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Abstract Structural class categorizes proteins based on

the amount and arrangement of the constituent secondary

structures. The knowledge of structural classes is applied in

numerous important predictive tasks that address structural

and functional features of proteins. We propose novel

structural class assignment methods that use one-dimen-

sional (1D) secondary structure as the input. The methods

are designed based on a large set of low-identity sequences

for which secondary structure is predicted from their

sequence (PSSAsc model) or assigned based on their tertiary

structure (SSAsc). The secondary structure is encoded using

a comprehensive set of features describing count, content,

and size of secondary structure segments, which are fed into

a small decision tree that uses ten features to perform the

assignment. The proposed models were compared against

seven secondary structure-based and ten sequence-based

structural class predictors. Using the 1D secondary struc-

ture, SSAsc and PSSAsc can assign proteins to the four main

structural classes, while the existing secondary structure-

based assignment methods can predict only three classes.

Empirical evaluation shows that the proposed models are

quite promising. Using the structure-based assignment

performed in SCOP (structural classification of proteins) as

the golden standard, the accuracy of SSAsc and PSSAsc

equals 76 and 75%, respectively. We show that the use of

the secondary structure predicted from the sequence as an

input does not have a detrimental effect on the quality of

structural class assignment when compared with using

secondary structure derived from tertiary structure. There-

fore, PSSAsc can be used to perform the automated

assignment of structural classes based on the sequences.

Keywords SCOP � Structural class � Structural class

prediction � Structural classification of proteins �
Secondary protein structure

Introduction

Structural class constitutes one of the coarsest structural

classifications of proteins in which protein structures are

categorized based on the amounts and arrangement of the

constituent secondary structures. Despite the low granu-

larity of this categorization, a knowledge of structural

classes provides useful input for a variety of important

applications, including the prediction of a variety of

functional and structural properties and the determination

of distant homologues. The structural class is currently

assigned manually based on the tertiary structure, which is

the reason why this information is known for only a rela-

tively small number of proteins. The recent release (1.73)

of the SCOP (structural classification of proteins) database

(Murzin et al. 1995), which includes annotation of struc-

tural classes, includes 97,178 protein domains. At the same

time, release 27 of the NCBI’s RefSeq database includes

4,426,609 non-redundant protein sequences. The main

reason for such a wide gap is the unavailability of protein
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structure, which is used to assign the protein to the corre-

sponding structural class, for the significant majority of

known protein sequences. Therefore, an accurate, auto-

mated method for classifying sequences into the

corresponding structural classes would provide the needed

help in the laborious task of populating the SCOP database.

To this end, we address the following three aims:

1. We investigate whether the structural class can be

successfully assigned/predicted based on one-dimen-

sional (1D) secondary structure, i.e., secondary

structure assigned to each residue without the knowl-

edge of its spatial arrangement.

2. We also analyze whether the early definitions of

structural classes, which were developed before the

SCOP database was established, can be successfully

used to automate the assignment of the classes based

on the 1D secondary structure.

3. The above goals are addressed using the assigned

(based on the tertiary structure) and the predicted

(from protein sequence) 1D secondary structure. We

propose two new assignment models: SSAsc (second-

ary structure-based assignment of structural classes)

and PSSAsc (predicted secondary structure-based

assignment of structural classes). We compare these

two models against existing assignment methods (goal

2) to verify whether the structural class can be

successfully assigned using 1D secondary structure

predicted from the protein sequence. Such an assign-

ment model would constitute a feasible approach to

automate the assignment of structural classes without

the knowledge of the structure.

We also compare the above results against representative

methods that perform prediction of structural classes based

on the protein sequence.

This paper is organized as follows. We first discuss the

definitions and applications of structural classes and

introduce methods currently being used for sequence-based

prediction of structural classes. Next, we introduce the

datasets, data, and methods used to address the above-

mentioned goals. This is followed by the discussion of the

proposed models for structural class assignment. Finally,

we present, analyze, and compare the results from out

empirical evaluation of the proposed models with other

assignment and prediction methods, and we draw conclu-

sions with respect to the defined goals.

Definitions of structural classes

The concept of structural classes was first proposed by Levitt

and Chothia in the mid-1970s (Levitt and Chothia 1976). In

their pioneering work, these researchers evaluated and

classified 31 structures of globular proteins into four

structural classes: (1) all-a class, which includes proteins

with only small amount of strands; (2) all-b class with pro-

teins, with only a small amount of helices; (3) the a/b class

with proteins, which include both helices and strands and

where the strands are mostly parallel; (4) a + b class, which

includes proteins with both helices and strands and where the

strands are mostly antiparallel. These definitions were later

modified and made more specific with respect to the required

amounts of helices and strands (see Table 1). All of these

classifications also consider irregular proteins (also called n
proteins) (Chou and Zhang 1993), i.e., proteins which can

not be assigned to one of the four structural classes, which

are rare and therefore usually omitted from predictions.

The common feature of the assignment methods listed in

Table 1 is that the structural classes are defined based on

the helical and strand content as well as the orientation of

the b-sheets. The main differences lie in the threshold

values used to define minimal/maximal amounts of strands

and helices for a given structural class.

In 1986 Nakashima and colleagues defined five structural

classes using 135 tertiary protein structures (Nakashima

et al. 1986). This was followed by Klein and DeLisi who in

their definitions enlarged the space covered by the irregular

proteins (Klein and DeLisi 1986). The next definition was

proposed by P.Y. Chou in 1989, who further enlarged the

set of irregular proteins by increasing the threshold values

for the four main structural classes (Chou 1989). The defi-

nition proposed by Kneller and colleagues lowered the

thresholds for the a + b and a/b classes (Kneller et al.

