
11/44
0.95 (0.003)
~ (2.014)
10/44
0.957 (0.004)
++ (279)
9/39
0.867 (0.004)
++ (830)
9/38
0.939 (0.005)
++ (178)
9/24
0.709 (0.048)
~ (1.367)
9/52
0.679 (0.018)
++ (55.62)
8/37
8.62/44.94
ModifiedChi2 0.979 (0.009)
++ (4.899)
9/25
0.686 (0.016)
~ (3.91)
10/71
0.828 (0.015)
++ (4.798)
8/67
0.738 (0.028)
~ (2.088)
6/33
0.797 (0.033)
~ (3.639)
7/63
0.979 (0.005)
++ (15.52)
4/17
0.968 (0.007)
++ (10.66)
1/26
0.354 (0.012)
-- (24.75)
12/68
0.612 (0.034)
++ (11.84)
10/50
0.918 (0.01)
~ (3.917)
5/9
0.957 (0.004)
~ (2.51)
7/32
0.897 (0.004)
++ (84.12)
12/60
0.869 (0.006)
++ (84.98)
7/36
0.762 (0.016)
~ (3.776)
12/72
0.724 (0.037)
~ (0.977)
8/43
0.704 (0.017)
++ (52.44)
2/6
7.5/42.38
CAIM 0.984 (0.008)
++ (5.922)
2/7
0.696 (0.026)
~ (4.39)
7/61
0.845 (0.013)
++ (9.153)
3/56
0.713 (0.032)
~ (1.882)
10/67
0.818 (0.027)
~ (1.85)
4/45
0.983 (0.003)
++ (39.26)
1/7
0.963 (0.014)
~ (4.442)
4/37
0.801 (0.021)
++ (36.93)
3/11
0.684 (0.042)
++ (9.87)
4/16
0.92 (0.017)
++ (4.758)
4/6
0.96 (0.004)
~ (2.536)
5/22
0.967 (0.003)
++ (586)
6/27
0.873 (0.006)
++ (169)
5/31
0.952 (0.006)
++ (153)
4/14
0.769 (0.05)
++ (6.302)
2/14
0.691 (0.022)
++ (71.56)
4/19
4.25/27.5
FCAIM 0.983 (0.008)
++ (5.799)
4/10
0.696 (0.026)
~ (4.39)
7/61
0.845 (0.013)
++ (9.153)
3/56
0.713 (0.032)
~ (1.882)
10/67
0.818 (0.027)
~ (1.85)
4/45
0.983 (0.003)
++ (39.26)
1/7
0.963 (0.014)
~ (4.442)
4/37
0.801 (0.021)
++ (36.93)
3/11
0.685 (0.044)
++ (8.887)
3/15
0.924 (0.018)
~ (4.701)
2/2
0.961 (0.004)
~ (2.491)
4/21
0.967 (0.003)
++ (586)
6/27
0.873 (0.006)
++ (169)
5/31
0.952 (0.006)
++ (153)
4/14
0.769 (0.05)
++ (6.302)
2/14
0.691 (0.022)
++ (71.56)
4/19
4.12/27.31
Khiops 0.959 (0.011)
~ (3.097)
10/45
0.705 (0.034)
~ (4.424)
4/54
0.851 (0.018)
++ (9.662)
1/45
0.752 (0.028)
~ (3.09)
4/19
0.799 (0.023)
-- (7.44)
6/61
0.938 (0.007)
-- (6.057)
10/54
0.946 (0.005)
~ (2.325)
8/52
0.816 (0.018)
++ (22.97)
2/6
0.688 (0.03)
++ (9.659)
2/13
0.921 (0.019)
++ (5.038)
3/3
0.957 (0.004)
~ (2.293)
6/31
0.96 (0.003)
++ (535)
8/36
0.876 (0.005)
++ (113)
3/27
0.956 (0.005)
++ (186)
3/11
0.788 (0.044)
++ (7.177)
1/3
0.71 (0.011)
++ (119)
1/2
4.5/28.88
MODL 0.983 (0.008)
++ (5.518)
6/12
0.712 (0.027)
~ (4.27)
2/52
0.846 (0.014)
++ (6.652)
2/54
0.729 (0.027)
~ (2.526)
9/42
0.823 (0.028)
~ (1.787)
2/35
0.982 (0.006)
++ (9.693)
3/11
0.964 (0.01)
~ (3.785)
3/35
0.794 (0.022)
++ (22.63)
5/19
0.683 (0.044)
++ (4.91)
5/18
0.907 (0.018)
~ (2.942)
9/33
0.964 (0.004)
~ (2.581)
2/6
0.971 (0.003)
++ (529)
3/17
0.877 (0.005)
++ (123)
1/24
0.957 (0.007)
++ (228)
1/7
0.749 (0.038)
~ (2.634)
5/25
0.688 (0.023)
++ (103)
7/25
4.06/25.94
CACC 0.983 (0.008)
++ (5.256)
5/11
0.718 (0.031)
~ (4.302)
1/51
0.832 (0.053)
~ (1.82)
7/65
0.75 (0.015)
++ (7.376)
5/21
0.763 (0.056)
~ (2.247)
10/72
0.978 (0.007)
++ (7.524)
5/22
0.968 (0.006)
++ (8.181)
1/26
0.406 (0.021)
-- (10.02)
11/65
0.634 (0.045)
++ (5.685)
8/41
0.909 (0.019)
~ (3.467)
8/31
0.963 (0.004)
~ (2.586)
3/12
0.971 (0.002)
++ (408)
4/18
0.875 (0.005)
++ (208)
4/28
0.943 (0.015)
++ (91.49)
8/20
0.668 (0.039)
~ (0.927)
12/67
0.698 (0.015)
++ (72.82)
3/15
5.94/35.31
AODEsr Equal Width 0.982 (0.005)
++ (6.198)
7/15
0.805 (0.035)
~ (0.898)
2/24
0.848 (0.016)
++ (7.865)
9/51
0.769 (0.024)
++ (9.148)
6/6
0.807 (0.022)
~ (4.553)
8/54
0.939 (0.006)
-- (6.489)
11/53
0.962 (0.014)
~ (4.555)
10/42
0.821 (0.016)
++ (32.83)
2/5
0.618 (0.054)
++ (4.822)
9/47
0.881 (0.022)
~ (1.852)
12/66
0.946 (0.004)
~ (1.833)
11/51
0.976 (0.002)
++ (467)
5/10
0.879 (0.005)
++ (373)
7/19
0.942 (0.005)
++ (151)
7/21
0.688 (0.028)
~ (0.759)
8/59
0.651 (0.023)
++ (27.92)
12/57
7.88/36.25
Equal Frequency 0.982 (0.008)
++ (6.255)
9/17
0.803 (0.026)
~ (0.772)
3/25
0.838 (0.018)
~ (3.481)
11/64
0.771 (0.021)
++ (5.417)
4/4
0.797 (0.022)
-- (20.35)
10/62
0.972 (0.004)
++ (18.43)
8/32
0.967 (0.008)
++ (16.58)
8/32
0.794 (0.021)
++ (30.7)
7/17
0.716 (0.041)
++ (11.07)
1/1
0.913 (0.014)
~ (4.003)
8/20
0.951 (0.004)
~ (2.179)
9/43
0.977 (0.001)
++ (396)
2/4
0.878 (0.005)
++ (562)
8/21
0.935 (0.007)
++ (266)
10/34
0.539 (0.079)
~ (3.194)
12/73
0.684 (0.02)
++ (27.28)
8/29
7.38/29.88
Maximum Entropy 0.928 (0.016)
~ (1.769)
12/67
0.802 (0.026)
~ (0.609)
5/27
0.85 (0.018)
++ (8.854)
7/48
0.771 (0.021)
++ (6.492)
4/4
0.793 (0.024)
-- (5.479)
11/64
0.958 (0.005)
~ (1.228)
9/41
0.952 (0.006)
++ (10.38)
11/48
0.795 (0.028)
++ (52.74)
6/15
0.675 (0.029)
++ (11.63)
7/24
0.906 (0.02)
~ (3.562)
11/35
0.954 (0.003)
~ (2.154)
8/37
0.964 (0.002)
++ (417)
10/34
0.856 (0.007)
++ (72.34)
12/51
0.938 (0.007)
++ (99.94)
8/26
0.577 (0.043)
~ (2.112)
11/71
0.68 (0.019)
++ (117)
10/36
8.88/39.25
Paterson - Niblett 0.984 (0.006)
++ (6.514)
5/6
0.796 (0.019)
~ (0.651)
12/37
0.845 (0.014)
++ (4.955)
10/56
0.757 (0.024)
++ (10.92)
10/14
0.822 (0.017)
~ (2.516)
5/38
0.985 (0.004)
++ (22.08)
1/2
0.973 (0.005)
++ (13.51)
4/13
0.554 (0.018)
~ (2.014)
10/58
0.581 (0.075)
~ (1.272)
12/65
0.92 (0.012)
~ (4.011)
1/5
0.935 (0.004)
~ (1.534)
12/59
0.93 (0.003)
++ (147)
11/52
0.862 (0.005)
++ (180)
11/46
0.865 (0.008)
++ (18.51)
11/62
0.675 (0.03)
~ (0.584)
9/63
0.687 (0.025)
++ (51.89)
7/26
8.19/37.62
IEM 0.985 (0.004)
++ (6.972)
4/4
0.803 (0.018)
~ (0.746)
4/26
0.857 (0.013)
++ (6.178)
5/27
0.739 (0.027)
~ (1.81)
11/31
0.826 (0.034)
~ (0.827)
4/27
0.984 (0.005)
++ (42.97)
2/4
0.972 (0.004)
++ (15.84)
7/18
0.682 (0.021)
~ (3.554)
9/34
0.602 (0.08)
~ (2.225)
10/54
0.914 (0.024)
~ (2.857)
6/17
0.964 (0.004)
~ (2.681)
1/5
0.977 (0.002)
++ (534)
3/6
0.888 (0.004)
++ (289)
1/2
0.959 (0.008)
++ (118)
2/3
0.712 (0.019)
~ (1.215)
7/51
0.664 (0.025)
++ (33.44)
11/50
5.44/22.44
CADD 0.932 (0.012)
~ (1.88)
11/65
0.798 (0.033)
~ (1.108)
9/32
0.829 (0.018)
~ (1.958)
12/66
0.781 (0.022)
++ (8.41)
2/2
0.78 (0.028)
~ (3.87)
12/67
0.924 (0.007)
-- (21.33)
12/58
0.933 (0.004)
~ (1.455)
12/56
0.789 (0.022)
++ (25.17)
8/21
0.684 (0.055)
++ (5.447)
6/16
0.907 (0.01)
~ (3.286)
10/34
0.949 (0.004)
~ (1.912)
10/46
0.968 (0.004)
++ (311)
8/25
0.88 (0.004)
++ (475)
6/16
0.938 (0.005)
++ (218)
9/27
0.634 (0.052)
~ (1.098)
10/69
0.684 (0.012)
++ (48.59)
9/31
9.12/39.44
ModifiedChi2 0.984 (0.008)
++ (6.191)
6/8
0.801 (0.017)
~ (0.792)
6/29
0.85 (0.013)
++ (5.183)
8/49
0.738 (0.028)
~ (2.078)
12/35
0.812 (0.032)
~ (2.565)
6/49
0.979 (0.005)
++ (38.28)
6/19
0.974 (0.007)
++ (25.25)
2/9
0.308 (0.017)
-- (29.79)
12/71
0.582 (0.04)
~ (3.995)
11/64
0.918 (0.008)
~ (3.434)
2/8
0.956 (0.005)
~ (2.489)
7/33
0.929 (0.003)
++ (240)
12/55
0.871 (0.011)
++ (31)
10/34
0.736 (0.012)
-- (17.04)
12/74
0.735 (0.04)
~ (1.194)
5/37
0.709 (0.016)
++ (42)
1/3
7.38/36.06
CAIM 0.985 (0.006)
++ (6.352)
3/3
0.799 (0.02)
~ (0.725)
7/30
0.86 (0.01)
++ (12.11)
1/17
0.764 (0.018)
++ (7.734)
7/9
0.828 (0.031)
~ (0.836)
1/12
0.98 (0.005)
++ (114)
4/15
0.972 (0.005)
++ (13.36)
5/14
0.809 (0.028)
++ (28.88)
3/7
0.69 (0.039)
++ (11.35)
5/12
0.914 (0.013)
~ (3.766)
7/18
0.962 (0.003)
~ (2.607)
5/17
0.974 (0.002)
++ (438)
6/11
0.884 (0.004)
++ (483)
4/8
0.956 (0.008)
++ (120)
3/9
0.783 (0.035)
~ (3.868)
2/4
0.701 (0.016)
++ (65.36)
4/10
4.19/12.25
FCAIM 0.987 (0.004)
++ (6.586)
1/1
0.799 (0.02)
~ (0.725)
7/30
0.86 (0.01)
++ (12.11)
1/17
0.764 (0.018)
++ (7.734)
7/9
0.828 (0.031)
~ (0.836)
1/12
0.98 (0.005)
++ (114)
4/15
0.972 (0.005)
++ (13.36)
5/14
0.809 (0.028)
++ (28.88)
3/7
0.692 (0.041)
++ (11.58)
4/9
0.917 (0.016)
~ (3.424)
3/10
0.962 (0.003)
~ (2.55)
4/13
0.974 (0.002)
++ (438)
6/11
0.884 (0.004)
++ (483)
4/8
0.956 (0.008)
++ (120)
3/9
0.783 (0.035)
~ (3.868)
2/4
0.701 (0.016)
++ (65.36)
4/10
3.69/11.19
