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Abstract

MicroRNAs (miRNAs) are short endogenous noncoding RNAs that bind to target mRNAs, usually resulting in degradation and
translational repression. Identification of miRNA targets is crucial for deciphering functional roles of the numerous miRNAs
that are rapidly generated by sequencing efforts. Computational prediction methods are widely used for high-throughput gen-
eration of putative miRNA targets. We review a comprehensive collection of 38 miRNA sequence-based computational target
predictors in animals that were developed over the past decade. Our in-depth analysis considers all significant perspectives
including the underlying predictive methodologies with focus on how they draw from the mechanistic basis of the
miRNA–mRNA interaction. We also discuss ease of use, availability, impact of the considered predictors and the evaluation
protocols that were used to assess them. We are the first to comparatively and comprehensively evaluate seven representative
methods when predicting miRNA targets at the duplex and gene levels. The gene-level evaluation is based on three bench-
mark data sets that rely on different ways to annotate targets including biochemical assays, microarrays and pSILAC. We offer
practical advice on selection of appropriate predictors according to certain properties of miRNA sequences, characteristics of a
specific application and desired levels of predictive quality. We also discuss future work related to the design of new models,
data quality, improved usability, need for standardized evaluation and ability to predict mRNA expression changes.
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Introduction

MicroRNAs (miRNAs) are abundant and short endogenous
noncoding RNAs made of 19–23 nt that bind to target mRNAs, typ-
ically resulting in degradation and translational repression of
mRNAs. The fine-tuning of gene regulation in biological processes
and disease pathways by these small RNAs recently attracted sig-
nificant attention; the number of related articles has grown expo-
nentially over the past decade (Supplementary Figure S1).
MiRNAs are used to study signal transduction and pathogenesis
of genetic [1–3], neurodegenerative [4] and metabolic diseases [5]
and cancer [6, 7]. They are also used in preclinical drug

development for target validation and lead optimization, and a
few synthetic miRNAs entered clinical trials [8]. Development of
the miRNA-directed novel therapeutics is already under way [9,
10] and miRNA-based targeting in cancer is not far behind [11, 12].

MiRNAs account for about 1% of human genes and are
shown to regulate >60% of genes [13]. On average, miRNAs bind
to hundreds of target sites [14], with some that have a few thou-
sand sites [15]. The number of known miRNAs has substantially
increased during the past few years, and based on release 21 of
the miRBase database [16], it currently stands at >35 000 in
>200 species. Unfortunately, the annotation of their targets falls
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behind as only about 1000 miRNAs (3% of known miRNAs) have
validated targets. Moreover, the number of curated targets per
miRNA (Supplementary Table S1) is far lower than their esti-
mated count. Traditionally, the targets are annotated using
low-throughput experimental biochemical assays including
quantitative polymerase chain reaction (qPCR), luciferase assay
and western blot. In recent years, a few high-throughput experi-
mental methods to annotate miRNA targets were developed.
They include microarrays and RNA sequencing that use gene
expression levels and pulsed SILAC (pSILAC; stable isotope
labeling by/with amino acids in cell culture) that focus on pro-
tein expression levels. These annotations are performed by
assuming that miRNA targets (genes or proteins) with large
reduction in expression levels in miRNA-overexpressed cells
are functional (i.e. they are downregulated) [17]. One drawback
of such approach to annotate miRNA targets is that it requires a
threshold of the expression changes, which may vary depend-
ing on specific miRNA–mRNA pair, cell types, culture condi-
tions, etc. Another drawback is that these experiments are done
for per single miRNA and are difficult to scale to cover all known
miRNAs. Lastly, these annotations are at the gene level, i.e. they
indicate whether a given mRNA interacts with a given miRNA,
in contrast to the duplex level, i.e. whether a given fragment on
mRNA (binding site) interacts with a given miRNA. The latter is
motivated by the fact that knowledge of the binding sites is im-
portant for the development of gene therapeutics [18, 19].
Cross-linking immunoprecipitation (CLIP)-based techniques at-
tracted attention in recent years, as they can specify the sites
targeted by miRNAs. However, these methods are not miRNA
specific, which means that they find binding sites of the
Argonaute (Ago) protein that facilitates miRNA:mRNA binding
but without coupling them to specific miRNAs.

In parallel to the experimental efforts, dozens of computa-
tional miRNAs target predictors, which find targets from the
mRNA and miRNA sequences, have been developed since the
first method was released in 2003 [20] (Supplementary Figure S2).
The underlying principle is to use data generated by (usually low-
throughput) experimental methods to build predictive models,
which in turn can be used to perform high-throughput predic-
tions for specific miRNAs of interest that lack the experimental
data. The results generated by these (base) predictors can be fil-
tered or combined together by meta predictors, i.e. methods that
refine predictions of the base methods such as Pio’s approach
and myMIR [21, 22]. However, the meta predictors often lack inte-
gration with the base predictive models (they were developed
separately from the base methods and require manual collection
of the predictions from the base methods) and they rely on avail-
ability of results generated by multiple base methods, which
makes them more challenging to use. The targets can be also pre-
dicted computationally by ranking the gene expression or CLIP-
based data, but in this case the inputs are the experimental data,
which limits their applications. In this review we focus on the
computational miRNAs target predictors that require only the
knowledge of the miRNA and mRNA sequences (sequence-based
miRNA target prediction), excluding the meta methods.

The field of sequence-based miRNA target prediction has
reached maturity, as evidenced by the declining trend in the de-
velopment efforts (Supplementary Figure S2). After the initial
spike in 2005 when eight methods were developed, more recent
years have seen on average only three new methods per year.
These predictors differ on many aspects including their underly-
ing predictive methodology (mechanistic details of miRNA–mRNA
binding that they consider including use of complementarity of
base pairing, site accessibility and evolutionary conservation),

empirical evaluation (data sets and evaluation procedures; type of
predictive model they use), usability (availability and ease of use)
popularity and impact and predictive performance. Availability of
many difficult-to-compare methods makes it challenging for the
end users to select a proper tool and prompts the need for contri-
butions that summarize and evaluate these methods to guide the
users and to help the developers to revitalize this field.
Supplementary Table S2 compares existing reviews of the miRNA
target predictors based on the inclusion of discussion and ana-
lysis of the abovementioned aspects. We observe that these re-
views summarized the latest miRNA target predictors at the time
of their publication and compared or at least described the meth-
odology used by these predictors. Most of these contributions also
discussed availability of predictors and some aspects of their us-
ability, focusing on the species that they were designed for.
However, other important aspects of usability, such as the num-
ber of input parameters (that determines flexibility of use for an
expert user), the format of the input miRNAs and genes, the
ability to predict for novel miRNA sequences, the format of the
outputs and the number of predicted targets (which differs sub-
stantially between methods), were omitted. They also neglected
to discuss popularity and impact of the predictors and details con-
cerning their evaluation. Only three relatively older reviews pro-
vided comparative evaluation. The first review by Rajewsky
assessed nine methods on 113 experimentally annotated
miRNA–target pairs, but only in Drosophila [23]. Review from 2006
by Sethupathy [24] used a small set of 84 annotated miRNA–target
pairs and lacked assessment on the nonfunctional pairs (whether
these methods can correctly recognize lack of interaction). The
latest comparative review from 2009 by Alexiou [25] used 150
miRNA–target duplexes but considered only relatively old meth-
ods that were published in 2007 or earlier. Moreover, the evalu-
ation criteria included only sensitivity and precision, which does
not cover quality of prediction of the nonfunctional pairs. To sum-
marize, prior reviews of the sequence-based miRNA target predic-
tion methods suffer from lack of or limited and outdated
empirical evaluation, inclusion of a relatively small set of pre-
dictors, lack of or shallow treatment of certain aspects, such as
usability and impact of the prediction methods, evaluation pro-
cedures and practical insights for the end users and developers.