1990). This was followed in 1995 by K.C. Chou who used

129 proteins to propose another classification into five

classes (Chou 1995). The definitions by K.C. Chou are

based on secondary structure content defined using the

Dictionary of Secondary Structure of Proteins (DSSP,

Kabsch and Sander 1983). The next definition, which

assumes four structural classes by combining the a + b and

a/b classes into the so-called mixed class, was proposed by

Eisenhaber and colleagues in 1996 (Eisenhaber et al. 1996).

The reason to consider a mixed class was that the authors

proposed their definition based solely on 1D secondary

structure assigned with DSSP, in which case information

about strand directionality was unavailable. Their definition

is equivalent to the definition proposed by Nakashima and

colleagues. Finally, in 1998, Liu and Chou refined their

assignment rules originally proposed in Chou (1995) to

increase the size of the regions associated with the four

structural classes and to improve the definitions of the

a + b and a/b classes (Liu and Chou 1998).

The threshold-based classifications were deemed obso-

lete in the late 1990s and replaced by the manually

preformed SCOP classification. The SCOP database

includes a description of the structural and evolutionary

relationships of proteins from the Protein Data Bank (PDB)
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(Berman et al. 2000). The SCOP database classifies proteins

on multiple levels, including structural classes, but also as

belonging to different families and super-families and

containing different domains. The SCOP’s classification

does not incorporate hardcoded rules for structural classes.

Instead, the decisions are made based on structural elements

that are located in individual domains that constitute the

protein. Researchers claim that the SCOP classification is

more ‘‘natural’’ and provides more reliable information to

study protein structural classes when compared to classifi-

cations based on the percentage amounts of the secondary

structures (Murzin et al. 1995; Chou and Maggiora 1998;

Wang and Yuan 2000). The SCOP classification currently

includes 11 classes (Andreeva et al. 2004): (1) all-a pro-

teins; (2) all-b proteins; (3) a/b proteins; (4) a + b proteins;

(5) multi-domain proteins; (6) membrane and cell surface

Table 1 Structural class definitions

Reference’s Structural class Helix (a)

amount

Strand (b)

amount

Additional constrains and comments

Nakashima et al. (1986) a proteins [15% \10%

b proteins \15% [10%

a + b proteins [15% [10% Contains dominantly antiparallel b-sheets

a/b proteins [15% [10% Contains dominantly parallel b-sheets

n proteins \15% \10%

Klein and DeLisi (1986) a proteins [40% \5%

b proteins \10% [30%

a + b proteins C15% C15% Contains dominantly antiparallel b-sheets

a/b proteins C15% C15% Contains dominantly parallel b-sheets

n proteins a + b\ 20%

Chou (1989) a proteins [45% \5%

b proteins \5% [45%

a + b proteins [30% [20% Contains dominantly antiparallel b-sheets

a/b proteins [30% [20% Contains dominantly parallel b-sheets

n proteins Otherwise

Kneller et al. (1990) a proteins C30% B0.15(a + b)

b proteins \10%

a + b proteins [15% [5% Contains dominantly antiparallel b-sheets

a/b proteins [15% [5% Contains dominantly parallel b-sheets

n proteins Otherwise

Chou (1995) a proteins C40% B5%

b proteins B5% C40%

a + b proteins C15% C15% More than 60% antiparallel b-sheets

a/b proteins C15% C15% More than 60% parallel b-sheets

n proteins B10% B10%

Eisenhaber et al. (1996) a proteins [15% \10%

b proteins \15% [10%

mixed proteins [15% [10% No division into a + b and a/b classes

n proteins Otherwise

Liu and Chou (1998) a proteins C20% B5% And a - 4b C 0.2

b proteins B5% C20% And b - 4a C 0.2

a + b proteins C12% C12% And a + b C 30% and 70% or more antiparallel bridges

a/b proteins C12% C12% And a + b C 30% and 60% or fewer antiparallel bridges

n proteins B10% B10%

SCOP Murzin et al. (1995) a proteins N/A N/A Manual classification

b proteins

a + b proteins

a/b proteins

+7 other classes
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proteins; (7) small proteins; (8) coiled coils proteins; (9)

low-resolution proteins; (10) peptides; (11) designed pro-

teins. Only the first four categories are usually considered

for computational prediction purposes as they cover a sig-

nificant majority of the proteins.

Applications of structural classes

Information on the structural classes of proteins is useful for

studying the broader problem of protein structure prediction

and carrying out a number of predictive tasks that address

certain structural and functional features. More specifically,

a knowledge of structural classes has been applied to

improve the accuracy of secondary structure prediction

(Gromiha and Selvaraj 1998), to reduce the search space of

possible conformations of the tertiary structure (Chou 1992;

Chou and Zhang 1995; Bahar et al. 1997), and to implement

a heuristic approach to determine tertiary structure (Carl-

acci et al. 1991). Information on structural classes has also

been used to provide useful input for numerous predictive

applications that include the discrimination of outer mem-

brane proteins (Gromiha 2005a; Gromiha and Suwa 2005)

and the prediction of protein-folding rates (Gromiha 2005b)

and -unfolding rates (Gromiha et al. 2006), DNA-binding

sites (Kuznetsov et al. 2006), protein folds (He et al. 2002),

and secondary structure content (Zhang et al. 1998, 2001).

In particular, the concepts and algorithms developed in

protein structural class prediction have greatly stimulated

the development of predicting many other protein attributes

(Chou 2005b), such as subcellular localization (Cedano

et al. 1997; Chou and Elrod 1999; Chou and Shen 2007b,

2008; Xiao et al. 2005, 2006b), membrane protein type

(Chou and Shen 2007a, c), enzyme functional class (Shen

and Chou 2007a), GPCR type (Chou 2005a; Wen et al.

