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Abstract Proteins fold through a two-state (TS), with no

visible intermediates, or a multi-state (MS), via at least one

intermediate, process. We analyze sequence-derived fac-

tors that determine folding types by introducing a novel

sequence-based folding type predictor called FOKIT. This

method implements a logistic regression model with six

input features which hybridize information concerning

amino acid composition and predicted secondary structure

and solvent accessibility. FOKIT provides predictions with

average Matthews correlation coefficient (MCC) between

0.58 and 0.91 measured using out-of-sample tests on four

benchmark datasets. These results are shown to be com-

petitive or better than results of four modern predictors. We

also show that FOKIT outperforms these methods when

predicting chains that share low similarity with the chains

used to build the model, which is an important advantage

given the limited number of annotated chains. We dem-

onstrate that inclusion of solvent accessibility helps in

discrimination of the folding kinetic types and that three of

the features constitute statistically significant markers that

differentiate TS and MS folders. We found that the

increased content of exposed Trp and buried Leu are

indicative of the MS folding, which implies that the

exposure/burial of certain hydrophobic residues may play

important role in the formation of the folding intermedi-

ates. Our conclusions are supported by two case studies.

Keywords Folding � Folding kinetic types � Folding rate �
Solvent accessibility � Secondary structure

Introduction

Protein folding, which spans processes between an initial

random coil conformation and the functional native struc-

ture, occurs through a diverse range of pathways that may

include intermediate states (Anfinsen 1973; Udgaonkar

2008). Characterization and analysis of these complex

processes pose substantial challenges for both experimental

and computational methods (Dill et al. 2008). The appli-

cable experimental techniques include optical spectrosco-

pies and laser-induced temperature-jump (Callender et al.

1998; Schuler et al. 2002), W and U values analyses (So-

snick et al. 2004), hydrogen exchange (Krishna et al. 2004;

Maity et al. 2005), and NMR relaxation (Lindorff-Larsen

et al. 2005). In spite of the availability of the wide array of

experimental methods the kinetic data are accumulated at a

low rate. The two main repositories, KineticDB (Bogatyr-

eva et al. 2009) and Protein Folding Database (PFD)

(Fulton et al. 2007), include data on only about 90 proteins,
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which is due to the difficulty in experimental determination

of the protein kinetics. The folding kinetics is also studied

in silico using molecular dynamics simulations, but due to

high computational cost this analysis could be applied only

to peptides or small proteins (Scheraga et al. 2007).

Another feasible alternative is to use the available experi-

mental data to build computational models that can be

utilized to provide insights into certain folding character-

istics and to predict them for the unsolved protein chains. A

prime example of such characteristic is folding rate. Sev-

eral works have investigated the relation of the folding rate

with structural characteristics of the native fold including

contact order (Plaxco et al. 1998), long-range order

(Gromiha and Selvaraj 2001), absolute contact order

(Ivankov et al. 2003), relative contact order (Capriotti and

Casadio 2007), geometric contacts (Ouyang and Liang

2008), multiple contact index (Gromiha 2009), and struc-

tural compactness (Galzitskaya et al. 2008; Ivankov et al.

2009). Other factors, such as chain length (Galzitskaya

et al. 2003), secondary structure (Gong et al. 2003; Huang

et al. 2007), effective length of predicted secondary

structure (Ivankov and Finkelstein 2004), predicted contact

maps (Punta and Rost 2005), amino acid (AA) indices

(Huang and Gromiha 2008), AA composition (Ma et al.

2006) and a combination of predicted secondary structure,

protein chain, and physiochemical properties of residues

(Jiang et al. 2009; Shen et al. 2009), have been also used to

analyze and predict folding rates. Another aspect which is

related to the rate (Galzitskaya et al. 2003) is the type of

folding process, which includes two-state (TS) and multi-

state (MS) folding (Finkelshtein and Galzitskaya 2004;

Kamagata et al. 2004). The TS folding is a reversible

process that has no visible intermediates (Jackson 1998;

Finkelshtein and Galzitskaya 2004), while MS proteins

fold via at least one or more intermediates where the

folding process follows a stepwise assembly procedure

(Jackson 1998; Maity et al. 2005; Feng et al. 2005). The

knowledge of the folding kinetic types was shown to

improve the quality of the prediction of the folding rates

(Huang and Cheng 2008) and finds applications in deter-

mination of the folding intermediates (Ma et al. 2007).

However, only a few works focused on the characterization

and prediction of the folding kinetic types. Capriotti and

Casadio (2007) used chain length and relative contact order

computed from the native fold to predict the folding kinetic

types. Ma et al. (2007) performed a comparative investi-

gation into the relationship of the kinetic types and AA

composition of the protein chain and the topology of the

native fold. Two sequence-based prediction models, one

based on physicochemical residue properties (Huang and

Gromiha 2008) and another based on chain length (Huang

and Cheng 2008), were proposed in 2008. Most recently,

compactness of the native fold was demonstrated to explain

some differences in the folding mechanisms (Galzitskaya

et al. 2008).

