
Ensemble of Classifiers to Improve Accuracy of the CLIP4 Machine
Learning Algorithm

Lukasz A. Kurgan *,a,b and Krzysztof J. Cios **,a,b,c,d
a University of Colorado at Denver, b University of Colorado at Boulder

c University of Colorado Health Sciences Center, d 4cData, LLC, Golden, CO

ABSTRACT

Machine learning, one of the data mining and knowledge discovery tools, addresses automated extraction of knowledge
from data, expressed in the form of production rules. The paper describes a method for improving accuracy of rules
generated by inductive machine learning algorithm by generating the ensemble of classifiers. It generates multiple
classifiers using the CLIP4 algorithm and combines them using a voting scheme. The generation of a set of different
classifiers is performed by injecting controlled randomness into the learning algorithm, but without modifying the
training data set. Our method is based on the characteristic properties of the CLIP4 algorithm. The case study of the
SPECT heart image analysis system is used as an example where improving accuracy is very important. Benchmarking
results on other well-known machine learning datasets, and comparison with an algorithm that uses boosting technique
to improve its accuracy are also presented. The proposed method always improves the accuracy of the results when
compared with the accuracy of a single classifier generated by the CLIP4 algorithm, as opposed to using boosting. The
obtained results are comparable with other state-of-the-art machine learning algorithms.

Keywords: ensemble of classifiers, boosting, CLIP4, machine learning, data mining and knowledge discovery

1. INTRODUCTION

In this section the proposed method and the CLIP4 algorithm are described.

1.1. The Approach
An ensemble of classifiers is a set of classifiers, whose individual classification decisions are combined in some way,
typically by a weighted or un-weighted voting, to classify new examples [13].
There are four general ways to build ensemble classifiers: by sub-sampling the training data, manipulating the input
features or output targets, and finally by injecting randomness [11]. The proposed method uses the latter approach. The
idea of injecting the randomness into the learning algorithm was used by many researchers. In the field of neural
networks Kollen and Pollack [18] were experimenting with backpropagation algorithm for networks with different,
randomly set initial weights values, and Parmanto, Munro, and Doyle [24] generated different classifiers by
manipulating the training data set in random fashion. In the field of decision trees Kwok and Carter [20] incorporated
randomness into C4.5 algorithm, and Dietterich and Kong [12] have implemented a random variant of C4.5 that
performed better than C4.5 and the bagged C4.5. The other example is FOIL algorithm that was modified by Ali and
Pazzani [1] by injecting randomness into the algorithm and generating a set of classifiers instead of a single classifier;
the overall performance of the algorithm was significantly improved.
After we generate the ensemble of classifiers we combine their classification decisions into a final classification for the
tested example. The described method uses weighted voting scheme that is similar to a scheme used in the
ADABOOST algorithm [26]. The weights values are obtained by calculating the accuracy of each individual classifier
on the entire training data set.
The developed method uses ensemble of classifiers to improve the accuracy of rules generated using the CLIP4
algorithm on the unseen testing data when compared to a single classifier. The resulting algorithm is competitive with
other approaches for improvement of accuracy of other machine learning algorithms.

* lkurgan@carbon.cudenver.edu; phone 1 303 5562352; fax 1 303 5568369; http://isl.cudenver.edu/lkurgan; University of Colorado
at Denver, Department of Computer Science and Engineering, P.O. Box 173364, Denver, CO 80217
** Krys.Cios@cudenver.edu; phone 1 303 5564314; fax 1 303 5568369; http://isl.cudenver.edu/cios; University of Colorado at
Denver, Department of Computer Science and Engineering, P.O. Box 173364, Denver, CO 80217

1.2. The CLIP4 Algorithm
The proposed method is tightly connected with characteristic features of the CLIP4 algorithm. CLIP4 [8] is a supervised
hybrid machine learning algorithm that combines ideas of rule and decision tree algorithms. CLIP stands for Cover
Learning (using) Integer Programming. The original algorithm, CLILP2 was developed in 1995 [4, 5] and later
improved as CLIP3 algorithm [6]. Most recently several new significant features were added to the algorithm that
resulted in the CLIP4 algorithm [8].
The CLIP4 algorithm generates classification rules of a class (concept) from positive examples. It uses negative
examples to derive the partitioning of the set of positive examples.
Examples are described [22, 23] by a set of K attribute-value pairs:]#[1 jj

K
j vae =∧= where aj denotes j-th attribute with

value vj ∈ dj, and # is a relation (=, <, ≈, ≤, etc.). The CLIP4 algorithm generates production rules in the form of: IF
(s1∧…∧sm) THEN class = classi, where si = [aj ≠ vj] is a single selector.