2007), and signal peptides (Chou and Shen 2007b, c). The

wide range of the applications and quality of venues in

which these applications were published provide strong

evidence supporting the usefulness of the structural classes

in many aspects of protein research.

Prediction of structural classes from the protein

sequence

Since the manual assignment of structural classes per-

formed in SCOP cannot be directly traced using the input

protein sequence or even its corresponding secondary

structure, a variety of methods that predict the structural

class based on the protein sequence have been developed to

facilitate an automated, high-throughput assignment.

Prediction of the structural classes is performed in two

steps: (1) the AA sequences are transformed into fixed-

length feature vectors; (2) the feature vectors are inputted

into a classification model to generate the corresponding

structural class. The majority of existing structural class

prediction methods use relatively simple feature vectors

that incorporate composition vector, auto-correlation func-

tions based on non-bonded residue energy, polypeptide

composition, pseudo AA composition, and complexity

measure factors (Chou and Zhang 1994, 1995; Chou 1995;

Chou and Maggiora 1998; Chou et al. 1998; Zhou 1998; Jin

et al. 2003; Cai et al. 2006; Kedarisetti et al. 2006a; Xiao

et al. 2006a; Chen et al. 2008). Some recent methods use

hybrid feature vectors that combine physicochemical

properties and sequence composition, while others optimize

one selected feature (Du et al. 2006; Kedarisetti et al.

2006b; Jahandideh et al. 2007; Kurgan and Homaeian 2006;

Kurgan and Chen 2007). The predictions are performed

using a variety of classification algorithms that include

fuzzy clustering (Shen et al. 2005), fuzzy nearest neighbor

(Zhang et al. 2008), neural network (Cai and Zhou 2000;

Cai et al. 2002b), Bayesian classification (Wang and Yuan

2000), rough sets (Cao et al. 2006), component-coupled

(Chou and Maggiora 1998; Chou et al. 1998; Zhou 1998),

information discrepancy (Jin et al. 2003; Kedarisetti et al.

2006a), logistic regression (Kedarisetti et al. 2006b; Kurgan

and Homaeian 2006; Jahandideh et al. 2007; Kurgan and

Chen 2007), decision trees (Cai et al. 2006; Dong et al.

2006), and support vector machine (Cai et al. 2001, 2002a,

2003; Dong et al. 2006; Kedarisetti et al. 2006b; Sun and

Huang 2006; Zhang and Ding 2007). Recent studies have

used multi-classifier models, such as ensembles (Kedarisetti

et al. 2006b), bagging (Dong et al. 2006), and boosting

(Feng et al. 2005; Cai et al. 2006; Niu et al. 2006). An in-

depth review of computational methods used for predicting

structural classes can be found in Chou (2005b). One fea-

sible approach to obtaining accurate structural class

prediction is to use a large library of reference functional

sequence motifs to build a feature vector that is subse-

quently used as the input to the classification algorithm.

Such a method was proposed by Chou and Cai (2004): 7785

features were used, and a 98% accuracy on a set of proteins

characterized by low-sequence identity was obtained for

seven structural classes.

In this article, however, we investigate whether the 1D

secondary structure (either the secondary structure assigned

using DSSP or the secondary structure predicted from the

protein sequence) can be used to predict/assign the struc-

tural class.

Materials and methods

Dataset

The goals defined in this paper were investigated using a

large benchmark dataset of representative twilight zone
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protein sequences. The dataset, called 25PDB, was selected

using the 25% PDBSELECT list compiled in July 2005

(Hobohm and Sander 1994), which includes proteins from

PDB that were scanned with high-resolution and which are

characterized by low (on average about 25%) sequence

identity. The dataset was originally published in Kurgan

and Homaeian (2006) and has been used to benchmark two

recent structural class prediction methods (Kedarisetti et al.

2006b; Kurgan and Chen 2007). It contains 1673 proteins

and domains, which include 443 all-a, 443 all-b, 346 a/b,

and 441 a + b sequences.

Predicted versus assigned secondary structure

The secondary structure, which constitutes the input for the

assignment/prediction methods studied in this paper, can be

obtained from two sources:

– It can be extracted from the tertiary structure (atomic

coordinates) stored in PDB. Although there are numer-

ous applications that can perform such secondary

structure assignment (Martin et al. 2005), the most

popular assignment method is the DSSP (Kabsch and

Sander 1983), which is the method used to annotate

proteins stored in PDB. The DSSP defines eight types

of secondary structures that are combined into three

main secondary structure states: helix, strand, and coil.

– It can be predicted from the protein sequence. The

advantage of these prediction methods is that they do

not require knowledge of the underlying tertiary

structure. At the same time, they only obtain about

78–80% accuracy with respect to the actual secondary

structure assignment performed with DSSP (Lin et al.

2005; Birzele and Kramer 2006). We use the PSI-

PRED secondary structure prediction method (Jones

1999; Bryson et al. 2005) for two reasons: (1) it has

recently been shown to provide superior accuracy in

comparison with other state-of-the-art secondary

structure prediction methods (Lin et al. 2005; Birzele

and Kramer 2006); (2) this method is frequently used

to support a variety of other predictions tasks, such as

fold prediction (Chen and Kurgan 2007), folding rate

prediction (Ivankov and Finkelstein 2004), and the

prediction of b-turns (Fuchs and Alix 2005), a-turns

(Wang et al. 2006), solvent accessibility (Garg et al.

2005), contact orders (Song and Burrage 2006), and

disulfide connectivity (Song et al. 2007), among

others.