To this end, we provide a comprehensive and practical sum-
mary of this field. We introduce and discuss 38 base predictors of
miRNA targets in animals including recent methods. The focus on
animals is motivated by an observation that predictions of targets
in plants are relatively easy and are considered a solved problem
[26, 27]. We provide analysis from all key perspectives that are rele-
vant to the end users and developers including overview of the
mechanistic basis of miRNA–mRNA interaction and how this infor-
mation is incorporated into the underlying predictive methodolo-
gies. We also give detailed summary of evaluation, usability and
popularity/impact of the 38 predictors. As one often omitted di-
mension, we discuss the scope of the outputs, i.e. whether a given
method provides propensity score (probability of binding) or only a
binary outcome (binding versus nonbinding), and whether it pre-
dicts positions of the miRNA binding site on the target gene. We
are the first to conduct an empirical comparative assessment on
both low-throughput and high-throughput experimental data for
the predictions at the miRNA:mRNA duplex and gene levels. We
use four benchmark data sets and consider seven representative
methods including recent predictors. We systematically evaluate
both binary and (for the first time) real-valued propensity to com-
pare multiple methods. Moreover, we use our in-depth analytical
and empirical review to provide practical insights for the end users
and developers.
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Materials and methods
Benchmark data sets

There are five databases of experimentally validated and cura-
ted miRNA targets (Supplementary Table S1). Only three of
them provide information necessary to characterize the
miRNA:mRNA duplexes: TarBase, miRecords and miTarBase.
miTarBase 4.5 stores the largest number of >5000 miRNA:target
pairs [28], with large number of new data from sequencing effort
in TarBase v6.0 [29]. miRecords includes 2574 interactions [30].
miR2Disease [31] and miRCancer [32] focus on selected diseases
associated with miRNAs and also do not include information
about miRNA:mRNA duplexes.

We developed four benchmark data sets using the miRTarBase
repository, gene expression data from Gene Expression Omnibus
(GEO) and pSILAC. miRTarBase provides the largest number of
positive (functional) and negative (nonfunctional) miRNA:mRNA
complexes; the functional miRNA–mRNA interactions are defined
as those where mRNA is downregulated by the corresponding
miRNA. GEO is the largest source of microarray, sequencing and
other forms of high-throughput genomics data [33]. pSILAC is a
technique for quantitative proteomics [34]. Our data sets cover
human and mouse, which is motivated by research interests in
using miRNAs in human health–related applications [35, 36] and
our objective to include the largest possible number of predictors,
i.e. relatively few methods work on other species.

The first data set, called TEST_duplex, is used to assess the
target site prediction at the duplex level. We selected targets that
were validated by at least one of the low-throughput
experimental methods, which are considered as strong evidence:
qPCR, luciferase assay or western blot. We focused on targets that
were released recently to limit overlap between our benchmark
data and data used to develop the evaluated predictors. The func-
tional targets deposited to miRTarBase after 2012 (after the new-
est method included in our evaluation was published) and all
nonfunctional duplexes from human and mouse were included;
we used all nonfunctional targets because of their small number.
The second, TEST_gene data set focuses on the evaluation at the
gene level. We selected miRNAs that have both functional and
nonfunctional genes in miRTarBase and for which the functional
genes were validated after 2012.

Furthermore, we extend our evaluation to analyze whether
the current methods are capable of predicting at the cell level
using two additional data sets that rely on the annotations from
the high-throughput methods. TEST_geo data set is based on re-
sults from three microarray-based experiments: GSE6838,
GSE7864 and GSE8501. The interactions for 25 miRNAs were
annotated the contrasting expression arrays before miRNA trans-
fection and at 24 h after miRNA mimics were transfected [37–39].
As recommended in [40, 41], we remove the genes for which the
expression magnitudes are below the median in the control
transfection experiments. TEST_psilac data set was originally de-
veloped in a proteomic study that used pSILAC technique [34, 42].
Previous studies assume that genes that are more repressed
(characterized by higher drop in the expression levels) are more
likely to be targeted by the transfected miRNA. These studies use
a certain fraction of the genes with the highest magnitude of the
change in the expression levels (repressed genes) as functional
and the same fraction of the genes for which expression levels
have increased by the largest margin (overexpressed genes) as
nonfunctional [40, 43]. Instead of using an arbitrary fraction value
to define the functional and nonfunctional targets, we vary this
value between 1% and 50%. Detailed summary of the four data
sets is shown in the Supplementary Table S3. The TEST_duplex

and TEST_gene data sets are given in the Supplementary Tables
S4 and S5, respectively.

The comprehensiveness of our tests stems from the fact that
we consider targets as gene segments (TEST_duplex data set),
genes (TEST_gene and TEST_geo data sets) and proteins
(TEST_psilac data set). We also use different source of information
that is used to perform annotations including low-throughput
assays (TEST_duplex and TEST_gene data sets), microarrays
(TEST_geo data set) and pSILAC (TEST_psilac data set).

Considered miRNA target predictors

We selected several representative predictors for the empirical
evaluation. The selected methods have to be conveniently ac-
cessible to the end users via a web server or a precomputed
database. They also have to cover human and mouse, predict
target sites (to perform evaluation at the duplex level) and pro-
vide propensity (probability) of the interaction. Using these fil-
ters we selected eight methods (see Supplementary Table S6).
We use their latest versions of these methods, except for
PicTar2, which is substantially different from PicTar and no lon-
ger qualifies as a sequence-based predictor. PicTar 2005 was
first published in 2005; five methods including TargetScan 6.2,
miRanda 2010, EIMMo3, miREE and mirTarget2 v4 were pro-
posed or updated between 2010 and 2012; and two in 2013:
DIANA-microT-CDS and miRmap v1.1. We excluded miREE
from the evaluation because this method did not predict any
targets on our TEST_duplex and TEST_gene data sets. The re-
maining seven methods use a diverse set of predictive models,
with four that use heuristic scoring functions and three that use
the machine learning models including Bayesian classifier, sup-
port vector machine (SVM) and regression. miRmap was built
based on gene expression data, while the other methods were
derived based on the low-throughput experimentally validated
data. We collected predictions for these methods using either
their online web servers or downloadable precomputed predic-
tions. We recorded their predicted binding targets (sequences or
positions) and the corresponding propensities.

Criteria for empirical evaluation

We used a comprehensive set of evaluation measures to assess
the predictions of the miRNA:target duplexes and miRNA–gene
pairs. Each prediction takes two forms: binary value that indi-
cates whether a given duplex or miRNA–gene pair is predicted
to be functional; and the real-valued probability (propensity) of
a given predicted interaction.

The binary predictions were assessed using the following
seven measures:

Sensitivity ¼ TP
TPþ FN

; Specificity ¼ TN
TNþ FP

; Precision ¼ TP
TPþ FP

;

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ;

SNR functional ¼TP
FP

;SNR non functional ¼TN
FN

;

PNR ¼ TPþ FP
TPþ FN

¼Sensitivity
Precision

where true positives (TP) and true negatives (TN) are the counts
of correctly predicted functional and nonfunctional miRNA tar-
gets, respectively, and false positives (FP) and false negatives
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(FN) are the counts of incorrectly predicted functional and
nonfunctional miRNA targets, respectively. The values of the
Matthews Correlation Coefficient (MCC) range between �1 and
1, with 0 for random predictions and higher values denoting
more accurate predictions. MCC provides a robust measure-
ment for skewed data sets (when number of positive and nega-
tive outcomes in unbalanced), which is the case with our
TEST_duplex data set. Signal-to-Noise Ratio (SNR) of correctly
over incorrectly predicted functional targets was calculated in
several prior works [20, 44–47]. We computed the SNR of pre-
dicted functional (SNRþ) and also nonfunctional samples
(SNR�) to provide a complete set of measures. Given the skewed
counts of native (true) functional and nonfunctional samples in
our data sets, we normalized the SNR values as follows:

SNRþduplex¼TP duplex
FP duplex

,
P duplex
N duplex

;SNR�duplex¼TN duplex
FN duplex

,
N duplex
P duplex

;

SNRþ gene ¼TP gene
FP gene

,
P gene
N gene

;SNR� gene ¼TN gene
FN gene

,
N gene
P gene

where P_duplex (P_gene) and N_duplex (N_gene) are the num-
bers of native (true) functional and nonfunctional duplexes
(genes) in the TEST_duplex (TEST_gene) data set. The overall
count of predicted functional targets is assessed using
Predicted-to-Native positive Ratio (PNR)¼predicted_functional_
count/true_functional_count. PNR indicates whether a given
predictor overpredicts (PNR value > 1) or underpredicts (PNR
value < 1) the number of functional miRNA targets.