Khiops 0.958 (0.012)
~ (3.116)
10/49
0.798 (0.027)
~ (0.9)
10/33
0.858 (0.013)
++ (15.61)
4/26
0.779 (0.014)
++ (8.473)
3/3
0.81 (0.027)
~ (3.563)
7/50
0.95 (0.008)
~ (1.513)
10/46
0.963 (0.004)
++ (11.67)
9/40
0.824 (0.019)
++ (47.99)
1/3
0.694 (0.029)
++ (10.73)
3/7
0.916 (0.026)
~ (4.637)
5/15
0.96 (0.005)
~ (2.225)
6/25
0.964 (0.003)
++ (534)
9/32
0.874 (0.004)
++ (171)
9/30
0.95 (0.007)
++ (118)
6/17
0.795 (0.041)
++ (5.71)
1/2
0.701 (0.015)
++ (119)
3/9
6/24.19
MODL 0.987 (0.005)
++ (6.479)
2/2
0.808 (0.025)
~ (1.077)
1/17
0.858 (0.012)
++ (6.528)
3/25
0.763 (0.028)
~ (3.507)
9/11
0.828 (0.028)
~ (1.7)
3/18
0.984 (0.005)
++ (31.61)
3/5
0.975 (0.004)
++ (11.27)
1/5
0.796 (0.023)
++ (25.2)
5/14
0.698 (0.047)
++ (6.827)
2/4
0.912 (0.017)
~ (3.083)
9/23
0.963 (0.004)
~ (2.65)
2/9
0.978 (0.002)
++ (352)
1/2
0.888 (0.004)
++ (297)
2/3
0.959 (0.007)
++ (151)
1/2
0.772 (0.027)
~ (3.496)
4/12
0.7 (0.02)
++ (138)
6/13
3.38/10.31
CACC 0.982 (0.007)
++ (5.983)
7/15
0.797 (0.03)
~ (0.84)
11/34
0.852 (0.034)
~ (4.271)
6/39
0.781 (0.017)
++ (6.916)
1/1
0.801 (0.028)
~ (2.793)
9/59
0.979 (0.006)
++ (22.21)
7/21
0.973 (0.006)
++ (11.62)
3/12
0.395 (0.02)
-- (14.91)
11/66
0.655 (0.045)
++ (5.964)
8/31
0.917 (0.018)
~ (3.643)
4/13
0.963 (0.005)
~ (2.524)
3/10
0.976 (0.001)
++ (363)
4/9
0.885 (0.006)
++ (155)
3/6
0.953 (0.007)
++ (350)
5/12
0.716 (0.03)
~ (1.298)
6/48
0.705 (0.015)
++ (48.78)
2/5
5.62/23.81
WAODE Equal Width 0.979 (0.005)
++ (5.765)
8/26
0.692 (0.037)
-- (7.085)
7/65
0.843 (0.013)
++ (6.162)
10/60
0.743 (0.024)
++ (12.01)
3/24
0.799 (0.023)
-- (12.93)
8/60
0.812 (0.006)
-- (618)
11/72
0.89 (0.018)
~ (2.532)
6/67
0.827 (0.018)
++ (28.88)
1/1
0.623 (0.057)
++ (5.735)
9/46
0.882 (0.022)
~ (1.858)
11/65
0.947 (0.004)
~ (1.844)
11/49
0.977 (0.002)
++ (418)
5/8
0.878 (0.005)
++ (378)
7/20
0.941 (0.006)
++ (120)
7/22
0.686 (0.032)
~ (0.907)
9/60
0.654 (0.023)
++ (26.43)
12/54
7.81/43.69
Equal Frequency 0.979 (0.01)
++ (5.71)
7/24
0.684 (0.036)
~ (4.124)
12/72
0.842 (0.017)
++ (5.329)
11/61
0.742 (0.02)
~ (4.157)
4/25
0.789 (0.023)
~ (4.365)
10/66
0.885 (0.004)
-- (380)
8/69
0.895 (0.014)
-- (5.854)
3/64
0.799 (0.023)
++ (28.11)
5/13
0.714 (0.049)
++ (9.045)
1/2
0.914 (0.015)
~ (4.111)
7/19
0.952 (0.004)
~ (2.211)
9/41
0.978 (0.001)
++ (362)
1/1
0.877 (0.005)
++ (819)
8/23
0.935 (0.006)
++ (250)
10/35
0.512 (0.079)
~ (3.615)
12/74
0.683 (0.021)
++ (23.83)
9/32
7.31/38.81
Maximum Entropy 0.935 (0.014)
~ (2.303)
12/64
0.69 (0.042)
~ (4.111)
11/70
0.845 (0.015)
++ (5.713)
8/55
0.736 (0.017)
++ (6.25)
6/38
0.779 (0.022)
-- (19.63)
11/68
0.871 (0.005)
-- (139)
9/70
0.874 (0.006)
-- (28.88)
11/72
0.795 (0.028)
++ (73.13)
6/15
0.67 (0.03)
++ (10.37)
7/26
0.87 (0.022)
~ (0.973)
12/72
0.954 (0.003)
~ (2.152)
8/35
0.964 (0.002)
++ (372)
10/33
0.855 (0.007)
++ (70.71)
12/52
0.937 (0.006)
++ (110)
9/31
0.555 (0.046)
~ (3.161)
11/72
0.679 (0.019)
++ (174)
10/38
9.56/50.69
Paterson - Niblett 0.978 (0.009)
++ (5.025)
9/27
0.704 (0.033)
-- (5.387)
1/55
0.845 (0.015)
~ (4.043)
9/59
0.717 (0.018)
++ (9.7)
10/64
0.82 (0.018)
~ (4.547)
5/40
0.899 (0.011)
-- (14.09)
7/68
0.878 (0.02)
~ (3.102)
10/71
0.548 (0.015)
~ (2.153)
10/59
0.585 (0.073)
~ (1.262)
11/62
0.921 (0.011)
~ (4.159)
1/4
0.935 (0.004)
~ (1.538)
12/58
0.93 (0.003)
++ (124)
11/53
0.861 (0.004)
++ (146)
11/47
0.864 (0.01)
++ (16.01)
11/63
0.691 (0.023)
~ (0.75)
8/57
0.69 (0.02)
++ (76.09)
7/22
8.31/50.56
IEM 0.982 (0.009)
++ (5.543)
2/18
0.696 (0.047)
~ (3.415)
4/59
0.859 (0.013)
++ (6.001)
3/20
0.716 (0.02)
~ (2.864)
11/65
0.827 (0.035)
~ (0.827)
1/20
0.902 (0.011)
-- (13.88)
6/67
0.886 (0.016)
~ (3.182)
8/69
0.671 (0.016)
~ (3.242)
9/35
0.607 (0.086)
~ (2.262)
10/52
0.909 (0.02)
~ (3.313)
10/29
0.965 (0.004)
~ (2.717)
1/3
0.977 (0.002)
++ (472)
3/5
0.888 (0.004)
++ (272)
1/1
0.958 (0.008)
++ (108)
2/4
0.724 (0.028)
~ (1.443)
6/43
0.666 (0.022)
++ (29.35)
11/48
5.5/33.62
CADD 0.938 (0.016)
~ (1.883)
11/63
0.692 (0.026)
~ (4.473)
6/64
0.824 (0.018)
~ (1.838)
12/68
0.752 (0.019)
++ (10.68)
2/18
0.774 (0.021)
-- (6.815)
12/70
0.798 (0.011)
-- (239)
12/73
0.856 (0.008)
-- (46.45)
12/73
0.793 (0.024)
++ (30.48)
8/20
0.682 (0.062)
~ (4.267)
6/20
0.911 (0.008)
~ (3.784)
9/26
0.949 (0.004)
~ (1.926)
10/45
0.967 (0.003)
++ (338)
8/26
0.879 (0.004)
++ (618)
6/18
0.939 (0.005)
++ (216)
8/25
0.632 (0.051)
~ (0.943)
10/70
0.684 (0.012)
++ (55.91)
8/30
8.75/44.31
ModifiedChi2 0.982 (0.009)
++ (5.559)
1/14
0.702 (0.026)
~ (4.585)
3/57
0.846 (0.018)
~ (3.7)
7/53
0.714 (0.022)
~ (2.121)
12/66
0.805 (0.035)
~ (2.367)
6/57
0.908 (0.006)
-- (55.87)
1/62
0.903 (0.009)
~ (3.042)
1/62
0.286 (0.015)
-- (41.36)
12/72
0.585 (0.042)
~ (3.781)
11/62
0.917 (0.007)
~ (3.551)
3/10
0.956 (0.005)
~ (2.413)
7/34
0.929 (0.003)
++ (218)
12/54
0.871 (0.011)
++ (31.71)
10/33
0.746 (0.014)
-- (7.382)
12/73
0.736 (0.038)
~ (1.288)
5/35
0.71 (0.018)
++ (57.39)
1/1
6.5/46.56
CAIM 0.98 (0.011)
++ (5.22)
5/21
0.69 (0.033)
-- (4.807)
9/68
0.863 (0.013)
++ (5.633)
1/7
0.727 (0.029)
~ (3.18)
8/47
0.826 (0.032)
~ (0.964)
2/25
0.904 (0.013)
-- (11.51)
4/65
0.894 (0.016)
~ (1.903)
4/65
0.808 (0.021)
++ (33.25)
3/9
0.691 (0.038)
++ (11.01)
5/11
0.915 (0.014)
~ (3.518)
6/16
0.962 (0.002)
~ (2.637)
5/14
0.974 (0.002)
++ (441)
6/13
0.884 (0.005)
++ (401)
4/10
0.957 (0.009)
++ (123)
3/5
0.78 (0.041)
~ (3.837)
2/6
0.702 (0.017)
++ (68.41)
3/7
4.38/24.31
FCAIM 0.981 (0.011)
++ (5.207)
3/19
0.69 (0.033)
-- (4.807)
9/68
0.863 (0.013)
++ (5.633)
1/7
0.727 (0.029)
~ (3.18)
8/47
0.826 (0.032)
~ (0.964)
2/25
0.904 (0.013)
-- (11.51)
4/65
0.894 (0.016)
~ (1.903)
4/65
0.808 (0.021)
++ (33.25)
3/9
0.692 (0.04)
++ (10.72)
4/10
0.917 (0.015)
~ (3.671)
4/12
0.963 (0.003)
~ (2.603)
4/11
0.974 (0.002)
++ (441)
6/13
0.884 (0.005)
++ (401)
4/10
0.957 (0.009)
++ (123)
3/5
0.78 (0.041)
~ (3.837)
2/6
0.702 (0.017)
++ (68.41)
3/7
4/23.69
Khiops 0.956 (0.013)
~ (2.916)
10/52
0.692 (0.035)
-- (5.055)
8/67
0.855 (0.014)
++ (9.885)
4/34
0.738 (0.016)
~ (2.725)
5/34
0.805 (0.029)
-- (5.634)
7/58
0.862 (0.009)
-- (77.3)
10/71
0.885 (0.007)
-- (10.2)
9/70
0.827 (0.019)
++ (26.97)
2/2
0.697 (0.043)
++ (7.232)
3/6
0.916 (0.027)
~ (4.635)
5/14
0.96 (0.004)
~ (2.244)
6/24
0.964 (0.002)
++ (473)
9/31
0.874 (0.004)
++ (196)
9/29
0.95 (0.006)
++ (147)
6/16
0.796 (0.033)
++ (6.21)
1/1
0.7 (0.018)
++ (194)
5/12
6.19/32.56
MODL 0.981 (0.01)
++ (4.84)
4/20
0.703 (0.039)
~ (2.76)
2/56
0.852 (0.017)
~ (3.84)
5/39
0.73 (0.024)
~ (2.804)
7/39
0.825 (0.032)
~ (1.287)
4/30
0.906 (0.006)
-- (29.56)
3/64
0.89 (0.013)
~ (2.41)
7/68
0.794 (0.019)
++ (23.46)
7/18
0.698 (0.046)
++ (7.35)
2/4
0.911 (0.019)
~ (3.133)
8/25
0.965 (0.004)
~ (2.684)
2/4
0.977 (0.001)
++ (390)
2/3
0.887 (0.004)
++ (265)
2/4
0.961 (0.005)
++ (219)
1/1
0.77 (0.036)
~ (2.985)
4/13
0.695 (0.021)
++ (215)
6/17
4.12/25.31
CACC 0.98 (0.009)
++ (4.971)
6/23
0.695 (0.038)
~ (3.175)
5/63
0.852 (0.038)
~ (3.394)
6/41
0.754 (0.017)
++ (5.101)
1/15
0.793 (0.033)
~ (2.111)
9/65
0.908 (0.011)
-- (11.35)
2/63
0.902 (0.011)
~ (1.71)
2/63
0.355 (0.013)
-- (21.08)
11/67
0.655 (0.04)
++ (6.934)
8/32
0.918 (0.017)
~ (3.697)
2/7
0.964 (0.005)
~ (2.553)
3/7
0.977 (0.002)
++ (357)
4/7
0.885 (0.006)
++ (168)
3/5
0.953 (0.006)
++ (361)
5/13
0.721 (0.034)
~ (1.236)
7/45
0.709 (0.017)
++ (48.68)
2/4
4.75/32.5

Training time

Table 11. Classifier building time, achieved by a setup in a given row for a dataset in a given column. Abbrevations for algorithms, classifiers and datasets names can be found in Table 1, Table 2 and Table 3, respectively.