Feature-based representation of secondary structure

As with sequence-based prediction methods, the proposed

approach requires two steps. The main difference between

the two methods is that the input in the latter is the sec-

ondary structure (either assigned with DSSP or predicted

with PSI-PRED) rather than the sequence. Although the

secondary structure content that is used by the existing

structural class assignment methods (see Table 1) reflects

information about the secondary structure of the entire

sequence, it does not provide information on individual

secondary structure segments. The size (length) of the

secondary structure segments is one of the important fac-

tors when it comes to the assignment of the structural

classes in SCOP. In designing our features, we assert that

although the secondary structure prediction accuracy is

only about 80%, the predicted secondary structure pre-

serves enough information about the secondary structure

segments to characterize the structural class. To this end,

we developed the following set of features to represent the

secondary structure for the purpose of the structural class

assignment/prediction:

• composition moment vector (CMV)

CMVk
I ¼

PnI

j¼1 nk
Ij

Qk
d¼0 ðN � dÞ

where I = [helix (h), strand (e), coil (c)], nIj is the jth

position (in the secondary structure sequence) of the

Ith secondary structure type, nI is the total number of

residues having Ith secondary structure, N is the length

of the protein sequence, and k is the order of the

CMV. We apply CMVs for k = 0,1,…,5. CMV1
0

reduces to the secondary structure content, which is

used as the input for the existing secondary structure

based assignment methods.

• count of secondary structure segments that include at

least k residues for coil segments

CountLk
c ¼

P20
j¼k countj

cP
I¼fh;e;cg totalI

for k ¼ 2; 3; . . .20

for helix segments

CountLk
h ¼

P20
j¼k count

j
hP

I¼fh;eg totalI
for k ¼ 3; 4; . . .20

for strand segments

CountLk
e ¼

P20
j¼k countj

eP
I¼fh;eg totalI

for k ¼ 2; 3; . . .20

where i = [helix (h), strand (e), coil (c)],

countc, h, e
j denotes the number of coil, strand, and helix

segments of length j in the predicted/assigned second-

ary structure, and totalI denotes the total number of all

segments belonging to Ith secondary structure. The

smallest a-helix segment is assumed to include at least

three residues. The upper bound on the segment size is
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set to 20 since larger segments occur rarely. The count

of coil segments is normalized by the total number of

all segments, while the counts of strand and helix seg-

ments are normalized by the total number of strand and

helix segments. These differences in the normalizations

accommodate all-a and all-b classes that may not

include any strand and helix segments, respectively.

• average and maximal size of secondary structure

segments

– length of the longest segment, in terms of

MaxSegI where

I ¼ helixðhÞ; strandðeÞ; coilðcÞf g

– normalized length of the longest segment

NMaxSegi ¼ MaxSegI=N where

I ¼ helixðhÞ; strandðeÞ; coilðcÞf g

– average length of the segment

AvgSegI where

I ¼ helixðhÞ; strandðeÞ; coilðcÞf g

– normalized average length of the segment

NAvgSegi ¼ AvgSegI=N where

I ¼ helixðhÞ; strandðeÞ; coilðcÞf g

There are a total of 86 generated features, including 18

CMV features, 56 normalized counts, and 12 features that

describe the longest and average segment lengths.

Classification model

Once the input secondary structure is converted into the

feature vector, this information is inputted to compute the

model for prediction/assignment of the structural classes.

Our aim is to provide an easy to comprehend model that

can be contrasted against the existing assignment methods.

Although a wide range of different computational tech-

niques can be used to derive the model, most of the

resulting models are very complex and, therefore, incom-

prehensible to humans. Examples of such models are

neural networks, Bayesian models, information discrep-

ancy-based models, and support vector machines. The

remaining techniques, which include decision trees,

regression, and rule-based models, have the advantage of

being expressed in a human-readable format. Among these

techniques, we chose to use decision trees as they provide a

model that is easy to comprehend and analyze, and they

have been successfully used in sequence-based prediction

of structural classes (Cai et al. 2006; Dong et al. 2006). We

employed the divide-and-conquer decision tree algorithm

C4.5 (Quinlan 1993) revision 8 implemented in the soft-

ware package WEKA ver. 3.4.6 (Witten and Frank 2005).

Results and discussion

Experimental setup

The defined goals are investigated with the use of the

25PDB dataset and two experimental test types:

– The resubstitution test in which the structural class

assignment model is generated using the entire 25PDB

set and then the model is tested on the same dataset.

This test is used to compare our assignment models

with existing secondary structure-based methods for

assignment of structural classes.

– The tenfold cross validation (10CV) test randomly

divides the 25PDB set into ten subsets, and ten

assignment models are generated. Each time one of

the ten subsets is used to test the model and the

remaining nine are used to generate it. We use this test

to compare our models against a selected set of

representative sequence-based structural class predic-

tion methods.

We chose to perform 10CV due to its favorable compu-

tational cost when compared with the jackknife cross-

validation test. At the same time, the jackknife test is

considered to be more objective since it always yields the

same results for a given benchmark dataset while the sub-

sampling (such as fivefold or tenfold) cross-validation may

provide arbitrary test results due to large number of

potential sub-samples, as shown in Chou and Shen (2007b,

Chou and Shen 2008).

The resubstitution-based model is computed using the

same parameters of the C4.5 algorithm as the 10CV

models. A separate set of tests is performed when using

DSSP-assigned and PSI-PRED-predicted secondary struc-

ture as the input data. The results reported here include the

overall accuracy (the number of correct predictions divided

by the total number of test sequences) and accuracy for

each structural class (number of correct predictions for a

given class divided by the number of sequences in this

class).