Many of the key operations performed within the CLIP4 algorithm are modeled and solved by a simplified version of
the integer programming model, known as the set-covering (SC) problem. The CLIP4 algorithm consists of three
phases:
1. In phase I positive data is partitioned, using the SC problem, into subsets of similar data. The subsets are stored in a

decision-tree like manner, where node of the tree represents one data subset. Each level of the tree is generated using
one negative example for building the SC model. The solution of the SC problem is used to find selectors that
distinguish between all positive and this particular negative example. These selectors are used to generate new
branches of the tree. During the tree growing pruning is performed to eliminate noise from the data, and to avoid
excessive growth of the tree.

2. In phase II a set of best subsets, which are stored as tree leaves, is selected. Selection is performed based on two
criteria: large subsets are preferred over small ones since the rules generated using them will be “stronger” and more
general, and all accepted subsets (between them) must cover the entire positive training data. All selected subsets are
used to generate the rules. To generate a rule, back-projection of selected positive data subsets is performed using the
entire negative data set and then the resulting data structure (matrix) is solved using the SC problem. The solution of
the SC problem is used to generate a rule, and the process repeats itself for every selected positive data subset.

3. In phase III a set of strongest rules is selected from all generated rules. Rules that cover the most examples from the
positive set are chosen. If there is a tie between two or more “best rules” the shortest rule is chosen, i.e. the rule that
involves minimal number of selectors.

Detailed description of the algorithm can be found in [8, 9]. The CLIP4 algorithm is robust to noisy and missing-value
data, and generates strong classifiers. Common to all phases of the CLIP4 algorithm is the use of the SC problem to
perform crucial operations on the data, like selecting the most discriminating features to grow new branches of the tree,
selecting the data subset that will generate the least overlapping and the most general rules, and finally generating the
rules from the selected subsets. The proposed method is based on introduction of the controlled randomness into the
heuristic method that was developed to solve the SC problem in the CLIP4 algorithm [8].

1.2.1. The Set Covering Problem
Integer programming models are used for minimization or maximization of a function, subject to a large number of
constraints [25]. There are several solutions to an integer programming model depending on the method used. There are
polynomial algorithms [10, 17] and non-polynomial algorithms [25] that find solutions to an integer programming
model.
In the CLIP4 algorithm a simplified version of the general integer programming model is used. Several simplifications
are applied: the function that is subject of optimization has all coefficient values equal to one, constraint function
coefficients have binary values and all constraint functions are greater or equal to one. This integer linear programming
problem is known in the literature as the set-covering problem [15, 2]. For this problem only approximate solution can
be found, which in some cases may be optimal.
An example SC problem used by the CLIP4 algorithm is shown in Figure 1. The model can be transformed and solved
in its matrix representation, see Figure 1.

0,1,0,1,2
:

1
1

1
:

:

4321

3

41

321

4321

=====

≥
≥+
≥++

=+++

xxxxwhenZ
Solution

x
xx

xxx
toSubject

Zxxxx
Minimize

1
0,1,0,0
1,0,0,1
0,1,1,1

:

:

4

3

2

1

4321

≥



















⋅
















=+++

x
x
x
x

toSubject
Zxxxx

Minimize

Fig. 1. Set covering model used by the CLIP4 algorithm and its solution: on the left in standard form, on the right in matrix form.

1.2.2. The Set Covering Problem Solution in CLIP4
The solution to the SC problem can be found using only constraint coefficients matrix, which we call BINary matrix.
Columns of this matrix correspond to variables of the optimized function (attributes). Rows correspond to function
constrains (examples). The solution is obtained by selecting minimal number of matrix columns in such a way that for
every row there will be at least one matrix cell with the value of 1 for the selected matrix columns. The solution consists
of the binary vector of the selected columns. In order to solve this SC problem a heuristic method was developed, its
pseudo-code follows.

Given: BINary matrix, Initialize: Remove all empty rows from the BINary matrix; if the matrix has no ones then
return error.

