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Objective: One of interesting computational topics in bioinformatics is prediction of
secondary structure of proteins. Over 30 years of research has been devoted to the
topic but we are still far away from having reliable prediction methods. A critical
piece of information for accurate prediction of secondary structure is the helix and
strand content of a given protein sequence. Ability to accurately predict content of
those two secondary structures has a good potential to improve accuracy of prediction
of the secondary structure. Most of the existing methods use composition vector to
predict the content. Their underlying assumption is that the vector can be used to
provide functional mapping between primary sequence and helix/strand content.
While this is true for small sets of proteins we show that for larger protein sets such
mapping are inconsistent, i.e. the same composition vectors correspond to different
contents. To this end, we propose a method for prediction of helix/strand content
from primary protein sequences that is fundamentally different from currently
available methods.
Methods and material: Our method is accurate and uses a novel approach to obtain
information from primary sequence based on a composition moment vector, which is a
measure that includes information about both composition of a given primary
sequence and the position of amino acids in the sequence. In contrast to the
composition vector, we show that it provides functional mapping between primary
sequence and the helix/strand content.
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Results: A set of benchmarks involving a large protein dataset consisting of over
11,000 protein sequences from Protein Data Bank was performed to validate the
method. Prediction done by a neural network had average accuracy of 91.5% for the
helix and 94.5% for the strand contents. We also show that using the new measure
results in about 40% reduction of error rates when compared with the composition
vector results.
Conclusions: The developed method has much better accuracy when compared with
other existing methods, as shown on a large body of proteins, in contrast to other
reported results that often target small sets of specific protein types, such as globular
proteins.
# 2005 Elsevier B.V. All rights reserved.
1. Introduction

Understanding protein functions is fundamental to
understanding biological processes, and relies heav-
ily on knowledge of the protein structure. Amino
acid (AA) composition of thousands of proteins is
widely available, e.g. in the Protein Data Bank (PDB)
[1]. However, composition alone is not sufficient to
determine protein function. Research in protein
function is based on 3D shape information that, in
turn, depends on its AA sequence. Thus, prediction
of a protein structure from the AA sequence is an
important computational and experimental goal.
Experimental methods, such as X-ray crystallogra-
phy and nuclear magnetic resonance spectroscopy,
are used to determine protein structure. These
methods, however, are time consuming, labor
expensive and cannot be applied to some proteins
[2]. Computational methods usually perform predic-
tion of the 3D structure with an intermediate step of
predicting secondary structure. The researchmainly
focused on development of advanced prediction
methodologies, but still we are far away from pro-
viding a complete and accurate solution.

The 3D structure of proteins exhibits presence of
several elements of the secondary structure. The
dictionary of secondary structures of proteins [3]
annotates each AA as belonging to one of eight
secondary structure types: H (alpha-helix), G (3-
helix or 310 helix), I (5-helix orp-helix), B (residue in
isolated beta-bridge), E (extended strand), T
(hydrogen bond turn), S (bend) and ‘‘_’’ (any other
structure). Typically, the above secondary structure
types are reduced to three groups: helix (H, which
includes types ‘‘H’’ and ‘‘G’’), strand (E, which
includes types ‘‘E’’ and ‘‘B’’) and coil (C, which
includes all remaining types) [2]. Therefore, the
secondary structures prediction aims to predict
one of the three groups for each of the AA in the
primary sequence. Using the coded representation
for helix, strand and coil, the secondary structure
of protein can be expressed as a sequence, called
the secondary structure sequence, of the form:
. . .CCCEEECCHHHHCCCCCCEEEEEECCCCC. . .
The secondary structure sequence has the same
length as primary sequence.

The main thrust of computational methods for
prediction of the secondary structure is to improve
accuracy of the prediction [4]. Prediction of the
secondary structure from AA sequence was initiated
in late 1970s. The first approaches were based on
information contained only in the primary AA
sequence [5,6] and predicted three secondary struc-
ture types, with an accuracy of less than 60%. The
next generation of methods considered information
about 3—51 neighboring AAs through moving-win-
dow computations, and used pattern recognition
and statistical methods [7], e.g. included methods
based on Bayesian inference and decision rules
[3,8,9]. Additional information, except the primary
AA sequence, such as chemical properties of AAs
based on polar—non-polar patterns and interactions
[10,11], AA patterns in different types of helices
[12], electric properties of AAs and their prefer-
ences in different structures [3] and structural fea-
tures in side chain interactions [13,14] were also
used, but the achieved accuracy was still less than
66%. In the 1990s, methods for prediction of sec-
ondary structure started to use information from
alignments of sequences in protein sequence data-
bases that match the query sequence. These meth-
ods achieved maximum accuracy of 78% [4].
However, since the alignment information cannot
be found for a large number of proteins, the tech-
niques using primary AAs sequence are still needed.
Although a number of quality methods were devel-
oped and accuracy of the prediction continues to
rise, protein structure prediction needs more work
[4,7,15,16] and that was our motivation for the
present work.

One of promising methods to improve accuracy of
prediction of the secondary structure is to first learn
the content of helix and strand structures in
the sequence. This task is called gross-grain predic-
tion of secondary structure content of proteins,
or simply secondary structure content prediction.
It is apparent that once the secondary structure
content of a protein is known, the task of predicting
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secondary and tertiary structure becomes easier
[17]. One of the reasons is that the secondary
structure content can be predicted with much
higher accuracy than the secondary structure
itself. The secondary structure content can be
learned by applying experimental or computational
approaches. The experimental methods include
spectroscopic methods, such as circular dichroism
spectroscopy in the UV absorption range [18] and IR
Raman spectroscopy [19]. Unsatisfactory accuracy
and inconvenience of the experimental methods
makes computational approaches worth pursuing
[17]. The computational approaches have a long
history and usually used statistical methods and
information about AAs composition of proteins for
prediction.

This paper introduces a new method for predic-
tion of secondary structure content. Its character-
istics are introduction of a new measure, called
composition moment vector that is used to provide
information necessary for prediction, with high
accuracy, for both helix and strand content. We also
note that our method was designed for prediction of
content for large number of proteins, in contrast to
other methods that predict content only for a spe-
cific type of proteins.

Below, we describe work relevant to the proposed
method. Next, we introduce composition moment
vector measure and compare it with the composi-
tion vector traditionally used for prediction. Finally,
we describe neural network architecture for pre-
diction of secondary structure and show results on a
set of over 11,000 proteins.

