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Cyclic proteins (CPs) have circular chains with a continuous cycle of peptide bonds. Their unique structural traits
result in greater stability and resistance to degradation when compared to their acyclic counterparts. They are
also promising targets for pharmaceutical/therapeutic applications. To date, only a few hundred CPs are
known, although recent studies suggest that their numbers might be substantially higher. Here we developed a
first-of-its-kind, accurate and high-throughput method called CyPred that predicts whether a given protein
chain is cyclic. CyPred considers currently well-represented CP families: cyclotides, cyclic defensins, bacteriocins,
and trypsin inhibitors. Empirical tests demonstrate that CyPred outperforms commonly used alignmentmethods.
We used CyPred to estimate the incidence of CPs and found ~3500 putative CPs among 5.7+million chains from
642 fully sequenced proteomes from archaea, bacteria, and eukaryotes. The median number of putative CPs per
species ranges from three for archaea proteomes to two for eukaryotes/bacteria, with 7% of archaea, 11% of
bacterial, and 16% of eukaryotic proteomes having 10+ CPs. The differences in the estimated fractions of CPs
per proteome are as large as three orders of magnitude. Among eukaryotes, animals have higher ratios of CPs
compared to fungi, while plants have the largest spread of the ratios. We also show that proteomes enriched in
cyclic proteins evolve more slowly than proteomes with fewer cyclic chains. Our results suggest that further re-
search is needed to fully uncover the scope and potential of cyclic proteins. A list of putative CPs and the CyPred
method are available at http://biomine.ece.ualberta.ca/CyPred/. This article is part of a Special Issue entitled:
Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cyclic proteins (CPs) have their termini linked together to create a
cyclic backbone and thus effectively have no beginning and no end in
their native conformation. Naturally produced circular proteins have
been found in bacteria, plants, fungi, and animals [1,2]. Compared to
their non-cyclic counterparts, they are relatively short (about a dozen
to 100 amino acids), less prone to degradation, more structurally stable,
and are harder to denature [1,3]. One of the largest CP families,
cyclotides, comprise disulfide-rich chains of 28 to 37 amino acids with
a characteristic cyclic cystine knot consisting of an interlocking arrange-
ment of three disulfide bridges [4]. Theywere thefirst discovered family
of gene-expressed CPs and remain themost populated family among all
depositions in theworld-wide repository of CPs called CyBase [5], which
as of January 2013 includes 633 cyclic proteins from 86 species.
Cyclotides are among the most structurally stable proteins and are im-
plicated in a diverse range of functions, from plant defense [3,6] to
nal Proteomics, SystemsBiology
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anti-HIV, antimicrobial, hemolytic, and uterotonic capabilities [7]. They
also have strong therapeutic potential and are being actively pursued
as peptide-based drug leads, molecular probes, diagnostic agents, and
immunosuppressants [7–11].

Besides cyclotides, two other families of CPs are trypsin inhibitors
and bacteriocins. Cyclotides and trypsin inhibitors share the cystine
knotmotif. By contrast, bacteriocins are larger than cyclotides and tryp-
sin inhibitors and donot contain a cystine knot. Bacteriocins exhibit var-
ious inhibitory functions, mainly against bacteria, such as inhibition of
cell-wall synthesis and RNase or DNase activity [12]. Importantly, CPs
can be synthetically synthesized [13] and efforts are being made to
lower the corresponding production costs [14]. The abovementioned
characteristics make CPs particularly desirable as potential therapeutic
agents [15,16].

Recent studies show that CPs are more common in the plant king-
dom than was previously thought [5], including reports which sug-
gest that cyclotides might include thousands of members [17]. The
CyBase repository is undergoing continuing growth and it is expected
that it will continue growing at a substantial pace [18]. Moreover, the
biosynthetic mechanism of cyclization remains uncertain, and thus
information on mechanisms currently cannot be used to indicate
which species, and to what degree, produce cyclic proteins. These
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considerations provided the motivation for the current study, in
which we design an accurate and fast in-silico method to predict
whether a given protein chain is cyclic. Most importantly, this meth-
od is used to predict and characterize putative CPs on a proteomic
scale across hundreds of eukaryotic, bacterial and archaea proteomes.
Similar computational studies were recently carried out to character-
ize various functional classes of proteins, e.g., for disordered proteins
[19,20], caspases [21], and zinc proteins [22].