1 Select active rows that have the minimum number of 1’s in rows – min-rows
2 Select the columns that have the maximum number of 1’s within the min-rows – max-columns
3 Within max-columns find the columns that have the maximum number of 1’s in all active rows – max-max-

columns, if there is more then one max-max-column go to 4., otherwise go to 5.
4 Within max-max-columns find the first column that has the lowest number of 1’s in the inactive rows
5 Add the selected column to the solution
6 Mark the inactive rows, if all the rows are inactive then terminate; otherwise go to 1.
where: the active row is the row that is not covered by the partial solution, and the inactive row is the row that is
already covered by the partial solution.

The goal is to get the best approximate solution in terms of the minimal number of columns (attributes) used, and the
least number of 1’s in the selected columns. This can be solved by minimizing the number of 1’s that overlap among
different columns and within the same row (step 4 of the method). This solution results in generating more general and
accurate rules. The above method was developed for the CLIP4 algorithm, and the comparison of the results obtained
by the CLIP3 and the CLIP4 algorithms [8] shows that the new method resulted in significant improvement of accuracy
of the generated rules. An example of the new method for solving the SC problem is shown in Figure 2. The final
solution consists of the second and fourth columns. It has exactly as many 1’s in the selected two columns as there are
rows. There are no overlapping 1’s in the same rows, thus the optimal solution is obtained.
The previous approach to solving the SC problem (used in the CLIP3 algorithm) [6, 7] was based on counting number
of 1’s in active columns. The columns that have the bigger score were chosen and added to the solution. Then the
inactive rows were marked and the process is repeated. Figure 2 shows the results that are obtained by using the method
for solving the SC problem used in the CLIP3 algorithm. There are two possible final solutions, depending on how the
choice of the columns is performed. Solution one has one 1 overlapping in the first row; solution two has two 1’s
overlapping in the first and third rows. The average number of overlapping 1’s is 1.5, and thus no optimal solution is
obtained.

2. THE DEVELOPED METHOD TO OBTAIN ENSEMBLE OF CLASSIFIERS
The developed ensemble classifier generation method is based on the semi-random method for obtaining solutions for
the SC problem. Each classifier is generated separately using the same training data set. By generating randomly sub-
optimal solutions different classifiers are obtained that perform very similarly to a classifier generated by a regular
(without any randomness) method for solving the SC problem. The generated classifiers are later combined by weighted
voting scheme using the accuracy of each classifier on the training data as a weight.

a)

b)

Fig. 2. a) Solution of the SC problem using the heuristic algorithm developed for the CLIP4 algorithm, b) Solution using the heuristic
algorithm developed for the CLIP3 algorithm.

The pseudo-code for semi-random method for solving the SC problem is shown below. We emphasize that this method
generates in general good approximate solutions, and the randomness that is introduced is well “controlled”.

Given: BINary matrix, Initialize: Remove all empty rows from the BINary matrix; if the matrix has no ones then
return error.

1 Select active rows that have the minimum number of 1’s in rows – min-rows
2 Select the columns that have the maximum number of 1’s within the min-rows – max-columns
3 Select randomly one of the max-columns
4 Add the selected column to the solution
5 Mark the inactive rows, if all the rows are inactive then terminate, otherwise go to 1.

The example illustrating the method is shown in Figure 3. There are five possible final solutions, depending on the
random choice performed in step 3 of the algorithm. The two optimal solutions were achieved (1 and 5), and two
solutions with one 1 overlapping (3 and 4) and one solution with two 1’s overlapping (3). The average number of
overlapping ones is 0.8 and the two optimal solutions were achieved. The advantage of this method is that by applying
it within the CLIP4 algorithm we generate multiple, different, and very strong classifiers.

The developed algorithm for generation of the ensemble classifier for the CLIP4 algorithm follows.

Given: Training data, where xj∈X is an example, and yi∈Y is its corresponding class label
Initialize: Set the semi-random mode of solving the SC problem, T - the number of the classifiers to be generated
For t=1,…,T
1 Generate a set of rules (classifier) using the CLIP4 algorithm
2 Assign a weight αt to the generated classifier ci : X→Y, where: αt = accuracy of ci on the entire training data set

Classify the examples using:

)(maxarg
1
∑
=

==
T

j
ijjj

i
i ycifcy α

The developed method generates a set of T classifiers and applies the weighted voting scheme to classify the examples.
The method was tested on six datasets showing significant improvement in the accuracy of the generated classifiers and
was compared with a single classifier generated by the CLIP4 algorithm.