2. Method

2.1. Background

Levitt and Chothia [11] observed that protein struc-
tures naturally group into four classes based upon
the gross secondary structural content of their ter-
tiary structures. Mitchie et al. [20] categorized
proteins into three distinct structural classes based
on the helix and strand content: mainly a-protein,
mainly b-protein and ab-protein. The task of pre-
diction of secondary structure content aims to com-
pute the amount of helix and strand structures in the
secondary structure sequence. The amounts are
described by counts of H and E structures divided
by the length of the sequence. If the strand content
is less than 5% then the protein is called as mainly a-
protein. If the helix content is less than 5% then the
protein is called as mainly b-protein. Otherwise, the
protein is called as ab-protein. Having this informa-
tion before attempting to predict secondary struc-
ture would provide significant help in terms of
improving prediction accuracy. Additionally, know-
ing the content information for some segments of
primary AA sequences before predicting the second-
ary structure of the entire protein would provide
even further improvement in the prediction accu-
racy. Prediction of content of helix and strand for
the entire protein, as well as for protein fragments
can be done using the described here method.

2.2. Relevant work

Traditional methods for the secondary structure
content prediction use composition vector com-
puted from the primary AA sequence. The vector
consists of 20 elements, each being a normalized
count of a specific AA in the primary sequence. The
methods attempt to decompose the composition
vector into three idealized component vectors,
for helix, strand and coil, whose magnitudes are
estimates of secondary structure content.

The prediction of secondary structure content
started in 1973 by Krigbaum and Knutton who used
multiple linear regression method to predict the
content based on the composition vector [21].
Another approach, which used the composition vec-
tor, the molecular weight, and the presence or
absence of the heme group in a protein as an input
to a tandem neural network, was reported in Ref.
[22]. In another work, the composition vectors and
analytic vector decomposition technique were used
in Ref. [23]. At the same time, an approach that
used multiple linear regression method, the compo-
sition vector and structural class information was
proposed [24,25]. A similar approach, using the
composition vectors, auto correlation functions
and multiple linear regression method was intro-
duced in Ref. [26] and further improved by taking
into account structural class information in Ref.
[17].

Themain difference between our method and the
above methods lies in the measure used to perform
prediction. The methods use the composition vec-
tor, supplemented by auxiliary information, such as
structural class and molecular weight, to perform
prediction. Although they achieved relatively high
accuracy exceeding 90%, but it was done on small
sets of less than 200 proteins, concerning specific
class of proteins like globular proteins; they also
assumed knowledge of structural classes [17,24—
26]. Let us note that it is possible that the knowl-
edge of structural classes and restriction on the
number and type of used proteins resulted in good
prediction results. As the class of considered pro-
teins gets larger and the structural class is unknown
the prediction accuracy usually degrades.
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Figure 1 General framework for prediction of secondary structure in proteins.
In contrast, our method uses a novel measure,
which we call composition moment vector. The
composition moment vector is computed directly
from the primary AA sequence. In the subsequent
sections, we show theoretically and experimentally
that the new measure performs better than the
composition vector. The composition moment vec-
tor measure can also be used to characterize smaller
protein segments. Such information can provide
valuable help when performing prediction of sec-
ondary structure. Our method was tested on 11,000
proteins, not restricted to any particular protein
family, and showed better results when compared
with the use of the composition vector. It does so
without using additional information about struc-
tural class, which is often difficult to obtain, espe-
cially for new proteins.

2.3. Architecture of the new method

A general framework for prediction of secondary
structure of proteins is shown in Fig. 1. The dotted
line shows an approach that does not utilize infor-
mation about the secondary structure content. The
dashed lines show an approach that utilizes infor-
mation about the secondary structure content. Our
method is illustrated by solid lines.

The introduced here method for prediction of
secondary structure content consists of a two steps.
A detailed architecture of the method is shown in
Fig. 2. First, a composition moment vector, intro-
duced in Section 2.4.2, is computed from a primary
Figure 2 Detailed architecture of the method f
AA sequence. The vector provides complete numer-
ical representation of the sequence. Next, the vec-
tor is input to a neural network that computes
predicted amount of helix and strand contents. Each
predicted value is computed by its own dedicated
network. The predicted values constitute the sec-
ondary structure content values.

2.4. Composition moment vector and
composition vector

Before we introduce the composition moment vec-
tor we provide motivation behind the new measure.
The composition vector is a measure that is often
used when performing the secondary structure con-
tent prediction [17,23—34]. Most often it is used to
perform mapping between the primary AA sequence
and the secondary structure content. In general,
mapping between primary AA sequence and the
secondary structure content is a function. This
implies consistency, i.e. there are no two identical
sequences with different secondary structure con-
tent. Therefore, the mapping between the compo-
sition vector, which is used to substitute the primary
AA sequence, and the content, should also be a
function. While this is true for work cited above,
where only a small class of proteins, such a globular
proteins, is considered, this mapping is inconsistent
when considering larger protein body. The inconsis-
tencymeans that several different AA sequences are
represented by the same composition vector, but
they have different secondary structure content. In
or prediction of secondary structure content.
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Section 2.4.1, we discuss and show experimental
results that support this statement. The inconsis-
tency shows that, both in the sense of mathematics
and biology, the composition vector cannot be used
to perform reliable prediction of the secondary
structure content for a large body of proteins. With
the currently known secondary structure for only
about 25,000 proteins, which is only a small fraction
of the total number of proteins (NCBI protein data-
base at ftp://ftp.ncbi.nlm.nih.gov/blast/db/
FASTA/ contains approximately twomillion different
proteins), a better measure is required.

2.4.1. Functional relation of the composition
vector
Let j1, j2, . . ., jN and h1, h2, . . ., hN be the primary
sequence and the secondary sequence, respec-
tively. Vector consisting of counts of 20 AA in ji,
normalized by dividing by the length of the
sequence is called the composition vector. The vec-
tor is used to derive a function between the primary
AA sequence and the composition. The ratio of the
total number of helices (denoted by H or a) in
secondary structure sequence to the length of the
protein is defined as fa ¼ na

N , and the corresponding
ratio for strands (E or b) is defined as fb ¼ nb

N . These
ratios can be calculated directly from the primary
AA sequence and define the helix and strand con-
tent. Mappings between secondary structure
sequence and the helix content, and between sec-
ondary structure sequence and the strand content,
are also functions. Based on the fact that all higher
level protein structures are uniquely determined by
their primary AA sequence, we conclude that map-
ping between the primary AA sequence and the
secondary structure sequence should also be a func-
tion. If the primary AA sequence is represented by
the composition vector, and the secondary structure
sequence by the strand and helix content, the map-
ping between them also is regarded as a function.