The real-valued propensities were assessed using the re-
ceiver operating characteristic (ROC) curve, which represents
relation between true-positive rates (TPR)¼TP/(TPþ FN) and
false-positive rates (FPR)¼ FP/(FPþTN). The ROC curves reflect a
trade-off between sensitivity and specificity, providing compre-
hensive information about the predictive performance. We
compute the area under the ROC curve (AUC) that ranges be-
tween 0 (for a method that does not predict TP) and 1 (for a per-
fect predictor), with 0.5 denoting a random predictor.

Except for the PNR and SNR�, which we introduced, and the
normalization of the SNRþ and SNR� values that is motivated
by the unbalanced nature of the benchmark data sets, the other
criteria were used to evaluate some of the prior predictors
[48–53] (see column ‘Criteria’ in Table 2).

We also evaluate statistical significance of differences in
predictive performance between predictors. We randomly
choose 50% of a given data set, calculate the predictive perform-
ance and repeat this 10 times. The corresponding 10 pairs of re-
sults (to compare a given pair of predictors) are evaluated with
the student’s t-test if distributions are normal; otherwise we
use the Mann–Whitney test. The distribution type is verified
using the Anderson–Darling test with the P-value of 0.05.

Results
Considered miRNA target predictors

We consider 38 sequence-based methods, from the earliest pre-
dictor that was published in 2003 to the latest method that was
released in 2013; chronological list of methods is shown in
Table 1. We exclude the meta methods (because they are incon-
venient to use and require availability of results from base
methods) and approaches that rely on the experimental data.
Most of the miRNA target predictors were developed by differ-
ent research groups, with several groups that continue

maintaining and updating their algorithms. Cohen’s group at
EMBL proposed the first miRNA target predictor in 2003 [20] and
updated it in 2005 [62]. TargetScan and TargetScanS were de-
veloped by Bartel at MIT and Burge at Cambridge [13, 39, 44, 56].
Another popular tool, DIANA-microT, which was created by
Hatzigeorgiou group, has been recently updated to version 5.0
[77–79]. Rajewsky’s lab published their predictor PicTar in 2005
and updated it in 2011 [46, 80].

Predictive methodologies and mechanistic basis of
miRNA–mRNA interaction

Table 1 summarizes types of predictive models and the underly-
ing details of the miRNA–mRNA interactions that they use to
predict miRNA targets. There are two categories of predictive
models: heuristic and empirical. The heuristic models use
screening algorithms that search positions along the mRNA se-
quence and scoring functions that filter targets by combining
values of several inputs in an ad hoc manner. Early predictors
applied heuristic approaches owing to the lack of sufficient
amount of data to build the empirical knowledge-based models.
Even today the scoring function-based designs are dominant (19
of 38 methods) because of their easy setup, flexibility to inte-
grate different types of inputs and computational efficiency.
The empirical models are inferred from a training data set.
Given the success of machine learning-based models in bio-
informatics [81, 82] and growing size of the experimental data,
since 2006 progressively more predictors use empirical machine
learning models including SVMs, decisions trees and artificial
neural networks (ANNs).

The predictive models use inputs that are derived from the
knowledge of mechanistic details of the miRNA–mRNA inter-
actions. The most commonly used predictive input is the com-
plementarity of the base pairing between miRNA and mRNA. In
contrast to the near-perfect base pairing in plants [26], animal
miRNAs usually bind mRNAs with only some positions that are
paired [83]. Complementarity of the base pairing in the seed re-
gion (the first eight nucleotides at the 50 end of miRNAs) is par-
ticularly important; only six methods did not consider it. To
compare, 15 methods did not consider complementarity in the
nonseed region. The major types of complementarity in the
seed include 6-mer (six consecutive matches between second
and seventh positions from the 50 end of miRNA), 7-mer-A1 (ex-
tends 6-mer with an adenine (A) nucleotide at the first position
of target 30 end), 7-mer-m8 (seven consecutive matches from
second to eighth position of miRNA) and 8-mer (combines
7-mer-m8 and 7-mer-A1). Some methods consider binding of
the first eight nucleotides as important but do not restrict it to
particular seed types. Moreover, several predictors (HuMiTar
[48], TargetMiner [49], MultiMiTar [70], miREE [71] and
SuperMirTar [74]) also suggest specific positions that are more
useful for the prediction. These methods, except for HuMiTar,
use machine learning models and empirical feature selection to
find these positions. One other exception is that TargetBoost
[61], RNA22 [15] and SVMicrO [50] use patterns of complemen-
tarity generated from native miRNA:mRNA complexes, rather
than focusing on the seed types.

The site accessibility and evolutionary conservation inputs
are used to increase specificity. The accessibility is relevant be-
cause miRNA:mRNA interaction requires binding of a relatively
large RNA-induced silencing complex [84]. This input is quanti-
fied with content of adenine and uracil nucleotides (AU content)
and free energy that estimates stability of the mRNA sequences.
Most target predictors use existing software, like Vienna RNA
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package [85], mFold [86], DINAMelt [87] and sFold [88], to calcu-
late the free energy. Authors of RNAhybrid claim that their own
approach prevents intramolecular base pairing and bulge loops,
which leads to improved estimates of the free energy [47]; this
approach was also used in the predictor by Stark et al. [62] and
in SuperMirTar [74]. Most predictors calculate the free energy of
the miRNA–target duplexes. However, several methods
(MicroTar [64], STarMir [67], PITA [66], TargetMiner [49], SVMicrO
[50], PACMIT [51] and miREE [71]) calculate arguably more rele-
vant relative energy, which is the hybridization energy gained

by miRNA:mRNA binding minus the disruption energy lost by
opening up the local mRNA structure of the target. Several stud-
ies found that enriched AU content in mRNA 30 untranslated re-
gions (UTRs) is important for interaction with miRNAs [89–91].
This was exploited in 2003 in TargetScan, even before experi-
mental data to that effect was published [39]. Since then several
methods have used this information (see ‘AU %’ column in
Table 1). Use of the evolutionary conservation of miRNA targets
is motivated by a premise that ‘similar’ species should share
common miRNAs and their targets. However, this leads to

Table 1. Methodologies and the corresponding mechanistic basis of miRNA–mRNA interaction used by the miRNA target predictors