Fig. 3. Solution of the SC problem by using the heuristic semi-random algorithm developed to generate ensemble classifier with the
CLIP4 algorithm.

3. EXPERIMENTS AND RESULTS
The goal of the experiments was to investigate the gain in terms of the accuracy when using the ensemble of classifiers
vs. a single classifier generated by the CLIP4 algorithm. The comparison of accuracy results with other learning
algorithms was also performed.
Another goal was to investigate how the number of generated classifiers in the ensemble affects its accuracy and the
number of generated rules. Because of a trade-off between the maximal accuracy that can be obtained and the size of
the ensemble of classifiers the heuristic guideline was developed.

3.1. Case study of the System for Analysis of the SPECT Heart Images
One of the applications of the CLIP4 classifier is a system for computerized diagnosis of myocardial perfusion from
cardiac Single Proton Emission Computed Tomography (SPECT) [19]. The CLIP4 classifier is used to generate the
overall diagnosis, which describes the perfusion of the entire left ventricle muscle for the SPECT study. The overall
diagnosis is computed based on 22 partial diagnoses that are generated during the automated diagnostic process. The
achieved accuracy of the CLIP4 rules was 86.1%. Since the problem concerns medical domain the accuracy of
computer-generated diagnosis is an extremely important factor, so we investigate alternative methods to improve the
existing results.
The SPECT dataset (SPECT) consists of 22 binary attributes that describe the partial diagnoses. There are 267 patients
in the dataset. It was divided into the training data of 80 patients and testing data of 187 patients. Detailed description is
shown in the Table 1.
In this investigation we applied the ensemble classifier method to the SPECT data and achieved accuracy of 90.4% for
the ensemble of four classifiers. The gained 4% accuracy reduces the previous error rate by 31%, which is a significant
and essential improvement for the entire medical diagnostic system.

3.2. Other experiments
Five well-known datasets were used to test the developed ensemble of the CLIP4 generated classifiers:
1. Waveform dataset (wav) [3]
2. Contraceptive Method Choice dataset (cmc) (author: Tjen-Sien Lim)
3. Statlog Satellite Image dataset (sat) (author: Ashwin Srinivasan)

4. Wisconsin Breast Cancer dataset (bcw) (author: Dr. W.H. Wolberg)
5. Boston Housing dataset (bos) (author: D. Harrison and D.L. Rubinfeld)
The experimental results for the datasets 2,3,4 and 5 were published in [21]. The authors compared 33 classification
algorithms on different datasets. In this paper, the intervals of accuracy achieved by these algorithms are shown in
Table 3, after [21].
The detailed description of the datasets is shown in the Table 1.

Table 1. Major properties and number of generated rules for the datasets considered in the experimentation.

rules for different # classifiers in the ensemble
Dataset

class

examples

train / test
examples

attr.
2 3 4 5 6 7 8 9

bcw 2 699 10 CV 11 15.9 (mean value for ten-fold CV and 4 classifiers)

bos 3 506 10 CV 13 42.7 (mean value for ten-fold CV and 4 classifiers)

cmc 3 1473 10 CV 10 31.9 (mean value for ten-fold CV and 4 classifiers)

sat 6 6435 3435 / 2000 37 125 185 245 307 371 431 492 562

SPECT 2 267 80 / 187 22 2 3 4 5 6 7 9 10

wav 3 3600 600 / 3000 22 18 27 36 45 54 63 72 81

An inductive program called C5.0 [14] was used for comparing the results achieved by the CLIP4 algorithm. C5.0
supports boosting [26]. Boosting is a technique for generating and combining multiple classifiers to give improved
predictive accuracy. Unfortunately, boosting does not always help, especially when the training cases are noisy.
Boosting cannot be directly applied to the CLIP4 algorithm because it requires to account for the weights attached to the
examples, and replication of the training examples would increase the size of the training data, and thus slow down the
learning process.
Because most of real datasets cover only a small portion of the state space, we did not consider bagging, which is a
different approach to generate ensemble of classifiers. Bagging selects randomly, with replacement, a subset of
examples from the original training data and generates classifiers using the subset. Thus, bagging was not considered
since selecting a subset from the data that already describes/fills only a small part of the state space would weaken the
generated classifiers, if compared to classifiers generated using the entire data set.