Although the folding rates were shown to depend on the

secondary structure (Gong et al. 2003; Ivankov and Fin-

kelstein 2004; Huang et al. 2007) and although recent work

suggests that folding kinetic types depend on the charac-

teristics of the protein surface (Galzitskaya et al. 2008),

these two factors were not utilized to predict/characterize

folding kinetic types. There is also evidence showing that

specific residue mutations can result in switching between

the TS and MS processes (Jackson 1998; Inaba et al. 2000;

Viguera and Serrano 2003; Cranz-Mileva et al. 2005). The

U value analysis of chymotrypsin inhibitor 2 revealed a

relation between folding rate and stability of the native fold

(Fersht 2000). In another study, a single mutation in hen

egg-white lysozyme resulted in a less stable structure than

that of the wild-type (Zhou et al. 2007). Finally, recent

studies show that surface Trp residues strongly contribute

to the folding stability (Klein-Seetharaman et al. 2002;

Zhou et al. 2007; Zhang et al. 2009), and thus they may

have impact on the folding kinetics. At the same time,

factors related to point mutations, secondary structure, and

solvent accessibility are not utilized by the existing

sequence-based predictors of the folding kinetic types

(Huang and Gromiha 2008; Huang and Cheng 2008; Ma

et al. 2007), which apply only information concerning the

length and composition of the protein chain. To this end,

we propose a novel sequence-based folding type predictor

named FOKIT (folding kinetic type). FOKIT hybridizes

information concerning chain length and composition,

solvent accessibility predicted with Real-SPINE (Dor and

Zhou 2007), and secondary structure predicted with PSI-

PRED (Bryson et al. 2005), to compute six features that are

fed into a logistic regression classifier. Empirical tests

demonstrate that the proposed method outperforms existing

solutions. The FOKIT’s prediction model provides inter-

esting insights into the folding kinetics, which are dem-

onstrated using case studies that draw from existing

experimental findings.

Materials and methods

Datasets

A dataset composed of 85 proteins, named H85, which was

recently introduced in by Huang and Cheng (2008), is used

to design the prediction model. The H85 dataset includes

60 TS and 25 MS proteins. We also utilize three bench-

mark datasets, M85, C63, and G77, to compare with the

existing predictors, see Table 1. The four datasets share a

significant portion of the chains since they were created

mostly using entries from the KineticDB (Bogatyreva et al.
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2009) and PFD (Fulton et al. 2007) databases, which when

combined include only around 90 proteins.

We additionally tested our predictor on chains with low

similarity to the chains in the H85 dataset that were used to

develop the prediction model. Such test was not attempted

in the past, i.e., each of the above four datasets which were

used to evaluate the existing methods includes similar

chains. To reduce the sequence identity, BLASTCLUST

(Altschul et al. 1997) was applied to the union of the four

datasets with the local identity threshold of 25% (-S 25).

The new dataset was constructed by selecting one chain

from each of the clusters that contained no sequences from

the H85 dataset. The resulting set, called S17, includes

seven TS and ten MS chains that have up to 25% local

identity with each other and also with the chains in the H85

dataset. This dataset is comprised of 11, 2, and 4 proteins

from the M85, C63, and G77 datasets, respectively, and

represents virtually all available chains that have the

kinetic annotations and that are dissimilar to the chains in

the H85 dataset.

The five datasets, H85, M85, C63, G77, and S17 are

available for download at http://biomine.ece.ualberta.ca/

FOKIT/FOKIT.htm.

Logistic regression

Logistic regression (LogR) is a method suitable to model a

logistic relationship between the discrete outcome (in our

case the binary annotations of the folding kinetic types) and

the numeric feature vector. This method has been applied

to various problems in computational biology, such as

classification of antibacterial activity (Cronin et al. 2002),

prediction of flexible regions in proteins (Chen et al. 2007),

and prediction of the folding kinetic types (Huang and

Cheng 2008). The binary logistic regression model has the

following form:

p ¼ 1

1þ e�ðb0þb1X1þb2X2þ...þbkXkÞ
;

where X = (X1, X2, …, Xk) is the feature vector, b0 is the

regression constant, b1, …, bk are the regression coefficients

for of X1,…, Xk, respectively. The outcomes p [ 0.5 and

p \ 0.5 indicate that the vector X is categorized as positive

(TS protein) and negative (MS protein), respectively.

Performance evaluation

Prediction performance is assessed using four quality

indices including sensitivity (the ratio between the number

of correct predictions for TS proteins and the total number

of the actual TS proteins), specificity (the ratio between the

number of correct predictions for MS proteins and the total

number of the actual MS proteins), the overall accuracy,

and Matthews correlation coefficient (MCC) (Matthews

1975):

Sensitivity ¼ TP

TPþ FN
� 100%

Specificity ¼ TN

TNþ FP
� 100%

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100%

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ
p

where true positives (TP) and true negatives (TN) corre-

spond to correctly predicted TS and MS proteins, respec-

tively, false positives (FP) denote MS proteins predicted as

TS proteins, and false negatives (FN) denote TS proteins

predicted as MS. The MCC measure ranges between -1

and 1, where -1 corresponds to all incorrect predictions, 0

to random predictions, and 1 to all correct predictions. This

measure accommodates for the unbalanced number of TS

and MS proteins, i.e., if all chain in the H85 dataset would

be classified as TS then the accuracy would equal

100 9 60/85 = 70.6% (instead of ‘‘expected’’ 50%), while

the MCC would be 0.

The performance is tested using n fold cross validation

(nCV) tests with multiple runs (to improve validity of the

results considering small sizes of the datasets) on the H85,

M85, C63, and G77 datasets. In the nCV, chains are ran-

domly divided into n subsets with the same numbers of

sequences, and the test is repeated n times, each time using

one subset to test the prediction model and the remaining

n - 1 subsets to establish the model. Execution of one

nCV is called a run and the n subsets for the run are named

a seed. We performed fivefold cross validation (5CV)

following the work by Capriotti and Casadio (2007) and by

Huang and Cheng (2008), but we executed ten runs using

ten different randomly created seeds. The sensitivity,

specificity, accuracy, and MCC are computed for each run

and then averaged over the ten runs. The jackknife test

(JKT), also called the leave-one-out test, assumes that n is

the total number of sequences in the dataset. We execute

only one run since each run would give the same result.