Predictor Reference Year
published

Model type Complementarity Site accessibility Conservation Multiple
sites

Features

Seed Nonseed Free energy AU % Count Selection

Stark et al. [20] 2003 Screening 1–8 miRNA sizeþ5 mFold � a d � � �

TargetScan [44] 2003 Score 7mer-m8 to 1st mismatch Vienna RNA � m r z � � �

DIANA-microT [54] 2004 Score � 38 nt � m � � �

RNAhybrid [47] 2004 Score 6mer � RNAhybrid � a d � � �

miRanda [55] 2004 Score 7mer-m8 � Vienna RNA � f m r � � �

Rajewsky’s [23] 2004 Score 1–8 � mFold � d � � �

TargetScanS [56] 2005 Score 6mer � � � c g h m r � � �

Robins [57] 2005 Score 2–8 � Vienna RNA � � � � �

Xie et al. [58] 2005 Score 8mer � � � g h m r � � �

PicTar [46] 2005 Score 7mer-A1, 7mer-m8 Remaining mFold � d � � �

MovingTarget [59] 2005 Screening 1–8 50 nt DINAMelt � d � � �

Microlnspector [60] 2005 Score 7mer-A1, 7mer-m8 � Vienna RNA � � � � �

TargetBoost [61] 2005 GP pattern 30 nt mFold � � � � �

Stark et al. [62] 2005 Score 6mer 10th nt to end RNAhybrid � d � � �

miTarget [63] 2006 SVM 2–7 20 nt Vienna RNA � � � 15 Wrapper
RNA22 [15] 2006 Score � Pattern � � � � � �

MicroTar [64] 2006 Score 7mer-A1, 7mer-m8 � Vienna RNA � � � � �

EIMMo [65] 2007 Bayesian 7mer-A1, 7mer-m8 � � � � � � �

STarMir [66] 2007 Score � miRNA size sFold � � � � �

PITA [67] 2007 Score 6mer � Vienna RNA � � � � �

TargetRank [68] 2007 Score 6mer � � � � � � �

MirTarget2 [43] 2008 SVM 6mer � Vienna RNA � � � 6 Filter
HuMiTar [48] 2008 Score 6mer 9–13, 14–20 nt � � � � � �

TargetMiner [49] 2009 SVM 6mer 13–16 nt � � � � 30 Filter
TargetSpy [52] 2010 DS � All Vienna RNA � � � 7 Filter
Mtar [53] 2010 ANN 6mer Remaining Vienna RNA � � � 16 �

mirSVR [40] 2010 Score 2–7 � miRNAbind � � � � �

SVMicrO [50] 2010 SVM 5 patterns Remaining Vienna RNA � � � 39 Wrapper
RepTar [69] 2010 Screening 6mer Remaining Vienna RNA � � � � �

PACMIT [51] 2011 Screening � Remaining Vienna RNA � � � � �

MultiMiTar [70] 2011 SVM 6mer 13–16 nt � � � � 39 Filter
miREE [71] 2011 SVM 1–8 13–16 nt, remain Vienna RNA � � � 25 Filter
miRcode [72] 2012 Screening 7mer-A1, 7mer-m8 � � � P M other V � � �

miRmap [41] 2012 Regression 6mer Remaining Vienna RNA � M � 12 Filter
HomoTarget [73] 2012 ANN 1–8 Remaining � � � � 12 Filter
SuperMirTar [74] 2013 Graph 6mer 12–17 nt RNAhybrid � � � � �

Fujiwara’s [75] 2013 Cis-element � � � � � � � �

MIRZA [76] 2013 Bayesian 1–8 Remaining � � � � � �

We summarize key aspects including model type, region that is searched to predict targets and inclusion of several mechanistic properties that are known to provide

useful inputs for prediction, such as complementarity between miRNA and mRNA, site accessibility and conservation across species; � means that a given aspect was

irrelevant or not considered. Predictors are sorted in the chronological order. ‘Model type’ describes type of predictive model type including screening of the mRNA se-

quence, heuristic scoring function and empirically designed genetic programming (GP), support vector machine (SVM), decision stump (DS) and artificial neural net-

work (ANN) models. ‘Complementarity’ section indicates positions for which complementarity of base pairs between miRNA and mRNA was explored in the seed (first

eight positions on the miRNA) and nonseed regions. Four common seed types are 6-mer, 7-mer-A1, 7-mer-m8 and 8-mer; they have consecutive complementary base

pairs on these positions. ‘1–8’, ‘2–8’, etc. annotations mean that these do not have to be consecutive complementary base pairs. Nonseed denotes the center and 30 end

of the miRNA region where e.g. 38 nt means the size of the targets is up to 38 nt; 14–20 nt indicate the nonseed regions is considered from the 14th to 20th nucleotide;

‘remaining’ refers the region from the end of the seed to the end of the miRNA. ‘Site accessibility’ describes inclusion of two aspects: AU content around the targets

and free energy. If free energy is used, then the name of the package used to calculate it is given (if known), otherwise � is used. ‘Conservation’ column indicates spe-

cies that were used in calculation of conservation: anopheles (a), chicken (c), drosophila (d), fungi (f), dog (g), human (h), mouse (m), nematode (n), rat (r), zebra fish (z),

primate (P), mammal (M) and vertebrate (V). If conservation is used but species are unknown, then � is used. Methods that consider prediction of multiple sites on the

same gene are annotated with � in the ‘Multiple sites’ column. For machine learning methods, the ‘features’ column indicates number of used features and whether

and what feature selection approach was used; � denotes the features are used but the count is unknown.
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omission of the nonconserved targets [64, 92]. The value of the
inclusion of the target conservation remains an open question;
Table 1 reveals that conservation is used less frequently in re-
cent years. Still, methods that search for targets in long coding
DNA segments (CDSs) use conservation to improve specificity

[59, 72, 93, 94]. Based on an observation that targeting of mul-
tiple sites enhances the mRNA regulation [95, 96], 17 of the 38
methods increase the propensity of binding to a target gene
with multiple predicted sites (see ‘Multiple sites’ column in
Table 1).

Table 2. Protocols for evaluation of the miRNA target predictors

Predictor Reference Benchmark data sets Evaluation procedures

Species Number of
training
duplexes

Number
of test
duplexes

Nonfunctional
samples

Number
validated
targets

Criteria Statistical
test

Functional
analysis

Stark et al. [20] d � 5þ Shuffled miRNA 6 SNR,
conservation

� �

TargetScan [44] h m p � Gene level Shuffled miRNA 11 FPR, SNR � �

DIANA-microT [54] h � 11þ Shuffled miRNA 0 SNR � �

RNAhybrid [47] d � 11þ Shuffled miRNA 0 SNR � �

miRanda [55] h z � 8þ Shuffled miRNA 0 FPR � �

Rajewsky’s [23] d 25 Gene level Random mRNA 0 FPR � �

TargetScanS [56] V � � Shuffled miRNA 0 SNR � �

Robins [57] d � � � 10 � � �

Xie et al. [58] h � � � 12 � � �

PicTar [46] d � 19þ Shuffled miRNA 0 SNR,
sensitivity

� �

MovingTarget [59] d � � � 3 � � �

Microlnspector [60] d � � � 0 � � �

TargetBoost [61] d n 36þ, 3000– � Random mRNA 0 AUC � �

EMBL [62] d � Gene level Shuffled miRNA 8 � � �

miTarget(43) [63] h 152þ, 246� Same with training 4-mer on nonpositives 0 AUC � �

RNA22 [15] d h n m � 21þ Shuffled miRNA 168 FPR � �

MicroTar [64] d m n � 63, 13 and 43þ � 0 sensitivity � �

EIMMo [65] d n z M � 120 in all Validated 0 sensitivity,
specificity

� �

STarMir [66] d n � 39þ, 12� Validated 0 FPR, SNR � �

PITA [67] d � 123þ, 67� Validated 0 AUC � �

TargetRank [68] V � � � 0 � � �

MirTarget2 [43] c g h m r � � Validated 0 AUC � �

HuMiTar [48] h 66 in all 39 and 190 in all Validated 0 AUC, SNR � �

TargetMiner [49] h 289þ, 100� 187þ, 59� Microarrayþvalidated 0 MCC, ACA � �

TargetSpy [52] c d h m r 3872þ, 4540� 61þ, 59�/102þ, 88� pSILACþvalidated 0 AUC � �

Mtar [53] h 150þ, 200� 190þ, 200� Validated 0 AUC � �

mirSVR [40] h Gene level Gene level microarrayþCLIP 0 AUC � �

SVMicrO [50] h m r 324þ, 3492� Gene level Microarray 0 AUC � �

RepTar [69] h m v 197 and 22 in all Same with training Validated 0 precision,
accuracy

� �

PACMIT [51] d h 137þ, 83�/2406þ,
13400�

Same with training pSILACþvalidated 0 specificity
and pROC

� �

MultiMiTar [70] h 289þ, 289� 187þ, 57� pSILACþvalidated 0 MCC, ACA � �

miREE [71] d h m n r v z 324þ, 351 2 new data sets pSILACþPAR-CLIPþ
validated

0 pROC � �

miRcode [72] V � � � 0 � � �

miRmap [41] h m Gene level Same with training Microarray; CLIP 0 � � �

HomoTarget [73] h 112 pos þ 313 neg Same with training Validated 0 AUC � �

SuperMirTar [74] h m 2860 human,
582 mouse

674þ, 15132� pSILACþvaliated 0 AUC � �

Fujiwara’s [75] h � 155þ Validated 0 pROC � �

MIRZA [76] all available Gene level Same with training Ago2-CLIP 0 Sensitivity � �

We describe the benchmark data sets used to design and test the predictors including the target ‘species’, size of the training and test data sets and the source of the

nonfunctional samples. � means that a given aspect was irrelevant or not considered. The ‘species’ are anopheles (a), chicken (c), drosophila (d), fungi (f), dog (g),

human (h), mouse (m), nematode (n), rat (r), virus (v), zebra fish (z), mammals (M) and vertebrates (V). ‘Number training/test duplexes’ columns give the number of

functional (þ) and nonfunctional (2) samples if they were provided; otherwise �is used. The ‘nonfunctional samples’ column describes the sources of the nonfunc-

tional examples; they include either targets with validated lack of interaction with a given miRNA or artificially generated (using shuffling or randomization) samples.

We also describe procedures used to assess the predictive performance of the predictors. This includes the number of the experimentally validated targets used, crite-

ria used to measure the performance and whether statistical tests and functional analysis were performed. ‘Number of validated targets’ shows the number of experi-

mentally tested predicted targets. ‘Criteria’ lists the criteria used to assess the programs: signal-to-noise ratio (SNR), false positive rate (FPR), area under ROC curve

(AUC), Matthews correlation coefficient (MCC) and average class-wise accuracy (ACA). Methods for which predictions were assessed with statistical tests of significance

and for which functional analysis was performed are indicated with � in the ‘statistic test’ and ‘function’ columns, respectively.
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The machine learning models often use empirical
approaches to select inputs (features) that are relevant to the
prediction of miRNA targets. Table 1 shows that the count of
the selected features ranges from a few to a few dozen; these
features quantify specific aspects related to the comple-
mentarity, accessibility and conservation. The considered
feature-selection approaches include wrapper- and filter-based
methods. The former approach searches for the best subset of
features to maximize predictive performance of a given
machine learning model. Filters rank features according to a
metric, like F-score or correlation, and select a predefined
number of the top-ranked features.

Evaluation protocols

Benchmark data sets used to develop and test the predictors
and the corresponding evaluation procedures are summarized
in Table 2. Many early methods were designed/evaluated using
data only from Drosophila owing to limited availability of vali-
dated miRNA targets. However, even some early predictors
(TargetScan [33], DIANA-microT [44], miRanda [97] and
TargetScanS [56]) considered higher eukaryotes. More recent
methods generally cover more species. Interestingly, in 14 cases
predictors were validated on test data sets but there was no
mention about data being used to design these predictive mod-
els. This may mean that the test data was used in the design,
e.g. to set thresholds and parameters. HuMiTar was the first
method that was properly tested on an independent (from the
training set) data set [48]. Even with the currently available rela-
tively large number of validated miRNA targets, only a few re-
cent predictors (TargetMiner [49], TargetSpy [52], Mtar [53],
MultiMiTar [70] and miREE [71]) were trained and tested on dif-
ferent (independent) data sets. Moreover, the sizes of some
training data sets are relatively small (a few dozen samples) and
some data sets are unbalanced and have more artificial
nonfunctional targets than the functional targets; some data
sets use only a few validated nonfunctional targets. A particu-
larly challenging aspect is a low number of experimentally vali-
dated nonfunctional samples, i.e. mRNA validated not to
interact with a given miRNA. Several early methods used artifi-
cial nonfunctional targets created by either shuffling miRNAs
sequences or by randomization of mRNAs; these approaches
were criticized to generate unrealistic samples [49]. More recent
attempts scan the mRNA transcripts where validated target
sites or Ago-binding sites are masked and use the target seg-
ments with at least 4-mer matches in the seed region or one
mismatch or G:U wobble in the 6-mer seed as the nonfunctional
samples [40, 53, 63]. This approach assumes that the knowledge
of functional targets or Ago-binding sites is complete, while
in fact these computationally generated nonfunctional
miRNA–mRNA pairs could be functional. Some recent methods
label overexpressed genes when particular miRNA mimics are
added to cells as nonfunctional, but data from this limited num-
ber of miRNAs may be biased.

These various attempts to generate the benchmark data sets
may result in mislabeling, overfitting the training data sets and
generation of unrealistic (possibly inflated) evaluation of pre-
dictive performance.

We also analyze the evaluation procedures. The early pre-
dictors were evaluated primarily based on SNR between the
number of predicted targets in functional genes and in true or
artificial nonfunctional genes. PicTar was the first to report sen-
sitivity, based on only 19 native targets. TargetBoost and
miTarget were the first to use more informative ROC curves, but

with the caveat of using artificial nonfunctional targets. The cri-
teria used to evaluate predictive quality vary widely between
methods. Some measures are biased by the composition of the
data set (e.g. accuracy and precision) and provide incomplete
picture (e.g. sensitivity without specificity and vice versa). This
makes comparisons across predictors virtually impossible. The
standards to compare between methods are also relatively low,
as in most cases evaluation did not include statistical tests. On
the positive side, the assessment of several methods included
experimental validation of targets. The authors of RNA22
method performed a large-scale validation and claimed that 168
of 226 tested targets were repressed; however, they did not find
whether these targets were bound by the specific miRNAs.
Some primarily older methods also included functional analysis
of the predicted targets.

Usability and impact

Table 3 shows that miRNA target predictors are available to the
end users as web servers, stand-alone packages, precomputed
data sets and upon request. The 21 methods that are provided
as web servers are convenient for ad hoc (occasional) users. The
13 stand-alone packages are suitable for users who anticipate a
high-throughput use and/or who would like to include them
into their local software platforms; most of these are also avail-
able as the web servers. The convenient to collect precomputed
results are provided for 10 methods. However, these predictions
may not be updated timely and do not include results for novel
miRNAs.

The ease of use is affected by the use and number of param-
eters, scope of predictions, format of inputs and ability to pre-
dict for novel miRNAs. The prediction methods rely on
parameters that can be used to control how prediction is per-
formed, e.g. the seed size, the number of allowed guanine–uracil
wobbles and mismatches, selection of mRNA regions that are
searched and the cutoffs for free energy and predicted propen-
sity score. These parameters are usually set based on experi-
ence of the designer or user of a given method, or are optimized
empirically using a data set. Eleven methods hardcode and hide
these parameters from the users, which arguably makes them
easier to use but also reduces ability of the end users to tune the
models for specific needs or projects. RNAhybrid [47] offers
eight (the most) parameters for tuning; RepTar and PITA [67, 69]
have seven and five parameters, respectively; and eight pre-
dictors allow adjusting between one and four parameters.
Importantly, these predictors provide default values for the par-
ameters, so they can be seamlessly used even by layman users.