3.3. Analysis of the results
The t-statistics test [27] was used for comparison of learning schemes. The t-statistics test is used to determine if the
difference in accuracy between two classifiers on a single dataset is statistically significant. The 5% confidence level
test was performed, thus for experiments involving 10CV the confidence limit was 1.83, and for experiments with
different number of classifiers the confidence limit was 1.94. If the t value is greater then the confidence limit then there
is a statistically significant difference between tested classifiers.
The results of all experiments are shown in the Table 2. For the SPECT, sat and wav datasets experiments involving
generation of ensemble of different number of classifiers (from 2 to 9 classifiers) were performed. The results in terms
of the gained accuracy are summarized in Figure 4. The ensemble of classifiers generated by the CLIP4 algorithm gives
significant improvement in the accuracy when compared to a single classifier generated by the same algorithm. The
error rates for wav dataset decreased on average by about 17%, for sat dataset by about 19%, and for SPECT dataset by
about 19% when comparing to a single classifier. The C5.0 algorithm with boosting, compared to a single classifier,
achieved the same level of improvements for sat and wav datasets as CLIP4, but for the SPECT dataset application of
boosting caused decrease of accuracy. For the cmc, bcw, and bos datasets we use 4 classifiers ensemble and the ten-fold
cross validation to show that the generalization abilities of the generated ensembles, or boosted decision tree, remain the
same. In this case the CLIP4 error rates decreased 6% for cmc dataset, 10% for bcw dataset, and 17% for bos dataset.
The C5.0 algorithm with boosting, compared to a single classifier, achieved only slight improvement of accuracy for
cmc dataset, no improvement for bcw dataset, and decrease of accuracy for bos dataset.

In Figure 4 the gained accuracy as function of the number of classifiers in the ensemble for the CLIP4 algorithm is
shown. When the number of CLIP4 classifiers in the ensemble increases the accuracy gain (defined as the difference
between accuracy for an ensemble and a single classifier) also increases. After a big increase of accuracy gain for
ensemble of 3 or 4 classifiers the accuracy gain value stabilizes. The increase of the accuracy gain is almost not
significant for bigger number of classifiers in the ensemble. The SPECT dataset accuracy results behave slightly
differently. The big jump of the accuracy gain for 4 classifiers ensemble can be explained by random nature of the

approach. The quick saturation of gain for 6 or more classifiers in the ensemble can be explained as an upper limit of
the accuracy that can be obtained on the dataset by the CLIP4 algorithm.

Table 2. T-statistics test comparison of accuracy between the CLIP4 ensemble classifiers method and C5.0 with boosting.

Accuracy for different # of classifiers in
ensemble (CLIP4) or boosting trials (C5.0) Dataset Algorithm
2 3 4 5 6 7 8 9

mean
accuracy

[%]

max
accur.
[%]

NO boost/
ensemble

accuracy [%]

mean gained
accuracy [%]

t-stat accuracy comparison
[value of t]

CLIP4 87.2 87.7 90.4 88.8 89.3 89.3 88.8 88.2 88.7 90.4 86.1 2.6 SPECT
C5.0 74.3 75.4 73.3 73.3 72.2 73.3 73.3 73.3 73.6 75.4 74.3 - 0.7

CLIP4 performs significantly better [24.3]

sat CLIP4 81.5 82.9 82.9 83.3 83.7 83.1 83.7 84.0 83.1 84.0 79.5 3.6
 C5.0 85.9 88.6 88.3 88.2 89.4 89.5 89.3 89.7 88.6 89.7 85.9 2.7

C5.0 performs significantly better [-25.8]

wav CLIP4 76.5 78.3 78.8 78.9 79.5 79.2 79.4 79.7 78.8 78.8 74.5 4.3
 C5.0 74.5 78.1 78.4 79.4 80.8 80.8 80.9 81.0 79.2 81.0 74.5 4.7

C5.0 performs somehow better [-1.0]

Accuracy for 4 classifier in ensemble (CLIP4) or 4 trial
of boosting trials (C5.0) for 10 cross-validation trials Dataset Algorithm

1 2 3 4 5 6 7 8 9 10

mean
accur.