2. Materials and methods

2.1. Datasets

We collected representative sets of data for cyclic and non-cyclic pro-
teins. All wild-type cyclic chains, which were downloaded from CyBase
[5] in July 2011, were clustered at 90% sequence similarity with CD-HIT
[23] to remove redundancy; one chain from each cluster was kept.
CD-HIT is a popular method (e.g., it was used to cluster UniProt to create
theUniRef datasets) that implements a fast greedy incremental clustering
which groups sequences into clusters that are characterized by sequence
similarity above a pre-defined threshold [23]. A total of 109 cyclic chains
was obtained, including 100 cyclotides, three cyclic defensins from pri-
mates, four bacteriocins, and two trypsin inhibitors. We included only
CPs that exceeded 10 AAs in size, since shorter chains would be difficult
to compute by our predictor, i.e., they could not be reliably represented
by features that are used as its inputs. Non-cyclic proteins were extracted
from the Protein Data Bank (PDB) [24], version from November 2010,
using a representative subset of high-quality crystal structures that had
well-separated termini. Specifically, we collected all 69,510 depositions
from PDB and removed DNA and RNA strands. We excluded non-X-ray
and lower quality structures to accurately calculate the distance between
termini, i.e., we excluded PDB depositions with resolution > 2.00 Å and
R-factor > 0.25, which is consistent with recent related studies [25,26].
Next, among the resulting 25,316 chainswe removed thosewith unstruc-
tured (disordered) termini, i.e., all chains that lacked spatial coordinates
for their first or last 10 residues. The remaining 8694 chains were
processed to select those that had sufficiently separated termini. We ex-
cluded all structures for which the distance between termini was smaller
than their radius; radius was defined as the distance between the center
of mass (i.e., arithmetic mean of atomic coordinates) of the protein and
the center ofmass of the furthest from the center residue and the distance
between termini was calculated between the centers of mass of the first
and last residue. Finally, the 3908 structures with well-separated termini
were cross-referenced against CyBase (none of these chains was found to
be cyclic) and clustered at 40% sequence similarity with CD-HIT.

The resulting 683 non-cyclic proteins, together with the 109 cyclic
chains,were divided into two equally-sized datasets, a TRAININGdataset
that was used to design the prediction method and a TEST dataset that
was utilized to perform independent (from the TRAININGproteins) eval-
uation of the predictive quality of the predictor. The TRAINING dataset
includes 55 cyclic and 342 non-cyclic proteins and the TEST dataset has
54 cyclic and 341 non-cyclic chains; both datasets include cyclic
defensins, bacteriocins, and trypsin inhibitors with 2, 2, and 1 examples,
respectively, in the TEST dataset. We also collected a dataset of 23
non-redundant cyclic proteins that were deposited to CyBase after we
selected cyclic chains for the TRAINING and TEST datasets, i.e., after
July 2011. These proteins, which include 22 cyclotides and a small tryp-
sin inhibitor from sunflowers, form the TEST_NEW dataset, which was
used to perform additional validation of our predictor. We note that
our datasets focus on the currently well-represented, i.e., having suffi-
cient number of chains, families of wild-type CPs, including cyclotides,
cyclic defensins, bacteriocins, and trypsin inhibitors. This means that
the predictive model generated and evaluated with these datasets is
also limited to these CP families.

Furthermore, we evaluated predictions on a representative subset
of PDB. We utilized the abovementioned 8694 high-quality X-ray
structures, removed duplicate chains and clustered them at 80% se-
quence similarity with CD-HIT. The remaining non-redundant (at
80% similarity) set of 1737 chains is named PDB80 and includes four
CPs: a cyclotide, two trypsin inhibitors (including the small trypsin
inhibitor from the TEST_NEW dataset), and a bacteriocin. The four
datasets, including protein IDs, names, sequences, and species, are
available at http://biomine.ece.ualberta.ca/CyPred/.

2.2. Evaluation measures and test protocols

Predictions of CPs were assessed by comparing against the native
annotations. The evaluation was performed based on four commonly
used measures:

Sensitivity ¼ TP= TPþ FNð Þ ¼ TP=Ncyclic
Specificity ¼ TN= TNþ FPð Þ ¼ TN=Nnon−cyclic
Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ ¼ TPþ TNð Þ=N
MCC ¼ TP�TN–FP�FNð Þ=sqrt TPþ FPð Þ� TPþ FNð Þ� TNþ FPð Þ� TNþ FNð Þf g

where TP and TN are the counts of true positives (correctly predicted cy-
clic proteins) and true negatives (correctly predictednon-cyclic proteins),
respectively; FP and FN are the numbers of false positives (non-cyclic
proteins predicted as cyclic) and false negatives (cyclic proteins predicted
as being non-cyclic), respectively; andN, Ncyclic andNnon-cyclic are the total
counts of all, cyclic and non-cyclic chains in a given dataset, respectively.
The Matthews correlation coefficient (MCC) was suggested to be used to
assess predictions in cases where the numbers of positive (cyclic) and
negative (non-cyclic) samples are substantially different [27], which is
true for our datasets. The MCC values range between −1 and 1, with 0
denoting random prediction and higher absolute values denoting more
accurate predictions. Higher values of the other three measures indicate
better quality of predictions.

We designed a predictor of cyclic chains, i.e., we selected features that
are used to encode the input protein chains and parameterized the classi-
fication models, using 5-fold cross validation on the TRAINING dataset.
We split the dataset into five equal-sized subsets of protein chains and
used four of these subsets to form a training fold thatwas utilized to com-
pute themodel and the remaining subset was used to perform the evalu-
ation. This was repeated five times, each time choosing a different subset
to be the test fold. The tests on the TEST, TEST_NEW and PDB80 datasets
were based on the model that was generated on the TRAINING dataset.