Analysis of proteins stored in the PDB reveals
that, in general, this mapping is not a function.
To show it we performed an experiment using the
PDB published in October 2000. Composition vector
and the corresponding secondary structure content
for about 6600 proteins were computed. Next, an
exhaustive search was performed to find all pairs of
proteins that have the same composition vector, but
different structure content. The search returned 98
pairs of proteins, which have the same composition,
but different helix or strand content. This shows
that the mapping between the composition vector
and the structure content is not a function when a
large group of proteins is considered. This, in turn,
means that the composition vector does not pre-
serve all necessary information contained in the
primary AA sequence, which is critical for consistent
and accurate prediction of the secondary structure
content.

2.4.2. Composition moment vector
A primary AA sequence contains information about
the AA composition and their position. The composi-
tion vector, however, completely disregards the
position information. Therefore, we propose a
new measure, composition moment vector, which
includes information about both composition and
position of AA in the sequence. In contrast to the
composition vector it also provides functional rela-
tion with the structure content, i.e. there must not
be two or more primary AA sequences that would
have different structure content but the same com-
position moment vector. The moment vector con-
tains the same information as the composition
vector plus the AA position information, and intui-
tively should give better description of the primary
sequence. In addition, since it provides information
about each AA in the primary sequence, it gives a
more comprehensive description of the sequence
than other measures, such as electronic or chemical
groups [2], or general protein properties, such as
averagemolecular weight and isoelectric point [22].

Let O be a protein in the PDB database, Ai be the
ith AA, when the AA are ordered as follows: A, C, D,
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y and (x1,
x2, . . ., x20) be the composition vector of O.

For an integer k � 0, we define kth order moment

vector (xðkÞ1 ; xðkÞ2 ; . . . ; xðkÞ20 ) as

x
ðkÞ
i ¼ 1

NðN � 1Þ . . . ðN � kÞ
XKi
j¼1

nki j

for i ¼ 1; 2; . . . ; 20

(1)

where N is the length of the AA sequence, nij the jth
position of the ith AA and Ki is the total number of
the ith AA in the sequence.

Note that the zeroth order moment vector
reduces to the composition vector.

To explain the new measure we show computa-
tion for the sequence AACDFFGGCKAWV. For the
sequence N = 13. First, we compute Ki and nij as
K1 = 3 (count of A in the sequence), n11 = 1, n12 = 2
and n13 = 11 (positions of A in the sequence), K2 = 2
(count of C in the sequence), n21 = 3 and n22 = 9
(positions of C in the sequence), etc. Next, we
compute

x
ð1Þ
1 ¼ 1

NðN � 1Þ
X3
j¼1

n1 j ¼
1

13� 12
ð1þ 2þ 11Þ

¼ 14

156
¼ 0:08974;

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
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and all the remaining components of the first and
higher moment vectors.

The moment matrix of protein O is defined as:

AKþ1 ¼

x1 x2 � � � x20
xð1Þ1 xð1Þ2 � � � xð1Þ20

..

. ..
.

} ..
.

x
ðKÞ
1 x

ðKÞ
2 � � � x

ðKÞ
20

2
6664

3
7775 (2)

where K is the maximal value among all Ki in O, for
i = 1, 2, . . ., 20.

It can be shown that two proteins are the same if
and only if they have the same moment matrix,
which assures functional relation between the
matrix and the secondary structure sequence. The
proof is shown in Appendix A.

Mappings between the moment matrix and fa
(helix content), and the moment matrix and fb
(strand content) are functions. However, computa-
tional complexity of computing the moment matrix
prohibits using it for problems involving large num-
ber of long protein sequences. In order to cope with
this high complexity problem the moment matrix is
reduced to the zeroth and first moment vectors as

A2 ¼
x1 x2 � � � x20
xð1Þ1 xð1Þ2 � � � xð1Þ20

� �
. The A2 matrix, when

represented as the ðx1; x2; . . . ; x20; xð1Þ1 ; x
ð1Þ
2 ; . . . ; x

ð1Þ
20 Þ

vector defines the composition moment vector.
The mapping between the composition moment

vector and both helix and strand content in general
is not a function, i.e. it is possible to construct two
theoretical AA sequences that will have the same
composition moment vector. For example, ACDEF-
Table 1 Protein pairs that are suspected to have the same
stands for identical fragments)

Returned pair First protein sequence Se

1VANP and 1GO6D LYS ALA ALA LYS
1SGPI and 1DS2I VAL ASP CYS SER GLU TYR

PRO LYS PRO ALA CYS THR
ALA GLU . . . GLY LYS CYS

VA
LYS
1L

2RLNS and 1RBCS LYS GLU THR ALA ALA ALA
LYS PHE GLU ARG GLN HIS
NLE ASP SER NH2

LYS
LYS
AL

1NHP and 1JOA MET LYS VAL ILE VAL
LEU GLY SER SER . . . PHE
LEU SER ALA GLY MET
GLN LEU . . . LEU GLU ALA
VAL LYS GLN GLU ARG

ME
SE
GL
AL

1PLMB and 1CJFC PRO PRO PRO PRO
PRO PRO PRO PRO

PR
PR
PR

1LW8A and 1K3MA GLY IIL VAL GLU GLN CYS
CYS . . . GLU ASN
TYR CYS ASN

GL
CY
TY

1JETB and 1B7HB LYS ALA LYS LYS
GHIKLMNPQRSTVWYYWVTSRQPNMLKIHGFEDCA and
YWVTSRQPNMLKIHGFEDCAACDEFGHIKLMNPQRSTV-
WY sequences have the same composition moment
vector. On the other hand, such theoretical
sequences do not constitute protein sequences that
exist in nature. Therefore, when biological back-
ground is added to the underlying mathematical
properties, the relation between the composition
moment vector and structure content is a function.
To prove this statement, an experiment using PDB
(release #101) was performed. The database con-
tains 18,604 protein files, and the total number of
proteins with length greater than 3 is 34,218. For all
protein sequences the following experiment was
performed
1. F
co

con

DA
L A
PR

U G
G
PH

A A
T L
R S
Y M
A V

O P
O P
O P
Y A
S C
R C
N

or all sequences, i = 1, 2, . . ., 34,218, compute
the composition moment vector A2ðiÞ ¼ ðx1ðiÞ;
x2ðiÞ; . . . ; x20ðiÞ; xð1Þ1 ðiÞ; xð1Þ2 ðiÞ; . . . ; xð1Þ20 ðiÞÞ. If there
is an incorrect symbol in sequence, which is not
one of the AA symbols, then it is identified as ALA.
2. E
xhaustively compare all A2(i) vectors. For each
pair A2(i) and A2(j), where A2(i) = A2(j) and i 6¼ j,
and the corresponding two primary AA sequence
are different, print the protein IDs of Oi and Oj.