[%]

NO boost/
ensemble

mean ac. [%]

mean gained
accuracy [%]

t-stat accuracy comparison
[value of t]

bos CLIP4 76.5 68.6 72.6 76.5 78.4 79.6 70.6 81.6 78.4 72.3 75.5 70.5 5.0
 C5.0 80.4 70.6 66.7 68.6 74.5 85.7 62.7 89.8 66.7 80.9 74.7 75.6 - 0.9

CLIP4 performs somehow better [0.4]

bcw CLIP4 95.7 92.9 98.6 97.1 98.6 91.4 97.1 94.3 95.7 95.7 95.7 95.2 0.5
 C5.0 95.7 88.6 94.3 94.3 97.1 94.3 94.3 98.6 88.6 94.2 94.0 94.0 0.0

CLIP4 performs somehow better [1.6]

cmc CLIP4 49.3 49.3 51.4 55.4 48.0 42.6 48.7 51.4 50.7 48.2 49.5 46.9 2.6
 C5.0 51.4 53.4 46.6 52.7 50.7 45.9 54.7 53.4 40.5 51.5 50.1 49.5 0.6

C5.0 performs somehow better [-0.4]

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9
number of classifiers in the ensemble

gained acc. [%] spect wav sat

Fig. 4. Gained accuracy in the function of the number of classifier in the ensemble.

The performance of CLIP4 with ensemble and C5.0 with boosting is comparable. The CLIP4 performed better on
SPECT, bos, bcw, while the C5.0 performed better on sat, wav, cmc. The important difference is when comparing the
increase in accuracy between a single classifier and the ensemble in case of CLIP4 or C5.0 with boosting.
The CLIP4 with ensemble performed always better than a single classifier, as is shown in Table 3. It achieved an
average decrease of error rates ranging from 6% for cmc dataset to 19% for the SPECT dataset. Thus, the ensemble of
classifiers generated by the CLIP4 algorithm satisfies necessary and sufficient condition that states that an ensemble of
classifiers should be more accurate than any of its individual members [16]. The main reason why the ensemble of
classifiers generated by the CLIP4 algorithm performs better than a single classifier is statistical [13]. The statistical
problem appears when the amount of available training data is too small in comparison with the size of the state space.
Without sufficient amount of data a machine learning algorithm can generate many different classifiers that give the
same accuracy on the training data (CLIP4 generated different classifiers by injecting randomness when solving the SC
problems). Thus, by constructing an ensemble out of the individual classifiers the CLIP4 algorithm “averaged” their
votes to reduce the risk of choosing the wrong classifier.
The C5.0 using boosting performed worse then a single classifier for bos and SPECT datasets, and the highest error rate
decrease was 19% for sat dataset, as shown in Table 4. The results show that the proposed approach always helps to
increase accuracy, in contrary to boosting that can perform worse than a single classifier. Figure 5 summarizes the
difference in the results achieved when using an ensemble of classifiers for CLIP4 and boosted C5.0, against the results
achieved by a single classifier.

Table 3. Comparision of accuracy between the CLIP4 ensemble of classifiers method and a single CLIP4 classifier.

Dataset
CLIP4 with

ensemble
accuracy. [%]

CLIP4 with
ensemble max.
accuracy [%]

CLIP4 single
classifier

accuracy [%]

Gained
accuracy [%]

Other results
Algorithm (accuracy [%])

SPECT 88.7 90.4 86.1 2.6 CLIP3*** (84)
sat 83.1 84.0 79.5 3.6 Loh, Lim, and Shih* (60÷90)
wav 78.8 78.8 74.5 4.3 Loh, Lim, and Shih* (52÷85), [Optimal Bayes (86), CART (72), NN (78)]**
bos 75.5 N/A 70.5 5.0 Loh, Lim, and Shih* (69÷78)
bcw 95.7 N/A 95.2 0.5 Loh, Lim, and Shih* (91÷97), CLIP3*** (92.4)
cmc 49.5 N/A 46.9 2.6 Loh, Lim, and Shih* (40÷57)

* taken from [21], ** taken from [3], *** taken from [19], CLIP4 with no ensemble results taken from [8]

Table 4. T-statistics test comparison of accuracy between the CLIP4 ensemble classifiers method and a single CLIP4 classifier, and
between C5.0 with boosting and C5.0 with no boosting.