2.3. Prediction model

The predictionswere performed in two steps. First, the input protein
chain was converted into a small set of numerical features. Next, these
features were inputted into a classification model that generates the
prediction. We considered a relatively simple feature-based sequence
representation, which was motivated by the need to perform the pre-
dictions in a high-throughput fashion. The features included:

− amino acid (AA) composition, defined as the fraction of AA of a
particular type in a given protein chain (20 features),

− hydrophobicity and charge; using hydrophobicity we divided the
AAs into hydrophobic, hydrophilic or neutral and using charge
we split the AAs into positive, negative, or neutral based on the
categorization of AAs from [28]; we calculated the composition
for each of these six sets of AAs (six features),

− frequency of certain sequence motifs in the input protein chain
(six features that are explained below),

− content of secondary structures and normalized number of sec-
ondary structure segments predicted with PSI-PRED [29]; the con-
tent is defined as a fraction of residues predicted to be in the coil,
strand, and helix conformations; the number of helical, coil and
strand segments is divided by the total number of all secondary
structure segments (six features).

http://biomine.ece.ualberta.ca/CyPred/
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The use of the AA composition and hydrophobicity and charge-
defined groups is supported by the fact that CPs differ in their composi-
tion from non-cyclic proteins, as shown in Fig. 1. We observe that
cyclotides and trypsin inhibitors, which have the characteristic cystine
knot, are substantially enriched in Cys compared to the non-cyclic
proteins. They are also enriched in Gly and Pro and depleted in Met,
Glu, Gln, Ala, Leu, and Asp. The bacteriocins are enriched in Ile, Thr, and
Ala, and depleted in Cys, Pro, Tyr, Asn, Arg, Glu, and Aspwhen compared
to the non-CPs. These differences provided useful predictive inputs.

We hypothesized that cyclic chains might have a particular ar-
rangement of secondary structures that would allow their differenti-
ation from other proteins. PSI-PRED was selected due to its relatively
strong predictive performance [30] and the definitions of features
were motivated by their successful prior use to predict major classes
of protein folds [31,32].

Moreover, motivated by the fact that cyclic proteins have several
characteristic sequence motifs, we also designed additional features
that detect these motifs in the input chain:

− The presence of cystine knot motifs (three binary features).
Cyclotides and trypsin inhibitors have the cystine knot that con-
sists of six Cys residues connected by three disulfides bridges.
Cyclotides are divided in two structural subfamilies which differ
by the presence of a cis-proline in loop five (Möbius vs. bracelet).
The Cys residues are spaced in a specific way in the chain,
depending on the structural subfamily [33]:

CxxxCxxxxCxxxxxxCxCxxxxC is the conserved motif in brace-
let type cyclotides
CxxxCxxxxCxxxxCxCxxxxC for the Möbius type cyclotides

We used three binary values (present vs. absent) to indicate wheth-
er one of the two, or either, motif is present in the input chain.

− The deviation from the cystine knot motif (one real-valued feature).
This feature quantifies how well a given chain adheres to the
CxxxCxxxxCxxxxxxCxCxxxxC motif. This is calculated by counting
the number of AAs between two consecutive Cys residues in a
given chain and subtracting from the actual number of residues in
between the corresponding two Cysteines in the motif, e.g., for a
CtaetC motif in the input chain, this would be 4 − 3 = 1). The ab-
solute values of these differences for each pair of Cys residues are
calculated and summed.

− The presence of the CGES(T)C motif (one binary feature). This is a
conserved motif in the loop 1 (between Cys I and II) in the bracelet
and Möbius types of cyclotides. We use a value of 1 if CGESC or
CGETC fragment occurs in the input chain; 0 otherwise.
Fig. 1. Comparison of composition of amino acid (AA) types between cyclic and non-cyclic p
(median) of the compositions values across all chains, and the error bars show the 10th cen
the medians for all cyclic and non-cyclic chains, from AA types enriched in cyclic proteins o
− The composition of Cys in a sequence window (1 real-valued fea-
ture). We compute the maximal number of Cys residues in a sliding
window of 30 AAs in the input chain.

A total of 38 features was used, including the 20-dimensional AA
composition, six charge/hydrophobicity residue groups, six secondary
structure-based features, and the sixmotif-based features.We evaluated
four classification algorithms that generate predictive models. They in-
cluded a classical logistic regression and three modern classifiers,
which are listed among the top 10 datamining algorithms [34], including
Naïve Bayes, Support Vector Machine (SVM), and C4.5 decision tree. We
compared the predictive performance of these four classifiers using sev-
eral combinations of feature sets to select the setup that provides the
strongest predictive performance. We tested the use of 20-dimensional
AA composition, AA composition combined with motifs (26 features),
these 26 features combined with either secondary structure-based fea-
tures (32 features) or hydrophobicity/charge-based features (32 fea-
tures, and all 32 features. The results based on the 5-fold cross
validation on the TRAINING dataset are shown in Table 1. The SVM
model uses a popular Radial Basis Function kernel and was parameter-
ized utilizing grid search with complexity constant C = 2i, i = −1, 0,
… 10, and gamma = 2k, k = −5, −4, …., 5 based on maximization of
MCC with the 5-fold cross validation on the TRAINING dataset.