Table 1 Datasets used to develop and evaluate the proposed

predictor

Reference Abbreviated

dataset name

# TS

proteins

# MS

proteins

Huang and Cheng (2008) H85 60 25

Ma et al. (2007) M85 43 42

Capriotti and Casadio (2007) C63 38 25

Huang and Gromiha (2008) G77 51 26

This work S17 7 10
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The results reported for the existing sequence-based fold-

ing type predictors are based either on the 5CV or JKT. On

the contrary, we report results based on both test proce-

dures for all datasets. In addition, Ma et al. (2007) intro-

duced a variation of the Jackknife test (JKTv), in which one

sequence is randomly chosen to test the model and this is

repeated 1,000 times. We also report this test, but we limit

it to the M85 dataset that was used by these authors.

Features

The FOKIT method converts the input protein sequence

into a set of numerical features that are fed into the logistic

regression classifier to generate prediction of the folding

kinetics type. The features include the chain length and the

AA composition which were previously shown to dis-

criminate between TS and MS proteins (Huang and Cheng

2008; Ma et al. 2007). We also introduced novel features

that utilize the predicted secondary structure (PredSS), the

predicted relative solvent accessibility (PredRSA), the

combination of the above. The features are divided into

four categories, sequence based, secondary structure based,

average RSA based, and AA composition based (see

Table 2).

The motivation for using PredSS comes from several

studies which have shown that the knowledge of the sec-

ondary structure (SS) helps to predict the folding rates

(Gong et al. 2004; Ivankov and Finkelstein 2004; Huang

et al. 2007; Jiang et al. 2009). Although differences in the

secondary structure content values between TS and MS

folders were shown not to be statistically significant (Ma

et al. 2007), we examined other types of features computed

using information concerning secondary structure segments

and combining the secondary structure and solvent acces-

sibility/AA composition. The PSIPRED server (Bryson

et al. 2005) was used to predict three-state secondary

structures. This was motivated by the wide-spread usage of

this predictor in related methodologies (Song and Burrage

2006; Chen and Kurgan 2007; Zhang et al. 2008) and in

prediction of the folding rate (Ivankov and Finkelstein

2004; Jiang et al. 2009; Shen et al. 2009). The effective

length was calculated as (Ivankov and Finkelstein 2004)

Eff L ¼ L� LH þ 3� NH

where L is the chain length, LH is the number of residues in

predicted helix conformation, and NH is the number of

predicted helix segments. The content of a given SS is

defined as the ratio of the number of residues in this con-

formation to the sequence length. The segment content of a

given SS type is the percentage of the number of sequence

segments in this conformation to the total number of SS

segments in the sequence.

The relative solvent accessibility (RSA) is defined as the

solvent accessible surface area (ASA) of a given residue

normalized by the ASA of this residue in an extended tri-

peptide, Ala-X-Ala, conformation (Ahmad et al. 2003).

The ASA values were predicted using Real-SPINE pro-

gram (Dor and Zhou 2007), which is motivated by the high

quality of these predictions (Zhang et al. 2009). The RSA

values are often used to differentiate between the interior

and the surface of proteins by setting a cutoff. For a given

cutoff h, the residue with RSA C h are considered to be

solvent exposed; otherwise, they are assumed to be buried.

The burial/exposure of certain residue types may play

Table 2 Summary of the considered features, where y = {C, H, E} denotes the three secondary structure states, x = {A, R, N, D, C, Q, E, G, H,

I, L, K, M, F, P, S, T, W, Y, V} denotes the 20 AA types, and h = {0.1, 0.2, 0.3, 0.4, 0.5} denotes the cutoff used to categorize the buried/

exposed residues based on their relative solvent accessibility

Category Feature description Abbreviation No. of

features

Sequence based Length L 1

Secondary structure based Effective length Eff_L 1

Content of secondary structure y SSCony 3

Segment content of secondary structure y SegCony 3

Average RSA based Average RSA of the residues with AA type x AveRSA_AAx 20

Average RSA of the residues with secondary structure type y AveRSA_SSy 3

Average RSA of the residues with AA type x and secondary

structure type y
AveRSA_AAx_SSy 60

Amino acid composition based Composition of AA x AACx 20

Composition of AA x with secondary structure type y AACx_SSy 60

Composition of AA x with RSA value C h (i.e., the residue is assumed

exposed with respect to the threshold h)

AACx_Exh 100

Composition of AA x with RSA value \ h (i.e., the residue is assumed

buried with respect to the threshold h)

AACx_Buh 100
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important role in the folding stability, especially for

hydrophobic residues, which had been shown in several

cases (Calloni et al. 2003; Dong et al. 2008; Esposito et al.

2008; Ricagno et al. 2009). We computed average RSA

(AveRSA) value of the residues of certain AA type, in a

given predicted secondary structure conformation, and of

the residues of certain AA type in a given predicted sec-

ondary structure state.

The AA composition based features include composi-

tion of the 20 AA types in the input sequence, the com-

position of the residues of certain AA type in a given

predicted secondary structure conformation, and the com-

position of the residues of certain AA type which are either

buried or exposed based on different RSA cutoffs (see

Table 2).

Feature selection

The considered feature set is composed of 371 descriptors.