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Original Data org 2.632 (0.327)
-/11
0.713 (0.046)
-/11
1.381 (0.126)
-/36
2.59 (0.406)
-/13
0.636 (0.086)
-/50
10.6 (1.325)
-/14
8.834 (0.583)
-/13
2.696 (0.226)
-/17
1.429 (0.042)
-/47
4.411 (4.925)
-/46
20.51 (9.268)
-/62
59.36 (8.466)
-/45
66.66 (8.267)
-/26
11.98 (1.704)
-/31
4.717 (0.71)
-/38
3.909 (0.081)
-/55
/32.19
org 2.608 (0.351)
-/10
0.739 (0.042)
-/13
1.498 (0.102)
-/45
3.021 (0.464)
-/22
0.689 (0.101)
-/55
10.61 (1.158)
-/15
9.881 (0.109)
-/17
3.41 (0.29)
-/27
1.551 (0.033)
-/49
4.272 (1.389)
-/45
23.85 (7.295)
-/67
73.34 (12.79)
-/47
73.1 (2.733)
-/32
14.91 (2.506)
-/37
5.201 (0.64)
-/40
4.499 (0.201)
-/59
/36.25
NB Equal Width 1.286 (0.148)
5/5
0.31 (0.017)
1/1
0.526 (0.331)
9/9
0.813 (0.12)
9/9
0.231 (0.045)
10/10
3.471 (0.052)
2/2
3.444 (0.058)
4/4
0.536 (0.013)
6/6
0.243 (0.014)
2/2
0.577 (0.207)
7/7
1.934 (0.018)
4/4
6.266 (0.297)
4/4
8.044 (0.655)
9/9
1.86 (0.3)
6/6
0.584 (0.022)
8/8
0.607 (0.034)
4/4
5.62/5.62
Equal Frequency 1.318 (0.308)
9/9
0.327 (0.026)
5/5
0.412 (0.052)
1/1
0.755 (0.042)
6/6
0.198 (0.008)
2/2
3.566 (0.121)
7/7
3.467 (0.105)
6/6
0.536 (0.025)
5/5
0.259 (0.009)
4/5
0.92 (1.198)
11/11
1.926 (0.027)
1/1
6.465 (0.982)
8/8
7.428 (0.219)
1/1
2.035 (0.567)
9/9
0.601 (0.059)
9/9
0.605 (0.024)
2/2
5.38/5.44
Maximum Entropy 1.302 (0.222)
8/8
0.323 (0.043)
3/3
0.445 (0.078)
5/5
0.75 (0.049)
5/5
0.203 (0.014)
3/3
3.652 (0.453)
9/9
3.449 (0.063)
5/5
0.532 (0.003)
4/4
0.276 (0.033)
6/7
0.902 (0.823)
10/10
2.148 (0.419)
8/8
6.04 (0.152)
1/1
7.669 (0.27)
4/4
1.866 (0.326)
7/7
0.577 (0.028)
7/7
0.606 (0.035)
3/3
5.5/5.56
Paterson - Niblett 1.225 (0.208)
2/2
0.334 (0.048)
7/7
0.443 (0.088)
3/3
0.74 (0.037)
3/3
0.208 (0.017)
7/7
3.511 (0.058)
5/5
3.399 (0.103)
2/2
0.54 (0.022)
7/7
0.264 (0.024)
5/6
0.542 (0.346)
6/6
4.057 (6.015)
12/16
6.297 (0.14)
5/5
7.697 (0.231)
5/5
1.873 (0.32)
8/8
0.53 (0.024)
4/4
0.646 (0.085)
8/8
5.56/5.88
IEM 1.282 (0.167)
3/3
0.35 (0.055)
9/9
0.444 (0.086)
4/4
0.769 (0.05)
7/7
0.193 (0.011)
1/1
3.475 (0.096)
3/3
3.398 (0.039)
1/1
0.524 (0.021)
2/2
0.361 (0.184)
10/13
0.468 (0.103)
5/5
1.99 (0.177)
6/6
6.431 (0.438)
6/6
7.92 (0.38)
7/7
1.806 (0.292)
3/3
0.537 (0.064)
6/6
0.647 (0.058)
9/9
5.12/5.31
CADD 2.978 (0.882)
10/12
0.726 (0.089)
11/12
0.73 (0.269)
11/11
0.865 (0.224)
10/10
0.207 (0.036)
5/5
3.754 (0.704)
10/10
3.605 (0.331)
10/10
0.594 (0.054)
9/9
0.778 (0.244)
11/40
1.298 (0.156)
12/12
4.026 (2.093)
11/15
6.455 (0.106)
7/7
8.831 (3.929)
10/10
5.027 (1.189)
12/12
1.374 (0.339)
12/13
0.818 (0.135)
10/10
10.06/12.38
ModifiedChi2 3.12 (0.635)
11/13
0.93 (0.127)
12/25
0.802 (0.033)
12/12
1.079 (0.04)
12/12
0.329 (0.039)
12/12
4.524 (0.51)
11/11
4.46 (0.637)
11/11
1.089 (0.099)
12/12
1.352 (1.568)
12/46
0.823 (0.14)
9/9
3.665 (0.598)
10/14
6.727 (0.747)
9/9
9.633 (0.477)
11/11
3.911 (0.999)
11/11
1.352 (0.353)
11/11
0.925 (0.082)
11/11
11.06/14.38
CAIM 1.295 (0.24)
7/7
0.326 (0.032)
4/4
0.458 (0.069)
7/7
0.713 (0.095)
2/2
0.212 (0.033)
8/8
3.483 (0.084)
4/4
3.593 (0.386)
9/9
0.547 (0.024)
8/8
0.281 (0.081)
7/8
0.443 (0.034)
3/3
2.081 (0.209)
7/7
6.082 (0.033)
2/2
7.475 (0.28)
2/2
1.813 (0.276)
4/4
0.523 (0.07)
2/2
0.634 (0.076)
6/6
5.12/5.19
FCAIM 1.292 (0.143)
6/6
0.317 (0.026)
2/2
0.484 (0.074)
8/8
0.693 (0.047)
1/1
0.22 (0.06)
9/9
3.565 (0.117)
6/6
3.539 (0.369)
8/8
0.528 (0.008)
3/3
0.292 (0.045)
8/9
0.448 (0.026)
4/4
1.93 (0.033)
2/2
17.33 (21.44)
12/12
7.552 (0.241)
3/3
1.799 (0.275)
2/2
0.485 (0.018)
1/1
0.641 (0.081)
7/7
5.12/5.19
Khiops 1.181 (0.098)
1/1
0.332 (0.051)
6/6
0.436 (0.086)
2/2
0.747 (0.092)
4/4
0.208 (0.024)
6/6
3.602 (0.384)
8/8
3.512 (0.255)
7/7
0.516 (0.003)
1/1
0.324 (0.174)
9/11
0.442 (0.033)
2/2
1.93 (0.029)
3/3
6.884 (1.392)
10/10
8.026 (0.285)
8/8
1.859 (0.29)
5/5
0.532 (0.062)
5/5
0.619 (0.059)
5/5
5.12/5.25
MODL 3.251 (1.823)
12/14
0.661 (0.128)
10/10
0.652 (0.065)
10/10
1.013 (0.1)
11/11
0.291 (0.013)
11/11
5.008 (1.003)
12/12
4.522 (0.585)
12/12
0.883 (0.148)
11/11
0.255 (0.017)
3/4
0.634 (0.04)
8/8
3.277 (0.032)
9/12
12.06 (6.798)
11/11
9.812 (0.599)
12/12
3.741 (0.73)
10/10
0.727 (0.066)
10/10
1.365 (0.664)
12/12
10.25/10.62
CACC 1.285 (0.222)
4/4
0.335 (0.042)
8/8
0.45 (0.084)
6/6
0.794 (0.145)
8/8
0.206 (0.02)
4/4
3.43 (0.046)
1/1
3.443 (0.088)
3/3
0.843 (0.052)
10/10
0.174 (0.074)
1/1
0.44 (0.037)
1/1
1.954 (0.032)
5/5
6.218 (0.489)
3/3
7.699 (0.128)
6/6
1.797 (0.287)
1/1
0.529 (0.065)
3/3
0.599 (0.03)
1/1
4.06/4.06
LBR Equal Width 11.35 (2.936)
9/53
0.873 (0.063)
7/20
1.417 (0.162)
10/38
3.073 (0.32)
9/23
0.657 (0.108)
12/51
18.14 (1.186)
4/38
10.52 (0.103)
5/23
7.51 (0.607)
6/50
1.275 (0.128)
5/43
4.011 (4.411)
11/44
26.15 (6.192)
12/68
101 (18.99)
8/60
80.34 (46.69)
7/40
22.47 (6.626)
11/54
2.637 (2.168)
10/24
3.461 (0.33)
9/43
8.44/42
Equal Frequency 9.124 (1.173)
1/33
0.886 (0.055)
9/22
1.327 (0.169)
7/32
3.162 (0.14)
10/24
0.521 (0.07)
3/27
20.56 (2.599)
12/52
10.63 (0.635)
7/25
7.86 (0.609)
9/53
1.175 (0.081)
4/42
2.326 (0.471)
8/26
21.33 (3.359)
8/63
90.46 (14.47)
3/52
58.57 (2.566)
1/21
19.08 (3.035)
9/51
2.07 (0.128)
9/21
3.274 (0.262)
7/41
6.69/36.56
Maximum Entropy 9.664 (1.321)
4/43
0.849 (0.068)
2/15
1.356 (0.209)
8/34
3.353 (0.932)
12/26
0.573 (0.067)
11/44
19.39 (2.022)
7/43
10.75 (0.863)
8/27
7.651 (0.457)
8/52
1.688 (0.842)
7/51
3.888 (3.869)
10/43
22.92 (4.305)
10/65
83.17 (15.28)
2/50
78.15 (9.5)
6/38
18.08 (1.141)
7/48
1.888 (0.181)
8/20
3.288 (0.254)
8/42
7.38/40.06
Paterson - Niblett 9.878 (1.368)
5/46
0.861 (0.114)
4/17
1.182 (0.192)
1/17
2.928 (0.113)
8/21
0.497 (0.07)
2/25
20.24 (2.212)
10/49
10.37 (0.956)
3/21
7.598 (0.478)
7/51
1.765 (1.325)
9/55
1.834 (0.912)
7/20
17.29 (3.053)
6/60
95.38 (2.123)
5/55
89.28 (2.31)
8/43
15.58 (1.447)
4/41
1.4 (0.065)
2/14
3.212 (0.2)
6/39
5.44/35.88
IEM 9.51 (1.094)
2/40
0.885 (0.125)
8/21
1.22 (0.175)
3/20
2.875 (0.272)
6/19
0.525 (0.08)
4/30
19.92 (2.85)
9/45
9.888 (0.803)
1/18
6.503 (0.622)
1/45
1.735 (0.815)
8/53
1.543 (0.122)
5/17
15.06 (2.937)
4/57
94.35 (12.86)
4/54
99.68 (2.227)
10/51
14.94 (0.304)
2/38
1.573 (0.162)
6/18
3.162 (0.048)
5/38
4.88/35.25
CADD 31.83 (63.6)
12/59
0.866 (0.158)
6/19
2.305 (3.102)
12/60
2.829 (0.176)
4/17
0.533 (0.109)
6/32
16.87 (1.505)
1/33
11.01 (1.96)
10/31
8.278 (1.022)
10/54
3.461 (4.419)
12/62
5.884 (0.447)
12/51
23.5 (7.348)
11/66
79.93 (7.398)
1/48
69.85 (6.216)
5/31
21.51 (5.444)
10/53
10.01 (9.241)
12/48
3.802 (0.905)
11/50
8.44/44.62
ModifiedChi2 11.63 (4.893)
10/54
1.049 (0.068)
12/26
1.367 (0.035)
9/35
2.759 (0.022)
3/16
0.536 (0.051)
7/35
18.08 (2.286)
3/37
10.08 (1.101)
2/20
34.67 (0.86)
12/62
2.884 (0.496)
11/58
2.834 (2.266)
9/32
22.01 (1.597)
9/64
206 (8.639)
12/70
134 (35.63)
11/55
77.91 (3.252)
12/64
3.37 (2.58)
11/26
3.657 (0.246)
10/46
8.94/43.75
CAIM 10.11 (2.011)
6/47
0.86 (0.094)
3/16
1.219 (0.166)
2/19
2.667 (0.134)
1/14
0.487 (0.074)
1/23
19.65 (2.926)
8/44
10.82 (1.853)
9/29
7.06 (0.394)
4/48
1.351 (1.416)
6/45
1.531 (0.01)
4/16
14.6 (1.616)
3/55
101 (8.781)
7/59
62.97 (4.384)
2/23
14.73 (0.938)
1/36
1.418 (0.016)
3/15
3.035 (0.166)
4/34
4/32.69
FCAIM 10.16 (1.206)
8/49
0.911 (0.07)
10/23
1.246 (0.22)
4/22
2.703 (0.296)
2/15
0.527 (0.073)
5/31
20.38 (2.815)
11/51
10.52 (1.629)
6/24
6.93 (0.025)
3/47
0.68 (0.096)
1/36
1.459 (0.108)
1/13
13.79 (2.27)
1/53
102 (23.55)
9/63
64.49 (5.376)
3/25
14.95 (1.354)
3/39
1.356 (0.128)
1/12
2.964 (0.222)
1/31
4.31/33.38
Khiops 10.16 (1.03)
7/48
0.843 (0.099)
1/14
1.484 (0.228)
11/43
3.347 (0.405)
11/25
0.546 (0.086)
10/38
19.04 (2.347)
6/42
11.06 (1.083)
11/32
7.311 (0.436)
5/49
2.159 (3.44)
10/57
1.565 (0.221)
6/18
18.8 (4.003)
7/61
122 (14.8)
11/66
139 (6.995)
12/57
17.53 (1.666)
6/46
1.723 (0.276)
7/19
3.85 (0.307)
12/52
8.31/41.69
MODL 12.83 (7.557)
11/55
0.863 (0.076)
5/18
1.289 (0.139)
5/25
2.869 (0.343)
5/18
0.543 (0.043)
9/37
18.25 (3.41)
5/40
11.52 (1.968)
12/34
6.67 (1.018)
2/46
0.718 (0.097)
2/37
1.462 (0.139)
2/14
15.22 (2.057)
5/58
109 (26.51)
10/65
94.34 (9.767)
9/49
18.95 (9.777)
8/50
1.444 (0.132)
4/16
2.989 (0.334)
3/33
6.06/37.19