As expected, the SVM model provides the most accurate predictions,
i.e., the highest values of MCC and accuracy. This is because SVM utilizes
an optimized non-linear model compared to the other three considered
classifiers that use simpler linearmodels. Interestingly, the results also re-
veal that use of the motif-based features slightly improves the predictive
performance of the SVMmodel when compared with the use of just the
AA composition. In particular, this set of 26 features results in predictions
with higher specificity while maintaining the same sensitivity, which
means that the number of false positives (non-cyclic proteins predicted
as cyclic)was reduced. The same trend is also true for the second-best lo-
gistic regression model. Addition of the hydrophobicity/charge-based
and the secondary structure-based features does not provide further im-
provements. Although SVM that uses these additional features improves
sensitivity to 100%, this is coupled with a drop in specificity such that the
overall accuracy andMCC are slightly lower than when using the 26 fea-
tures. We note that CPs assume a relatively wide range of secondary
structure arrangements, from hairpins to all-helical structures, which is
likely why the use of the secondary structure did not help. Moreover,
the prediction of the secondary structures is time consuming due to the
generation of the position specific scoring matrices (PSSMs) by PSI-
PRED,which constitutes a drawback associatedwith a potential inclusion
roteins using chains from TRAINING and TEST datasets. Bars represent the 50th centile
tile and 90th centile. AA types are sorted based on the values of the difference between
n the left to those enriched in non-cyclic proteins on the right.



Table 1
Comparison of predictive performance of the four considered classifiers based on the 5-fold cross validation on the TRAINING dataset. The classifiers are evaluated when using the
20-dimensional AA composition in combination with 6 sequence motif-based features, 6 features based on predicted secondary structure, and 6 features based on hydrophobicity and
charge-based residue groups, as their inputs.

Input features Prediction model MCC Accuracy Sensitivity Specificity

38 features
(AA composition, motifs, secondary structure,
hydrophobicity and charge)

SVM 0.97 99.2 100.0 99.1
Logistic Regression 0.86 96.7 93.8 97.1
C4.5 0.94 98.5 94.5 99.1
Naïve Bayes 0.92 98.0 91.2 99.1

32 features
(AA composition, motifs, and secondary structure)

SVM 0.97 99.2 100.0 99.1
Logistic Regression 0.92 98.2 98.0 98.3
C4.5 0.94 98.5 94.5 99.1
Naïve Bayes 0.92 98.0 91.2 99.1

32 features
(AA composition, motifs, and hydrophobicity and charge)

SVM 0.98 99.5 98.2 99.7
Logistic Regression 0.96 99.0 96.4 99.4
C4.5 0.94 98.5 94.5 99.1
Naïve Bayes 0.94 98.5 93.0 99.4

26 features
(AA composition and motifs)

SVM 0.98 99.5 98.2 99.7
Logistic Regression 0.97 99.2 94.5 100.0
C4.5 0.94 98.5 94.5 99.1
Naïve Bayes 0.93 98.2 96.4 98.5

20 features
(AA composition)

SVM 0.97 99.2 98.2 99.4
Logistic Regression 0.94 98.5 94.5 99.1
C4.5 0.97 99.2 96.4 99.7
Naïve Bayes 0.93 98.2 96.4 98.5
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of the corresponding features. We also note that the predictive quality
obtainedwith the C4.5 classifier slightly drops with the inclusion of addi-
tional features, which could be a result of an overfitting. Consequently,
the SVM classifier with the 26 features was used to implement the pro-
posed predictor of cyclic proteins, which is named CyPred.

The architecture of CyPred is shown in Fig. 2. The CyPred method
outputs real-valued confidence scores, where larger positive/negative
value indicates higher propensity to be cyclic/non-cyclic. A web serv-
er that implements CyPred is publicly available at http://biomine.ece.
ualberta.ca/CyPred/.

3. Results and discussion

3.1. Evaluation of predictive quality and runtime on test datasets

The predictive quality of CyPredwas comparedwith currently avail-
able approaches to identify cyclic proteins, which include sequence
alignment methods. A given test sequence was aligned against all se-
quences (both cyclic and non-cyclic) from the TRAINING dataset and
the label of the most similar training sequence was assigned as the pre-
diction. This allowed for a side-by-side comparison with CyPred that
also uses the TRAINING dataset to build the prediction model. The sim-
ilaritywasmeasured by the number of alignedmatching AAs divided by
the length of the test or training chain, whichever was shorter, and we
selected the training chain with the largest score to transfer the label.
We used two popular types of alignment methods:

− The BLAST algorithm [35] with default parameters; in cases when no
alignments were returned we classified the corresponding chain as
non-cyclic;
Input sequence: GLPCGESCVFIPC

Feature-based sequen
AA composition + occurren

Support Vector Ma

Output: 1
real-valued confidence score; higher positive/negative val

Fig. 2. Architecture of t
− Pairwise alignment with the Smith-Waterman-Gotoh algo-
rithm [36,37]; we aligned a given chain against each chains in
the TRAINING dataset.