Dataset Algorithm mean accuracy with
ensemble / boosting [%]

NO boosting/ ensemble
mean accuracy [%]

mean gained
accuracy [%]

t-stat accuracy comparison
[value of t]

CLIP4 75.5 70.5 5.0 CLIP4 with ensemble is significantly better [4.7] bos
C5.0 74.7 75.6 - 0.9 C5.0 with boosting is somehow worse [-0.5]
CLIP4 95.7 95.2 0.5 CLIP4 with ensemble is somehow better [1.2] bcw
C5.0 94.0 94.0 0.0 C5.0 with boosting is the same good [0.0]
CLIP4 49.5 46.9 2.6 CLIP4 with ensemble is significantly better [2.7] cmc
C5.0 50.1 49.5 0.6 C5.0 with boosting is somehow better [0.5]
CLIP4 88.7 86.1 2.6 CLIP4 with ensemble is significantly better [7.3] SPECT
C5.0 73.6 74.3 - 0.7 C5.0 with boosting is significantly worse [-2.3]
CLIP4 83.1 79.5 3.6 CLIP4 with ensemble is significantly better [13.3] sat
C5.0 88.6 85.9 2.7 C5.0 with boosting is significantly better [6.2]
CLIP4 78.8 74.5 4.3 CLIP4 with ensemble is significantly better [11.8] wav
C5.0 79.2 74.5 4.7 C5.0 with boosting is significantly better [5.9]

-2
-1
0
1
2
3
4
5
6

bos bcw cmc SPECT sat wavdatasets

gained acc. [%] CLIP4 C5.0

Fig. 5. Gained accuracy comparison of single classifier and ensemble of classifiers for CLIP4 and boosted C5.0.

We also investigated the overall goodness of the ensemble of classifiers in terms of the relation between the gained
accuracy vs. the number of rules in the entire ensemble of classifiers for different numbers of generated classifiers. The
goodness measure of the ensemble of classifiers was defined as a gained accuracy value divided by the number of rules
in the ensemble. This value is then scaled to the value of one. The formula is:

factorionnormalizat
rulesofnumber

accuracygainedgoodness
i

i
iensemble ⋅=

The goodness of the ensemble of classifiers generated by the CLIP4 algorithm for different datasets and different
number of classifiers is summarized in Figure 6.
The optimal number of classifiers in the ensemble is 3 or 4. The peak at this value represents the best “trade-off’’
between gained accuracy and the size of the ensemble of classifiers.
If the user is interested in maximum accuracy gain then the bigger the number of classifiers in the ensemble the better
the result. However, the accuracy gain value increases up to the certain point and then it saturates. After that value
adding more classifiers will not significantly improve the accuracy, instead it will make the ensemble unnecessary
complex.

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9
number ofclassifiers in the ensemble

goodness of the
ensemble [%]

spect wav sat

Fig. 6. Goodness of the ensemble as function of the number of classifiers in the ensemble.

4. SUMMARY AND CONCLUSIONS
In this paper we presented the new method for improving the accuracy of inductive machine learning algorithm CLIP4.
An ensemble of classifiers was generated by injecting the randomness into the CLIP4 algorithm. The classifiers were
combined using weighted voting scheme. As the result significant improvement in the accuracy of the CLIP4 algorithm
was achieved. The test results show that the average achieved gain of accuracy was about 3.1%, which corresponds to
about 15% decrease of the error rate when compared to the accuracy achieved by a single classifier. Because the CLIP4
algorithm generates strong classifiers in the first place the achieved improvement is significant. The results also show
that the increase of accuracy for the CLIP4 ensemble of classifiers is achieved for all datasets, in contrary to boosting
technique that can perform worse then a single classifier. Testing results show that a significant gain of accuracy is
achieved for the ensemble of 3 to 4 classifiers. This fact stresses the usefulness of the proposed method. Namely, we
can achieve a significant increase of the accuracy at the cost of generating only 3 to 4 classifiers instead of a single
classifier.

5. REFERENCES
1. Ali, K. M., and Pazzani, M. J., Error reduction through learning multiple decisions, Machine Learning, 24 (3), pp.