A ‘user-friendly’ method should allow predicting a wide
range of species and target types. Most of the early methods
only allow predictions in the 30UTRs, except for RNAhybrid [47],
miRanda [98], DIANA-microT-CDS [79] and PACMIT-CDS [94],
that also search coding DNA sequences (CDSs) and TargetScanS
[56] and Xie’s method [58] that consider open reading frames
(ORFs) and promoters, respectively. As more miRNA targets
were discovered beyond the 30UTRs [91, 99], several newer pro-
grams (RNA22 [15], STarMir [66], Mtar [53] and miRcode [72]) pre-
dict in the 30UTRs, CDSs and 50UTRs. A few methods (RNAhybrid
[47], MicroInspector [60], MicroTar [64] and MIRZA [100]) do not
limit species for which they predict. They accept target genes as
RNA sequences or provide stand-alone packages where users
can prepare their own mRNA database. Most of the other pre-
dictors are constrained to human, mouse, fly and worm. The
latter two were the first two species that were used to study
miRNA targets. Seven methods consider a more restrictive set
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of species including human and mouse, and four of them also
predict for rat or chicken. Four recent methods (HuMiTar [48],
TargetMiner [49], MultiMiTar [70] and miRcode [72]) focus on
human mRNAs, and TargetBoost [61] works only in worms.

Next, we analyze format of the inputs. The target genes can
be specified by the name or identifier, by the mRNA sequence or
are preloaded and the user is not allowed to enter them.
Entering the name (e.g. GenBank Accession, NCBI gene ID and/
or name) is arguably convenient but it also limits the prediction
to the mRNAs that are available in the considered reference
database(s). Allowing the user to provide mRNA sequence alle-
viates this drawback. Six predictors (MicroInspector [60],
STarMir [66], PITA [67], MultiMiTar [70], miREE [71] and miRmap
[41]) accept either the name or the sequence, while 3 and 11 pro-
grams accept only sequences or names, respectively. The
miRNAs can be inputted in two formats: by name and/or by se-
quence. Again, although it may be convenient to specify
miRNAs by their names, this is a rather substantial drawback,
which does not allow predicting for novel miRNAs that are now-
adays discovered at a rapid pace. Six methods that offer web
servers (TargetScan [44], DIANA-microT [79], MicroInspector
[60], PITA [67], miREE [71] and miRmap [41]) accept either the
miRNAs name or the sequence, while 3 and 10 only take the se-
quences or the names, respectively. Table 3 reveals that 12
methods can predict targets of novel miRNAs.

When considering the outputs, the number of predicted tar-
gets varies widely between methods. Table 3 reports that while
most methods predict a few targets per gene per miRNA, some
predict hundreds, while miRanda [98] generates hundreds of
thousands of targets per miRNA.

One way to measure impact/popularity of a given method is
to analyze its inclusion in prior reviews. Considering the 16 re-
views (Supplementary Table S2), 29 of the 38 methods were
included in at least one review and 11 in five or more. Moreover,
five reviews highlighted/recommended certain predictors.
TargetScan [44] and TargetScanS [56] were recommended in
three and four reviews, respectively; DIANA-microT [54] and
RNAhybrid [47] twice, and EMBL method [62], PicTar [46], EIMMo
[65] and PITA [66] once. We also calculated the average citation
counts per year since a given predictors was proposed, using
the Web of Knowledge. Table 3 reveals that 21 of the 38 methods
receive on average >10 citations per year and all methods pub-
lished before 2008 receive at least five citations per year. Three
early methods receive >100 citations every year. TargetScan/
TargetScanS [56] is on the extreme end (400þ citations per year),
and this could be attributed to its popularity and convenient
availability, the fact that empirical studies often compare to
this predictor, and because it is widely used in practical
applications.

Empirical evaluation of representative miRNA target
predictors

We empirically evaluate seven representative target sequence-
based predictors, i.e. methods that predict targets from miRNA
and mRNA sequences, which are conveniently available to the
end users that predict for human and mouse, and which pro-
vide sufficiently rich set of outputs. The selection criteria are
discussed in the ‘Materials and Methods’ and Supplementary
Table S6. They include older (PicTar 2005 [46]) and newer
(TargetScan 6.2 [101], DIANA-microT-CDS [79], miRanda 2010
[40], EIMMo3 [65], mirTarget2 v4 [43] and miRmap v1.1 [41])
approaches that use a variety of types of predictive models. The
predictions, which were collected using their web servers or

precomputed predictions, consist of binding targets (mRNA se-
quences and/or positions of the binding site on mRNA) and the
corresponding propensities (real-valued scores that quantify
probability of the miRNA:target interaction). Table 4 and
Supplementary Table S7 summarize results of the assessment
at the gene level (to predict mRNAs that interact with a given
miRNA) on the TEST_gene data set and the duplex levels (to pre-
dict whether a given fragment on mRNA interacts with a given
miRNA) on the TEST_duplex data set. A given miRNA:target pair
was predicted as functional if the target was predicted using the
corresponding miRNA; the remaining targets were assumed to
be predicted as nonfunctional and the corresponding propen-
sity was set to 0. When assessing the gene level predictions, we
scored a given gene using the sum of propensities among all its
predicted target sites for a given miRNA. Because these seven
methods were initially published before 2012, we use experi-
mentally validated miRNA targets that were published after
2012 to perform the empirical assessment. This limits a bias
caused by a potential overlap between our benchmark data and
data used to develop a given method.

Considering the predictions of the miRNA:mRNA duplexes,
TargetScan and DIANA-microT secure the highest AUC values
of 0.674 and 0.673, respectively. Moreover, DIANA-microT has
the highest MCC, which improves over the second best
TargetScan by 0.073 [relative improvement of (0.273–0.200)/
0.200*100%¼ 36.8%]. TargetScan offers the highest sensitivity,
i.e. it correctly predicts the largest fraction of the functional
duplexes. On the other hand, PicTar has the highest specificity,
i.e. it correctly predicts the largest number of the nonfunctional
duplexes. This means that functional targets predicted by
PicTar are likely to be functional. DIANA-microT offers the high-
est SNR of correct to incorrect functional predictions (SNRþ).
TargetScan has the highest SNR� (SNR for the nonfunctional
predictions), relatively good SNRþ and very good PNR (ratio of
the number of predicted to native functional duplexes). PNR
value of TargetScan reveals that it only slightly underpredicts,
by 3.8%, the number of functional duplexes. The other methods,
except for miRmap and EIMMo, underpredict the functional
duplexes by a large margin. We illustrate relation between pre-
dictive quality (SNR values) and the outputted propensities
binned to 10 intervals in Supplementary Figure S3A. The num-
ber of predicted duplexes and their SNR values in each interval
are denoted by size and color of the bubbles (dark blue for accur-
ate predictions), respectively. Alternating red and blue bubbles
for a given predictor indicate that values of its propensity do not
correlate with the underlying predictive quality. All methods
have blue bubbles for propensity of 0, which means that they
predict the nonfunctional duplexes well. However, predicted
functional targets (propensity > 0) are often inaccurate (red bub-
bles) particularly for lower values of propensity. DIANA-microT
predicts well when its propensity > 0.7, and miRmap and
TargetScan when > 0.4 and 0.8, respectively. Analysis of statis-
tical significance reveals that the differences in the AUC values
(results above diagonal in Supplementary Table S7) are not stat-
istically significant between TargetScan, DIANA-microT and
miRmap. However, these three predictors are significantly bet-
ter than the other four methods (P-value� 0.001).