In short, the experiment finds all protein pairs
that are different but which are represented by
identical composition moment vector. The experi-
ment returned the following seven pairs of proteins:
1VANP and 1GO6D, 1SGPI and 1DS2I, 2RLNS and
1RBCS, 1NHP and 1JOA, 1PLMB and 1CJFC, 1LW8A
and 1K3MA and 1JETB and 1B7HB. Table 1 shows the
mposition moment vector (for long sequences ‘‘. . .’’

d protein sequence Comments

L DAL Illegal symbol DAL
SP CYS SER GLU TYR PRO
O ALA CYS THR
LU . . . GLY LYS CYS

Illegal symbol ILU

LU THR ALA ALA ALA
E GLU ARG GLN HIS
SP SER NH2

Illegal symbol NLE

YS VAL ILE VAL LEU GLY
ER . . . PHE LEU SER CSO
ET GLN LEU . . . LEU GLU
AL LYS GLN GLU ARG

Illegal symbol CSO

RO PRO PRO PRO PRO PRO
RO PRO PRO PRO
RO PRO

Incorrect sequence

LA VAL GLU GLN
YS . . . GLU ASN
YS ASN

Illegal symbol IIL

LE LYS Illegal symbol NLE
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resulting pairs, and highlights in bold, fragments,
which are different between the proteins in each
pair.

Closer analysis of the results reveals that substi-
tuting illegal symbols by ALA results in identical
primary sequences for the following pairs: 1VANP
and 1GO6D, 1SGPI and 1DS2I, 2RLNS and 1RBCS,
1NHP and 1JOA, 1LW8A and 1K3MA and 1JETB and
1B7HB. The 1PLMB and 1CJFC contain incorrect
sequences. The seven found protein pairs are in fact
identical or incorrect, and because of that they have
identical composition moment vectors. Therefore,
if we assume that the used set of over 34,000
proteins provides representation of all proteins in
nature, and then we can claim that two proteins are
the same if and only if their composition moment
vectors are the same. As the consequence, the
mappings between the compositions moment vector
and its helix and strand content, defined as

F : A2 ¼
x1 x2 � � � x20
x
ð1Þ
1 x

ð1Þ
2 � � � x

ð1Þ
20

� �
! fa and

G : A2 ¼
x1 x2 � � � x20
xð1Þ1 xð1Þ2 � � � xð1Þ20

� �
! fb

are functions.
The composition moment vector is used to repre-

sent primary AA sequence when predicting the
structure content. The vector is computed using
only the primary AA sequence, and thus is easy to
obtain in contrast to other approaches where, for
example, information about the structural class is
also required. Furthermore, the composition
moment vector can be extended to predicting con-
tent of the fragments, which is a useful strategy for
secondary structure prediction.
3. Prediction method

Since the mapping between the composition
moment vector and structure content is a function
we attempt to derive it computationally. Once
found, the function can be used to predict the
structural content for any given protein sequence.
Several large protein datasets, described in the next
section, were used to design a prediction method
based on a neural network for proteins described
using composition moment vector. The method is
shown to significantly improve quality of prediction
when compared with using composition vector.

3.1. Datasets

Two proteins sets were used to predict the structural
content based on the composition moment vector,
and the results compared with prediction when
using the composition vector. The first was a general
set of PDB proteins and was used to show numerical
comparison. The second was a selected subset of
PDB proteins that excluded proteins of low quality
and homologous proteins of lower quality [35,36] to
allow showing graphical comparison because of the
smaller size.

The large dataset was extracted from the PDB
(release #101). To assure good quality of data, the
following was done:
- P
eptides of length 3 or less were discarded.

- A
ll proteins for which either the primary or sec-
ondary structure had any errors, such as illegal
symbols, or inconsistencies in the secondary struc-
ture description were discarded.
- I
f more than one protein was recorded for a given
protein file only the first protein was considered.

Among the available 18,604 protein files 11,206
sequences that satisfied the above rules were found.
This dataset was further divided into these subsets:
- A
1 that consists of all sequences, for which sec-
ondary sequence contains both helices and
strands; the sets consists of 9159 sequences.
- A
2 that consists of all sequences, for which sec-
ondary sequence contains helices, but does not
contain any strands; the sets consists of 1642
sequences.
- A
3 that consists of all sequences, for which sec-
ondary sequence contains strands, but does not
contain any helices, the set consists of 405
sequences.

For each of the above sets, the corresponding
data that contain composition moment vector
values were computed. The datasets are denoted
as CMA1, CMA2 and CMA3, respectively.

The second dataset includes proteins listed in
the 25% PDB SELECT list released in October 2004
(the list of proteins can be obtained from http://
homepages.fh-giessen.de/�hg12640/pdbselect/).
It contains 2485 proteins whose secondary structure
is either published in PDB database (release #103),
or computed using DSSP procedure [37]. After
removing nucleotide sequences and proteins with
errors in the primary sequence 2439 proteins are
left. Similarly to the large dataset it was divided
into:
- B
1 that consists of 1707 protein sequences that
have both helices and strands.
- B
2 that consists of 572 protein sequences that have
only helices.

http://homepages.fh-giessen.de/~hg12640/pdbselect/
http://homepages.fh-giessen.de/~hg12640/pdbselect/
http://homepages.fh-giessen.de/~hg12640/pdbselect/
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- B
3 that consists of 160 protein sequences that have
only strands.

Analogically, CMB1, CMB2 and CMB3 were also
computed.

3.2. The neural network prediction

The prediction of secondary proteins content was
performed using neural networks (NN). The universal
approximation theorem for NNs states that every
continuous function that maps intervals of real num-
bers to some output interval of real numbers can be
approximated arbitrarily closely by a multi-layer
feed forward network with one hidden layer [38].
Therefore, such network was used to approximate
the F and G functions. Two NNs were designed for
each prediction task, respectively. The networks
topology consistedof 40 input nodes, 81hiddennodes
and1 output node. Details are given in Appendix B. As
shown in Fig. 2, one network was used to predict
secondary structure content of helices, and another
to predict secondary structure content of strands.