We also compared the full implementation of CyPred with a ver-
sion that utilizes only the 20-dimensional AA composition. The results
on the TEST dataset are summarized in Table 2. CyPred obtains 100%
sensitivity and the highest specificity, which equals to the specificity
of BLAST. Our method correctly predicted all 54 cyclic proteins and
generated five false positives (non-cyclic chains predicted as cyclic).
To compare, SVM with 20 features, BLAST, and pairwise alignment
produced 8, 5, and 32 false positives, respectively. Importantly, CyPred
correctly predicted all native cyclic proteins, including two cyclic bac-
teriocins and a trypsin inhibitor. This demonstrates that our method is
capable of finding CPs from various families, besides themost populat-
ed (cyclotides). On the other hand, BLAST incorrectly identified one of
the bacteriocins and the trypsin inhibitor as non-cyclic proteins, while
pairwise alignment incorrectly predicted two bacteriocins as being
non-CPs. Furthermore, the use of the 6motif-based features improved
predictions of CyPredwhen comparedwith the SVM that uses only the
20-dimensional composition. Consistent with the results on the
TRAINING dataset, see Table 1, we observed an increase in specificity,
which means that fewer false positives were generated by CyPred,
thanks to the use of these motifs.

We predicted the 23 nonredundant CPs from the TEST_NEW
dataset using CyPred. All these chains were correctly identified as cy-
clic with high confidence scores; the lowest score was 0.55 and 21 out
of 23 chains were predicted with scores above 0.9. The small trypsin
inhibitor that was included in this set obtained score of 1.0.
ITTVVGCSCKNKVCYND 

ce representation
ce of 6 sequence motifs

chine classifier

.53
ue indicates higher propensity to be cyclic/non-cyclic

he CyPred method.
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Table 2
Comparison of predictive performance of CyPred, SVM-model that uses AA composi-
tion, BLAST and pairwise alignment on the TEST dataset. The methods are sorted by
their MCC scores.

Prediction model MCC Accuracy Sensitivity Specificity

CyPred 0.95 98.7 100 98.5
BLAST 0.93 98.2 96.3 98.5
SVM with AA composition (20 features) 0.92 98.0 100 97.6
Pairwise alignment 0.73 91.4 96.3 90.6
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We also assessed the runtime of the two most promising, according
to the predictive quality, approaches: CyPred and BLAST. The runtime
was evaluated using a modern desktop computer on the TEST dataset.
Although the values depended on the hardware used, we concentrated
on the relative differences in the runtime between CyPred and BLAST,
which should be hardware-independent. Fig. 3 shows that BLAST is
characterized by more than an order of magnitude longer runtime,
which slightly increases with the length of the input protein chain.
The ratio between the BLAST and CyPred runtime ranged between
20:1 for short chains and 27:1 for long chains. The runtime of CyPred
varied between 2 and 6 ms per protein, which means that it can be
used to perform high-throughput predictions.

3.2. Predictions on the PDB80 dataset

CyPred, BLAST, and pairwise alignment were used to predict CPs in
the PDB80 dataset, which is a representative subset of 1737 PDB chains.
We compared predictive performance of these three approaches based
on two factors: predictive quality measured with MCC, accuracy, sensi-
tivity, and specificity; and distribution of distances between termini in
the corresponding PDB structures for the chains predicted to be cyclic;
see Table 3.

We observed that the predictive performance of all considered ap-
proaches was lower on this dataset compared to the TEST dataset. This
could be explained by the fact that proteins in the TRAINING dataset
share higher sequence similarity with those in the TEST dataset, in con-
trast to their similarity with the chains in the PDB80 set. Importantly,
CyPred consistently (over both TEST and PDB80 datasets) provided im-
proved predictive performance. In the PDB80 dataset, our method cor-
rectly predicted three of four cyclic proteins (75% sensitivity), which
included a cyclotide, a small trypsin inhibitor, and a bacteriocin. This fur-
ther (similarly as with the TEST dataset) demonstrates that CyPred suc-
cessfully predicts different families of CPs. BLAST andpairwise alignment
obtain the same sensitivity, but their specificity is lower. To compare,
Fig. 3. Runtime of CyPred and BLAST calculated based on predictions on the TEST
dataset. Proteins in the TEST dataset were divided by their chain length (x-axis) and
the runtime (y-axis in milliseconds shown using logarithmic scale) is shown as average
values (markers) over the chains in a given size interval with the corresponding stan-
dard deviations (error bars).
CyPred, BLAST and pairwise alignment generated 8, 10, and 60 false pos-
itives, respectively. Moreover, the chains predicted by CyPred as cyclic
have substantially smaller distances between their termini, i.e., the me-
diandistance for CyPred is 6.5 Å,while themedian distances for putative
CPs produced by BLAST and pairwise alignment are 11.9 Å and 16 Å, re-
spectively. The corresponding median distance across all proteins in the
PDB80 dataset equals 25.7 Å. Distributions of these distances are visual-
ized in Fig. 4A and they demonstrate that CyPred generates higher qual-
ity predictions. Fig. 4B shows that the incorrect predictions generated by
CyPred aremostly for chainswith a low distance between termini, while
BLAST and pairwise alignment generate more errors for chains charac-
terized by larger inter-terminal distances. The observation that CyPred
generates false positives characterized by short distances between ter-
mini suggests that our predictor can be also used to find such chains.
These chains could be artificially cyclized, which would assist with find-
ing proteins of interest (e.g., certain enzymes or toxins) that are
cyclizable.