Table 5 analyzes anticipated predictive performance at the
duplex level based on information that is available before the
prediction is performed, including the nucleotide composition
of the seed region and the overall size of the input miRNA se-
quences. The hints summarized in this Table could guide selec-
tion of a predictor based on the miRNA sequence. Most
methods, especially TargetScan, DIANA-microT and miRmap,
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predict well for medium-sized (22 nucleotides long) miRNAs.
The predictions for longer miRNAs are generally less accurate.
Considering the nucleotide content in the seed region, the same
three methods provide high-quality predictions for miRNAs
when the seeds have 2 adenines or 2 guanines, and < 2 cyto-
sines. DIANA-microT also predict well for < 2 adenines and > 2
uracil and miRmap for < 2 adenines. Overall, we recommend
TargetScan, DIANA-microT and miRmap because their AUCs
> 0.7 for specific types of miRNAs.

The overall prediction quality is higher and ranking of the
methods is slightly different for the predictions on TEST_gene
data set when compared with the TEST_duplex data set
(Table 4). TargetScan secures the highest AUC, while EIMMo
moves up to the second place and provides the highest MCC.
TargetScan improves in AUC over the second best EIMMo by
0.023 (relative improvement of 3.2%) and over miRmap by 0.043
(relative improvement of 4.8%). miRmap offers the highest
sensitivity and TargetScan provides arguably the best balance
between sensitivity and specificity (both scores are high and
similar). MirTarget2 is the most conservative method given its
highest specificity, precision and SNRþ, i.e. it predicts only a
few functional targets but with high success rate. The PNR val-
ues reveal that TargetScan predicts exactly the right number of

functional genes and EIMMo only 5.3% too few. Supplementary
Figure S3B shows relation between predictive quality (SNR val-
ues) and the propensities generated by the prediction methods.
Interestingly, predictions associated with higher propensities
are more likely to be more accurate, as evidenced by the
presence of (dark) blue bubbles. As a highlight, EIMMo predicts
well in every propensity bin, and the targets predicted by
TargetScan and miRanda with propensities >0.3 and 0.4, re-
spectively, are characterized by high SNR values. Analysis of
statistical significance of differences in the AUC values (results
below diagonal in Supplementary Table S7) reveals that
TargetScan’s results are significant better (P-value� 0.001)
compared with the other predictors. AUCs of EIMMo and
miRmap are not significantly different and significantly higher
than AUCs of the other four methods (P-value� 0.001). We also
analyze relation between predictive performance at the gene
level and the number of target sites predicted in a given gene
(Supplementary Figure S3C). Most methods, except for
MirTarget2 and miRanda, can predict three or more target sites
per gene for a given miRNA. We observe that predictive quality
for genes for which at least two sites are predicted is better
(bubbles have darker blue color), particularly for EIMMo,
TargetScan and miRanda. This suggests that for these

Table 5. Relation between predictive quality measured with AUC and compositional characteristics of the input miRNAs for predictions at the
duplex level (TEST_duplex data set)

Predictor Size of miRNAs A count C count G count U count

Short Medium Long Low Medium High Low Medium High Low Medium High Low Medium High

TargetScan þ þþ � þ þþ þ þþ ¼ þþ þ þþ þ þ þ þ
DIANA-microT � þþ ¼ þþ þþ � þþ ¼ þþ þ þþ � þ þ þþ
miRmap ¼ þþ � þþ þþ ¼ þþ � þþ þ þþ þ þ þ þ
miRanda ¼ þ � þ ¼ � ¼ � þ ¼ � ¼ ¼ ¼ �
EIMMo ¼ þ � � þ � þ � ¼ ¼ ¼ ¼ � þ �
PicTar � ¼ � � � ¼ ¼ � ¼ � � þ ¼ ¼ �
MirTarget2 � ¼ � ¼ � � ¼ � ¼ � � ¼ � � �

The compositional characteristics include the size of miRNA and the count of each nucleotide type in the seed region. The sizes are divided into short (<22 nt), medium

(¼22 nt) and long (>22 nt). The count of nucleotides in the seeds of miRNAs is grouped into low (<2 nt), medium (¼2 nt) and high (>2 nt). The AUC values obtained by a

given predictor are coded as: ‘�’ for [0, 0.55], ‘¼’ for (0.55, 0.6], ‘þ’ for (0.6, 0.7] and ‘þþ’ for (0.7, 1.0].

Table 4. Comparison of predictive performance at the gene level (TEST_gene data set) and at the duplex level (TEST_duplex data set)

Prediction type Predictor AUC MCC Sen. Spe. Prec. SNRþ SNR- PNR

At the duplex level TargetScan 0.674 0.200 0.823 0.389 0.855 1.346 2.194 0.962
DIANA-microT 0.673 0.273 0.627 0.722 0.908 2.256 1.934 0.690
miRmap 0.658 0.158 0.741 0.444 0.854 1.333 1.713 0.867
miRanda 0.560 0.081 0.437 0.667 0.852 1.310 1.184 0.513
EIMMo 0.552 0.116 0.696 0.444 0.846 1.253 1.463 0.823
PicTar 0.538 0.069 0.272 0.806 0.860 1.400 1.107 0.316
MirTarget2 0.519 0.055 0.285 0.778 0.849 1.282 1.088 0.335

At the gene level TargetScan 0.748 0.386 0.733 0.652 0.733 2.108 2.446 1.000
EIMMo 0.725 0.391 0.707 0.687 0.746 2.257 2.342 0.947
miRmap 0.714 0.353 0.800 0.539 0.694 1.736 2.696 1.153
DIANA-microT 0.637 0.225 0.520 0.704 0.696 1.759 1.467 0.747
miRanda 0.636 0.239 0.467 0.765 0.722 1.988 1.435 0.647
MirTarget2 0.627 0.298 0.327 0.922 0.845 4.174 1.369 0.387
PicTar 0.588 0.196 0.340 0.835 0.729 2.058 1.265 0.467

We evaluate seven representative targets predictors. We measure area under the ROC curve (AUC), Matthews correlation coefficient (MCC), sensitivity (Sen.), specifity

(Spe.), precision (Prec.), signal-to-noise ratio for predicted functional (SNRþ) and predicted nonfunctional targets (SNR�) and predicted-to-native functional target ratio

(PNR). Methods are sorted in the descending order by their AUC values. The best value of each measurement across all the predictors is given in bold font.
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predictors higher number of predicted sites could be used as a
marker of higher predictive quality.

Predictions at the transcriptome/proteome scale on the
TEST_geo and TEST_psilac data sets are evaluated at different
thresholds that define the fraction of the most repressed and
most overexpressed genes that are annotated as functional and
nonfunctional, respectively (Figure 1). AUCs are generally higher
at the gene level (TEST_geo data set) than at the protein level
(TEST_psilac data set). Considering the three gene-level data
sets, the ranking of the methods on the TEST_psilac data set is
the same as on the TEST_gene data set, and slightly different on
the TEST_geo data set. Based on the microarray data, miRmap
achieves the best AUC, which is comparable with the AUC of
TargetScan and EIMMo. These three predictors have AUCs > 0.7
when evaluated on the top 4% of genes with largest expression
changes; using this threshold, on average each miRNA targets
176 mRNAs. We note miRmap was originally trained and tested
on two of the three microarrays from the TEST_geo data set, so
its predictive quality on this data set could be overestimated.
Considering the pSILAC data, only TargetScan provides AUC
> 0.7 when using top 1% of proteins for which expression levels
change most; this threshold results in an annotation where on
average each miRNA regulates 39 proteins. Overall, the AUC

values decrease when more ambiguous genes (genes for which
expression changes are weaker) are included, i.e. the fraction of
the included repressed and overexpressed genes is higher.
Analysis of the MCC values (Supplementary Figure S4A and B)
leads to similar conclusions. TargetScan, EIMMo and miRmap
secure the highest values of this index.