3.2.1. Prediction with large PDB dataset
The large PDB dataset was used for numerical com-
parison. After training one NN with the CMA1 data-
set, with back-propagation learning for 1000
epochs, and providing the helix content on the
output, the following results were obtained:
- T
he average square error was 0.004197, and the
average accuracy of the trained NN was 93.5% for
the proteins in dataset A1.
- O
n average, the number of samples for which the
square error was less than 0.0025 was 5091, for
less than 0.036 it was 6246 and for which variance
was less than 0.0410 it was 6506.

The trained network was used to predict the helix
content for the proteins from CMA2 dataset:
- T
he average square error was 0.060115, and the
average accuracy of the trained NN was 75.5% for
the proteins in dataset A2.
- O
n average, the number of samples for which
square error was less than 0.0025 was 226, for
less than 0.04 it was 874, and for less than 0.06 it
was 1094.

The trained network was also used to predict the
helix content for the CMA3 dataset:
- T
he average square error was 0.000013 and the
average accuracy of the trained NN was almost
100% for the proteins in dataset A3.
- O
n average, the number of samples for which the
square error was less than 0.00001 was 402.

Combining the results from all three datasets, the
average accuracy for prediction of the helix content
is not less than

0:935 � 9159

11206
þ 1:0� 405

11206
þ 0:755� 1642

11206

¼ 0:91637 � 91:6%

The second NNs were trained with the CMA1
dataset, providing the strand content on the output.
The following results were obtained:
- T
he average square error was 0.00355 and the
average accuracy of the trained NN was 94.0% for
the proteins in dataset A1.
- O
n average, the number of samples for which
square error was less than 0.0025 was 5909, for
less than 0.035 it was 6706 and for which the
variance was less than 0.0035 it was 6706.

The trained network was used to predict the
strand content for the proteins from CMA2 dataset:
- T
he average square error was 0.000013, and the
average accuracy of the trained NN was almost
100% for the proteins in dataset A2.
- O
n average, number of samples for which square
error was less than 0.00001 was 1625.

The trained network was used to predict the
strand content for the proteins from CMA3 dataset:
- T
he average square error was 0.02063 and the
average accuracy of the trained NN was 86.6% for
the proteins in dataset A3.
- O
n average, the number of samples for which
square error was less than 0.0025 was 116, for
less than 0. 0049 it was 163 and for less than 0.01 it
was 205.

The combined average accuracy for prediction of
the strand content is not less than

0:94� 9159

11206
þ 0:866� 405

11206
þ 1:0� 1642

11206

¼ 0:94612 � 94:6%

The results show that network trained to predict
the helix content has the same accuracy for A1

dataset compared with the network trained to pre-
dict the strand content. The network trained to
predict the helix content performs almost perfectly
on A3 dataset, and similarly the network for the
strand content for the A2 dataset. Therefore, these
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two networks provide very accurate results for
computing structural class of proteins. When the
network for helix content prediction shows value
very close to zero, this means that the correspond-
ing protein is mainly b-protein. Similarly, when the
network for strand content prediction shows value
close to zero, than corresponding protein is mainly
a-protein. If neither of the above two happens, the
protein is classified as ab-protein.

3.2.2. Comparison of prediction using the
composition vector versus the composition
moment vector
Another study that uses the composition vector to
predict the strand and helix content was performed.
Results of this experiment are compared with the
results discussed in the previous section. The ana-
lysis aims to confirm the benefits of introducing the
composition moment vector.

Similarly, as for the experiments in the previous
section, the large PDB set of 11,206 sequences was
divided into the A1, A2 and A3 sets. For each of these
sets, a datasets that contains corresponding com-
position vector values was computed. The datasets
are denoted by CA1, CA2 and CA3, respectively. The
training and testing procedures are identical to the
procedures used above.

After training one of the NNs with the CA1 data-
set, and providing the helix content on the output,
the results are:
- T
he average square error was 0.018397, and the
average accuracy of the trained NN was 86.44% for
the proteins in dataset A1.
- T
he average square error was 0.039594, and the
average accuracy of the trained NN was 80.1% for
the proteins in dataset A2.
- T
he average square error was 0.000452, and the
average accuracy of the trained NN was 97.87% for
the proteins in dataset A3.

Combining the results achieved for the three
datasets, the average accuracy for prediction of
the helix content is not less than
Table 2 Comparison between prediction accuracy results b
vector

Predicted content Dataset input data

Helix Composition vector
Composition moment vector

Strand Composition vector
Composition moment vector
0:8644� 9159

11206
þ 0:9787� 405

11206
þ 0:801� 1642

11206

¼ 0:8592 � 86%

Similarly, the second NN was trained with the CA1
dataset, and providing the strand content on the out,
to predict content of the strand. The results are:
- T
y

A1

86
93

89
94
he average square error was 0.010313, and the
average accuracy of the trained NN was 89.85.0%
for the proteins in dataset A1.
- T
he average square error was 0.000034, and the
average accuracy of the trained NN was almost
100% for the proteins in dataset A2.
- T
he average square error was 0.02318, and the
average accuracy of the trained NN was 84.88% for
the proteins in dataset A3.

Therefore, the average accuracy for prediction of
the strand content is not less than

0:8985� 9159

11206
þ 0:8488� 405

11206
þ 0:994� 1642

11206

¼ 0:9168 � 91:7%

Table 2 summarizes the comparison between
results obtained by the composition vector and by
the composition moment vector. The results show
that the composition moment vector is better for
prediction of both helix and strand content, when
compared to using the composition vector. Using the
new measure resulted in 40% reduction of error
rates in case of helix content prediction and 35%
reduction of error rates in case of strand content
prediction.

The above results are compared graphically, com-
puted based on the 25% PDB SELECTset. Similarly to
the experiments performed with the large PDB, two
NNs for prediction of helix and strand content were
trained, with back-propagation learning method for
5000 epochs, on the CMB1 dataset, and another two
NNs were trained using identical set-up for the CB1
dataset (the CB1 contains composition vector values
for proteins from B1). The results of prediction using
the composition vector and the composition moment

(%) A2 (%) A3 (%) Average prediction
accuracy (%)

.4 80.1 97.8 86.0

.5 75.5 100.0 91.6

.9 100.0 84.9 91.7

.0 100.0 86.6 94.6
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Figure 3 Comparison of results using composition moment vector vs. using composition vector on dataset B1: (a)
prediction of helix content using CMB1; (b) prediction of helix content using CB1; (c) prediction of strand content using
CMB1 and (d) prediction of strand content using CB1.
the four NNs on the B1 dataset are summarized in
Fig. 3.