Structural class assignment models

The 25PDB dataset encoded using 86 features was inputted

into the C4.5 decision tree algorithm to generate structural

class assignment models, one for input data based on

DSSP-assigned secondary structure (SSAsc) and another

using secondary structure predicted with PSI-PRED

(PSSAsc). The SSAsc model is shown in Fig. 1.

The SSAsc model includes 12 rules that allow a given

secondary structure sequence to be assigned to one of the

four structural classes: one rule for the all-a class; three

rules for the all-b class; two rules for the a/b class, and six
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rules for the a + b class. A rule is assembled by following

a path through a decision tree starting at the top node (root)

and following through the branches, which corresponds to

conditions in a rule, to reach a leaf node (denoted using

shaded box in Fig. 1) that defines the outcome. For

example, the rule for all-a class reads as follows:

IF CMV0
h [ 0:2 and CountL4

e � 0:1667 THEN all - a

The leaf nodes also show the success/failure rate of a

given rule for the 25PDB dataset, i.e., the above rule for the

all-a class results in 473 correct assignments into this class

and 63 incorrect assignments (proteins from other classes

that are classified as all-a class).

The PSSAsc model includes 12 rules: four, one, two, and

five rules for the all-a, all-b, a/b, and a + b classes,

respectively (Fig. 2).

As in the the existing assignment methods, the helix and

strand content were used in our models. At the same time, a

number of other features were utilized, mostly to differ-

entiate between the a/b and a + b classes. The two models

use only a small subset of ten features from the original set

of 86 features (Table 2). One of the advantages of the C4.5

algorithm is that it selects the most discriminative features

to build the classification model and disregards the

remaining features. This means that the proposed structural

class assignment requires only ten features, although we

note that they come from each of the proposed feature

categories. Both models use the helix content (CMVh
0),

CountLh
8, NMaxSegh, and NMaxSege features, and some of

the remaining features used in only one of the models are

also similar, including CountLe
6 versus CountLe

7 or CMVh
4

versus CMVh
3. This is expected as both models have the

same goal. At the same time, some other features, such as

strand content (CMVe
0), counts of coil segments, and

average length of helical segments, are used only in one of

the models. In general, the assignment is performed based

on the knowledge of all three secondary structures

(including coils), and knowledge on both the structural

content and the segment size is used.

Comparison with existing structural class assignment

methods

The proposed structural class assignment methods are

compared with seven existing assignment methods.

Although the proposed models are capable of predicting

a + b and a/b classes directly from the 1D secondary

structure, the remaining methods combine these classes

into the mixed class. The reason for this is because the

models require knowledge of the directionality of the

b-sheets to differentiate between a + b and a/b classes,

and this information is not available in the 1D secondary

structure. Therefore, for the purpose of this test we com-

bine our a + b and a/b assignments into the mixed class.

We also assume that any protein for which none of the

conditions from Table 1 for a given assignment method is

satisfied is automatically assigned into the irregular class.

The comparison of the quality of the assignment of struc-

tural classes by the two proposed and the seven existing

methods (the existing methods are tested with both DSSP-

assigned and PSI-PRED-predicted secondary structure) on

the 25PDB dataset are shown in Table 3.

Several interesting conclusions can be drawn based on

these results:

– The use of the predicted secondary structure does not

have a detrimental effect on the quality of the structural

class assignment. In some cases, for example, where

methods proposed in Klein and DeLisi (1986), Chou

(1989), Kneller et al. (1990), Chou (1995), Liu and

Chou 1998, the results are even better when the

predicted secondary structure is used. This is an

important observation since it means that the structural

class can be effectively assigned on the sole basis of the

sequence, i.e., the PSI-PRED uses only the sequence to

predict the secondary structure.

– The most accurate existing assignment method was

proposed in Nakashima et al. (1986) and later reused in

Eisenhaber et al. (1996). The helix and strand content

thresholds set in this method equal 15 and 10%,

CMVh
0

CountLc
20 CountLe

4

CMVh
0 ≤ 0.2 CMVh

0 > 0.2 

NMaxSeghα+β
(45/23) 

CountLc
20 >0.0909 CountLc

20

≤ 0.0909 

all-β
(325/13) 

CountLh
8

NMaxSegh ≤ 0.0631 
NMaxSegh

> 0.0631 

CMVh
4α+β

 (39/11) 

CountLh
8 > 0.1481 

CountLh
8

≤ 0.1481 

all-β
(35/3)

CountLc
3

CMVh
4 > 0.0451 

CMVh
4

≤ 0.0451 

all-β
(37/10) 

α+β
 (44/12) 

CountLc
3 ≤ 0.3846 

CountLc
3

> 0.3846 

all-α
(473/63) 

NMaxSege

CountLe
4 ≤ 0.1667 CountLe

4

> 0.1667

NAvgSeg h α+β
 (320/96) 

NMaxSege

≤ 0.0451 NMaxSege > 0.0451 

α+β
 (39/22) 

CountLh
8

NAvgSeg h

≤ 0.066 NAvgSeg h > 0.066 

CountLe
6 α/β

 (146/8) 

CountLh
8

≤ 0.2857 CountLh
8 > 0.2857 

α/β
 (124/34) 

α+β
 (46/14) 