173-202, 1996.
2. Bellmore, M., and Ratliff, H. D., Set Covering and Involuntary Bases, Management Science, 18 (3), 1971.
3. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., Classification and Regression Trees, Wadsworth

International Group: Belmont, California, pp. 43-55, 1984.
4. Cios, K. J., and Liu, N., An algorithm which learns multiple covers via integer linear programming. Part I - The

CLILP2 Algorithm, Kybernetes, 24 (2), pp. 29-50, 1995.
5. Cios, K. J., and Liu, N., An algorithm which learns multiple covers via integer linear programming. Part II –

experimental results and conclusions, Kybernetes, 24 (3), pp. 24-36, 1995.
6. Cios, K. J., Wedding, D. K., and Liu, N., CLIP3: cover learning using integer programming. Kybernetes, 26 (4-5),

pp. 513-536 (The Norbert Wiener 1997 Outstanding Paper Award), 1997.
7. Cios, K. J., Pedrycz, W., and Swiniarski, R.: Data Mining Methods for Knowledge Discovery, Kluwer, 1998.
8. Cios, K.J., & Kurgan, L., Hybrid Inductive Machine Learning Algorithm that Generates Inequality Rules,

Information Sciences, Special Issue on Soft Computing Data Mining, in review, 2002.
9. Cios K. J. & Kurgan L., Hybrid Inductive Machine Learning: An Overview of CLIP Algorithms, In: Jain L.C., and

Kacprzyk J. (Eds.) New Learning Paradigms in Soft Computing, Physica-Verlag (Springer), pp. 276-322, 2001.
10. Chvatal, V., A Greedy-Heuristic for The Set-Covering Problem, Math. Operations Research, 4 (3), 1979.
11. Dietterich, T. G., Machine Learning Research: Four Current Directions, AI Magazine, 18 (4), pp. 97-136, 1997.
12. Dietterich, T. G., and Kong, E. B., Machine Learning bias, statistical bias, and statistical variance in decision tree

algorithms (Tech Report), Department of Computer Science, Oregon State University, Corvallis, Oregon, 1995.
13. Dietterich, T. G., Ensemble methods in machine learning. In Kittler, J., Roli, F. (Eds.) Proceedings to First

International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, Springer-
Verlag, Germany, 2000.

14. Data Mining Tools, http://www.rulequest.com/see5-info.html, 2000.
15. Grafinkel, R. S., and Nembauser, G. L., Integer Programming, John Wiley and Sons, New York, 1972.

16. Hansen, L., and Salamon, P., Neural Network Ensembles, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12, pp. 993-1001, 1990.

17. Hochbaum, D. .S., Approximation Algorithm for The Weighted Set-Covering and Vertex Cover Problems, Siam J.
Comput., 11 (3), 1982.

18. Kolen, J. F., and Pollack, J.B., Back propagation is sensitive to initial conditions, Advances in Neural Information
Processing Systems, 3, pp. 860-867, San Francisco, CA. Morgan Kaufmann, 1991.

19. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. & Goodenday, L.S., Knowledge Discovery Approach to
Automated Cardiac SPECT Diagnosis, Artificial Intelligence in Medicine, 23 (2), pp.149-169, 2001.

20. Kwok, S. W., and Carter, C., Multiple decision trees. In Schachter, R. D., Levitt, T. S., Kannal, L. N., and Lemmer,
J. F. (Eds.), Uncertainty in Artificial Intelligence, 4, pp. 327-335, Elsevier Science, Amsterdam, 1990.

21. Loh, W. Y., Lim, T. S., and Shih, Y. S., A comparison of prediction accuracy, complexity, and training time of
thirty-three old and new classification algorithms, Machine Learning, 40, pp. 203-228, 2000.

22. Michalski, R. S., Discovering classification rules using variable-valued logic system VL1, Proceedings of the Third
International Joint Conference on Artificial Intelligence, pp. 162-172, 1973.

23. Michalski, R. S., A theory and methodology of inductive learning. In R. Michalski., J. Carbonell, and T. M.
Mitchell (Eds.), Machine Learning. Tioga Press, 1983.

24. Parmanto, B., Munro, P. W., and Doyle, H. R., Improving committee diagnosis with resampling techniques, In
Touretzky, D. S., Mozer, M. C., and Hesselmo, M. E. (Eds.), Advances in Neural Information Processing Systems,
8, pp. 882-888, Cambridge, MA. MIT Press, 1996.

25. Ravindran, A., Phillips, D.T., and Solberg, J.J., Operations Research, Principles and Practice, second addition, pp.
1-69, John Wiley and Sons, 1987.

26. Schapire, R. E.: A brief introduction to boosting. Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pp. 1401-1406, 1999.

27. Witten I.H., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation,
Morgan Kaufmann, San Francisco, 2000.