CACC 9.523 (1.192)
3/41
0.922 (0.072)
11/24
1.319 (0.221)
6/30
2.927 (0.216)
7/20
0.543 (0.095)
8/36
17.42 (0.162)
2/36
10.42 (1.082)
4/22
29.41 (1.786)
11/58
1.054 (0.295)
3/41
1.528 (0.118)
3/15
14.21 (2.814)
2/54
98.71 (17.91)
6/58
67 (3.32)
4/28
15.94 (1.739)
5/42
1.496 (0.153)
5/17
2.968 (0.311)
2/32
5.12/34.62
AODE Equal Width 8.828 (2.687)
11/30
1.248 (0.118)
3/30
1.634 (0.3)
11/48
10.85 (2.11)
10/38
0.689 (0.076)
12/54
18.15 (2.182)
12/39
10.79 (0.2)
6/28
3.263 (0.58)
6/23
0.379 (0.087)
6/17
7.239 (1.521)
12/54
6.256 (0.9)
8/31
32.3 (9.755)
9/29
57.46 (8.066)
6/19
12.03 (2.656)
8/32
14.11 (1.39)
12/54
2.572 (0.238)
10/23
8.88/34.31
Equal Frequency 7.906 (0.999)
4/23
1.384 (0.246)
5/35
1.628 (0.226)
10/47
11.21 (1.995)
12/41
0.625 (0.143)
11/49
16.44 (0.545)
6/28
11.38 (0.847)
8/33
3.414 (0.599)
8/28
0.377 (0.079)
5/16
6.956 (1.698)
10/52
7.49 (2.253)
10/34
27.95 (6.448)
7/21
49.15 (0.282)
3/15
13.6 (2.725)
10/35
13.96 (1.115)
11/53
2.569 (0.241)
9/22
8.06/33.25
Maximum Entropy 8.175 (1.58)
6/25
1.472 (0.29)
8/40
1.49 (0.255)
9/44
10.59 (1.827)
9/36
0.566 (0.064)
9/43
17.03 (1.393)
10/34
13.18 (7.282)
9/35
3.462 (0.801)
9/29
0.305 (0.07)
2/10
6.993 (1.372)
11/53
7.097 (0.897)
9/33
21.28 (4.803)
1/13
48.74 (6.044)
2/14
12.25 (0.278)
9/33
13.28 (0.192)
9/51
2.418 (0.268)
5/17
7.31/31.88
Paterson - Niblett 8.185 (1.553)
7/26
1.285 (0.28)
4/31
1.113 (0.272)
2/14
9.656 (1.37)
5/31
0.453 (0.057)
3/15
15.97 (0.601)
4/24
9.549 (0.356)
1/14
3.123 (0.579)
5/22
0.372 (0.091)
4/15
2.046 (0.703)
3/22
3.601 (0.984)
4/13
35.38 (8.647)
10/33
63.36 (4.856)
8/24
5.975 (0.491)
2/14
3.965 (0.489)
5/32
2.418 (0.197)
6/18
4.56/21.75
IEM 8.32 (1.773)
9/28
1.218 (0.134)
2/29
1.091 (0.162)
1/13
9.506 (2.058)
4/30
0.46 (0.101)
6/19
16.08 (1.485)
5/26
9.591 (0.353)
2/15
1.349 (0.282)
1/13
0.252 (0.047)
1/3
1.755 (0.31)
1/19
2.794 (0.472)
1/9
27.11 (6.248)
5/19
66.86 (4.617)
9/27
6.079 (0.554)
4/16
3.797 (0.37)
4/28
2.197 (0.252)
1/13
3.5/19.19
CADD 9.253 (1.828)
12/34
1.585 (0.309)
11/45
1.882 (0.454)
12/54
10.46 (2.489)
8/35
0.579 (0.137)
10/46
16.44 (0.122)
7/29
18.44 (3.73)
12/47
3.672 (0.353)
10/30
0.723 (0.081)
10/38
5.862 (0.65)
9/50
7.904 (1.325)
11/35
22.18 (2.201)
2/14
45.87 (6.698)
1/13
15.02 (1.601)
11/40
13.82 (0.979)
10/52
2.423 (0.356)
8/20
9/36.38
ModifiedChi2 8.38 (0.049)
10/29
1.526 (0.146)
10/42
1.27 (0.064)
4/24
7.287 (0.093)
1/27
0.492 (0.056)
8/24
16.54 (1.85)
8/30
16.96 (2.363)
10/42
460 (7.38)
12/69
5.19 (2.296)
12/68
2.66 (0.342)
7/31
9.328 (1.41)
12/43
196 (6.675)
12/69
280 (193)
12/68
691 (34.75)
12/71
5.101 (0.396)
7/39
2.927 (0.179)
11/29
9.25/44.06
CAIM 7.789 (1.434)
1/19
1.215 (0.215)
1/28
1.313 (0.287)
6/28
8.617 (1.592)
3/29
0.441 (0.041)
2/14
17.1 (3.106)
11/35
10.75 (2.043)
5/26
2.957 (0.586)
4/20
0.401 (0.158)
7/19
2.075 (0.486)
4/23
4.29 (5.179)
5/18
27.66 (5.171)
6/20
54.84 (6.061)
5/17
5.988 (0.691)
3/15
2.603 (0.232)
2/23
2.324 (0.214)
3/15
4.25/21.81
FCAIM 7.88 (1.661)
3/22
1.427 (0.302)
6/36
1.322 (0.256)
7/31
10.17 (1.999)
6/32
0.458 (0.073)
4/17
15.55 (0.123)
3/22
10.04 (1.373)
4/19
2.92 (0.578)
3/19
0.403 (0.093)
8/20
1.859 (0.511)
2/21
2.853 (0.589)
2/10
25.8 (4.199)
4/18
53.69 (5.994)
4/16
5.865 (0.451)
1/13
2.602 (0.238)
1/22
2.379 (0.16)
4/16
3.88/20.88
Khiops 8.17 (1.699)
5/24
1.485 (0.196)
9/41
1.289 (0.243)
5/26
11.06 (2.34)
11/40
0.475 (0.067)
7/21
14.4 (3.524)
2/20
10.98 (1.595)
7/30
3.326 (0.721)
7/25
0.654 (1.17)
9/35
2.402 (0.244)
6/28
5.187 (1.426)
7/24
58.31 (10.05)
11/44
217 (4.231)
11/63
9.734 (0.842)
7/27
3.229 (0.095)
3/25
2.938 (0.234)
12/30
7.44/31.44
MODL 7.863 (0.896)
2/21
1.654 (0.205)
12/50
1.471 (0.222)
8/42
8.407 (1.32)
2/28
0.459 (0.052)
5/18
16.81 (2.497)
9/31
17.75 (3.08)
11/45
2.231 (0.241)
2/16
0.359 (0.058)
3/12
2.889 (0.337)
8/34
5.041 (0.894)
6/22
31.48 (4.311)
8/26
67.06 (5.906)
10/29
7.295 (0.557)
6/18
4.613 (0.515)
6/37
2.422 (0.363)
7/19
6.56/28
CACC 8.265 (1.299)
8/27
1.46 (0.188)
7/39
1.156 (0.122)
3/16
10.34 (1.778)
7/33
0.43 (0.054)
1/13
9.984 (0.219)
1/13
9.753 (0.326)
3/16
280 (50.94)
11/67
1.309 (0.329)
11/44
2.078 (0.253)
5/24
2.867 (0.872)
3/11
25.25 (5.368)
3/17
59.62 (3.693)
7/22
7.133 (2.359)
5/17
6.969 (2.015)
8/45
2.25 (0.272)
2/14
5.31/26.12
HNB Equal Width 48.08 (12.64)
9/68
10.75 (1.707)
10/72
9.935 (1.337)
9/71
138 (33.73)
11/73
5.034 (2.801)
12/74
30.76 (3.182)
6/67
29.13 (5.478)
6/65
37.36 (4.605)
7/63
4.366 (0.726)
5/63
105 (13.45)
10/72
43.57 (4.867)
9/71
171 (213)
10/68
226 (124)
8/65
122 (23.42)
9/68
280 (25.91)
9/71
17.83 (1.236)
7/69
8.56/68.75
Equal Frequency 45.54 (4.539)
7/66
10.3 (0.653)
9/71
12.7 (1.33)
12/74
125 (13.68)
8/70
4.672 (0.788)
11/73
35.29 (6.393)
8/70
35.94 (5.743)
10/72
45.92 (6.808)
10/66
5.301 (2.004)
9/69
109 (7.086)
11/73
66.12 (5.193)
11/73
96.38 (7.583)
4/56
189 (0.502)
4/59
149 (21.42)
11/70
286 (17.56)
10/72
20.53 (0.839)
11/73
9.12/69.19
Maximum Entropy 39.49 (5.996)
4/63
11.75 (1.767)
12/74
12.44 (2.076)
11/73
130 (17.68)
9/71
4.24 (0.565)
10/72
37.51 (6.387)
11/73
45.22 (9.028)
12/74
40.37 (5)
8/64
3.291 (0.456)
3/60
113 (14.58)
12/74
71.93 (6.668)
12/74
57.97 (15.29)
2/43
136 (0.433)
2/56
145 (9.588)
10/69
296 (16.81)
11/73
18.51 (1.322)
8/70
8.56/67.69
Paterson - Niblett 46.74 (9.676)
8/67
7.344 (1.178)
3/65
3.783 (0.862)
2/64
92.43 (6.166)
2/64
2.186 (0.338)
2/64
25.13 (3.564)
2/61
21.69 (4.596)
4/61
26.22 (1.759)
3/57
4.497 (3.933)
6/64
13.55 (1.923)
2/62
7.932 (1.326)
1/36
127 (18.73)
9/67
224 (20.2)
7/64
28.77 (2.087)
1/57
35.82 (2.72)
2/63
13.94 (0.74)
5/67
3.69/61.44
IEM 38.98 (5.535)
3/62
6.806 (1.164)
1/63
3.529 (0.554)
1/63
88.39 (5.562)
1/63
2.156 (0.505)
1/63
23.54 (3.255)
1/60
18.95 (2.901)
1/48
12.63 (2.21)
1/55
1.955 (0.182)
1/56
14.6 (2.319)
4/64
9.032 (1.97)
4/40
81.09 (9.739)
3/49
268 (8.372)
10/67
36.56 (1.026)
4/60
29.66 (2.441)
1/62
10.03 (0.861)
1/63
2.38/58.62
CADD 90.74 (156)
11/73
10.94 (1.829)
11/73
11.11 (0.527)
10/72
143 (29.03)
12/74
4.027 (0.716)
9/71
37.38 (5.094)
10/72
42.41 (5.51)
11/73
42.23 (2.805)
9/65
9.002 (11.07)
10/71
86.92 (9.775)
9/71
38.96 (1.844)
8/70
44.26 (2.85)
1/41
128 (6.668)
1/54
106 (7.173)
8/67
382 (290)
12/74
18.78 (2.725)
9/71
8.81/68.25
ModifiedChi2 85.36 (100)
10/72
7.747 (0.792)
5/67
5.748 (1.01)
7/69
105 (1.117)
5/67
2.603 (0.348)
4/66
36.84 (3.582)
9/71
34.64 (4.16)
9/70
3185 (481)
12/74
59.44 (18.26)
12/74
18.44 (4.403)
5/66
54.69 (19.76)
10/72
1316 (2.712)
12/74
1469 (1117)
12/74
4982 (476)
12/74
36.63 (5.418)
3/64
20.29 (2.061)
10/72
8.56/70.38
CAIM 38.16 (6.099)
2/61
7.34 (1.182)
2/64
3.784 (0.548)
3/65
95.26 (11.77)
3/65
2.734 (1.261)
6/68
26.53 (6.04)
4/63
21.23 (5.52)
3/58
30.27 (3.669)
4/59
4.703 (0.901)
8/66
14.2 (1.299)
3/63
8.395 (1.706)
2/37
97.7 (12.61)
5/57
199 (1.12)
5/61
33.01 (0.249)
2/58
41.23 (1.89)
5/66
14.01 (0.214)
6/68
3.94/61.19
FCAIM 37.49 (6.645)
1/60
7.512 (1.228)
4/66
4.24 (0.736)
4/66
100 (17.34)
4/66
2.942 (1.968)
7/69
25.28 (6.468)
3/62
20.11 (5.352)
2/53
31.83 (6.35)
5/60
4.632 (0.829)
7/65
13.22 (1.692)
1/60
8.48 (2.702)
3/38
106 (16.68)
8/64
206 (13.97)
6/62
34.18 (2.276)
3/59
41.12 (4.652)
4/65
13.61 (0.804)
4/66
4.12/61.31
Khiops 39.71 (6.27)
5/64
9.565 (0.601)
8/70
8.228 (4.961)
8/70
111 (10.72)
7/69
2.982 (0.179)
8/70
42.67 (8.805)
12/74
31.84 (6.193)
8/69
32.24 (4.089)
6/61
3.391 (0.391)
4/61
31.95 (1.386)
8/70
36.74 (5.356)
7/69
320 (31.01)
11/73
1036 (64.13)
11/73
97.26 (5.184)
7/66
76.68 (5.595)
7/69
34.96 (1.071)
12/74
8.06/68.88
MODL 92.51 (159)
12/74
8.512 (0.524)
6/68
4.956 (0.441)
5/67
131 (10.97)
10/72
2.481 (0.104)
3/65
34.55 (2.957)
7/69
30.29 (2.73)
7/67
21.86 (2.685)
2/56
2.923 (0.312)
2/59
26.82 (1.901)
7/69
9.213 (0.323)
5/41
102 (46.18)
7/62
264 (15.74)
9/66
91.14 (158)
6/65
49.2 (3.375)
6/67
13.24 (1.556)
3/65
6.06/64.5
CACC 41.89 (7.819)
6/65
8.789 (1.073)
7/69
5.121 (3.004)
6/68
107 (9.087)
6/68
2.666 (0.685)
5/67
28.73 (8.285)
5/64
22.69 (5.021)
5/63
2997 (367)
11/73
9.462 (3.439)
11/72
20.24 (2.906)
6/68
10.21 (6.911)
6/46
102 (8.694)
6/61
187 (1.229)
3/58
40.79 (16.84)
5/61
128 (35.33)
8/70
13.05 (1.196)
2/64
6.12/64.81