CountLe
6

≤ 0.1875 CountLe
6 > 0.1875 

Fig. 1 The secondary structure-based assignment of structural clas-

ses (SSAsc) model generated from secondary structure assigned with

the Dictionary of Secondary Structure of Proteins (DSSP) using the

25PDB dataset
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respectively, which approximately coincides with the

extrema on the plot of distributions of these two

structures in the 25PDB dataset (see Fig. 3). The same

finding was also shown in Eisenhaber et al. (1996) for a

different and smaller set of proteins. In contrast, other

assignment methods use relatively high threshold

values for helix content, i.e., between 30 and 45% for

the all-a class, and for strand content, i.e., between 30

and 45% for the all-b class. As a result, their

performance for these two classes is weaker. The

distributions also show that the number of residues in

the helical conformation is, on average, higher than the

corresponding strand content, i.e., the corresponding

extremes are at higher values of content. Therefore, the

thresholds for the two structures should differ accord-

ingly, which is in contrast with symmetrical thresholds

CMVe
0

CMVh
0

CMVe
0 ≤ 0.092 CMVe

0 > 0.092 

all-β
(367/29) 

NMaxSege

CountLh
8 ≤ 0.1333 

CountLh
6

NMaxSege

> 0.0462 NMaxSege ≤ 0.0462

α+β
 (362/124) 

CountLe
7

NMaxSege α+β
 (31/4) 

CountLe
7

≤ 0.2778 CountLe
7 > 0.2778 

all-α
 (29/15) 

all-α
(437/44) 

CountLh
8

α+β
 (38/13) 

CountLh
8

> 0.1333 

CMVh
0 ≤ 0.1792 

CMVh
0 > 0.1792 

CountLh
4

CountLh
6

> 0.4211 CountLh
6 ≤ 0.4211 

NMaxSege > 0.0942
NMaxSege

≤ 0.0942 

CMVh
3

all-α
 (21/9) 

CountLe
3

CMVh
3 ≤ 0.0839 

CMVh
3

> 0.0839 

α/β
 (32/8) 

α+β
 (36/20) 

CountLe
3

> 0.4444 
CountLe

3

≤ 0.4444

α/β
 (250/41) 

NMaxSegh

CountLh
4

> 0.3571 
CountLh

4 ≤ 0.3571 

α+β
 (34/12) 

α/β
 (36/16) 

NMaxSegh

≤ 0.0729 
NMaxSegh

> 0.0729 

Fig. 2 The predicted secondary

structure-based assignment of

structural classes (PSSAsc)

model generated from

secondary structure predicted

with PSI-PRED using the

25PDB dataset

Table 2 Comparison of features used in the SSAsc and PSSAsc models

Feature set category SSAsc model (based on DSSP) PSSAsc model

(based on PSI-PRED)

Composition moment vector CMVh
0 (helix content), CMVh

4 CMVh
0 (helix content), CMVe

0

(strand content), CMVh
3

Count of secondary structure segments CountLh
8

CountLe
4, CountLe

6

CountLc
3, CountLc

20

CountLh
4, CountLh

6, CountLh
8

CountLe
3, CountLe

7

Average and maximal size of secondary

structure segments

NMaxSegh, NMaxSege

NAvgSegh

NMaxSegh, NMaxSege

Total number of features 10 10

SSAsc, Secondary structure-based assignment of structural classes; PSSAsc, predicted secondary structure-based assignment of structural classes;

DSSP, Dictionary of Secondary Structure of Proteins
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used in method by Chou (1989), Chou (1995), and Liu

and Chou (1998).

– The highest accuracies are achieved for the all-a class,

while the lowest is obtained for the all-b class. This

result could be explained as being due to a larger

overlap of content values between the all-b class and

the mixed class in comparison with the overlap

between the all-a class and the mixed class; see

Fig. 4. At the same time, the overlap between the all-a
and all-b classes is very small, thus making it easier to

distinguish between the all-a class and the other two

classes based on the helix and strand content values.

– Figure 4 shows a substantial overlap between the a/b
and a + b classes, which means that traditional assign-

ment methods that are based solely on the helix and

strand content would have difficulty in distinguishing

between these two classes. We note that, in the case of

SCOP, the a/b and a + b classes contain both a-helices

and b-strands, which are mainly interspersed and

segregated, respectively (Murzin et al. 1995) rather

than being defined based on the directionality of the

b-sheets. This could be one more reason why the

methods that are based solely on the helix and strand

content would have problems with assignments of the

a/b and a + b classes. To further investigate this aspect,

we generated Table 4 using 25PDB dataset, which

shows a side-by-side comparison of the decision tree

models generated using just the helix and strand content

against the proposed models based on ten features

computed from the secondary structure. Although the

results are similar for the all-a and all-b classes, we

observe that, on average, the proposed methods provide

assignments with about 3.5% better overall accuracy.

The difference is mostly due to obtaining substantially

better results for the a + b class.

– The low accuracy obtained using the assignment

method proposed in Chou (1989) can be explained by

the large space reserved for irregular proteins. This

assignment model assumes the highest threshold values

for all three structural classes.

– The best accuracy was achieved by the proposed SSAsc

and PSSAsc methods in the case of using the DSSP-

assigned and PSI-PRED-predicted secondary structure

as the input, respectively. The improvement over the

second-best assignment method by Nakashima et al.

(1986) and Eisenhaber et al. (1996) is 3.2% in the case

of SSAsc and 1.6% for PSSAsc. This improvement

translates into 53 and 28 more correct predictions for

SSAsc and PSSAsc, respectively. Most importantly, we

emphasize that the proposed assignment method is

capable of distinguishing the a/b and a + b classes

using the 1D secondary structure, which is a significant

advantage over the existing secondary structure based

assignment methods.

