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Abstract. Intrinsically disorder proteins are abundant in nature and can be ac-
curately identified from sequences using computational predictors. While pre-
dictions of disorder are relatively easy to obtain there are no tools to assess their
quality for a particular amino acid or protein. Quality assessment (QA) scores
that quantify correctness of the predictions are not available. We define QA for
the prediction of intrinsic disorder and use a large dataset of over 25 thousand
proteins and ten modern predictors of disorder to empirically assess the first ap-
proach to quantify QA scores. We formulate the QA scores based on the readily
available propensities of the intrinsic disorder generated by the ten methods.
Our evaluation reveals that these QA scores offer good predictive performance
for native structured residues (AUC>0.74) and poor predictive performance for
native disordered residues (AUC<0.67). Specifically, we show that most of the
native disordered residues that are incorrectly predicted as structured have high
QA values that inaccurately suggest that these predictions are correct. Conse-
quently, more research is needed to develop high-quality QA scores. We also
outline three possible future research directions.

1 Introduction

Intrinsically disordered proteins lack stable tertiary structure under physiological con-
ditions along their entire amino acid chain or in specific region(s) [1, 2]. They are
abundant in nature, with recent estimates showing that about 19% of amino acids in
eukaryotic proteins are disordered [3], and up to 50% of eukaryotic proteins have at
least one long (= 30 consecutive amino acids) intrinsically disordered region [4, 5].
Intrinsically disordered proteins are crucial for a diverse range of cellular functions
including transcription, translation, signaling, protein-protein, protein-nucleic acids
and virus-host interactions, to name just a few [2, 3, 6, 7]. A large number of compu-
tational methods that predict intrinsic disorder in protein sequences was developed. A
study from 2012 estimates this number to be at about 60 [8]. The predictions that
these methods generate are utilized to support and plan experimental studies and to
quantify prevalence and analyze functions of disorder on a large, genomic scale [3, 9-
13]. They are also used in other research areas including structural genomics [14]. In
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recent years two large databases that offer access to putative annotations of intrinsic
disorder for millions of proteins were developed: MobiDB [15, 16] and D*P? [17].

In spite of the popularity and wide-spread use of these predictors and the fact that
their predictive performance was evaluated in a number of studies [18-23], there are
no studies that investigate quality assessment of these predictions. While the users
nowadays can easily collect predictions of disorder, there are no methods that quanti-
fy quality of these predictions for a particular amino acid or protein. In other words,
quality assessment methods that assign a numeric score to each prediction that quanti-
fies whether it is correct are lacking. This is in stark contrast to the prediction of the
tertiary protein structure where many tools for the quality assessment were developed
in recent years [24-28]. To this end, we define the quality assessment in the context of
the prediction of intrinsic disorder. Using a large dataset of proteins, we also empiri-
cally assess whether the propensities of the intrinsic disorder generated by the modern
predictors of disorder can be used as a proxy for the quality assessment scores.

2 Materials and Methods

2.1 Dataset

The dataset was originally developed in ref. [22] and can be downloaded from
http://mobidb.bio.unipd.it/lIsd. Proteins from the UniProt resource [29] were mapped
into the MobiDB database [30] to obtain their annotations of native intrinsic disorder.
All proteins for which the annotations were found are included and a majority vote
was used to assign disorder in cases when multiple annotations are found in MobiDB,
i.e., a given residue is assumed to be disordered if most of the annotations for this
residues indicate that it is disordered. This approach arguably allows to filter out con-
flicts due to variations in experimental conditions [22]. Similar sequences were re-
moved at 90% pairwise sequence identity using the CD-HIT program [31] resulting in
a set of 25,883 annotated proteins. Each residue in these proteins is annotated as dis-
ordered, structured or unknown, the latter in the case when MobiDB does not provide
an annotation. Our analysis is based on the residues that are annotated as either disor-
dered or structured. We exclude the residues with the unknown annotations. Moreo-
ver, the dataset is further reduced to 25,717 proteins for which we were able to secure
putative intrinsic disorder with all considered predictors of disorder. In total, our da-
taset includes 7,049,517 annotated residues with 6,700,101 and 349,416 that are struc-
tured and disordered, respectively. This corresponds to the overall disorder content
(defined as a fraction of disordered residues among all residues) of 5%.