AODEsr Equal Width 9.373 (1.284)
3/36
1.748 (0.171)
8/55
2.472 (1.176)
12/61
14.21 (0.96)
10/55
0.818 (0.1)
11/60
21.13 (2.477)
9/56
21.12 (1.034)
8/57
3.821 (0.28)
7/33
0.566 (0.008)
6/32
13.39 (2.123)
10/61
10.92 (2.091)
9/47
31.31 (4.324)
4/25
73.78 (5.41)
4/33
16.35 (2.418)
8/43
23.71 (1.323)
11/58
3.112 (0.216)
9/37
8.06/46.81
Equal Frequency 10.59 (2.42)
11/51
1.755 (0.146)
9/56
1.847 (0.135)
9/52
15.08 (1.227)
12/58
0.768 (0.072)
10/57
22.97 (2.434)
12/59
21.6 (1.342)
9/59
3.854 (0.07)
8/35
0.581 (0.037)
7/34
15.07 (5.566)
11/65
13.38 (1.775)
11/52
32.38 (5.034)
6/30
68.23 (3.109)
3/30
17.33 (1.086)
9/45
23.8 (1.693)
12/59
3.103 (0.226)
8/36
9.19/48.62
Maximum Entropy 9.413 (0.96)
4/37
1.7 (0.11)
7/54
2.068 (0.314)
10/56
14.94 (1.035)
11/57
0.681 (0.071)
9/53
21.94 (2.833)
11/58
21.66 (1.56)
10/60
3.935 (0.282)
9/36
0.461 (0.054)
2/24
19.56 (14.16)
12/67
14.75 (3.299)
12/56
24.54 (2.629)
1/15
56.15 (3.954)
1/18
17.67 (0.909)
10/47
22.95 (1.648)
9/56
3.077 (0.26)
7/35
7.81/45.56
Paterson - Niblett 9.462 (1.364)
6/39
1.584 (0.185)
2/44
1.317 (0.227)
1/29
13.72 (1.698)
7/51
0.525 (0.071)
3/29
20.94 (1.53)
8/55
19.43 (1.487)
2/50
3.71 (0.317)
6/31
0.528 (0.072)
4/28
3.472 (1.682)
6/41
5.97 (0.83)
5/29
37.72 (2.422)
10/36
85 (4.657)
8/41
7.382 (0.404)
1/19
3.816 (0.253)
2/29
2.715 (0.224)
4/26
4.69/36.06
IEM 9.425 (1.465)
5/38
1.617 (0.306)
3/47
1.459 (0.226)
5/41
12.69 (2.243)
6/45
0.519 (0.086)
1/26
20.81 (2.448)
7/54
20.47 (2.75)
7/56
1.684 (0.122)
1/14
0.468 (0.173)
3/25
4.863 (4.628)
8/47
5.096 (0.39)
1/23
28.36 (1.804)
3/22
93.07 (5.213)
10/48
7.458 (0.066)
3/21
3.777 (0.465)
1/27
2.526 (0.195)
1/21
4.06/34.69
CADD 9.835 (1.425)
9/45
1.885 (0.293)
11/58
2.099 (0.221)
11/58
12.58 (1.538)
5/44
0.562 (0.081)
7/42
20.11 (2.7)
4/48
22.85 (3.851)
12/64
4.17 (0.313)
10/39
0.765 (0.143)
8/39
8.981 (0.536)
9/55
9.485 (1.434)
8/44
24.87 (1.565)
2/16
57.76 (5.068)
2/20
18.63 (1.789)
11/49
23.32 (4.337)
10/57
3.64 (0.813)
11/45
8.12/45.19
ModifiedChi2 10.39 (0.356)
10/50
1.902 (0.104)
12/59
1.7 (0.111)
7/49
10.4 (0.135)
1/34
0.582 (0.057)
8/47
20 (1.427)
2/46
19.69 (1.399)
3/51
524 (37.84)
12/71
7.306 (4.578)
12/70
3.23 (0.305)
4/39
12.48 (2.316)
10/51
231 (4.283)
12/72
398 (311)
12/72
902 (270)
12/73
5.668 (0.481)
6/42
3.253 (0.328)
10/40
8.31/54.12
CAIM 9.349 (1.071)
2/35
1.672 (0.168)
5/51
1.352 (0.225)
2/33
12.21 (0.843)
3/42
0.551 (0.098)
6/40
20.09 (1.599)
3/47
19.79 (1.672)
4/52
3.332 (0.214)
5/26
1.665 (3.707)
10/50
3.134 (0.126)
3/38
5.609 (0.725)
3/26
32.86 (0.262)
7/31
74.34 (4.482)
5/34
7.393 (0.595)
2/20
3.914 (0.226)
3/31
2.804 (0.023)
5/27
4.25/36.44
FCAIM 9.531 (1.533)
7/42
1.554 (0.106)
1/43
1.411 (0.264)
3/37
10.69 (0.834)
2/37
0.522 (0.077)
2/28
20.34 (1.551)
5/50
19.29 (1.917)
1/49
3.278 (0.236)
4/24
0.539 (0.161)
5/30
3.131 (0.121)
2/37
5.755 (1.104)
4/27
36.59 (6.242)
9/34
76.12 (2.961)
6/35
7.563 (0.554)
4/22
4.161 (0.318)
4/34
2.605 (0.215)
2/24
3.81/34.56
Khiops 9.83 (0.4)
8/44
1.692 (0.23)
6/53
1.727 (0.332)
8/50
13.84 (2.481)
8/53
0.548 (0.1)
5/39
21.85 (1.633)
10/57
22.23 (2.399)
11/62
3.077 (0.074)
3/21
1.5 (3.236)
9/48
3.547 (0.296)
7/42
8.701 (1.02)
7/39
67.22 (5.212)
11/46
350 (19.02)
11/69
13.59 (1.059)
7/34
5.833 (0.655)
7/44
3.882 (0.21)
12/54
8.12/47.19
MODL 10.74 (1.499)
12/52
1.821 (0.111)
10/57
1.62 (0.098)
6/46
12.33 (1.734)
4/43
0.535 (0.037)
4/34
20.67 (2.563)
6/53
20.41 (2.441)
6/55
2.846 (0.454)
2/18
0.399 (0.067)
1/18
3.412 (0.288)
5/40
6.252 (0.557)
6/30
33.46 (4.064)
8/32
90.18 (7.027)
9/44
8.83 (1.576)
6/24
5.302 (0.386)
5/41
2.92 (0.407)
6/28
6/38.44
CACC 9.026 (0.726)
1/32
1.629 (0.208)
4/48
1.418 (0.267)
4/39
14.19 (1.717)
9/54
0.901 (1.103)
12/62
19.02 (0.4)
1/41
20.23 (1.811)
5/54
468 (30.28)
11/70
1.763 (0.604)
11/54
2.983 (0.165)
1/35
5.296 (0.529)
2/25
31.63 (2.093)
5/27
77.08 (0.488)
7/36
8.405 (1.616)
5/23
10.24 (2.721)
8/49
2.627 (0.228)
3/25
5.56/42.12
WAODE Equal Width 14.02 (3.072)
8/57
1.642 (0.292)
8/49
1.863 (0.219)
8/53
15.72 (2.531)
10/60
0.667 (0.052)
8/52
16.04 (1.334)
7/25
17.6 (2.587)
7/43
4.61 (0.663)
7/41
0.576 (0.118)
9/33
11.67 (2.202)
11/58
10.02 (2.13)
8/45
40.61 (6.257)
5/37
197 (336)
10/60
56.13 (120)
11/63
23.92 (2.092)
10/60
4.008 (0.415)
8/57
8.44/49.56
Equal Frequency 13.87 (2.391)
7/56
1.675 (0.304)
9/52
2.025 (0.359)
9/55
17.4 (3.459)
12/62
0.827 (0.381)
12/61
16.28 (1.42)
8/27
18.14 (1.987)
9/46
4.652 (0.671)
8/42
0.533 (0.039)
7/29
12.63 (2.731)
12/59
11.22 (0.344)
10/49
42.15 (8.04)
8/40
88.68 (0.407)
3/42
22.6 (4.152)
8/55
24.95 (2.705)
11/61
4.215 (0.333)
9/58
8.88/49.62
Maximum Entropy 14.37 (2.008)
9/58
1.61 (0.382)
7/46
2.084 (0.427)
10/57
15.42 (2.631)
9/59
0.619 (0.136)
7/48
15.59 (0.893)
6/23
17.62 (4.659)
8/44
5.117 (0.861)
9/43
0.46 (0.084)
3/22
11.65 (1.697)
10/57
12.02 (0.361)
11/50
31.9 (6.491)
3/28
78.62 (0.271)
2/39
23.07 (4.094)
9/56
21.14 (1.441)
9/55
3.785 (0.431)
4/49
7.25/45.88
Paterson - Niblett 8.92 (2.947)
6/31
1.292 (0.313)
2/32
1.259 (0.355)
4/23
13.44 (2.229)
6/50
0.465 (0.056)
2/20
15.18 (1.945)
5/21
15 (2.92)
5/40
4.422 (0.632)
6/40
0.451 (0.048)
2/21
2.369 (0.19)
2/27
4.754 (0.236)
4/21
54.62 (11.83)
9/42
98.5 (6.801)
7/50
9.617 (0.771)
2/26
3.875 (0.323)
1/30
3.727 (0.421)
3/48
4.12/32.62
IEM 7.503 (1.165)
3/17
1.172 (0.146)
1/27
1.233 (0.295)
3/21
13.03 (1.959)
4/48
0.456 (0.104)
1/16
13.95 (0.586)
2/17
14.63 (2.141)
4/39
1.892 (0.384)
1/15
0.371 (0.088)
1/14
2.316 (0.217)
1/25
4.342 (0.545)
2/19
37.34 (10.09)
4/35
104 (1.642)
8/52
9.817 (0.181)
4/29
3.979 (0.483)
2/33
3.505 (0.22)
1/44
2.62/28.19
CADD 62.74 (151)
11/70
2.355 (0.39)
12/62
2.536 (0.484)
12/62
15.99 (3.104)
11/61
0.801 (0.162)
11/59
31.05 (4.495)
12/68
34.88 (6.958)
12/71
5.494 (0.499)
10/44
5.096 (5.36)
11/67
10.97 (1.013)
9/56
11.12 (0.76)
9/48
30.88 (2.404)
2/24
77.85 (0.653)
1/37
21.32 (2.339)
7/52
55.8 (93.77)
12/68
4.708 (1.461)
11/61
9.56/56.88
ModifiedChi2 61.68 (150)
10/69
1.955 (0.132)
10/60
1.842 (0.103)
7/51
12.93 (0.111)
3/47
0.778 (0.086)
10/58
29.75 (2.385)
10/65
29.93 (2.566)
10/66
536 (6.277)
12/72
12.42 (5.384)
12/73
4.989 (0.618)
7/48
16.29 (4.291)
12/59
227 (0.903)
12/71
389 (302)
12/71
855 (46.59)
12/72
9.786 (4.167)
7/47
4.687 (0.234)
10/60
9.75/61.81
CAIM 7.242 (1.101)
1/15
1.316 (0.256)
4/34
1.123 (0.134)
1/15
12.73 (2.522)
2/46
0.535 (0.116)
4/33
13.83 (0.395)
1/16
14.19 (1.442)
2/37
3.935 (0.501)
4/37
0.559 (0.076)
8/31
2.435 (0.248)
3/29
5.854 (3.78)
5/28
41.34 (6.714)
7/39
92.48 (6.685)
6/47
9.342 (0.158)
1/25
4.226 (0.025)
3/35
3.845 (0.24)
5/51
3.56/32.38
FCAIM 7.584 (1.303)
4/18
1.304 (0.239)
3/33
1.211 (0.178)
2/18
10.98 (1.694)
1/39
0.481 (0.06)
3/22
14.2 (1.422)
3/18
14.33 (1.83)
3/38
4.007 (0.686)
5/38
0.512 (0.051)
5/26
2.464 (0.415)
4/30
4.192 (0.061)
1/17
40.83 (7.966)
6/38
92.2 (6.68)
5/46
9.783 (1.003)
3/28
4.237 (0.468)
4/36
3.867 (0.242)
6/53
3.62/31.12
Khiops 7.824 (2.574)
5/20
1.457 (0.193)
6/38
1.447 (0.24)
6/40
13.75 (2.825)
7/52
0.574 (0.11)
6/45
16.86 (1.297)
9/32
15.52 (0.135)
6/41
3.812 (0.859)
2/32
0.461 (0.07)
4/23
3.087 (0.291)
6/36
9.247 (2.09)
7/42
84.63 (25.02)
10/51
384 (10.88)
11/70
16.83 (1.454)
6/44
5.822 (0.846)
5/43
5.063 (0.063)
12/62
6.75/41.94
MODL 65.05 (161)
12/71
2.249 (0.11)
11/61
2.111 (0.237)
11/59
14.34 (1.817)
8/56
0.752 (0.103)
9/56
30.13 (3.861)
11/66
31.19 (4.237)
11/68
3.821 (0.657)
3/34
0.523 (0.074)
6/27
5.127 (0.634)
8/49
6.692 (0.537)
6/32
92.79 (181)
11/53
104 (11.86)
9/53
41.3 (95.65)
10/62
8.455 (0.769)
6/46
3.982 (0.696)
7/56
8.69/53.06
CACC 7.277 (1.076)
2/16
1.432 (0.203)
5/37
1.302 (0.325)
5/27
13.21 (2.893)
5/49
0.561 (0.188)
5/41
14.3 (0.548)
4/19
14.03 (0.494)
1/36
385 (80.94)
11/68
1.719 (0.569)
10/52
2.857 (0.529)
5/33
4.603 (1.162)
3/20
28.48 (3.583)
1/23
91.02 (4.988)
4/45
10.43 (1.798)
5/30
10.57 (3.164)
8/50
3.663 (0.415)
2/47
4.75/37.06

Classification time

Table 12. Time needed to classifie test set, achieved by a setup in a given row for a dataset in a given column. Abbrevations for algorithms, classifiers and datasets names can be found in Table 1, Table 2 and Table 3, respectively.