We perform feature selection since some of these features

could be irrelevant to the prediction/characterization of

kinetic types. We utilized two types of selection methods:

filter-based approach that evaluates the features based on a

strength of their relation with the annotation of the folding

kinetics type, and wrapper-based approach, which selects

features that provide favorable prediction quality when

used with a given prediction method. We expect that the

wrapper-based approach will lead to better predictions

since it was previously shown to outperform the filter-

based approach when selecting features for a subsequent

classification (Kohavi and John 1997). A forward, best-first

search over the sets of features ranked using the filter- and

wrapper-based methods was performed. We use a corre-

lation-based filter (Yu and Liu 2003) and three wrappers

with logistic regression (LogR), and two support vector

machines (SVM) (Vapnik 1998) with different kernel types

as the base predictors. The filter and the regression models

were computed using Weka platform (Witten and Frank

2005) and we used LIBSVM library (Hsu and Lin 2002) to

implement the SVM models.

For the wrapper-based methods, the feature sets that

lead to a higher average Matthews correlation coefficient

(MCC) (see ‘‘Materials and methods’’ section for the def-

initions of quality measures) when used to predict folding

kinetics type with either LogR or SVMs are selected. The

computation of the MCC involves out-of-sample tests on

the H85 dataset. More specifically, we execute ten random

seeds of fivefold cross validation (5CV) (see ‘‘Materials

and methods’’ section for the definitions of datasets and test

procedures) and we use the average MCC to rank features.

We start with one feature that gives the largest MCC and

we add the second feature (among the remaining 370 fea-

tures) which results in the best average MCC. This is

performed incrementally until adding an additional feature

does not improve the average MCC value when performing

prediction with LogR and SVMs. Additionally, the SVM

classifiers require parametrization of the complexity con-

stant C and the kernel function. We consider two kernel

types, radial basis function (RBF) K(xi, xj) = exp

( -c||xi - xj||
2) where c is the width of the RBF function,

and polynomial K(xi, xj) = (xi 9 xj)
d where d is the

degree. We perform a grid search for the best parameters.

For the RBF kernel, C = {2-5, 2-4, …, 24, 25} and

c = {2-5, 2-4, …, 24, 25}, and for polynomial kernel

C = {2-2, 2-1, …, 29, 210} and d = {1, 2, 3}; we adjusted

the values of C for each kernel to make sure that the

optimal parameters are inside the grid. The parameteriza-

tion is performed again each time an additional feature is

added to the set of the selected features.

In the case of the filter approach, the features charac-

terized by high correlation with the annotation of the

folding kinetics type and low intercorrelation are selected.

Similarly, as for the wrapper-based approach we estimate

the correlations using ten runs of 5CV. This results in total

of 50 feature sets, and we select the features that appear in

majority of these sets, i.e., in at least 25 out of 50 sets of

selected features.

Using the RBF kernel-based SVM the following

features are selected: L, AACL_SSC, AveRSA_AAG_SSH,

AACL_Ex0.5 and AACM, and the corresponding optimal

C and c values are 16 and 2, respectively. For the polyno-

mial kernel-based SVM the selected features include L,

AACL_SSC, SegConC, AveRSA_SSH, AACM_SSH, AveR-

SA_AAD_SSC, AACH_SSH, AveRSA_AAL,AveRSA_A

AC_SSC, AACH_SSE, AACA_SSH, AACL_Ex0.2, and the

corresponding optimal C equals 128 and d is 1. The features

chosen using the LogR include L, AveRSA_AAN_SSE,

AveRSA_AAE_SSE, AACE_SSE, AACL_Bu0.1, and AC

CW_Ex0.2, and the features selected using the filter-based

approach are L, Eff_L, AveRSA_AAE, and AACV_Ex0.2.

We note that each selection procedure leads to a differ-

ent feature set; the only intersecting feature is the chain

length L.

We chose among these alternative designs by comparing

the quality of prediction of the folding rate types using each

of the above four feature sets. The three feature sets

selected using the wrapper-based methods are used toge-

ther with their corresponding predictors. We utilize the

same three predictors, two SVMs and LogR, with the

feature set chosen using the filter-based method. Similar to

the feature selection, for the SVM-based predictors we run

a grid search with C = {2-5, 2-4, …, 24, 25} and

c = {2-5, 2-4, …, 24, 25} for the RBF kernel and with

C = {2-2, 2-1, …, 29, 210} and d = {1, 2, 3} when using

the polynomial kernel to optimize the average, over the ten

random seeds of 5CV on the H85 dataset, MCC. Table 3
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compares the results. As expected, the performance of the

wrapper-based designs is better than that of the filter-based

methods. The predictions with the SVM that applies the

polynomial kernel and with the logistic regression have the

best and comparable quality with accuracy around 0.95 and

MCC close to 0.9. Both of these solutions are based on

linear methods, i.e., the SVM uses a linear polynomial. We

use the LogR-based design to implement the proposed

folding type predictor since this method provides high-

quality predictions, and it has simpler underlying predic-

tion model and uses 50% fewer features when compared

with the second-best SVM.

For the best performing wrapper-based with LogR

selection we also validated the selection procedure using

jackknife test instead of the 5CV tests (see Fig. 1). The

same set of six features was selected using both test types.

Except for the chain length, the other five features used by

the LogR-based solution are novel when compared with

features used by the existing predictors; they hybridize

information coming from RSA, SS, and AA composition.

The number of the selected features is comparable with the

number used by the other methods. More specially, the

most recent method uses just the chain length (Huang and

Cheng 2008), the FOLD-RATE Q (Huang and Gromiha

2008) applies ten features, and K-Fold (Capriotti and

Casadio 2007) uses two features. The feature values for all

considered datasets are available for download at http://

biomine.ece.ualberta.ca/FOKIT/FOKIT.htm.