2.2 Putative annotations of intrinsic disorder

Putative annotations of intrinsic disorder were generated with ten methods: three ver-
sion of the ESpritz method [32] that are designed to predict disorder annotated using
X-ray crystallography (Espritz-X-ray), NMR (Espritz-NMR), and DisProt database
[33] (Espritz-Disprot); two versions of [UPred [34] that are optimized to predict short
(IUPred-short) and long (IUPred-long) disordered regions; two versions of the



DisEMBL method [35] that predict disordered regions defined as hot loops
(DisEMBL-HL) and based on the remark 465 from Protein Data Bank (PDB) [36]
(DisEMBL-465), RONN [37],VSL2b [38], and GlobPlot that predicts globular re-
gions [39]. These methods represent a comprehensive selection of modern predictors
that cover various flavors of disorder and that are sufficiently runtime-efficient to
provide results at the scale of our large dataset; the runtime of these methods is under
1 minute for an average size protein sequence. The predictors of disorder typically
generate two outputs for each residue in the input protein sequence: a real-valued
propensity score and a binary prediction. The score is a putative likelihood that a giv-
en residue is in a disordered conformation. The binary value is usually derived from
the propensity based on a method-specific threshold and it categorizes the residue as
either disordered or structured. Residue with propensities > threshold are classified as
disordered and the remaining residues are classified as structured. The ranges of val-
ues of the propensities for the ten predictors together with the native and putative
disorder content, the latter estimated from the putative binary values, are summarized
in Table 1. Interestingly, the Pearson correlation coefficients (PCCs) between predict-
ed propensities generated by different predictors range between 0.07 and 0.81, with
average of 0.46. This demonstrates that these methods in fact offer substantially dif-
ferent predictions.

Table 1. The native and predicted amount of intrinsic disorder for the benchmark set of 25717
proteins. We also list the minimal and maximal values of propensity and the threshold value
used to convert these propensities into binary scores for the 10 preditors of intrinsic disorder.

Native annotations Putative propensity of disorder .
. < Disorder content

and predictors min max threshold

Native annotations NA NA NA 5.0%
DisEMBL-465 0.000 0.968 0.500 6.4%
DisEMBL-HL 0.000 0.585 0.086 28.9%
Espritz-Disprot 0.004 0.978 0.507 2.6%
Espritz-NMR 0.002 0.997 0.309 9.1%
Espritz-X-ray 0.003 0.997 0.143 16.5%
GlobPlot -0.329 0.513 0.000 13.5%
TUPred-long 0.000 0.995 0.500 6.0%
TUPred-short 0.000 1.000 0.500 6.7%
RONN 0.070 1.000 0.500 16.2%
VSL2b 0.002 1.000 0.500 21.0%

2.3  Definition of quality assessment for putative intrinsic disorder

The putative annotations of intrinsic disorder are typically derived based on the binary
values where residue are categorized as either structured or disordered. The putative
propensities can be used to quantify confidence that accompanies the binary predic-
tions. The putative disordered residues predicted with high propensity scores should
be more accurately predicted compared to the residues that are associated with pro-
pensities that are just slightly higher than the threshold. The same is true for the struc-
tured residues where the putative structured residues that have low propensities
should be more accurately predicted than the structured residues with propensities just



below the threshold. However, while predictive performance of the disorder predic-
tors was evaluated extensively [18-23], the use of the propensities as a proxy to quan-
tify quality of these predictions was not yet researched.

The quality assessment (QA) boils down to computation of a score that quantifies
correctness of a given prediction. More specifically, in the QA scenario each predic-
tion, whether it suggests that a given residue is disordered or structured, is associated
with a propensity score that is high when the prediction is correct and low when it is
incorrect. In other words, native disordered residues predicted as disordered and na-
tive structured residues predicted as structured should have high QA scores, while
residues that are incorrectly predicted (native disordered as structured or native struc-
tured as disordered) should have low QA scores. One immediately available option to
generate these QA scores is to use the predicted propensities for disorder to generate
QA scores for the binary disorder predictions:

IF Dprop > THR THEN QAscore = {(Dprop — THR) / (max(Dyprop) — THR)}
IF Dprop < THR THEN QAscore = {(Dprop — THR) / (min(Dyprop) — THR)}
where Dyyp s the putative propensity for disorder and THR is the threshold used to
convert Dypyop into the binary disorder prediction. This definition ensures that high and
low values of the putative propensity for disorder (that denote likely correct predic-
tions of disordered and structured residues, respectively) correspond to high QA
scores, while QA scores for values of the predicted propensity for disorder that are
close to the threshold are low. The relation between values of Dprop and QAgcore 18
visualized in Fig. 1.
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Fig. 1. The relation between the values of the putative propensity for intrinsic disorder (Dprop)
and the values of the quality assessment score (QAscore).