Algorithmannealcoliccredit-acylinder-bandsheart-chypothyroidsickvowelglassionospherepage-blockspendigitssatsegmentsonarvehicleAvg. place
Original Data org 38 (5.944)
-/13
2.463 (0.171)
-/13
4.351 (0.42)
-/16
9.141 (1.442)
-/13
2.359 (0.331)
-/38
75.32 (11.07)
-/13
28.64 (0.251)
-/13
42.2 (2.639)
-/37
6.57 (0.174)
-/61
10.29 (2.563)
-/15
99.08 (17.7)
-/58
762 (8.368)
-/56
746 (75.37)
-/14
147 (18.44)
-/45
10.58 (1.945)
-/15
22.79 (0.254)
-/18
/27.38
org 63.89 (11.08)
-/26
18.4 (1.35)
-/62
82.35 (8.928)
-/62
95.48 (10.18)
-/62
27.49 (3.513)
-/62
627 (91.55)
-/62
450 (27.74)
-/62
1318 (74.35)
-/62
35.55 (5.574)
-/62
240 (32.59)
-/62
2305 (240)
-/62
15139 (365)
-/62
7649 (278)
-/62
3422 (337)
-/62
266 (57.97)
-/63
458 (11.33)
-/62
/59.81
NB Equal Width 18.93 (2.558)
5/5
1.292 (0.095)
3/3
2.127 (0.326)
4/4
4.258 (0.692)
10/10
0.931 (0.254)
11/11
36.59 (0.336)
4/4
19.37 (0.102)
3/3
12.2 (0.109)
4/4
1.262 (0.126)
4/4
2.68 (0.998)
10/10
24.45 (0.499)
5/5
154 (7.587)
7/7
145 (13.22)
12/12
27.01 (0.071)
4/4
2.635 (0.184)
11/11
6.238 (0.436)
9/9
6.62/6.62
Equal Frequency 19.49 (3.808)
7/7
1.369 (0.129)
7/7
2.026 (0.313)
3/3
4.106 (0.262)
8/8
0.795 (0.074)
5/5
38.84 (3.316)
12/12
19.65 (1.251)
5/5
12.43 (0.754)
9/9
1.9 (0.264)
10/13
3.06 (1.285)
12/12
24.63 (0.437)
7/7
157 (21.17)
11/11
140 (1.939)
4/4
30.49 (6.011)
12/12
2.693 (0.284)
12/12
6.335 (0.318)
11/11
8.44/8.62
Maximum Entropy 20.21 (3.022)
10/10
1.354 (0.207)
5/5
2.235 (0.453)
9/9
3.959 (0.338)
5/5
0.835 (0.142)
7/7
38.14 (5.353)
10/10
19.38 (0.257)
4/4
12.22 (0.066)
5/5
1.95 (0.312)
11/16
2.701 (0.4)
11/11
26.87 (4.951)
11/11
150 (3.079)
5/5
142 (3.13)
6/6
28.19 (2.285)
9/9
2.531 (0.193)
6/6
5.963 (0.545)
3/3
7.31/7.62
Paterson - Niblett 18.73 (3.056)
3/3
1.4 (0.245)
9/9
2.205 (0.476)
6/6
4.051 (0.3)
6/6
0.839 (0.108)
8/8
37.38 (2.165)
7/7
19.74 (1.203)
8/8
12.48 (0.75)
10/10
1.774 (0.103)
8/8
2.623 (1.146)
9/9
27.83 (4.598)
12/12
151 (3.098)
6/6
143 (2.739)
10/10
27.25 (1.617)
5/5
2.583 (0.192)
9/9
6.114 (0.874)
6/6
7.62/7.62
IEM 20.45 (2.995)
11/11
1.517 (0.32)
12/12
2.288 (0.57)
10/10
4.275 (0.169)
11/11
0.78 (0.069)
3/3
37.15 (2.388)
6/6
19.31 (0.209)
2/2
12.36 (0.725)
7/7
2.071 (0.384)
12/19
2.475 (0.429)
7/7
25.25 (1.657)
9/9
154 (10.68)
9/9
141 (2.731)
5/5
26.68 (0.067)
2/2
2.566 (0.344)
7/7
6.35 (0.332)
12/12
7.81/8.25
CADD 17.48 (3.406)
2/2
1.275 (0.189)
2/2
1.946 (0.305)
2/2
3.95 (0.789)
4/4
0.73 (0.115)
1/1
34.91 (5.333)
1/1
18.8 (0.51)
1/1
12.61 (1.422)
11/11
1.271 (0.163)
5/5
2.483 (0.279)
8/8
23.33 (0.313)
2/2
143 (1.462)
2/2
137 (19.83)
3/3
28.73 (2.912)
10/10
2.616 (0.18)
10/10
6.008 (0.942)
4/4
4.25/4.25
ModifiedChi2 16.86 (0.085)
1/1
1.154 (0.033)
1/1
1.794 (0.021)
1/1
3.446 (0.074)
1/1
0.792 (0.08)
4/4
35.59 (2.323)
2/2
19.73 (2.052)
7/7
12.3 (0.784)
6/6
1.824 (1.48)
9/10
2.452 (0.245)
6/6
25.01 (2.543)
8/8
149 (2.465)
3/3
137 (3.74)
2/2
27.95 (2.776)
8/8
2.507 (0.233)
4/4
6.299 (0.465)
10/10
4.56/4.62
CAIM 19.14 (3.076)
6/6
1.379 (0.192)
8/8
2.22 (0.384)
8/8
3.789 (0.517)
3/3
0.879 (0.172)
10/10
37 (2.326)
5/5
21.29 (3.179)
12/12
12.39 (0.737)
8/8
1.209 (0.167)
2/2
2.399 (0.201)
4/4
25.72 (1.953)
10/10
150 (2.933)
4/4
142 (3.3)
9/9
26.8 (0.266)
3/3
2.572 (0.342)
8/8
6.174 (0.518)
8/8
6.75/6.75
FCAIM 20.54 (3.091)
12/12
1.332 (0.162)
4/4
2.482 (0.441)
12/12
3.757 (0.326)
2/2
1.121 (0.912)
12/12
37.9 (2.93)
8/8
20.63 (2.974)
11/11
12.19 (0.099)
3/3
1.41 (0.209)
6/6
2.445 (0.183)
5/5
24.2 (0.463)
4/4
178 (35.59)
12/12
142 (3.346)
7/7
27.79 (2.19)
7/7
2.395 (0.129)
1/1
6.166 (0.525)
7/7
7.06/7.06
Khiops 19.58 (3.773)
9/9
1.418 (0.26)
10/10
2.185 (0.444)
5/5
4.052 (0.59)
7/7
0.854 (0.161)
9/9
38.24 (5)
11/11
20.17 (1.745)
10/10
12.16 (0.064)
2/2
1.702 (1.255)
7/7
2.349 (0.207)
2/2
24.55 (0.329)
6/6
155 (8.485)
10/10
143 (1.328)
11/11
28.97 (2.691)
11/11
2.524 (0.23)
5/5
6.064 (0.558)
5/5
7.5/7.5
MODL 18.81 (2.704)
4/4
1.361 (0.083)
6/6
2.212 (0.319)
7/7
4.148 (0.618)
9/9
0.767 (0.079)
2/2
38.13 (7.059)
9/9
19.96 (1.515)
9/9
11.84 (1.741)
1/1
1.145 (0.139)
1/1
2.387 (0.25)
3/3
22.18 (0.447)
1/1
136 (1.6)
1/1
126 (1.01)
1/1
24.93 (1.803)
1/1
2.501 (0.419)
3/3
5.535 (0.749)
1/1
3.69/3.69
CACC 19.55 (3.449)
8/8
1.418 (0.212)
11/11
2.301 (0.477)
11/11
4.377 (1.037)
12/12
0.826 (0.141)
6/6
36.51 (0.368)
3/3
19.7 (1.25)
6/6
14.11 (1.188)
12/12
1.226 (0.193)
3/3
2.325 (0.234)
1/1
24.19 (0.514)
3/3
154 (13.46)
8/8
142 (3.276)
8/8
27.27 (1.676)
6/6
2.472 (0.318)
2/2
5.934 (0.548)
2/2
6.38/6.38
LBR Equal Width 114426 (32687)
7/69
865 (87.28)
5/67
3828 (999)
11/73
17621 (6353)
5/67
495 (148)
11/73
985445 (318856)
5/67
442679 (115088)
3/65
9827 (1285)
5/67
318 (86.08)
9/71
1826 (348)
4/66
420727 (119005)
11/73
1887802 (298381)
8/70
2321761 (105191)
9/71
136000 (22315)
10/72
1372 (340)
7/69
11284 (1008)
9/71
7.44/69.44
Equal Frequency 119490 (22509)
10/72
837 (170)
3/65
2546 (325)
3/65
16358 (3977)
4/66
361 (75.54)
2/64
908842 (305631)
4/66
397286 (115802)
1/63
8128 (736)
1/63
154 (13.91)
1/63
1269 (222)
3/65
82504 (10731)
5/67
1836396 (262540)
7/69
2097503 (100452)
7/69
57158 (2274)
2/64
868 (68.49)
3/65
8415 (711)
2/64
3.62/65.62
Maximum Entropy 107214 (31310)
5/67
756 (74.52)
1/63
2300 (279)
1/63
12993 (2982)
1/63
407 (68.98)
5/67
667785 (157937)
1/63
527935 (112331)
8/70
8476 (901)
3/65
185 (32.84)
2/64
834 (137)
1/63
26663 (3730)
1/63
2264733 (309181)
10/72
3284122 (70607)
10/72
55831 (6695)
1/63
896 (118)
4/66
9048 (861)
3/65
3.56/65.56
Paterson - Niblett 130910 (24213)
12/74
1189 (301)
10/72
3920 (799)
12/74
24453 (7110)
11/73
505 (65.14)
12/74
1051876 (355215)
9/71
493031 (184144)
6/68
29899 (2537)
12/74
421 (150)
12/74
6525 (1998)
12/74
465986 (139392)
12/74
4863923 (457494)
12/74
6756078 (814576)
12/74
237500 (34417)
12/74
6848 (428)
12/74
13820 (1331)
11/73
11.19/73.19
IEM 97193 (16120)
3/65
1205 (277)
11/73
3336 (733)
7/69
24578 (6338)
12/74
359 (64.47)
1/63
1058587 (214932)
10/72
491601 (101273)
5/67
21385 (5014)
11/73
241 (37.04)
7/69
3886 (407)
8/70
213396 (34060)
6/68
2006351 (294659)
9/71
1789441 (49046)
3/65
90398 (7265)
6/68
1280 (539)
5/67
16871 (1610)
12/74
7.25/69.25
CADD 98697 (28202)
4/66
859 (206)
4/66
2449 (374)
2/64
13275 (3615)
2/64
377 (81.2)
3/65
729964 (169120)
2/64
616306 (70300)
11/73
8415 (1238)
2/64
409 (644)
11/73
911 (115)
2/64
47381 (8959)
3/65
2270495 (154976)
11/73
3350534 (377098)
11/73
58556 (3727)
3/65
24.78 (1.533)
1/26
9341 (1247)
4/66
4.75/64.44
ModifiedChi2 78935 (3907)
1/63
951 (147)
6/68
2571 (303)
4/66
22487 (4333)
7/69
409 (76.38)
6/68
1036514 (314194)
8/70
405450 (103082)
2/64
19483 (605)
9/71
265 (81.55)
8/70
2670 (792)
6/68
79650 (17128)
4/66
1297244 (54192)
2/64
1292938 (1042216)
2/64
176549 (6801)
11/73
1302 (255)
6/68
10192 (1101)
5/67
5.44/67.44
CAIM 115248 (24401)
8/70
1186 (222)
9/71
3312 (660)
6/68
23416 (6699)
9/71
419 (68.65)
7/69
1068905 (269125)
12/74
566849 (132825)
9/71
11662 (1435)
7/69
197 (24.8)
3/65
6257 (862)
11/73
261209 (69258)
9/71
1524831 (76257)
3/65
2037441 (168889)
6/68
94339 (9868)
7/69
5090 (959)
10/72
10838 (923)
7/69
7.69/69.69
FCAIM 118205 (30461)
9/71
1215 (213)
12/74
3377 (794)
8/70
23432 (6592)
10/72
455 (78.53)
9/71
1059542 (258519)
11/73
574660 (132875)
10/72
11349 (1161)
6/68
197 (27.3)
4/66
5851 (695)
10/72
243851 (43438)
8/70
1807337 (233766)
6/68
2036768 (158672)
5/67
94788 (11645)
8/70
4758 (733)
9/71
10615 (956)
6/68
8.19/70.19
Khiops 108065 (21205)
6/68
816 (134)
2/64
3095 (720)
5/67
14657 (2538)
3/65
383 (73.39)
4/66
738887 (217569)
3/65
623800 (87104)
12/74
9686 (644)
4/66
234 (27.27)
6/68
2341 (309)
5/67
29851 (5760)
2/64
1063435 (120985)
1/63
597318 (21667)
1/63
59394 (9072)
4/66
3505 (705)
8/70
4618 (461)
1/63
4.19/66.19
MODL 90267 (15639)
2/64
1064 (237)
7/69
3566 (759)
10/72
22535 (5354)
8/70
487 (57.83)
10/72
1007349 (192093)
7/69
496859 (123583)
7/69
15935 (2877)
8/70
372 (114)
10/72
2914 (531)
7/69
238639 (33077)
7/69
1753912 (217610)
5/67
2262224 (271586)
8/70
87506 (10660)
5/67
5547 (1474)
11/73
13540 (1752)
10/72
7.62/69.62
CACC 120221 (24121)
11/73
1123 (224)
8/70
3487 (679)
9/71
19636 (5820)
6/68
433 (86.24)
8/70
999769 (243104)
6/68
462614 (104380)
4/66
21076 (1145)
10/72
234 (34.12)
5/67
4221 (407)
9/71
267925 (68543)
10/72
1540159 (245794)
4/66
1889278 (83868)
4/66
95883 (9956)
9/71
404 (1227)
2/64
10933 (1444)
8/70
7.06/69.06
AODE Equal Width 116 (29.01)
9/43
3.321 (0.244)
1/14
4.749 (0.678)
6/19
21.37 (2.928)
6/20
1.735 (0.138)
8/20
150 (10.77)
9/24
71.29 (0.176)
4/17
30.58 (3.851)
4/16
1.877 (0.314)
2/11
14.73 (2.049)
9/25
46 (4.615)
6/18
463 (87.05)
8/24
924 (215)
10/37
133 (22.79)
9/32
30.7 (4.486)
10/40
23.46 (3.068)
8/21
6.81/23.81
Equal Frequency 95.67 (15.54)
5/39
3.668 (0.677)
5/18
4.848 (0.605)
8/21
21.13 (2.235)
3/16
1.617 (0.291)
7/19
143 (4.238)
5/19
73.88 (4.355)
8/21
31.3 (4.031)
6/18
1.9 (0.318)
4/14
14.41 (1.613)
8/24
67.85 (11.27)
9/37
460 (56.25)
7/23
789 (0.917)
2/16
147 (26.53)
11/44
24.35 (4.857)
8/23
23.51 (3.008)
9/22
6.56/23.38
Maximum Entropy 95.27 (12.93)
4/38
3.85 (0.688)
6/19
4.395 (0.606)
5/18
22.47 (6.403)
9/24
1.456 (0.15)
2/14
147 (7.545)
7/22
72.91 (4.359)
6/19
31.92 (4.756)
7/19
1.999 (0.361)
6/17
14.25 (1.574)
7/22
69.94 (4.848)
10/40
397 (33.81)
1/13
750 (35.71)
1/15
133 (1.86)
8/31
21.81 (0.152)
7/22
22.02 (3.724)
4/16
5.62/21.81
Paterson - Niblett 93.83 (11.39)
3/37
3.653 (0.755)
4/17
4.292 (0.719)
3/15
21.27 (2.082)
5/19
1.482 (0.151)
4/16
141 (1.769)
3/17
70.98 (0.579)
2/15
26.79 (2.337)
1/13
2.142 (0.408)
8/20
10.22 (0.489)
2/14
42.28 (6.231)
4/16
474 (44.63)
9/27
835 (37.1)
6/24
97.2 (12.17)
1/13
16.37 (0.772)
5/20
23.46 (3.078)
7/20
4.19/18.94
IEM 98.31 (14.24)
8/42
3.406 (0.374)
2/15
4.245 (0.447)
2/14
21.18 (3.737)
4/18
1.516 (0.271)
6/18
143 (7.212)
4/18
71.21 (0.721)
3/16
27.27 (3.893)
2/14
1.89 (0.272)
3/12
9.936 (0.58)
1/13
39.39 (3.164)
1/13
413 (13.62)
3/15
874 (33.19)
8/28
99.19 (12.01)
3/15
16.16 (0.545)
1/16
22.68 (3.545)
5/17
3.5/17.75
CADD 155 (33.49)
12/57
4.617 (0.98)
11/24
6.525 (1.277)
11/31
30.32 (6.836)
12/30
1.999 (0.481)
10/23
177 (0.341)
10/31
100 (21.49)
10/32
42.35 (5.63)
10/38
2.905 (0.254)
11/40
17.23 (2.678)
12/40
72.96 (7.815)
11/44
406 (27.63)
2/14
805 (207)
3/17
145 (17.51)
10/42
34.77 (3.87)
12/44
20.85 (4.265)
2/14
9.31/32.56
ModifiedChi2 116 (0.198)
10/44
3.85 (0.077)
7/20
5.003 (0.038)
9/22
22.99 (0.183)
10/25
2.199 (0.348)
12/29
193 (32.22)
11/35
101 (18.68)
11/33