The plots show the actual content on the x-axis,
while the predicted content is shown on the y-axis.
The results on the diagonal indicate perfect pre-
dictions; the further from the diagonal the lower is
the prediction quality. The results clearly show the
prediction based on the composition moment vec-
tor yields better, more compact results, which are
closer to the diagonal line. On the other hand,
results of prediction with composition vector for
both helix and strand contend are worse and align
more horizontally. The quality of the results is
described based on average error defined in
Section 3.3.2. For composition moment vector
based prediction it equals to 0.049 for helix pre-
diction and 0.039 for strand prediction, while for
composition vector it equals to 0.118 and 0.106 for
helix and strand, respectively. Significant, about
60% error reductions for both helix and strand
content, when using composition moment vector,
was achieved.
3.3. Comparison with other prediction
methods

Let us note that results achieved by other protein
content predictionmethods were obtained on small,
and unfortunately different protein data sets. Their
accuracy ranged between 85 and 97% [17]. The
methods usually uses training and testing protein
sets that concern the same protein family, e.g.
globular proteins, and do not provide results that
can be generalized to an overall set of proteins. We
also note that some of the existing methods assume
knowledge of structural class, which is not available
for majority of proteins and provides significant
advantage to the methods that use them. In what
follows, a side-by-side comparison of our method
with other leading protein content prediction
method is presented. The comparison is based on
two experiments. The first involves test on a com-
mon small dataset to compare with another leading
secondary content prediction method. The second
test involves a jackknife procedure on larger and
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general protein data sets, which is compared with
results of several other prediction methods.

3.3.1. Comparison on a common dataset with
leading multiple linear regression prediction
method
The experiment is performed using a small test set
of 143 proteins (28 a-proteins, 42 b-proteins and 73
ab-proteins) based on SCOP [39]. Our method,
where the two NNs are trained using the CMA1
dataset is compared with recently proposed multi-
ple linear regression (MLR) method by Zhang et al.
[17]. The MLR method was shown superior to pre-
vious prediction methods. It was trained on a small
set of 210 proteins (56 a-proteins, 75 b-proteins and
79 ab-proteins) described in Ref. [20]. The regres-
sion-based method achieved 94.5% accuracy for the
helix content and 94.9% accuracy for the strand
content, on the test set of 143 proteins [17].

To follow the same procedure as described in
Section 3.2, the test data was divided into three
subsets: 83 protein sequences that have both helices
and strands, seeFig. 4a, 16protein sequenceswith no
strands, see Fig. 4b, and 6 protein sequences with no
helices, see Fig. 4c. The secondary structure infor-
mation of the remaining 38 protein sequences, which
are listed in Fig. 4d, could not be found in a recent
release of the PDB database. We also note that the
author of the MLR method was not able to provide us
with the original test file. Therefore, a subset of 105
protein sequences was used to test our method.
Figure 4 Division of the test set for compa
The test was performed with the first NN used to
predict content of the helix, and the second NN to
predict content of the strand. The results for the
helix content:
- F
ris
or the 83 protein sequences having both helices
and stands, the average square error is 0.008798
and the average accuracy is 90.62%.
- F
or the16 protein sequences with no strands, the
average square error is 0.002965 and the average
accuracy is 94.56%.
- F
or the 6 protein sequences with no helices, the
average square error is 0.036108 and the average
accuracy is 81%.

Therefore, the average accuracy for prediction of
the helix content is not less than

0:9062� 83

105
þ 0:9456� 16

105
þ 0:81� 6

105
¼ 0:9067

The results for the strand content:
- F
or the 83 protein sequences having both helices
and stands the average square error is 0.006859
and the average accuracy is 91.72%.
- F
or the16 protein sequences with no strands, the
average square error is 0.021964 and the average
accuracy is 85.18%.
- F
or the 6 protein sequences with no helices, the
average square error is 0.005607 and the average
accuracy is 92.51%.
on between our and the MRL methods.
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Table 3 Summary of the results obtained by the new
method and the MLR method

Content prediction
method Predicted
content

This paper
(%)

MLR method
(%)

Helix 90.7 94.5
Therefore, the average accuracy for prediction of
the strand content is not less than

0:9172� 83

105
þ 0:8518� 16

105
þ 0:9251� 6

105

¼ 0:9076

Comparison of results is shown in Table 3.
Although comparison of results shows that the

MLR method has better results on the set of test
proteins, we want to point out the following:

Strand 90.8 94.9
- T
he MLR method uses not only the composition
vector but also structural class as its input. The
structural class information contributes to the
better accuracy, due to using different, custo-
mized regression models for each of the three
classes, but it cannot be inferred directly from
the primary sequence, and requires additional
computations that are subject to errors. The
structural class can be derived by applying com-
putational prediction methods [29,40—42], or by
assigning the class through sequence alignment
and evolution relationship [20]. In case of predic-
tion results for the MLR method, the structural
class was predefined using knowledge about given
proteins, and therefore it was 100% correct. We
also note that recent results show that computa-
tional prediction of the structural class has limit of
60% accuracy [41], which would significantly
decrease accuracy of content prediction. In con-
Table 4 Comparison of secondary structure prediction results
for analytic vector decomposition)

Reference Prediction
method

Dataset
size

Stru
requ

[22] MLR 104 No
[23] AVD-1 262 No

AVD-2 262 No
[17] MLR 210 No
[25] MLR-1 120 Yes
[24] MLR-2 120 Yes
[17] MLR 261 Yes
[17] MLR-1 210 Yes
[17] MLR-2 210 Yes
This paper NN 1707 No
This paper NN 395/514

(out of 6733)
No
trast, our method is based solely on the composi-
tion moment vector, computed directly from the
primary sequence.
- T
he test was performed on a well-prepared data-
set concerning small family of globular proteins.
The MLR method was trained using a very similar
training set consisting of globular proteins, and
therefore was better fitted to predict proteins
from the test set. Our method was trained on a
general set of 11,000 proteins, and although it
achieved lower prediction rate, it provides a gen-
eralized solution for all protein types.

3.3.2. Comparison on the large protein set
with other prediction methods
We use the CMB1 dataset extracted from 25% PDB
SELECTand describing 1707 proteins to perform the
jackknife (leave-one-out) test. The results are com-
pared with other commonly used secondary struc-
ture prediction methods based on two measures
[17]:

e ¼
PN

k¼1 jFk � DK j
N

; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðe� jFk � DK jÞ2

N � 1

s

where e is the average error, s the standard devia-
tion, FK the predicted helix or strand content, DK the
known content and N is the number of predicted
proteins. We note that the lower the value of e the
better the prediction quality.