Results and discussion

Comparison with chain length-based predictions

We compare FOKIT against predictions based solely on

the chain length, (see Fig. 2), which is motivated by recent

results that suggest that the length is sufficient for accurate

predictions (Huang and Cheng 2008). The usage of the five

additional features in the proposed method is shown to

result in substantial improvements. For instance, the MCC

on the H85 dataset improves from 0.738 to 0.895 for the

5CV test, and from 0.738 to 0.914 for the jackknife test.

We note that the chain length provides relatively accurate

predictions and that the H85 dataset is the easiest and the

M85 dataset is the most difficult to predict using the length.

FOKIT provides improvements on all four datasets, and it

follows the same trend with respect to difficulty in pre-

dicting the four datasets.

Comparison with existing methods

Table 4 compares predictions of FOKIT, the three existing

sequence-based predictors including Cp (Ma et al. 2007),

Table 3 The comparison of the prediction performance of the logistic

regression (LogR)-based wrapper, two support vector machine

(SVM)-based wrappers (with the RBF and polynomial kernels), and

three predictors that use the filter-based selected features and the

LogR, SVM with the RBF kernel, and SVM with the polynomial

kernel predictors, respectively

Prediction method Sensitivity Specificity Accuracy MCC

LogR-based wrapper 0.975 ± 0.023 0.912 ± 0.017 0.956 ± 0.018 0.895 ± 0.044

SVM-based wrapper with polynomial kernel 0.998 ± 0.005 0.820 ± 0.027 0.946 ± 0.008 0.870 ± 0.019

SVM-based wrapper with RBF kernel 1.000 ± 0.000 0.784 ± 0.020 0.936 ± 0.006 0.848 ± 0.014

SVM with polynomial kernel using filter-based selected features 0.983 ± 0.000 0.688 ± 0.016 0.896 ± 0.005 0.746 ± 0.012

SVM with RBF kernel using filter-based selected features 0.983 ± 0.000 0.680 ± 0.000 0.894 ± 0.000 0.740 ± 0.000

LogR using filter-based selected features 0.922 ± 0.015 0.752 ± 0.016 0.872 ± 0.011 0.687 ± 0.025

The results are based on ten fivefold cross validation runs on the H85 dataset and the averages and the corresponding standard deviations are

shown. The methods are sorted by the average MCC values in the descending order, and the best values for each quality index (see ‘‘Materials

and methods’’ section for details) are given in bold

Fig. 1 The improvements of MCC values (y axis) along with the

increasing number of selected features (x axis) for the performed

wrapper-based feature selection. A forward, best-first search was

executed using both 10 5CV runs and jackknife tests on the H85

dataset. The features F1 to F8 are L, AveRSA_AAN_SSE, AveRSA_

AAE_SSE, AACE_SSE, AACL_Bu0.1, ACCW_Ex0.2, AACT_Bu0.1, and

AACT_Bu0.5, respectively, in the order of their inclusion in the

feature selection procedure
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FOLD-RATE Q (Huang and Gromiha 2008) and length-

based method (Huang and Cheng 2008), and one structure-

based method K-Fold (Capriotti and Casadio 2007) based

on jackknife test and 5CV tests on four benchmark data-

sets. The four competing methods were designed and tested

using a single dataset (Cp on the M85, FOLD-RATE Q on

the G77, length-based on the H85, and K-Fold on the C63

dataset), while FOKIT is tested on all four datasets. The

results show that FOKIT outperforms length-based and

K-Fold predictors, i.e., it improves the corresponding MCC

by 0.12 and 0.7, respectively. Only the sensitivity of the

length-based method is slightly higher than that of FOKIT.

Comparison with Cp and FOLD-RATE Q shows that

FOKIT provides better sensitivity, while the other two

methods give higher specificity. Overall, the MCC/accu-

racy of these two methods is higher than that of FOKIT. A

likely explanation is that Cp and FOLD-RATE Q were

designed (parameterized and performed feature selection)

and tested using the same M85 and G77 datasets, respec-

tively, while the features used in FOKIT were selected

based on the H85 dataset and this method was tested on a

different dataset. We compare the Cp method against FO-

KIT on the H85, C63, and G77 datasets when the latter

predictor is also trained on the M85 dataset. The Cp is a

linear regression method that takes the chain length and

Csum (i.e., the composition of Cys, His, Leu, and Arg) as

its inputs, i.e., Cp = 0.000199 9 Length ? 0.257186 9

Csum - 0.061498. If Cp [ 0 then the chain is assumed to

be multi-state; otherwise, two-state type is predicted. The

results in Table 5 demonstrate that FOKIT outperforms the

Cp method on all considered quality indices and test

datasets.

Fig. 2 Comparison of the prediction performance of FOKIT and the

predictions based on the chain length for the H85, M85, C63, and G77

datasets. The MCC values (y axis) are averaged over 10 random runs

of 5CV. Standard deviations are shown using error bars

Table 4 Comparison of the prediction performance between FOKIT and the existing methods based on Jackknife test and fivefold cross

validation

Dataset Method Jackknife Fivefold CV (average of 10 runs)

Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC

H85 Lengtha NA NA NA NA 0.983 0.72 0.906 0.774

FOKIT 0.983 0.920 0.965 0.914 0.975 ± 0.023 0.912 ± 0.017 0.956 ± 0.018 0.895 ± 0.044

M85 Cp
b 0.797 0.820 0.809 NA NA NA NA NA

FOKITc 0.837

0.836 ± 0.011

0.738

0.730 ± 0.022

0.788

0.783 ± 0.011

0.579

0.569 ± 0.021

0.846 ± 0.029 0.724 ± 0.023 0.786 ± 0.024 0.576 ± 0.049

C63 K-Fold NA NA NA NA 0.868 0.720 0.810 0.600

FOKIT 0.895 0.800 0.857 0.700 0.876 ± 0.022 0.792 ± 0.032 0.843 ± 0.019 0.671 ± 0.040

G77 FOLD-

RATE Q

0.882 0.923 0.896 0.781 NA NA NA NA

FOKIT 0.922 0.769 0.870 0.705 0.902 ± 0.016 0.761 ± 0.030 0.854 ± 0.017 0.672 ± 0.039

The CV tests were based on ten runs and the averages and the standard deviations are shown. Results of FOKIT are shown in bold and ‘‘NA’’ denotes

results that were not reported by the authors and which could not be duplicated
a Huang and Cheng (2008) reported the best result based on 5CV by using the chain length as the only input
b Ma et al. (2007) reported the results generated by 1,000 rounds jackknife tests (JKTv) which are shown in italic. The ‘‘accuracy’’ in Ma et al. (2007) is

defined as (Sensitivity ? Specificity)/2
c Results of JKTv are shown in italic. We run JKTv ten times and we report the average, the standard deviations, and the same ‘‘accuracy’’ as in Ma et al.

(2007)

Table 5 Comparison of prediction performance between FOKIT and

Cp method which were trained on the M85 dataset

Method Test set Sensitivity Specificity Accuracy MCC

Cp H85 0.700 0.840 0.741 0.494

FOKIT 0.817 0.880 0.835 0.651

Cp C63 0.868 0.800 0.841 0.668

FOKIT 0.895 0.840 0.873 0.735

Cp G77 0.784 0.731 0.766 0.500

FOKIT 0.843 0.846 0.844 0.668
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Predictions on the S17 dataset

The S17 dataset was used to validate the quality of pre-

dictions for chains that share low, below 25%, identity with

the chains used to develop the model, i.e., the H85 dataset.

Table 6 compares predictions of FOKIT, Cp, FOLD-RATE

Q, and K-Fold. The results of K-Fold and FOLD-RATE

Q were derived from the corresponding web servers, the

predictions of Cp are computed using the linear model, and

FOKIT was trained on the H85 dataset. FOKIT provides

better or comparable predictive performances although the

other four methods were derived using datasets that overlap

with the S17 datasets, i.e., the M85, C63, and G77 datasets

that were used to train Cp, K-Fold, and FOLD-RATE

Q methods, respectively, share 11, 2, and 4 chains with the

S17 dataset. When trained on the H85 dataset, FOKIT

obtains sensitivity, specificity, accuracy, and MCC equal

0.714, 0.500, 0.588, and 0.214, respectively. To compare,

the MCC values of Cp, FOLD-RATE Q, and K-Fold equal

0.271, 0.169, and 0. The only better result is achieved by

Cp, but this is likely due to the substantial overlap between

the S17 and M85 datasets (also, Table 5 shows that FOKIT

outperforms the Cp method). Table 7 lists the results of

FOKIT trained on the M85, C63, and G77 datasets and

tested on the S17 dataset to simulate a ‘‘fair’’ comparison,

i.e., using the same training and test sets, with the other

three methods. The Table shows that the proposed pre-

dictor outperforms the three existing methods.

The results suggest that the proposed method provides

favorable results when used on novel sequences

(i.e., chains that share low, \25%, similarity with the

chains used to build the model), which is an important

advantage given the limited number of chains with known

folding kinetic types.

Factors governing folding kinetic types

The top-ranked (in the performed feature selection) feature

was the chain length, which was previously shown to

govern folding types (Huang and Cheng 2008). The

effective length (Ivankov and Finkelstein 2004), which was

found useful for prediction of folding rates, was not

selected. Although these two features are correlated, this

suggests that the simple length offers better discriminatory

power than the effective length. The other five features

include two based on the average RSA values and three AA

Table 6 Predictions FOKIT,

Cp, FOLD-RATE Q, and

K-Fold on the S17 dataset

PDB id Source

dataset

Chain

length

Actual

folding type

Predicted folding type

FOKIT Cp K-Fold FOLD-RATE Q

1L8WA M85 348 TS MS MS MS TS

1B9C M85 236 MS MS MS MS TS

1MXI M85 160 MS MS MS MS TS

1I1B M85 153 MS MS MS MS TS

1JOO M85 149 MS TS MS MS TS

1MZK M85 139 MS MS MS MS TS

1AZU M85 128 TS MS MS TS TS

1ADW M85 123 MS TS TS MS TS

1B11 M85 113 MS MS MS TS TS

1UZC M85 71 MS TS TS TS TS

1DTV M85 67 MS TS MS TS TS

1L2YA C63 20 TS TS TS TS TS

1PGB_ C63 56 TS TS TS TS TS

1LOP G77 164 TS TS TS MS TS

1PIN G77 153 TS TS MS MS TS

2HQI G77 72 TS TS TS TS TS

1HX5 G77 82 MS TS TS TS TS

Table 7 Comparisons of FOKIT with the Cp, K-Fold and FOLD-

RATE Q predictors where the methods are trained on the same

datasets and tested on the S17 dataset

Method Training

dataset

Sensitivity Specificity Accuracy MCC

FOKIT M85 0.571 0.800 0.706 0.383

Cp 0.571 0.700 0.647 0.271

FOKIT C63 0.714 0.700 0.706 0.408

K-Fold 0.571 0.600 0.588 0.169

FOKIT G77 0.714 0.500 0.588 0.214

FOLD-RATE Q 1.000 0.000 0.412 0.000
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composition-based features. We investigate statistical sig-

nificance of the differences of the values of these features

between the TS and the MS folders on the four datasets.