178 (12.09)
12/60
4.21 (0.242)
12/55
15.6 (2.947)
10/31
79.32 (7.498)
12/49
2081 (126)
12/60
2993 (1950)
12/59
571 (123)
12/60
31.01 (3.329)
11/41
24.9 (0.085)
12/25
10.94/40.5
CAIM 93.7 (12.75)
2/36
3.47 (0.553)
3/16
4.835 (0.923)
7/20
19.5 (2.263)
1/14
1.877 (1.479)
9/21
149 (19.43)
8/23
74.24 (6.026)
9/22
29.2 (4.745)
3/15
1.911 (0.29)
5/15
11.04 (1.537)
6/19
39.9 (3.971)
2/14
439 (35.84)
6/20
829 (40.18)
5/21
101 (16.3)
5/17
16.18 (0.576)
3/18
23.43 (3.103)
6/19
5/19.38
FCAIM 93.13 (14.06)
1/34
3.993 (0.878)
8/21
5.406 (1.537)
10/23
21.76 (3.223)
7/21
1.506 (0.163)
5/17
140 (0.337)
1/15
72.11 (3.707)
5/18
30.96 (7.663)
5/17
2.005 (0.351)
7/18
10.47 (1.539)
4/17
43.12 (11.64)
5/17
435 (37.85)
5/18
822 (40.02)
4/19
97.97 (12.14)
2/14
16.18 (0.572)
2/17
24.16 (2.312)
11/24
5.12/19.38
Khiops 97.46 (14.69)
7/41
4.076 (0.575)
10/23
4.382 (0.658)
4/17
22.01 (4.725)
8/22
1.48 (0.153)
3/15
144 (5.366)
6/20
73.36 (4.7)
7/20
32.63 (6.653)
8/20
1.818 (0.164)
1/9
10.6 (0.404)
5/18
51.95 (10.28)
7/19
748 (52.25)
11/55
2492 (57.11)
11/58
116 (11.67)
7/21
16.26 (0.064)
4/19
23.82 (3.087)
10/23
6.81/25
MODL 142 (27.51)
11/53
5.27 (0.65)
12/25
7.065 (0.915)
12/44
28.8 (5.407)
11/28
2.124 (0.356)
11/26
199 (40.14)
12/37
110 (24.76)
12/38
34.16 (5.157)
9/21
2.727 (0.411)
10/30
16.91 (2.556)
11/38
59.64 (10.51)
8/24
489 (83.79)
10/29
921 (156)
9/36
99.38 (15.85)
4/16
30.16 (4.632)
9/38
19.55 (3.62)
1/13
9.5/31
CACC 96.23 (11.15)
6/40
3.996 (0.464)
9/22
4.232 (0.376)
1/13
20.76 (2.069)
2/15
1.359 (0.014)
1/13
141 (0.628)
2/16
70.81 (0.224)
1/14
149 (21.86)
11/56
2.192 (0.333)
9/21
10.34 (0.417)
3/16
40.26 (6.125)
3/15
422 (15.58)
4/16
864 (24.5)
7/27
103 (15.04)
6/18
19.66 (2.025)
6/21
21.96 (3.77)
3/15
4.62/21.12
HNB Equal Width 151 (50.72)
9/55
7.769 (1.069)
8/45
6.984 (0.941)
7/42
36.09 (6.335)
10/56
2.672 (0.844)
8/43
239 (18.41)
2/49
119 (13.82)
3/50
40.33 (5.952)
5/34
2.688 (0.423)
5/28
20.05 (4.807)
8/49
63.77 (7.174)
5/31
513 (114)
9/31
896 (214)
8/30
185 (44.97)
9/55
61.52 (16)
12/62
35.33 (6.235)
6/52
7.12/44.5
Equal Frequency 91.1 (6.923)
5/31
6.918 (0.567)
1/29
7.159 (0.764)
8/47
34.5 (4.649)
8/52
2.364 (0.35)
7/39
247 (24.63)
5/52
121 (14.08)
5/52
46.3 (7.21)
8/41
2.599 (0.331)
2/24
19.35 (3.405)
7/48
76.32 (11.31)
10/47
439 (19.2)
3/21
827 (1.432)
3/20
202 (42.58)
11/57
45.33 (2.2)
8/56
37.91 (4.069)
9/57
6.25/42.06
Maximum Entropy 85.35 (10.23)
1/27
8.002 (1.166)
9/46
6.901 (1.19)
6/41
34.1 (3.919)
7/49
2.154 (0.266)
3/27
252 (26.81)
10/57
138 (21.47)
10/57
39.38 (5.613)
2/26
2.632 (0.441)
3/25
20.5 (2.294)
9/50
72.75 (9.099)
9/43
433 (50.53)
1/17
742 (1.478)
1/13
186 (30.43)
10/56
46.66 (3.18)
9/57
32.49 (6.569)
3/42
5.81/39.56
Paterson - Niblett 90.19 (6.286)
4/30
7.169 (1.036)
2/31
6.385 (0.988)
4/28
32.58 (3.607)
5/40
2.326 (0.311)
6/35
244 (27.81)
3/50
128 (18.29)
8/55
36.61 (2.497)
1/22
2.791 (0.425)
9/35
15.64 (1.955)
2/33
58.07 (5.628)
1/22
468 (26.63)
5/25
854 (43.47)
6/25
144 (20.81)
5/41
28.2 (2.21)
2/33
37.87 (4.055)
8/56
4.44/35.06
IEM 93.03 (10.52)
7/33
7.672 (3.243)
7/44
5.984 (0.655)
1/25
31.8 (6.096)
2/36
2.211 (0.351)
4/31
235 (20.52)
1/48
118 (10.49)
2/49
39.56 (5.801)
3/30
2.448 (0.235)
1/23
14.2 (1.397)
1/21
65.42 (9.906)
6/34
438 (28.52)
2/19
913 (9.258)
9/34
140 (1.1)
3/37
25.24 (0.672)
1/28
35.08 (6.159)
4/50
3.38/33.88
CADD 199 (46.33)
11/60
10.23 (2.9)
11/59
8.024 (1.097)
11/57
46.79 (12.23)
11/60
2.981 (0.729)
9/45
330 (77.64)
12/61
161 (37.01)
12/60
60.72 (10.15)
10/53
3.556 (0.572)
10/47
29.63 (4.864)
12/61
79.54 (8.389)
11/50
524 (37.09)
10/33
812 (197)
2/18
129 (7.026)
1/27
60.02 (16.02)
11/61
35.22 (7.809)
5/51
9.31/50.19
ModifiedChi2 167 (0.433)
10/59
8.308 (0.141)
10/49
7.668 (0.018)
10/53
35.35 (0.327)
9/53
3.192 (0.552)
10/48
247 (114)
6/53
79.91 (4.315)
1/23
161 (2.451)
12/58
5.364 (0.071)
12/58
23.26 (5.091)
10/54
94.91 (19.18)
12/56
1784 (23.2)
12/59
2249 (1278)
11/54
496 (69.45)
12/58
38.39 (8.065)
7/48
39.34 (0.064)
11/60
9.69/52.69
CAIM 89.2 (11.28)
3/29
7.273 (1.039)
3/33
6.205 (0.754)
3/27
32.54 (4.034)
4/39
3.844 (3.237)
12/59
249 (33.3)
7/54
129 (20.71)
9/56
41.88 (5.462)
6/36
2.763 (0.437)
7/33
16.75 (1.467)
5/37
60.93 (6.904)
2/25
457 (28.29)
4/22
831 (2.133)
4/22
138 (0.547)
2/36
30.2 (1.434)
5/39
39.14 (0.024)
10/58
5.38/37.81
FCAIM 88.46 (11.24)
2/28
7.38 (1)
5/37
7.274 (1.267)
9/52
33.22 (5.484)
6/44
2.319 (0.298)
5/34
244 (39.52)
4/51
122 (16.85)
6/53
44.04 (9.004)
7/40
2.763 (0.432)
6/32
15.87 (1.901)
3/34
61.14 (6.857)
3/26
469 (64.23)
6/26
856 (53.6)
7/26
152 (27.86)
6/46
29.71 (2.73)
4/37
36.57 (5.435)
7/55
5.38/38.81
Khiops 91.13 (12.16)
6/32
7.366 (0.587)
4/35
6.742 (1.086)
5/38
31.71 (3.87)
1/35
2.079 (0.166)
1/24
252 (38.97)
8/55
120 (16.65)
4/51
40.04 (5.547)
4/31
2.666 (0.31)
4/26
16.49 (0.89)
4/36
65.97 (10.06)
7/35
651 (68.55)
11/46
2448 (162)
12/57
178 (27.62)
8/53
28.22 (2.215)
3/34
39.51 (0.116)
12/61
5.88/40.56
MODL 209 (44.6)
12/62
11.97 (1.817)
12/61
9.547 (1.89)
12/60
57.31 (6.898)
12/61
3.482 (0.473)
11/53
317 (63.32)
11/60
159 (31.77)
11/59
59.89 (12.53)
9/52
3.912 (0.669)
11/54
24.64 (5.362)
11/58
70.57 (0.12)
8/41
487 (122)
7/28
1017 (226)
10/42
161 (33.74)
7/48
48.56 (9.858)
10/58
31.92 (6.923)
2/40
9.75/52.31
CACC 93.33 (10.92)
8/35
7.401 (0.765)
6/38
6.119 (0.357)
2/26
31.96 (3.445)
3/38
2.119 (0.277)
2/25
252 (43.47)
9/56
124 (13.63)
7/54
137 (20.06)
11/55
2.764 (0.426)
8/34
16.91 (1.676)
6/39
63.5 (8.038)
4/30
493 (43.19)
8/30
833 (0.957)
5/23
141 (3.439)
4/38
31.79 (3.196)
6/42
31.44 (6.632)
1/39
5.62/37.62
AODEsr Equal Width 58.4 (8.966)
7/20
8.697 (1.22)
9/55
7.895 (0.676)
9/55
32.94 (4.066)
7/43
4.274 (0.585)
12/61
175 (26.12)
7/29
91.42 (7.772)
6/29
50.57 (5.253)
8/48
3.893 (0.329)
9/52
22.35 (3.239)
8/51
63.4 (13.06)
1/29
667 (77.95)
7/50
1284 (103)
5/48
135 (16.5)
7/33
50.08 (10.66)
11/59
29.73 (4.122)
5/31
7.38/43.31
Equal Frequency 63.64 (11.51)
12/25
9.012 (0.948)
11/57
7.084 (0.418)
4/46
34.45 (2.827)
10/51
4.146 (0.527)
11/60
181 (20.35)
9/32
88.24 (10.07)
4/27
48.92 (0.121)
4/44
4.474 (0.051)
10/56
22.86 (3.535)
10/53
115 (15.58)
11/60
656 (63.01)
6/49
1197 (40.67)
2/45
160 (13.72)
10/47
40.16 (3.869)
9/50
34.82 (4.869)
11/49
8.38/46.94
Maximum Entropy 56.82 (6.891)
4/17
8.951 (0.992)
10/56
7.898 (1.054)
10/56
33.71 (2.566)
9/47
3.597 (0.628)
7/55
146 (18.92)
2/21
81.97 (9.92)
1/24
50.54 (5.093)
7/47
3.503 (0.759)
4/45
22.72 (3.22)
9/52
122 (23.27)
12/61
622 (39.66)
2/44
1168 (58.3)
1/44
164 (13.27)
11/50
39.09 (3.694)
8/49
32.43 (5.049)
8/41
6.56/44.31
Paterson - Niblett 60.12 (10.27)
9/22
8.626 (1.44)
8/54
6.479 (0.801)
1/30
31.25 (1.498)
5/32
3.29 (0.658)
3/49
199 (21.57)
12/36
95 (14.53)
7/30
48.71 (5.376)
3/43
3.806 (0.454)
7/49
16.08 (1.756)
3/35
71.54 (15.23)
2/42
654 (27.67)
4/47
1283 (11.79)
4/47
124 (11.66)
5/25
24.76 (2.336)
3/25
27.01 (3.603)
2/27
4.88/37.06
IEM 56.97 (7.103)
5/18
8.594 (1.415)
7/53
7.187 (0.884)
5/48
22.33 (2.123)
2/23
2.645 (0.426)
1/42
175 (23.89)
6/28
105 (16.7)
10/35
38.09 (7.703)
1/24
2.435 (1.266)
1/22
13.4 (1.78)
1/20
74.4 (7.665)
3/46
630 (33.23)
3/45
1318 (52.2)
8/51
113 (2.976)
1/19
7.431 (2.888)
2/14
25.12 (3.912)
1/26
3.56/32.12
CADD 53.31 (7.875)
2/15
8.154 (1.476)
3/47
8.893 (1.255)
11/58
37.01 (4.923)
11/57
3.17 (0.593)
2/47
153 (25.28)
3/25
87.27 (13.63)
3/26
53.07 (8.24)
10/50
3.317 (0.63)
3/44
26 (4.395)
12/59
78.69 (8.295)
4/48
619 (33.4)
1/43
1230 (226)
3/46
136 (12.4)
8/34
52.12 (10.32)
12/60
31.19 (6.055)
7/35
5.94/43.38
ModifiedChi2 50.6 (2.114)
1/14
6.544 (0.226)
2/27
7.188 (0.192)
6/49
21.15 (1.282)
1/17
3.452 (0.67)
4/51
168 (25.74)
5/27
89.28 (6.054)
5/28
213 (47.22)
12/61
5.528 (0.059)
11/59
17.28 (8.421)
4/41
110 (11.06)
10/59
2391 (103)
12/61
4050 (2431)
12/61
662 (81.89)
12/61
7.271 (1.976)
1/13
33.42 (4.951)
10/44
6.75/42.06
CAIM 60.19 (6.57)
10/23
9.201 (0.949)
12/58
6.995 (1.073)
2/43
29.26 (2.705)
4/29
3.79 (0.744)
10/58
188 (26.2)
10/33
109 (15.66)
12/37
49.47 (5.267)
5/45
5.819 (6.305)
12/60
19.15 (1.424)
7/47
93.62 (14.28)
7/54
672 (16.01)
8/51
1287 (58.34)
6/49
123 (16.29)
4/24
34.1 (3.965)
4/43
32.51 (1.469)
9/43
7.62/43.56
FCAIM 59.43 (9.397)
8/21
8.537 (1.003)
6/52
7.273 (1.106)
7/51
27.95 (1.672)
3/26
3.603 (0.644)
8/56
193 (24.25)
11/34
99.2 (9.779)
8/31
49.52 (5.296)
6/46
3.761 (0.645)
6/48
18.79 (1.691)
6/46
89.58 (16.85)
6/52
687 (66.44)
10/53
1313 (39.33)
7/50
127 (19.19)
6/26
35.61 (2.428)
5/45
28.36 (4.759)
3/28
6.62/41.56
Khiops 63.55 (2.59)
11/24
8.338 (1.746)
4/50
7.691 (1.318)
8/54
33.55 (5.325)
8/45
3.629 (0.719)
9/57
135 (16.65)
1/14
83.1 (10.16)
2/25
48.08 (0.159)
2/42
3.833 (0.644)
8/50
18.24 (2.014)
5/45
94.68 (13.83)
8/55
837 (38.47)
11/57
3459 (182)
11/60
145 (17.11)
9/43
37.82 (4.287)
7/47
39.31 (3.45)
12/59
7.25/45.44
MODL 56.37 (8.213)
3/16
8.393 (1.243)
5/51
9.873 (1.423)
12/61
38.1 (7.754)
12/58
3.494 (0.702)
6/54
177 (29.71)
8/30
103 (18.91)
9/34
51.76 (12.9)
9/49
3.539 (0.79)
5/46
24.47 (4.058)
11/57
96.51 (6.924)
9/57
680 (41.23)
9/52
1363 (141)
10/53
116 (15.49)
2/20
43.2 (6.244)
10/53
29.58 (4.813)
4/30
7.75/45.06
CACC 57.51 (7.048)
6/19
6.212 (0.711)
1/26
7.079 (1.082)
3/45
32.94 (4.075)
6/42
3.454 (0.553)
5/52
163 (3.057)
4/26
107 (13.65)
11/36
161 (12.93)
11/57
2.993 (0.42)
2/43
14.31 (1.485)
2/23
86.39 (13.31)
5/51
654 (33.68)
5/48
1328 (1.899)
9/52
123 (14.26)
3/23
36.08 (3.633)
6/46
29.81 (4.834)
6/32
5.31/38.81
WAODE Equal Width 155 (44.22)
10/56
7.626 (1.067)
9/42
6.584 (0.535)
5/34
33.64 (3.459)
7/46
2.407 (0.128)
8/40
231 (8.408)
10/47
114 (4.223)
3/41
40.21 (4.857)
7/33
2.816 (0.352)
5/37
17.91 (2.05)
7/42
64.41 (8.36)
6/32
570 (52.21)
8/40
986 (294)
8/40
163 (37.02)
8/49
42.76 (9.839)
10/52
31.31 (5.643)
6/38
7.31/41.81
Equal Frequency 131 (10.96)
5/49
7.606 (0.972)
8/41
6.853 (0.902)
9/39
35.51 (4.271)
10/54
3.307 (3.311)
12/50
230 (5.432)
9/46
115 (2.314)
4/42
39.5 (5.246)
4/28
2.685 (0.164)
1/27
18.1 (1.679)
9/44
66.89 (2.698)
8/36
573 (56.71)
9/41
876 (0.504)
1/29
176 (37.17)
10/52
29.08 (1.294)
8/36
33.5 (4.611)
7/45
7.12/41.19
Maximum Entropy 138 (9.177)
8/52
7.629 (1.14)
10/43
6.862 (0.718)
10/40
33.78 (3.489)
8/48
2.267 (0.288)
5/33
227 (4.129)
5/42
117 (12.65)
10/48
42.52 (6.199)
9/39
2.935 (0.414)
8/41
18.01 (1.921)
8/43
69.79 (1.103)
10/39
532 (9.817)
2/34
915 (0.418)
5/35
178 (36.88)
11/54
28.3 (1.285)
7/35
29.14 (5.618)
1/29
7.31/40.94
Paterson - Niblett 137 (24.61)
7/51
7.362 (1.066)
4/34