The cyclic proteins predicted by CyPred include three true posi-
tives (TP; correctly predicted CPs) and eight false positives (FPs),
which corresponds to a precision = TP/(TP + FP) = 27%. We use
this level of precision to estimate the number of CPs when performing
predictions on the whole proteomes. We also observed that predic-
tions with high confidence values are more likely to include native
CPs and we used cut-off value of 0.9 to indicate cyclic chains predict-
ed with high quality. Fig. 4A and B shows that all chains predicted by
CyPred with confidence scores > 0.9 have their distances between
termini below 10 Å and that they include only three incorrect
predictions.

3.3. Cyclic proteins in the three domains of life

CyPred, which offers favorable predictive performance and faster
predictions compared to the alignment, was used to predict CPs in 640
complete proteomes from the three domains of life. The corresponding
5,700,468 proteinswere collected from release 2011_08 of UniProt [38].
The proteomes were assigned to their taxonomic lineage based on NCBI
[39]. We also collected two eukaryotic proteomes, from Violaceae and
Rubiaceae plants, fromUniProt as they are from families with the largest
known populations of cyclotides. The putative CPs predicted by CyPred
werefiltered to remove chains thatwere deleted in the UniProt since re-
lease 2011_08 (as of March 2013 when we performed filtration) and
chains annotated as predicted with a caution, which may indicate seri-
ous problems like frameshifts, errors in initiation or stop codons, error
in translation, etc. This resulted in removal of 515 chains out of the orig-
inal set of 4014 putative CPs; the remaining putative CPs are summa-
rized in Table 4.

Using the precision of 27%, which was estimated from the PDB80
dataset, CyPred found total of 3499 cyclic proteins from among 5.7+
million chains in the considered 642 proteomes. We note that this set
of putative CPs is potentially incomplete since CyPred is designed
using data that includes only certain families of CPs, such as cyclotides,
cyclic defensins, bacteriocins, and trypsin inhibitors; this means that
other families of CPs are likely excluded from the results. Although
CPs are relatively rare, i.e., only about 0.06% of chains are predicted to
be cyclic, they were found in themajority of proteomes in the three do-
mains of life. More precisely, between 89 and 98% of proteomes,
depending on the domain of life, have at least one predicted CP; and be-
tween 45 and 56% of proteomes include at least one CP predicted with
high confidence (with the confidence score > 0.9, which indicates
high predictive quality). However, only a small fraction of proteomes
have larger counts of CPs, i.e., only between 7% (for archaea proteomes)
and 16% (for eukaryotic proteomes) of proteomes have over 10 cyclic
proteins. There are no proteomes in archaeawithmore than 10 CPs pre-
dicted with high confidence, while 2% and 11% of proteomes in bacteria
and eukaryota, respectively, have at least 10 CPs that were identified
with the high confidence.



Table 3
Comparison of the predictive performance of CyPred, BLAST and pairwise alignment on the PDB80 dataset. The methods are sorted by their MCC scores. The last row shows the
median and distribution of distances between termini across all structures from the PDB80 dataset.

Prediction model/statistics using
the PDB80 dataset

Median distance between termini % chains with distance
between termini

MCC Accuracy Sensitivity Specificity

b20 A b10 A b5 A

CyPred 6.47 91.0% 72.7% 45.5% 0.45 99.48 75.00 99.54
BLAST 11.87 62.0% 38.5% 23.1% 0.41 99.37 75.00 99.42
Pairwise alignment 16.03 76.0% 19.0% 7.9% 0.18 96.49 75.00 96.54
Entire PDB 25.65 35.0% 9.9% 1.2%
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Fig. 5 provides a more detailed breakdown of the number of CPs
per proteome. The majority of proteomes have very few cyclic
proteins, i.e., three or fewer for archaea proteomes, and two or fewer
for bacterial and eukaryotic proteomes. However, 10% of proteomes
have at least 8, 11, or 14 CPs for archaea, bacterial, or eukaryotic
proteomes, respectively. We note the relatively large numbers of CPs
that were predicted with high confidence in some eukaryotes and bacte-
ria. Specifically, 6% of the considered eukaryotic proteomes (seven
proteomes) and 1% of bacterial proteomes (five proteomes) have at
least 20 such putative cyclic chains. Fig. 6 summarizes the similarity of
all 525 predicted CPs from these 12 CP-enriched proteomes to the native
A

B

Fig. 4. Distribution of distances between termini for chains in PDB dataset and chains pred
(panel B) by CyPred, BLAST and pairwise alignment. The distances were binned into interv
cyclotides, bacteriocins, and trypsin inhibitors. Themarkers,which repre-
sent individual putative CPs, are grouped by proteomes (shown on
x-axis), and their values (y-axis) correspond to a similarity to the closest
CP family. The similarity was quantifiedwith Euclidian distance between
the average AA composition of chains in a given CP family (using data
from the TRAINING and TEST datasets) and the AA composition of a
given putative CP. The predicted CPs that have similarity lower than the
cut-off of 0.265 are assigned to the corresponding CP family; the cut-off
value corresponds to an average distance between native CPs that belong
to different CP families. The results show that most of the CPs predicted
for the five bacteria (shown on the left) are similar to bacteriocins,
icted as cyclic from the PDB80 dataset (panel A) and number of incorrect predictions
als shown on the x-axis.