Table 8 gives the P values of two-sided t tests (when both

distributions are normal) or two-sided Wilcoxon test (when

at least one of the distributions is not normal). The nor-

mality was tested using Shapiro–Wilk test at the 0.05

significance.

Although as expected the chain length is significantly

different between the two protein sets on all four datasets,

the AACW_Ex0.2 feature is also shown to provide statisti-

cally significant discrimination. This feature quantifies the

content of solvent exposed (at the 0.2 cutoff) Trp in the

protein chain. The mean values of the AACW_Ex0.2 feature

for the TS proteins are significantly smaller than the values

for the MS proteins. The proteins that contain no or a very

few exposed Trp residues, which are hydrophobic, are

more likely to utilize TS folding process, while increased

content of exposed Trp correlates with the MS folders.

Figure 3 shows that the difference disappears if we

consider Trp residues irrespective of their solvent expo-

sure. The mean values of AACW for the TS and the MS

proteins in the H85 dataset equal 0.016 and 0.017,

respectively. The Trp residues have been implicated in

long-range interaction that stabilize the protein structure

(Zhou et al. 2007; Klein-Seetharaman et al. 2002), and their

mutation was shown to increase refolding rate and decrease

stability of the native fold (Linke et al. 2004). Our finding

is also supported by several experimental studies. Zhou

et al. (2007) demonstrated that a single mutation (W62G)

of the surface Trp in hen egg-white lysozyme resulted in a

less stable structure than that of the wild type. Linke et al.

(2004) showed that the mutation of a solvent exposed Trp

to Phe in OEP16 protein resulted in speeding up the folding

process. We use the work of Calloni et al. (2003) who

suggested that the average hydrophobicity of a protein

sequence is an important determinant of its folding rate by

comparing the folding mechanics of the N-terminal domain

of HypF from Escherichia coli (HypF-N) and two exten-

sively studied human proteins, muscle and common-type

Table 8 The mean values of the selected six features and the P values that quantify significance of the differences between TS and MS proteins

for the H85, M85, C63, and G77 datasets

Dataset Feature P value SSD Mean value

TS MS

H85 Length 9.5E-09 ?? 79.45 (±20.93) 157.0 (±78.73)

AveRSA_AAN_SSE 0.1118 * 0.132 (±0.160) 0.194 (±0.159)

AveRSA_AAE_SSE 0.8466 * 0.230 (±0.197) 0.239 (±0.170)

AACE_SSE 0.1080 * 0.044 (±0.045) 0.063 (±0.052)

AACL_Bu0.1 0.1436 * 0.199 (±0.135) 0.234 (±0.069)

AACW_Ex0.2 0.0307 ?? 0.001 (±0.004) 0.005 (±0.009)

M85 Length 5.4E-05 ?? 85.95 (±48.44) 138.88 (±63.16)

AveRSA_AAN_SSE 0.1535 * 0.122 (±0.139) 0.170 (±0.165)

AveRSA_AAE_SSE 0.8377 * 0.239 (±0.191) 0.230 (±0.178)

AACE_SSE 0.3490 * 0.042 (±0.038) 0.051 (±0.046)

AACL_Bu0.1 0.0030 ?? 0.174 (±0.131) 0.238 (±0.088)

AACW_Ex0.2 0.0016 ?? 0.000 (±0.001) 0.004 (±0.008)

C63 Length 0.0003 ?? 79.76 (±44.91) 141.8 (±67.65)

AveRSA_AAN_SSE 0.1706 * 0.131 (±0.141) 0.189 (±0.168)

AveRSA_AAE_SSE 0.4986 * 0.231 (±0.197) 0.264 (±0.172)

AACE_SSE 0.0637 ? 0.040 (±0.039) 0.065 (±0.051)

AACL_Bu0.1 0.0022 ?? 0.168 (±0.145) 0.248 (±0.075)

AACW_Ex0.2 0.0226 ?? 0.000 (±0.002) 0.004 (±0.008)

G77 Length 0.0003 ?? 83.65 (±35.76) 140.7 (±66.43)

AveRSA_AAN_SSE 0.2123 * 0.128 (±0.145) 0.178 (±0.166)

AveRSA_AAE_SSE 0.9959 * 0.258 (±0.195) 0.258 (±0.175)

AACE_SSE 0.1419 * 0.045 (±0.039) 0.063 (±0.051)

AACL_Bu0.1 0.0543 ? 0.189 (±0.122) 0.229 (±0.082)

AACW_Ex0.2 0.0715 ? 0.001 (±0.005) 0.005 (±0.008)

The SSD column indicates features that are characterized by statistically significant differences at 0.05 level (??), at 0.1 level (?) and no

significant differences (*)
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acylphosphatases (mAcP and ctAcP), as our case studies.

These proteins have the same topology (babbab motif), but

HypF-N shares only 22 and 26% sequence identity with

mAcP and ctAcP (Calloni et al. 2003), respectively. The

mAcP and ctAcP proteins have been shown to fold with the

two-state kinetic pathway, while HypF-N utilizes the three-

state folding, i.e., it collapses into a partially folded inter-

mediate before reaching the fully folded conformation.