The comparison uses additional dataset derived
from 90% of PDB SELECT list released in October
2004. Analogically to the 25% PDB SELECT dataset, it
contains 8595 proteins whose secondary structure is
either published in PDB (release #103), or computed
using DSSP procedure. After removing nucleotide
sequences and proteins with errors in the primary
sequence 8346 proteins are left and among them
(MLR stands for multiple linear regression; AVD stands

ctural class
ired

Jackknife e(s)

Helix Strand

0.129 (0.111) 0.120 (0.085)
0.145 (0.017) 0.120 (0.097)
0.142 (0.115) 0.124 (0.105)
0.135 (0.103) 0.120 (0.097)
0.051 (0.055) 0.044 (0.052)
0.051 (0.053) 0.045 (0.053)
0.087 (0.067) 0.081 (0.065)
0.067 (0.060) 0.061 (0.057)
0.058 (0.057) 0.053 (0.053)
0.126 (0.096) 0.119 (0.099)
0.115 (0.090) 0.103 (0.092)
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6733 have both helixes and strands. The 6733 pro-
teins were used in the jackknife fashion to predict
helix content of randomly selected 395 proteins,
and to predict strand content of randomly selected
514 proteins. For each jackknife test, 5000 epoch
training of the NNs for strand and helix was done.
The results include only a subset of 395 and 514
proteins, not the entire dataset, due to long training
times; we note that for this experiment only over 10
days of 10 CPUs were needed for prediction of helix
and another 10 days for prediction of strand con-
tent.

The results for our method and for the other
methods are summarized in Table 4. We note that
our results should be compared only with the meth-
ods that do not use structural class information
(rows 1—3). All remaining methods assume knowl-
edge of the structural class to derive specialized
models for each of the classes to improve accuracy.
At the same time computational prediction of the
structural class has limit of 60% accuracy [41], which
Figure 5 Results of jackknife test for strand and helix predic
set of 395/514 proteins (b and d).
would significantly decrease their accuracy. We also
note that method [22] is the only other method that
uses NNs for the prediction; unfortunately, it did not
show the jackknife test results but only the results
on the training data. The results show that our
method, which uses the composition moment vector
only, achieves the highest prediction quality for
both helix and strand content. Although the differ-
ences are not significant we note that the existing
approaches use different prediction methods, and
were tested on much smaller datasets. Therefore, it
is impossible to evaluate how much our approach
truly gains due to using the novel measure. We also
note that better results were achieved for the 90%
PDB SELECT when compared to the results for the
25% PDB SELECT. This could be attributed to higher
homology of proteins in the 90% dataset. The pre-
diction results obtained with composition moment
vector are shown in Fig. 5. The plots show the actual
content and predicted content on the x- and y-axes,
respectively.
tion for our method using set of 1707 proteins (a and c) and
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4. Conclusions and future work

The paper describes a novel approach for predic-
tion of secondary structure content of proteins
from their primary AA sequences. A new measure,
called composition moment vector, to characterize
primary sequences was proposed. The composition
moment vector considers both the count and the
position of an AA in the primary sequence. That
results in achieving functional relation between
the vector and the secondary structure content for
a general set of proteins. In contrast, currently
used composition vector considers only counts of
AAs, and does not provide a functional relation
with the secondary structure content for a general
set of proteins. This impairs its usefulness for
highly accurate prediction of the secondary struc-
ture content.

The new measure and neural networks were
used to predict the secondary structure content.
The method was tested on a large set of over
11,000 proteins extracted from the PDB and
achieved high prediction accuracy. The results
were compared with prediction that uses only
the composition vector and confirmed superiority
of our new measure. The new approach was also
compared with other state-of-the-art prediction
method on a small set of globular proteins. Since
some other methods assume knowledge of struc-
tural class information (which can be predicted
with only 60% accuracy limit), and were trained
and tested using sets of similar globular proteins,
they achieved slightly better predictive accuracy.
However, comparison on larger protein sets show
superiority of our method when compared with
other methods that do not use the structural class
information.

The new composition moment vector measure
can be used not only to predict secondary structure
content, but also to find protein structural class,
secondary structure, and perform protein function
prediction. It can also be used for analysis of
relation between primary and secondary struc-
ture, which incorporates information about posi-
tion of AA in the primary sequence. The introduced
here measure could be used to perform computa-
tional analysis of primary protein structure that
gives new insights into mechanisms of protein
folding and function.

We note that our approach is limited by two main
factors. First, prediction of content of strictly non-
homologous proteins may results in lower accuracy
of the current, NN-based, architecture because of
high dissimilarity between proteins in the training
and testing data sets. Second, computational com-
plexity of computing high order moment vectors
prohibits from using them for problems involving
large number of long protein sequences. The solu-
tion is to use low order, including zero, first and
second order moments, as shown in this paper, to
perform the prediction.

Future work will involve prediction of helix and
strand content for invariant fragments of proteins,
i.e. fragments of proteins that have the same pri-
mary and secondary structure between different
proteins. The mapping between the composition
moment vector of invariant fragments and their
secondary structure content is suitable for the
NN-based prediction. Two possible issues need to
be looked at. First, the invariant fragment must be
correctly identified, for example along the lines
proposed in Ref. [43]. They have shown that all
primary sequences in the PDB are a covering set
of all smaller proteins in 3D structures. Therefore,
smaller protein sequences might be used to search
for invariants in larger proteins. Second, the number
of invariant fragments might be large in which case,
a different NN might be used, such as a radial basis
function that is characterized by much faster train-
ing time.
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Appendix A

An induction-based proof is given to show that
two proteins are the same if and only if they have
the same moment matrix defined by Eqs. (1) and (2)
(Section 2.4.2).

A.1. Proof

Based on Eqs. (1) and (2) it is trivial to see that if
two proteins are the same, i.e. they have the same
primary sequence, their corresponding moment
matrices are the same. Therefore, we need only
to show that if two moment matrices are the same
that implies that two primary sequences are the
same.
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Let’s define twomomentmatrices, AK+1 and A
0
Kþ1,

which correspond to two primary sequences, as:

AKþ1 ¼

x1 x2 � � � x20

xð1Þ1 xð1Þ2 � � � xð1Þ20

..

. ..
.