The SSCsc method was applied to classify several proteins

for which the existing assignment methods provide incor-

rect classifications. We included one all-a, one all-b, and

Table 3 Comparison of the accuracy of the structural class assignment for the three classes between the proposed SSAsc and PSSAsc methods

and seven existing assignment methods

Assignment method Source of secondary

structure

Accuracy (%)

All-a All-b Mixed Overall

Nakashima et al. (1986); Eisenhaber et al. (1996) DSSP 91.2 77.9 86.8 85.6

Klein and DeLisi (1986) DSSP 75.2 56.4 75.6 70.4

Chou (1989) DSSP 71.6 18.3 25.7 35.9

Kneller et al. (1990) DSSP 79.2 63.0 88.7 79.4

Chou (1995) DSSP 75.2 26.0 75.6 62.3

Liu and Chou (1998) DSSP 80.4 36.3 85.4 71.1

SSAsc (this paper) DSSP 92.6 83.7 89.5

(65.9 a/b, 80.5 a + b)

88.8 (3 classes)

81.5 (4 classes)

Nakashima et al. (1986); Eisenhaber et al. (1996) PSI-PRED 88.7 74.0 90.5 85.7

Klein and DeLisi (1986) PSI-PRED 77.2 58.5 74.7 71.1

Chou (1989) PSI-PRED 76.1 26.4 28.6 40.6

Kneller et al. (1990) PSI-PRED 78.8 61.9 91.5 80.3

Chou (1995) PSI-PRED 77.4 34.3 74.7 64.7

Liu and Chou (1998) PSI-PRED 79.0 39.5 89.3 73.4

PSSAsc (this paper) PSI-PRED 94.6 76.3 89.5

(73.1 a/b, 74.4 a + b)

87.3 (3 classes)

80.0 (4 classes)
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one mixed (a + b) class protein (see Fig. 5). In case of the

1PP7 chain, which was classified in SCOP as all-a protein,

the existing methods were misled by the two small b-sheet

and categorized this protein either as mixed or irregular

class. Similarly, in case of 1R6J protein, the existing

method categorized it as mixed or irregular, while in fact in

spite of inclusion of a small helix this protein belong to all-

b class. Finally, the 1EF5 protein that belongs to a + b
class was incorrectly classified as all-b or irregular class.

The reason for these mistakes is relatively low amount of

helices in this protein. In all three cases, the SSAsc method

provided the predictions that agree with the SCOP

assignment.

Comparison with existing sequence-based structural

class prediction methods

The SSAsc and PSSAsc methods were compared against a

set of recently published sequence-based structural class

prediction methods, including methods based on a single

classification algorithm (Cai et al. 2003; Kedarisetti et al.

2006b; Kurgan and Homaeian 2006; Jahandideh et al.

2007; Kurgan and Chen 2007) and on an ensemble of

classifiers (Cai et al. 2006; Dong et al. 2006; Kedarisetti

et al. 2006b) (Table 5). Although the SSAsc has the

advantage of using the secondary structure assigned with

DSSP, which is unavailable for the sequence-based meth-

ods, in the case of PSSAsc the secondary structure comes

from PSI-PRED, effectively making it a sequence-based

prediction/assignment method.

Three important observations can be made:

– The secondary structure-based methods provide more

accurate predictions/assignments than the sequence-

based methods. For PSSAsc, which also belong to the

group of sequence-based methods, the improvement

over the sequence-based methods listed in Table 5

equals 12.3%. This improved accuracy is achieved for

the prediction of all four structural classes, with the

biggest difference being for the a + b class. These

improvements can be attributed to the high quality of

the predicted secondary structure segments that are

used by PSSAsc.

– The proposed sequence representation that includes ten

features gives a 2.3 and 2.6% better accuracy in the

case of using DSSP-assigned and PSI-PRED-predicted

secondary structure, respectively, and when compared

against using just the helix and the strand contents (see

the last four rows in Table 5). These improvements are
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due to the use of information on the count, size and

location-based content of the strand, helix, and coil

structures.

– Most importantly, very similar quality is obtained with

both DSSP-assigned and PSI-PRED-predicted second-

ary structure, i.e., usage of the predicted structure results

in only about a 1.5% lower overall accuracy. We note that

SSAsc obtains better predictions for all-b and a/b classes,

while PSSAsc is better for the a + b class. This is most

likely the result of the relatively lower quality of

predictions of strands, i.e., 66%, by PSI-PRED when

compared with the predictions of helices, i.e., 86%

(Birzele and Kramer 2006). This result shows that the

predicted secondary structure constitutes a high-quality

input for the purpose of the structural class assignment.

The predictions shown in Table 5 concern a challenging

dataset of sequences with very low sequence identity and,

therefore, the reported accuracies are lower than the

accuracies reported in some other contributions that include

proteins with higher sequence identity (Kurgan and

Homaeian 2006). We note that a number of other

sequence-based prediction methods were not included in

this experimental comparison; they include methods

described in Chou and Zhang (1994), Chou (1995), Chou

and Zhang (1995), Chou and Maggiora (1998), Chou et al.

(1998), Zhou (1998), Cai and Zhou (2000), Wang and Yuan

(2000), Cai et al. (2001, 2002a, b), Jin et al. (2003), Feng

et al. (2005), Shen et al. (2005), Niu et al. (2006), Xiao et al.

(2006a), Cao et al. (2006), Du et al. (2006), Sun and Huang

(2006), Zhang and Ding (2007), Chen et al. (2008), and

Zhang et al. (2008). Since the proposed method is not meant

to compete with the sequence-based predictions, but rather

to establish rules that allow the assignment of the class from

the secondary structure content, we limited our comparative

study to a representative set (which cover a variety of

classification methods) of recently published methods.

Conclusion

We propose a novel, accurate method for assigning struc-

tural classes based on the 1D secondary structure. We

describe two assignment models: SSAsc, which is based on

secondary structure assigned from the tertiary structure by

DSSP, and PSSAsc, which is based on secondary structure

predicted from the sequence by PSI-PRED. The models

were designed based on a large set of over 1600 sequences

characterized by low pairwise identity. Based on an

extensive empirical evaluation and a comparison with

seven other secondary structure-based and ten sequence-

based structural class assignment/prediction methods, we

arrived at several interesting conclusions.