Furthermore, HypF-N was found to fold rapidly with a rate

constant that is approximately two and three orders of

magnitude faster than ctAcP and mAcP, respectively. This

suggests that the structural similarity may not imply the

similarity in folding kinetics or rate. These proteins include

two evolutionary conserved Trp residues. The RSA values

of these Trp residues computed with DSSP (Kabsch and

Sander 1983) are 38.3% for Trp27 and 5% for Trp81 in

HypF-N (PDB ID: 1GXT), 11.2% for Trp38 and 4.6% for

Trp64 in mAcP (PDB ID: 1APS), and 19.5% for Trp38,

and 7.5% for Trp64 in ctAcP (PDB ID: 2ACY), respec-

tively; see Fig. 4. Only the Trp27 in HypF-N is exposed

with respect to the RSA cutoff of 20%. This means that the

value of the AACW_Ex0.2 feature is greater than zero for

HypF-N and equal zero for both mAcP and ctAcP, which

supports our observation that exposure of Trp could be an

important marker for MS kinetic type.

Table 8 also shows that AACL_Bu0.1, which quantifies

content of buried Leu (using cutoff of 0.1), also provides

significant discrimination for three out of the four datasets.

Dong et al. (2008) found that buried hydrophobic residues,

including Leu, contribute to the stabilization of the struc-

ture. Their experiments reveal that mutants of Ribonuclease

HII from hyperthermophile Thermococcus kodakaraensis

(Tk-RNase HII), which substitute large buried hydrophobic

residues by smaller residues (Leu/Ile to Ala), unfold faster

than the wild-type protein. Although it is not a direct evi-

dence for differences in folding kinetic type, we hypothe-

size that the increase of the content of the buried Leu

residues is a marker of the MS proteins. A number of small

single-domain proteins have been shown to form interme-

diates during folding (Park et al. 1999; Ferguson et al. 1999;

Laurents et al. 2000). The E colicin binding immunity

proteins (Im7 and Im9) are appropriate for investigating the

kinetic mechanics of single-domain proteins as we used

them as our case studies. They have 87 and 86 residues,

respectively, share 60% sequence identity, and fold to the

same native structure with four helices but by different

kinetic types (Ferguson et al. 1999; Friel et al. 2004). At the

same conditions with 7.0 pH and 10�C, Im9 folds with TS

process, while the less stable homologue, Im7, folds with

three-state pathway. Given that V19, V37, and V71 residues

in Im9* (histidine-tagged Im9) are replaced with the

Fig. 3 Distributions of values of features AACW_Ex0.2 (a) and

AACW (b) among the TS and MS folders in the H85 dataset

Fig. 4 Three-dimensional

cartoon structures of a HypF-N

(PDB ID: 1GXT), b mAcP

(PDB ID: 1APS), and c ctAcP

(PDB ID: 2ACY). The Trp

residues are shown using filled

spheres where exposed Trp

residues (using RSA cutoff of

20%) are in red and buried Trp

residues are in blue
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equivalent residues in Im7* (histidine-tagged Im7), the

mutated chains (V19L, V37L and V71I) of Im9* were

found by Friel et al. to switch from TS to three-state folding

process (Friel et al. 2004). In each mutation, the Val residue

in Im9 is less hydrophobic than the equivalent residues

(Leu/Ile) in Im7 and this increase in the hydrophobicity may

explain the switching. We examined the solvent exposure

the Leu residues in both Im9 and Im7, see Fig. 5. There are

six Leu residues in Im9 at positions 3, 16, 18, 33, 36, and 52

and their RSA values equal 63.9, 32.2, 9.8, 11.5, 19.7, and

9.8%, respectively. The RSA values of Leu residues at the

3, 18, 19, 34, 37, 38, and 53 positions in Im7 are 71.5, 8.7,

2.2, 6.0, 6.6, 12.0, and 1.1%, respectively. Using the 10%

cutoff, two out of six Leu residues are buried in Im9 and five

out of seven are buried in Im7. This supports our observa-

tion that the larger content of buried Leu residues may be

associated with the MS folding.

Table 8 also reveals that the AveRSA_AAN_SSE,

AveRSA_AAE_SSE, and AACE_SSE features show no

statistically significant differences between the TS and the

MS proteins. We note that AveRSA_AAN_SSE and

AACE_SSE have higher average values for the MS proteins

in all four datasets. The lack of significance implies that

these are not strong markers when used individually, but

they are shown to improve the predictions when used in

combination with the other features (see Fig. 1).

Conclusions and discussion

The chain length and the topology of the native fold have

been recently shown as important factors determining the

folding kinetic types (Capriotti and Casadio 2007; Huang

and Cheng 2008). Huang and Cheng (2008) used the length

cutoff of 112 to discriminate between the TS and MS

proteins. However, a number of small, single-domain

proteins have been shown to fold utilizing the MS process.

In addition, the structural similarity does not imply the

similarity in folding kinetic types as shown in the case

studies concerning HypF-N, mAcP and ctAcP, and for Im9

and Im7. We utilized a wrapper-based feature selection to

find a small set of complementary features which hybridize

information concerning AA composition and predicted

secondary structure and solvent accessibility. We demon-

strated that inclusion of solvent exposure helps in dis-

crimination of the folding kinetic types. Some of the

considered features are shown to be strong markers for the

folding kinetic types, i.e., they provide statistically signif-

icant differences between the TS and MS folders. They are

sensitive to presence of individual exposed/buries residues

and thus they could quantify the effect of certain mutations

that can switch the folding type, as shown using the case

studies. More specifically, we found that the increased

content of exposed Trp and buried Leu are indicative of the

MS folding process, which implies that the exposure/burial

of certain hydrophobic residues may play important role in

the formation of folding intermediates.
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