} ..
.

xðKÞ1 xðKÞ2 � � � xðKÞ20

2
666664

3
777775 and

A0
Kþ1 ¼

y1 y2 � � � y20

y
ð1Þ
1 y

ð1Þ
2 � � � y

ð1Þ
20

..

. ..
.

} ..
.

yðK
0Þ

1 yðK
0Þ

2 � � � yðK
0Þ

20

2
666664

3
777775

We also note that nij and n0i j are the jth position of
the ith AA, Ki and K 0

i the total number of the ith AA in
the two sequences, respectively, K the maximal
value among all Ki and K

0 is the maximal value among
all K 0

i, for i = 1, 2, . . . 20.

If AKþ1 ¼ A0
Kþ1, then K = K0 and Ki ¼ K 0

i, for i = 1,
2, . . ., 20.

For K = 1, which means that each AA appears at
most once in each of the primary sequences, the
AK+1 and A0

Kþ1 matrices degenerate into

A2 ¼
x1 x2 � � � x20

x
ð1Þ
1 x

ð1Þ
2 � � � x

ð1Þ
20

" #
and

A0
2 ¼

y1 y2 � � � y20

y
ð1Þ
1 y

ð1Þ
2 � � � y

ð1Þ
20

" #

If A2 ¼ A0
2, then using the definition of the first

order moment vector (Eq. (1), Section 2.4.2) it can
be shown that ni j ¼ n0i j, for all i and j, which means
that the corresponding two primary sequences are
identical.

For K = 2, which means that each AA appears at
most twice in each of the primary sequences, the
AK+1 and A0

Kþ1 matrices degenerate into

A3 ¼
x1 x2 � � � x20

xð1Þ1 xð1Þ2 � � � xð1Þ20

x
ð2Þ
1 x

ð2Þ
2 � � � x

ð2Þ
20

2
64

3
75 and

A0
3 ¼

y1 y2 � � � y20

yð1Þ1 yð1Þ2 � � � yð1Þ20

yð2Þ1 yð2Þ2 � � � yð2Þ20

2
64

3
75

If A3 ¼ A0
3, then using the definition of the first

and second order moment vectors (Eq. (1), Section
2.4.2) it can be shown that ni1 þ ni2 ¼ n0i1 þ n0i2 and
n2i1 þ n2i2 ¼ ðn0i1Þ

2 þ ðn0i2Þ
2 for all Ki = K = 2. This

implies that ni;1ni;2 ¼ n0i;1n
0
i;2. Applying Viete’s for-
mula, ni,1, ni,2 can be represented as two positive
roots of some polynomial f(x) = x2 S ax + b. Simi-
larly, n0i;1, n

0
i;2 can be represented as the two positive

roots. This implies that ni,1 = ni,2 and n0i;1 ¼ n0i;2.
For all Ki < 2, i.e. K = 1, ni j ¼ n0i j based on the

argument for K = 1.
Therefore, the corresponding two primary

sequences are identical.
For K = 3, which means that each AA appears at

most three times in each of the primary sequences,
the AK+1 and A0

Kþ1 matrices degenerate into

A4 ¼

x1 x2 � � � x20

xð1Þ1 xð1Þ2 � � � xð1Þ20

x
ð2Þ
1 x

ð2Þ
2 � � � x

ð2Þ
20

xð3Þ1 xð3Þ2 � � � xð3Þ20

2
66664

3
77775 and

A0
4 ¼

y1 y2 � � � y20

yð1Þ1 yð1Þ2 � � � yð1Þ20

y
ð2Þ
1 y

ð2Þ
2 � � � y

ð2Þ
20

yð3Þ1 yð3Þ2 � � � yð3Þ20

2
66664

3
77775

If A4 ¼ A0
4, then using the definition of the first,

second and third order moment vectors it can be
shown that ni1 þ ni2 þ ni3 ¼ n0i1 þ n0i2 þ n0i3, n2i1 þ
n2i2 þ n2i3 ¼ ðn0i1Þ

2 þ ðn0i2Þ
2 þ ðn0i3Þ

2 and n3i1 þ n3i2 þ
n3i3 ¼ ðn0i1Þ

3 þ ðn0i2Þ
3 þ ðn0i3Þ

3 for all Ki = K = 3.
For a polynomial f(x) = x3 S ax2 + bx S c we have

ni1 þ ni2 þ ni3 ¼ n0i1 þ n0i2 þ n0i3 ¼ a. Using equality
ðni1 þ ni2 þ ni3Þ2 � ðn2i1 þ n2i2 þ n2i3Þ ¼ ðn0i1 þ n0i2 þ
n0i3Þ

2 � ½ðn0i1Þ
2 þ ðn0i2Þ

2 þ ðn0i3Þ
2� we have

ni1ni2 þ ni3ni1 þ ni2ni3 ¼ n0i1n
0
i2 þ n0i3n

0
i1 þ n0i2n

0
i3 ¼ b.

Also, using equality ðni1ni2 þ ni3ni1 þ ni2ni3Þðni1 þ
ni2 þ ni3Þ ¼ ðn0i1n0i2 þ n0i3n

0
i1 þ n0i2n

0
i3Þðn0i1 þ n0i2 þ n0i3Þ

we have ni1ni2ni3 ¼ n0i1n
0
i2n

0
i3 ¼ c.

Applying Viete’s formula, we find that both ni,1,
ni,2, ni,3 and n0i;1, n

0
i;2, n

0
i;3 are the three positive roots

of the same polynomial f(x) = x3 S ax2 + bx S c.
Therefore, ni j ¼ n0i j, for j = 1, 2 and 3.

For all Ki < 3, i.e. K = 1 and K = 2, ni j ¼ n0i j based
on the argument for K = 1 and 2.

Therefore, the corresponding two primary
sequences are identical. Identical argument can
be extended for all finite K. Therefore, by induction
we have shown that if the two moment matrices are
the same, the corresponding two primary sequences
are identical. &
Appendix B

The NNs used in experiments described in this
paper use a non-standard transfer function. The
multi-layer perceptron NN traditionally use the s-
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form transfer function fðxÞ ¼ ex

1þex. This paper uses
another transfer function, denoted as g(x), which is
derived by integration of the uniform distribution
p(x) � U(Sa, a). We note that p(x) ! d(x), where
d(x) is the Dirac function, as a! 0. We define
gðxÞ ¼

R x
�1 pðtÞ dt, and based on experiments set

a = 6.
Using g(x) results in lowering computational com-

plexity of NN training, and increases prediction
accuracy, when compared with using f(x) transfer
function.
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