2.4  Evaluation measures

Quality of the predicted propensity for the intrinsic disorder is typically evaluated
using ROC curves and the corresponding AUC values [18-23]. More specifically, the
propensities are used to compute a curve defined by FPR = FP / (FP+TN) and TPR =
TP / (TP+FN) values where TP is the number of correctly predicted disordered resi-
dues, FP is the number of structured residues predicted as disordered, TN is the num-
ber of correctly predicted structured residues, and FN is the number of disordered
residues predicted as structured; multiple values of FPR and TPR are generated by
using different thresholds on the value of the propensity. AUC is the area under the
ROC curve and its values range between 0.5 for a random-like prediction and 1 for
the perfect prediction. We denote this measure as AUCd (AUC for the prediction of
disordered residues).

We similarly utilize the AUC values to assess the predictive quality of the QA
scores. In this case TP is the number of correctly predicted correct predictions (of
both disordered and structured residues) based on the QA scores, FP is the number



incorrect predictions that are predicted as correct using QA scores, TN is the number
of correctly predicted incorrect predictions (of both disordered and structured resi-
dues) and FN is the number of correct predictions that are predicted as incorrect uti-
lizing the QA scores. We denote this measure as AUCqa (AUC for the quality as-
sessment). We also compute the AUCqa values specifically for the native disordered
residues (AUCqa_d) and for the native structured residues (AUCqa_s). The latter two
values quantify how well the quality assessment scores work when they are used for
the native disordered and native structured residues.

3 Results

The AUCA values of the considered ten predictors of the intrinsic disorder are in
agreement with the results in [22]. The values are shown in Fig. 2 and they range
between 0.63 and 0.81 with average of 0.75. These results are also similar to the find-
ings in [21] where the AUCd values of 19 predictors are shown to be between 0.70
and 0.82. Collectively, these studies conclude that the predictors of intrinsic disorder
offer relatively strong predictive performance. However, the binary predictions of
some of these methods disagree with the native annotations of disorder. Table 1 re-
veals that the native disorder content in our large dataset is at 5% while the putative
disorder content generated by the ten predictors varies between 2.6% and 28.9%, with
an average of 12.7%. This suggests that the putative binary annotation require im-
provements, and this could be addressed by coupling them with the QA scores.

Fig. 2 summarizes the AUCqa values for the QA scores that were computed from
the putative propensities for disorder. These AUCqa values quantify how well the QA
scores predict correctness of the binary predictions of disorder. The size of the circles
represent relative values of the AUCqa and the absolute values are shown next to the
circles. The AUCqa values range between 0.74 for VSL2b and 0.90 for Espritz-X-ray,
with an average value of 0.81. Fig. 2 also shows the AUCqa_d and AUCqa_s values
(the AUC for the QA scores for the native disordered and structured residues, respec-
tively) as the y- and x-axis coordinates, respectively. The bubbles located below the
0.5 value on the y-axis correspond to seven methods that perform very poorly for the
disordered residues: IUPred-short, IUPred-long, Espritz-NMR, DisEMBL-HL,
GlobPlot, Espritz-X-ray, and Espritz-Disprot. While their overall AUCqa values are
relatively high (between 0.77 and 0.90), they provide high quality QA scores only for
the structured residues. In other words, the QA scores for these seven methods suc-
cessfully identify correctly vs. incorrectly predicted structured residues, while they
largely fail to identify correctly predicted disordered residues. Their AUCqa values
are high in spite of the low values of AUCqa_d because a significant majority of the
residues in the dataset is structured. Two methods, DisEMBL-465 and RONN,
achieve modest values of AUCqa <0.8 coupled with relatively high AUCqa_s at about
0.82 and slightly above-random values of AUCqa d at about 0.55. The only method
for which the QA scores are reasonably balanced between the structured and disor-
dered residues is VSL2b. It secures AUCqa = 0.74, AUCqa_d = 0.67 and AUCqa_s =