6.645 (0.989)
7/36
31.84 (1.936)
5/37
2.518 (0.957)
9/41
230 (8.028)
7/44
117 (7.467)
9/47
40.12 (4.552)
6/32
2.73 (0.221)
3/31
15.27 (1.443)
3/28
57.95 (0.263)
1/20
565 (6.894)
7/39
992 (144)
9/41
137 (18.13)
5/35
24.4 (1.052)
1/24
31.29 (5.695)
5/37
5.5/36.06
IEM 129 (11.99)
2/46
6.951 (0.447)
2/30
6.611 (0.918)
6/35
34.3 (4.291)
9/50
2.201 (0.272)
3/30
227 (2.574)
4/41
116 (6.951)
8/46
39.47 (4.674)
3/27
2.858 (0.392)
6/38
14.82 (1.142)
1/26
59.01 (3.414)
3/23
543 (13.44)
3/35
975 (3.143)
7/39
132 (0.42)
3/29
25.9 (2.323)
6/32
34.55 (3.522)
8/46
4.62/35.81
CADD 142 (22.8)
9/54
6.566 (0.783)
1/28
5.874 (0.743)
1/24
28.76 (3.449)
1/27
1.963 (0.29)
1/22
215 (21.6)
1/38
114 (15.83)
2/40
37.8 (2.784)
1/23
3.866 (0.567)
10/51
26.54 (2.623)
12/60
73.51 (0.904)
11/45
514 (67)
1/32
953 (128)
6/38
121 (7.829)
1/22
44.99 (10.87)
12/55
30.24 (7.196)
2/33
4.5/37
ModifiedChi2 165 (0.191)
11/58
8.273 (1.143)
11/48
7.204 (0.027)
11/50
35.58 (0.052)
11/55
3.033 (0.535)
11/46
299 (54.89)
11/58
150 (27.46)
11/58
178 (42.31)
12/59
5.098 (0.453)
12/57
23.3 (4.043)
10/55
91.02 (19.49)
12/53
1563 (8.093)
12/58
2391 (1263)
12/56
516 (69.26)
12/59
41.64 (8.692)
9/51
35.71 (0.032)
11/53
11.19/54.62
CAIM 128 (6.811)
1/45
7.454 (0.883)
7/40
6.568 (0.987)
4/33
32.71 (2.896)
6/41
2.34 (0.321)
6/36
226 (1.879)
3/40
115 (5.639)
5/43
39.54 (2.799)
5/29
2.863 (0.306)
7/39
15.27 (0.823)
4/29
62.27 (7.144)
5/28
574 (47.8)
10/42
913 (70.04)
4/33
131 (0.24)
2/28
25.48 (0.099)
4/30
34.61 (3.467)
10/48
5.19/36.5
FCAIM 135 (13.36)
6/50
7.411 (0.883)
6/39
6.557 (0.532)
3/32
30.4 (1.628)
2/31
2.212 (0.184)
4/32
230 (14.8)
8/45
116 (6.218)
6/44
40.83 (7.052)
8/35
2.693 (0.197)
2/29
15.61 (1.657)
6/32
58 (0.399)
2/21
553 (20.43)
5/37
912 (69.17)
3/32
142 (24.43)
6/39
25.26 (1.915)
3/29
34.59 (3.492)
9/47
4.94/35.88
Khiops 131 (11.64)
4/48
7.267 (0.491)
3/32
6.689 (0.714)
8/37
31.4 (3.268)
3/33
2.349 (0.28)
7/37
228 (4.184)
6/43
116 (5.762)
7/45
39.16 (4.149)
2/25
2.793 (0.338)
4/36
14.96 (0.664)
2/27
64.6 (7.982)
7/33
724 (63.26)
11/54
2375 (64.02)
11/55
167 (30.62)
9/51
25.75 (2.59)
5/31
36 (0.043)
12/54
6.31/40.06
MODL 204 (42.51)
12/61
11.19 (1.15)
12/60
9.388 (1.637)
12/59
39.5 (7.732)
12/59
2.949 (0.594)
10/44
303 (62.94)
12/59
165 (36.42)
12/61
57.19 (10.06)
10/51
3.898 (0.628)
11/53
23.82 (4.479)
11/56
69.27 (8.394)
9/38
553 (65.21)
6/38
1029 (187)
10/43
144 (24.22)
7/40
44.33 (6.99)
11/54
30.47 (6.141)
3/34
10/50.62
CACC 131 (8.744)
3/47
7.379 (0.658)
5/36
6.454 (0.517)
2/29
31.44 (3.227)
4/34
2.194 (0.2)
2/28
225 (0.474)
2/39
113 (0.238)
1/39
132 (15.51)
11/54
2.978 (0.369)
9/42
15.39 (0.877)
5/30
61.45 (6.945)
4/27
552 (20.34)
4/36
897 (52.01)
2/31
132 (2.502)
4/30
25.15 (1.504)
2/27
31.28 (5.687)
4/36
4/35.31

References

[1] Abraham R, Simha JB, Iyengar S (2007) A comparative analysis of discretization methods for medical datamining with Naive Bayesian classifier. In: Proceedings of 9th Conf. Information Technology, pp 235-236
[2] Alpaydin E (1999) Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11, pp 1885 - 1892
[3] Asuncion A, Newman DJ (2007) UCI Machine Learning Repository. Irvine, CA: Univ. of California, School of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html
[4] Boulle M (2004) Khiops: A Statistical Discretization Method of Continuous Attributes. Machine Learning (55), pp 53 - 69
[5] Boulle M (2006) MODL: A Bayes optimal discretization method for continuous attributes. Machine Learning, 65 (1), pp 131-165
[6] Catlett J (1991) On changing continuous attributes into ordered discrete attributes. In: Proceedings of European Working Session on Learning, pp. 164-178
[7] Ching J, Wong A, Chan K. (1995) Class-Dependent Discretization for Inductive Learning from Continuous and Mixed Mode Data. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17 (7), pp 641-651
[8] Cios KJ, Kurgan L (2001) Hybrid inductive machine learning: an overview of clip algorithms. New Learning Paradigms in Soft Computing, L.C. Jain, J. Kacprzyk, ed., pp. 276-322, Physica-Verlag (Springer)
[9] Cios KJ, Kurgan L (2004) CLIP4: hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences, 163(1-3), pp.37-83
[10] Clark P, Niblett T (1989) The CN2 algorithm. Machine Learning, 3, pp. 261-283
[11] Demsar J (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, pp. 1 - 30
[12] Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of continuous features. In: Proceedings of 12th Int. Conf. Machine Learning, pp.194-202
[13] Fayyad U, Irani K (1992) On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8, pp. 87-102
[14] Fayyad UM, Irani KB (1993) Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, San Francisco: Morgan - Kaufmann, pp. 1022-1027
[15] Zheng F, Webb GI (2006) Efficient Lazy Elimination for Averaged-One Dependence Estimators. In: Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006), pp. 1113-1120
[16] Flores JL, Inza I, LarranĖƒaga P (2007) Wrapper discretization by means of estimation of distribution algorithms. Intelligent Data Analysis, 11(5), pp. 525-545
[17] Friedman N, Geiger D, Goldszmidt M (1997) Bayesian Network Classifiers. Machine Learning, Vol. 29, pp. 131-163
[18] Iman RL, Davenport JM (1980) Approximations of the critical region of the Friedman statistic. Communications in Statistics, pp. 571 - 595
[19] Jiang L, Zhang H (2006) Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, pp. 970-974
[20] John GH, Langley P (1995) Estimating Continuous Distributions in Bayesian Classifiers. In: Proceedings of 11th Conf. Uncertainty in Artificial Intelligence, pp. 338-345
[21] Kaufman KA, Michalski RS (1999) Learning from inconsistent and noisy data: the AQ18 approach. In: Proceedings of the 11th Int. Symp. Methodologies for Intelligent Systems,
[22] Keogh E, Pazzani M (1999) Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proceedings of the Int. Workshop Artificial Intelligence and Statistics, pp. 225-230
[23] Kerber R (1992) ChiMerge: discretization of numeric attributes. In: Proceedings of the 9th Int. Conf. Artificial Intelligence, pp. 123-128
[24] Kohavi R, Sahami M (1996) Error-based and entropy-based discretization of continuous features. In: In: Proceedings of the 2nd Int. Conf. Knowledge Discovery and Data Mining, pp. 114-119
[25] Kujala J, Elomaa T (2007) Improved algorithms for univariate discretization of continuous features. In: Proceeding of the Principles and Practice of Knowledge Discovery in Databases, LNCS 4702, pp. 188-199
[26] Kurgan L, Cios K (2004) CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering, 16 (2), pp. 145-153
[27] Kurgan L, Cios K (2003) Fast Class-Attribute Interdependence Maximization (CAIM) Discretization Algorithm. In: Proceeding of International Conference on Machine Learning and Applications, pp. 30 - 36
[28] Kurgan L, Cios KJ (2001) Discretization algorithm that uses class-attribute interdependence maximization. In: Proceedings of 2001 Int. Conf. Artif. Intelligence, pp. 980-987
[29] Kurgan L, Cios KJ, Dick S (2006) Highly scalable and robust rule learner: performance evaluation and comparison. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 36(1), pp. 32-53
[30] Langley P, Iba W, Thomas K (1992) An analysis of Bayesian classifiers. In: Proceedings of the Tenth National Conference of Artificial Intelligence. AAAI Press, pp. 223-228
[31] Langley P, Sage S (1994) Induction of selective Bayesian classifiers. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 339-406
[32] Lee CH (2007) A Hellinger-based discretization method for numeric attributes in classification learning. Knowledge-Based Systems, 20(4), pp. 419-425
[33] Liu H, Hussain F, Tan C, Dash M (2002). Discretization: an enabling technique. Journal of Data Mining and Knowledge Discovery , 6 (4), pp. 393 - 423
[34] Liu H, Setiono R (1997) Feature Selection via Discretization. IEEE Trans. Knowledge and Data Eng., vol. 9, no. 4, pp. 642-645
[35] Liu X, Wang H (2005) A discretization algorithm based on a heterogeneity criterion. IEEE Trans. on Data and Knowledge Engineering, 17(9), pp.1166-1173
[36] Mehta S, Parthasarathy S, Yang H (2005) Toward unsupervised correlation preserving discretization. IEEE Trans. on Knowledge and Data Engineering, 17(9), pp. 1174-1185
[37] Mizianty MJ, Kurgan LA, Ogiela M, 2008. Comparative Analysis of the Impact of Discretization on the Classification with Naive Bayes and Semi-Naive Bayes Classifiers, 7th International Conference on Machine Learning and Applications (ICMLA'08), San Diego, CA, U.S.A., accepted
[38] Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University
[39] Paterson A, Niblett T (1987) ACLS Manual. Edinburgh: Intelligent Terminals, Ltd.
[40] Quinlan JR (1993) C4.5 Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers.
[41] Su CT, Hsu JH (2005) An Extended Chi2 algorithm for discretization of real value attributes. IEEE Trans. on Knowledge and Data Engineering, 17(3), pp. 437-441
[42] Tay EH, Shen L (2002) A Modified Chi2 Algorithm for Discretization. IEEE Trans. Knowledge and Data Eng., vol. 14, no. 3, pp. 666-670
[43] Tsai CJ, Lee CI, Yang WP (2008) A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Sciences (178), pp. 714-731
[44] Wang K, Liu B (1998) Concurrent discretization of multiple attributes. Pacific-Rim Conf Artificial Intelligence, pp.250-259
[45] Wang Z, Webb GI (2002) Comparison of lazy Bayesian rule and tree-augmented Bayesian learning. In: Proceeding of the IEEE Int. Conf. Data Mining, pp. 775-778
[46] Webb GI, Boughton J, Wang Z (2005) Not so naive bayes: Aggregating onedependence estimators. Machine Learning, Vol. 58, pp. 5-24
[47] Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques. 2nd edition, Morgan Kaufmann
[48] Wong AKC, Chiu DKY (1987) Synthesizing Statistical Knowledge from Incomplete Mixed-Mode Data. IEEE Trans. Pattern Analysis and Machine Intelligence, 9, 796-805
[49] Wu X (1996) A Bayesian discretizer for real-valued attributes. Computer Journal, 39(8), pp. 688-691
[50] Wu X, Kumar V, Quinlan JR, et al. (2008) Top 10 algorithms in data mining. Knowledge and Information Systems, 14, pp. 1-37
[51] Zhang H, Jiang L, Su J (2005) Hidden Naive Bayes. In: Proceeding of the Twentieth National Conference on Artificial Intelligence, pp. 919-924
[52] Zheng Z, Webb GI (2000) Lazy learning of Bayesian Rules. Machine Learning, 41:1, pp. 53 - 84