Table 4
Summary of results from the prediction of cyclic proteins by CyPred on the 640 complete proteomes from the 2011_08 release of UniProt and proteomes of Violaceae and Rubiaceae
plants. The first two rows summarize the considered proteins; the third row shows the results over all proteomes in a given domain of life; the fourth row summarizes results per
proteomes; and the last row summarizes the predictions with high confidence (with scores > 0.9) per proteomes.

Archaea Bacteria Eukaryota

Number of considered proteomes 59 471 112
Total count of considered proteins 216,370 3,627,676 1,856,422
Predicted cyclic proteins Number 243 2537 719

% of all proteins 0.11% 0.07% 0.04%
Predicted cyclic proteins per proteomes Number of proteomes with at least one cyclic protein 58 463 100

% of proteomes with at least one cyclic protein 98.3% 98.3% 89.3%
% of proteomes with >5 cyclic proteins 30.5% 23.4% 27.7%
% of proteomes with >10 cyclic proteins 6.8% 11.0% 16.1%

cyclic proteins predicted with high
confidence (score > 0.9) per proteomes

Number of proteomes with at least one cyclic protein 33 237 51
% of proteomes with at least one cyclic protein 55.9% 50.3% 45.5%
% of proteomes with >5 cyclic proteins 3.4% 6.2% 15.2%
% of proteomes with >10 cyclic proteins 0.0% 2.3% 10.7%
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while majority of the putative CPs in eukaryotes are similar to cyclotides.
There are also a few CPs that are similar to trypsin inhibitors for several
bacteria and eukaryotas. A total of 132 out of the 525 putative CPs have
a distance above the cut-off (shown using crosses in Fig. 6), which sug-
gests that they are dissimilar to the three major families of CPs. The larg-
est number of these CPs, 42, was found in a Nematostella, which is a sea
anemone.

We also analyzed the distribution of Cys content among the pre-
dicted CPs (Fig. 7). We observed that cysteines are substantially
enriched in eukaryotes and this follows the trend for native CPs in
the TRAINING and TEST datasets. Our native cyclic proteins mostly in-
clude cyclotides, which have the cystine knot that, in turn, results in
the enrichment in cysteines. Compared to 392 chains in eukaryotic
proteomes that have at least six Cys and were predicted to be cyclic,
only one putative CP in archaea and 31 in bacterial proteomes have
at least six Cys residues. This suggests that only eukaryotic proteomes
contain a large fraction of cyclotides.

Fig. 8 presents the relations between the fractions of predicted CPs
(y-axis), the fraction of CPs predicted with high confidence (x-axis)
and the corresponding proteome size (size of markers) across all
proteomes that have cyclic chains. The proteomes/markers are distrib-
uted on an approximately diagonal line, which means that the number
of predictions with high confidence is proportional to the overall num-
ber of predictions, with the Pearson correlation coefficient of 0.97. The
proteome size and the number of predicted cyclic chains are weakly
correlated, with the exception of the archaea where there is no correla-
tion, i.e., the Pearson correlation coefficients are 0.09, 0.31, and 0.33 for
Fig. 5. Comparison of the number of predicted cyclic proteins per proteomes between
the three domains of life. Bars represent the 50th centile (median) number of cyclic
proteins per proteomes in a given domain and the error bars show the 10th centile
and 90th centile.
archaea, bacterial, and eukaryotic proteomes, respectively. The differ-
ences in the fractions of predicted CPs between proteomes can be as
large as three orders of magnitude. The archaea proteomes have overall
relatively high rates of predicted CPs, which is coupled with their rela-
tively compact proteome sizes that vary between about 500 and 5000
proteins. However, there are some fairly large eukaryotic proteomes,
with over 20000 proteins, that also have large fractions of CPs. Among
eukaryotic proteomes, animals have higher ratios of CPs predicted
with high confidence comparedwith fungiwhile plants have the largest
spread of the ratios, ranging from someplants that have no putative CPs
(see caption for Fig. 8) to the largest ratios of cyclic proteins for
proteomes of Violaceae and Rubiaceae (see inset in Fig. 8). These two
plant families are known to have a large number of cyclic proteins,
and our analysis in Fig. 6 confirms this. They are located closest the
top right corner in Fig. 8, which indicates that they have the highest
fraction of predicted CPs among all considered proteomes.

We also investigated the relationship between the fraction of CPs
predicted with high confidence per proteome and evolutionary
speed (see Fig. 9). The evolutionary speed corresponds to the branch
length in the evolutionary tree taken from [40], where larger values
Fig. 6. Similarity of putative CPs from 12 CP-enriched proteomes to the native cyclotides,
bacteriocins, and trypsin inhibitors. Each marker represents an individual putative CPs.
The results are grouped by proteomes (shown on x-axis); five left-most proteomes are
from bacteria and the remaining seven proteomes are from eukaryota. The similarity
(shown on y-axis) was quantified with Euclidian distance between the average AA com-
position of chains in a given CP family (using data from the TRAINING and TEST datasets)
and the AA composition of a given putative CP. Each putative CP that has similarity lower
than a cut-off = 0.265 is assigned to the corresponding color-coded CP family; otherwise
it is assumed to be dissimilar and is shown using red crosses. The cut-off value equals to an
average distance between native CPs that belong to different CP families.