0.74. However, these are rather modest values of predictive performance, particularly
the AUCqa_d for the QA scores for the intrinsically disordered residues.
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Fig. 2. Relation between AUC for the quality assessment of the disordered residues (AUCqa_d
on the y-axis) and structured residues (AUCqa_s on the x-axis). Each predictor is represented
by a circle; sizes of the circles represent relative values of AUC of the quality assessment of all
residues (AUCqa). The names of the predictors together with the numeric values of AUCqa and
AUCd (AUC for the prediction of disordered residues) are shown next to the circles.
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Fig. 3 that gives the ROC curves for the QA scores offers further insights. The
brown and red lines that denote the ROC curves for the quality assessment of all and
native structured residues, respectively, reveal a favorable trade-off between the TPR
and FPR values, i.e., TPR values are substantially higher than the corresponding FPR
values. The three exceptions include DisSEMBL-465, RONN and VSL2b methods
(Figs 3A, 31 and 3J) for which the two curves are relatively flat for the low FPR val-
ues, resulting in low AUCqa and AUCqa_s values. More importantly, the blue ROC
curves for the quality assessment of native disordered residues, which for most pre-
dictors are located below the diagonal line, demonstrate that the corresponding FPR
values are higher than the TPR values. Consequently, the QA scores produce more
incorrect predictions than the number of correct predictions. More specifically, the
ratios of incorrect predictions of disordered residues that are predicted as correct us-
ing the QA scores among all incorrect predictions (FPR values) are higher than the
ratios of correct predictions of disordered residues that are predicted as correct using
the QA scores among all correct predictions (TPR values). In other words, the high
FPR means that many native disordered residues that are incorrectly predicted as



structured are associated with high QA values. Such high QA values inaccurately
suggest that the associated with them predictions are correct. In turn, the high QA
values result from the fact that the corresponding putative propensities for disorder
are low for these disordered residues. We observe that virtually all of the considered
methods, except for VSL2b, generate low putative propensities for a majority of the
disordered residues. This is a significant drawback of the putative propensities for
disorder generated by the considered representative set of disorder predictors. It effec-
tively renders the corresponding QA scores useless when applied to the native disor-
dered residues. Finally, although the three ROC curves for the QA scores for VLS2b
are all above the diagonal line (Fig. 3J), the curves are flat suggesting that the predic-
tive performance of these scores is rather low.

4 Conclusions

Our analysis that examines ten modern predictors of intrinsic disorder on a large set
of close to 26 thousand proteins reveals that although the overall predictive perfor-
mance of these methods is relatively high, the putative annotations that they generate
would benefit from the inclusion of QA scores. These scores could be used to indicate
which predictions could be trusted more than others and to identify correct vs. incor-
rect predictions. We are the first to attempt to define the QA scores based on the read-
ily available putative propensities for disorder generated by the ten predictors. We
empirically evaluate whether these propensities can be used to derive accurate QA
values for the assessment of the corresponding binary predictions of disorder. Our
analysis demonstrates that the QA scores that we define provide accurate results for
the native structured residues for majority of the considered methods. However, the
QA scores for the native disordered residues are inaccurate. For 9 out of 10 methods
most of the native disordered residues that are incorrectly predicted as structured have
high QA values (and low putative propensities for disorder) which falsely indicate
that the corresponding predictions are correct. The only method for which QA scores
perform reasonably well for both structured and disordered residues is VSL2b. How-
ever, the predictive quality of its QA scores is relatively modest, with the AUC values
equal 0.74 and 0.67 for the structured and disordered residues, respectively.

Our results suggest that the QA scores generated based on the propensity for intrin-
sic disorder generated by modern, high-throughput predictors do not offer desirable
levels of predictive performance. Further research to develop high-quality QA scores
for the putative intrinsic disorder is needed. This is particularly urgent in the context
of the recent emergence of large databases, such as MobiDB and D?P?, which offer
easy access to predicted disorder for dozens of millions of proteins. Three possible
directions could be pursued. The first option is to build one methodology that will
provide QA scores for any disorder predictor using predictions from a single method.
This would be very challenging given the relatively high degree of differences be-
tween the predictions from different methods for the same protein sequence. The sec-
ond alternative is to develop one methodology that will provide QA scores for any
disorder predictor using predictions from multiple methods. In other words, predic-



tions from several disorder predictors would be used to derive a generic QA score
which could be used to assess predictions of any of the input methods. While this
should be easier than the first alternative, it will also require availability of multiple
disorder predictions. This is feasible when employing the MobiDB and D?P? data-
bases that provides access to multiple predictions for each protein. The third option is
to build QA methodologies that are coupled with specific disorder predictors. This
option would be perhaps the easiest to develop but it would also require designing
multiple QA schemes, as many as the number of the corresponding disorder predic-
tors.
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