Firstly, the structural class can be successfully assigned/

predicted based on 1D-secondary structure, i.e., secondary

structure assigned to each residue without the knowledge

of its spatial arrangement. Such an assignment is charac-

terized by an accuracy of 76% in the case of the SSAsc and

75% in the case of PSSAsc when compared against the

structure-based assignment performed in SCOP. The pro-

posed assignment models are shown to be more accurate

than the considered secondary structure-based and

sequence-based methods in terms of structural class

assignment. We also note that our assignment models,

which are based on decision trees, are simple, i.e., small

trees that use only ten features, and explicit, i.e., encoded in

a human-readable format.

Secondly, the early definitions of structural classes,

which were developed before the SCOP was proposed, can

be also successfully used to automate the assignment of the

classes based on the 1D secondary structure. Although

these methods are characterized by a lower accuracy of the

assignment when compared with the proposed models, i.e.,

the differences vary between 3.2 and 52.9% for SSAsc and

between 1.6 and 46.7% for PSSAsc, their underlying model

is very simple and intuitive. At the same time, we note that

these methods are capable only of assigning three types of

structural classes—all-a, all-b, and mixed—while the

proposed method can also distinguish between the a/b and

a + b classes.

Lastly, we show that the use of the secondary structure

predicted from the sequence (instead of the secondary

structure derived from the tertiary structure) does not have

a detrimental effect on the quality of structural class

assignment. The corresponding difference in assignment

Table 4 Comparison of the accuracy of structural class assignment for the four classes between the proposed SSAsc and PSSAsc methods and

methods based solely on the strand and helix content

Assignment method Source of secondary

structure

Accuracy (%)

All-a All-b a/b a + b Overall

Assignment method using helix and strand content only DSSP 92.6 84.4 74.1 59.2 77.8

SSAsc using ten features DSSP 92.6 83.7 65.9 80.5 81.5

Assignment method using helix and strand content only PSI-PRED 88.7 78.3 75.4 63.0 76.4

PSSAsc using ten features PSI-PRED 94.6 76.3 73.1 74.4 80.0
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assignment method assigned class
(Nakashima et al., 1986) and 
(Eisenhaber et al., 1996) 

mixed

(Klein and DeLisi, 1986) mixed 

 ralugerri )9891 ,uohC(

(Kneller et al., 1990) mixed 

 dexim )5991 ,uohC(

(Liu and Chou, 1998) mixed

SSAsc all-α

1PP7 chain U 

actual structural class in SCOP all-α
(Nakashima et al., 1986) and 
(Eisenhaber et al., 1996) 

mixed

(Klein and DeLisi, 1986) mixed  

 ralugerri )9891 ,uohC(

(Kneller et al., 1990) mixed 

  dexim )5991 ,uohC(

(Liu and Chou, 1998) mixed

SSAsc all-β

1R6J chain A 

actual structural class in SCOP all-β
(Nakashima et al., 1986) and 
(Eisenhaber et al., 1996) 

all-β

(Klein and DeLisi, 1986) irregular 

 ralugerri )9891 ,uohC(

(Kneller et al., 1990) all-β
 ralugerri )5991 ,uohC(

(Liu and Chou, 1998) irregular

SSAsc α+β (mixed) 

1EF5 chain A 

actual structural class in SCOP α+β

Fig. 5 Ribbon structures of the

1PP7, 1R6J, and 1EF5 domains

together with their structural

class assignments computed by

existing methods and the

proposed SSAsc method. The

structures were prepared with

MBT package (Moreland et al.

2005)

Table 5 Comparison of the accuracy of structural class prediction for the four classes between the proposed SSAsc and PSSAsc methods and

recently proposed sequence based methods

Algorithm Reference Accuracy (%)

All-a All-b a/b a + b Overall

SVM (Gaussian kernel) Cai et al. (2003) 67.9 59.1 58.1 27.7 53.0

LogicBoost with decision tree Cai et al. (2006) 51.9 53.7 46.5 32.4 46.1

LogitBoost with decision stump Dong et al. (2006) 63.2 53.5 50.9 32.4 50.0

Multinomial logistic regression Jahandideh et al. (2007) 56.9 44.2 42.2 17.7 40.2

Multinomial logistic regression Kedarisetti et al. (2006b) 69.9 65.3 66.5 38.4 60.0

SVM (RBF kernel) 70.2 61.6 67.6 39.6 59.8

StackingC ensemble 73.4 67.3 69.1 29.8 59.9

Multinomial logistic regression Kurgan and Homaeian (2006) 69.1 60.5 59.5 38.1 56.7

SVM (1st order polyn. kernel) Kurgan and Chen (2007) 77.7 66.8 60.7 45.4 62.8

Linear logistic regression 74.7 66.4 62.7 45.8 62.4

Decision tree based only on helix and

strand content (DSSP-based

assignment)

This paper 90.3 81.9 67.6 55.3 74.1

Decision tree based only on helix and

strand content (PSI-PRED-based

assignment)

This paper 88.3 76.3 72.0 53.3 72.5

SSAsc (DSSP-based assignment) This paper 90.7 80.1 68.8 64.1 76.4

PSSAsc (PSI-PRED-based assignment) This paper 89.6 74.7 65.3 68.5 75.1
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accuracy equals 1.5%. Therefore, such a sequence-based

assignment model constitutes a feasible alternative to

automate the assignment of structural classes without any

knowledge of the protein structure.
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