Fig. 7. Comparison of distribution of the Cys composition (fraction of Cys in a given
chain) between native cyclic proteins from TRAINING and TEST datasets and cyclic pro-
teins predicted with high-confidence (score > 0.9) by CyPred in eukaryotic, bacterial,
and archaea proteomes.
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denote proteomes that have a faster evolutionary rate. We were able
to map 57 bacterial, 11 eukaryotic, and 1 archaea (not shown due to
the small sample size) proteomes into the organisms that were in-
cluded in [40]. Data for bacterial and eukaryotic proteomes show a
consistent trend, with a negative correlation between the fraction of
CPs and evolutionary speed, i.e., the Pearson correlation coefficients
equal −0.45 and −0.44 for bacterial and eukaryotic proteomes, re-
spectively. Although the magnitude of the correlation coefficient is
relatively modest, the overall trends across the two domains are sim-
ilar and reveal that proteomes that are enriched in CPs evolve slower
than proteomes that have a few or no cyclic chains.
Fig. 8. Relationship between the fractions of predicted cyclic proteins (y-axis), the fractions
ome size (size of markers) in proteomes across the three domains of life (color of markers).
of proteins (in some bacteria and archaea) and the sizes of markers are proportional to the
ferences; consequently, 61 eukaryotic, 234 bacterial, and 26 archaea proteomes without pr
bottom-right corner shows relation across various phyla/kingdoms in eukaryotes; 2 plants, 4
score > 0.9 were excluded.
4. Conclusions

We designed and empirically tested a novel model, called CyPred,
that predicts whether a protein chain is cyclic. The predictionmodel fo-
cuses on the four currently well-populated families of CPs (cyclotides,
cyclic defensins, circular bacteriocins, and trypsin inhibitors). Prediction
of other families of CPs will be addressed in the future asmore annotat-
ed data becomes available.

Empirical results on TRAINING and TEST datasets showed that
CyPred achievesMCC = 0.95 and sensitivity = 100%, and outperforms
other methods, including sequence alignment, logistic regression, deci-
sion trees, and Naïve Bayes. CyPred correctly identified all 23 cyclic pro-
teins that were deposited into CyBase after the method was developed.
Further tests on a more challenging and larger set of over 1500
non-redundant and high-resolution proteins collected from the PDB
demonstrated that CyPred outperforms commonly used alignment
methods, including BLAST and pairwise alignment. Our method obtains
a MCC of 0.45 compared to 0.41 and 0.18 obtained by BLAST and
pairwise alignment, respectively; the three approaches have the same
sensitivity of 75%. Moreover, CyPred's predictions are characterized by
shorter runtime than BLAST predictions and substantially lower dis-
tances between termini of the predicted cyclic proteins. Themedian dis-
tance for CyPred predictions was 6.5 Å, compared to 11.9 Å and 16.0 Å
for BLAST and pairwise alignment, respectively.

Although CyPred, like other predictors including the commonly used
sequence alignments, may sometimes provide incorrect predictions, it
generates predictions very quickly and offers relatively good predictive
quality. The above features, combined with the pressing need to explore
cyclic proteins on a large scale,motivatedus to use CyPred to estimate the
abundance of cyclic proteins (in particular the four well-represented
families of CPs) in 642 fully sequenced proteomes in the three domains
of cyclic proteins predicted with high confidence (score > 0.9; x-axis), and the prote-
The proteome sizes range from about 55000 (for some eukaryotes) to a few of hundred
proteome sizes. Both axes are in logarithmic scale to enhance visualization of the dif-

oteins predicted with high confidence had to be excluded from this graph. The inset in
animals, 40 fungi, and 14 other eukaryotic proteomes without proteins predicted with



A B

Fig. 9. Relationship between fractions of cyclic proteins predicted with high confidence (score > 0.9; x-axis) and evolutionary speed (y-axis) for proteomes in bacteria (panel A)
and in eukaryote (panel B). Solid lines show linear fit together with the corresponding value of the Pearson correlation coefficient (PCC).
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of life. Our analysis suggested that there are about 3500 putative CPs
among 5.7+million chains collected from these proteomes. Themajority
of the CPs are in bacteria and eukaryotes, and we found 74 proteomes
that are predicted to have 10 or more cyclic proteins. The differences in
the estimated fraction of CPs per proteome are as large as three orders
of magnitude. We found relatively large numbers of CPs that were
predicted with high confidence in eukaryotes and bacteria, with seven
and five proteomes that have 20 or more such cyclic proteins,
respectively; these putative CPs probably include a large number of
cyclotides (in eukaryotes) and bacteriocins (in bacteria). Animal
proteomes have higher ratios of CPs predictedwith high confidence com-
pared to fungi while the highest rates of putative CPs, which likely pri-
marily include cyclotides, were found in certain plants. We also found
that proteomes with higher ratios of CPs evolve at a slower pace than
proteomes that have fewer cyclic chains. Given that only 600+ cyclic
chains are currently characterized and deposited in CyBase, we conclude
that further research is required to fully reveal the scope and appreciate
the potential of this protein family.

A web server and a standalone implementation of CyPred together
with the putative cyclic proteins extracted from the 642 proteomes
are publicly available at http://biomine.ece.ualberta.ca/CyPred/.
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