We also calculate the average logarithm of the fold change
of the top predicted genes (i.e. genes that obtain the highest
propensity score) for each method to assess whether higher
propensity implies better predictive performance
(Supplementary Figure S4E and F). Genes with high propensity
of binding predicted by MirTarget2 are characterized by large
expression changes, with almost 3-fold change for the top 10
targets predicted for each miRNA. This strong result is consist-
ent with high precision at the gene level on the TEXT_gene data
set, which is secured by this method. High values of propen-
sities generated by TargetScan are also indicative of higher
changes in the gene expression levels, while the results of the
other methods are inconsistent between the two data sets. We
note that expression level changes are larger on the TEST_psilac
data set, which is probably due to a different amount of mRNAs
and available miRNA in the cell [102] and differences in the ex-
perimental conditions. This also hints that it would be

Figure 1. Relation between AUC values and the threshold used to define the functional (most suppressed) and nonfunctional (most overexpressed] genes for the predic-

tions on the TEST_geo (panel A] and TEST_psilac (panel B] data sets. Methods are sorted in the same order with those on TEST_gene data set. miRmap that was trained

on the gene expression data is given with the dashed line. A colour version of this figure is available online at BIB online: http://bib.oxfordjournals.org.
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implausible to predict absolute gene expression changes solely
based on the miRNA and mRNA sequences. From the PNR
curves (Supplementary Figure S4C and D), we observe that all
methods, except for miRmap on the TEST_geo data set,
underpredict functional targets by a substantial margin.
Considering that these data sets may miss native functional
genes that are associated with smaller expression level changes
and that some of the targets genes could be annotated based on
an indirect interaction with the miRNAs, the list of functional
targets defined solely by the expression changes could be in-
complete and may include FP. Therefore, we do not expect PNR
values close to 1 on the TEST_geo and TEST_psilac data sets.

Discussion

We reviewed 38 miRNA target predictors from all significant
perspectives including their prediction models, availability, im-
pact, user friendliness and protocols and measures that are
used to evaluate their predictive performance. We found that
standardized evaluation procedures are urgently needed be-
cause currently predictors are evaluated using different meas-
ures, different test protocols and using vastly different data
sets. This hinders comparison among these methods and ap-
propriate selection by the end users. To this end, we empirically
and systematically compared seven representative predictors
on four benchmark data sets, considering prediction of
miRNA:mRNA duplexes and targets genes and proteins.

We found that although certain methods, like TargetScan
and miRmap, offer high overall predictive quality, there is no
universally best predictor. For instance, PicTar and MirTarget2
provide predictions with high specificity and low number of FP
(incorrectly predicted functional genes/duplexes). Thus, these
two methods are suitable for users that would like to obtain a
small subset of accurately predicted functional duplexes or
genes. EIMMo predicts well at the gene level. We observe that
the count of functional target sites or genes predicted by
TargetScan is the closest to the native count (PNR value close to
1), and thus, this method should be used to accurately estimate
the number of miRNA targets. We found that genes predicted as
functional based on a higher number of sites are more likely to
be accurate, particularly for the EIMMo and TargetScan pre-
dictors. Finally, the benchmark data sets and empirical results
that we provide are useful to develop and comparatively assess
future prediction methods.

We observe that predictions at the duplex level are charac-
terized by lower predictive quality than the predictions of tar-
gets genes. This agrees with intuition that predicting target
sites should be more difficult than predicting target genes that
offer more input information (longer mRNA sequence).
Moreover, our estimates of the predictive performance are often
lower than the estimates from the original publications.
Possible reasons are as follows: (i) we use experimental vali-
dated data, which is likely more challenging than the artificial
data that were used to assess previous predictors; (ii) the
nonfunctional validated duplexes that we use have relatively
many Watson–Crick (WC) base pairs in the seed regions (83%
have at least six pairs, see Supplementary Table S8). These sites
were likely hypothesized to be functional, refuted and thus
annotated as nonfunctional. This is why they have such seeds,
which in turn makes them more challenging to separate from
the functional duplexes when compared with a more ‘random’
site; and (iii) miRanda, PicTar, EIMMo and MirTarget2 provide
only precomputed predictions, which may not include most up-
to-date miRNA and transcript databases. Unfortunately, we

could not compare results with the previous reviews [24, 25,
103] because they did not consider a balanced selection of
measurements (e.g. only provided sensitivity and precision,
which ignore TN), and such one-sided evaluation would not be
meaningful.

Our review offers in-depth insights that could be used by the
end users to select prediction methods based on their predictive
performance (Table 4) and their input miRNAs (Table 5). We
also provide several practical observations that consider spe-
cifics of applications of interest. Arguably, the commonly con-
sidered characteristics of the applications of the miRNA target
predictors include the need to consider novel miRNAs and to
focus on certain regions in the mRNA, to predict a more com-
plete or smaller and more accurate list of targets, to predict for a
large set of miRNAs, to tweak desired parameters of the
miRNA–mRNA interaction and to generate propensities for the
predicted interactions. We address these characteristics as
follows:

• Only some methods can predict targets for novel miRNAs (see

‘New miRNA’ column in Table 3).
• Applications that focus on particular regions (e.g. 50UTR, CDS,

promoters) should use predictors that were designed to consider

these regions (see ‘target region’ column in Table 3).
• Some methods generate few and potentially more accurate tar-

gets, while some predict a larger and more complete set of tar-

gets that may include more FP (see ‘Number of targets’ column

in Table 3). Users should choose an appropriate method depend-

ing on whether they look for a more complete or a more accurate

set of targets.
• When predicting for a large number of miRNAs, the download-

able precomputed results or methods that provide APIs should

be used (see ‘batch search’ in the ‘Note’ column in the

Supplementary Table S6).
• The end users should apply predictors with tunable seed type

parameter, such as PITA, when searching for targets that use a

particular seed type. Also, when aiming to find targets with low

number of WC pairs in the seed region, only some predictors

that consider such targets, like miREE, can be used.
• When predicting the target site, the methods that can only pre-

dict target genes cannot be used (see ‘Target site tracking’ col-

umn in Supplementary Table S6).
• Only some predictors provide predictions with the associated

propensities of the interaction; many methods only provide bin-

ary (functional versus nonfunctional) predictions (see ‘Score’ col-

umn in Supplementary Table S6)

Although undoubtedly computational miRNA target pre-
dictors are useful and their predictive performance is relatively
good, we suggest several areas where further improvements are
possible:

• Current methods use many different predictive models. In con-

trast to other areas of bioinformatics, the empirical (knowledge-

based) models do not outperform the heuristic models. This

could be due to the low quantity of training data, use of artificial

training data (randomly generated nonfunctional targets) and

unbalanced nature of the data (low number of nonfunctional tar-

gets). Thus, one of the future aims should be to improve the

quality and quantity of the training data.
• Further improvements in predictive quality could be attained by

finding and using not yet known characteristics of miRNA:target

interactions. For instance, recently cis-element was used to con-

nect primary miRNAs to their potential targets [75], and Gene

Ontology annotations and protein–protein interaction networks
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were used to filter target predictions [104]. Also, the CLIP data

has been used to annotate functional targeting sites; however,

not much effort so far was made to use these data as a filter to

improve specificity of the current prediction methods [105].
• We emphasize the need to introduce and maintain higher stand-

ards in evaluation of predictive performance, as this would pro-

vide a cleared picture of current state of this field. Similar to our

empirical study (see ‘Materials and Methods’), this should in-

clude a comprehensive set of measurements, statistical tests

and use of independent (from the training data) benchmark data

sets.
• Lastly, the outputs generated by the predictors should be ex-

panded to provide more value for the end users. Some of the pos-

sible suggestions include providing location of predicted target

sites, allowing predicting targets of novel miRNAs and predicting

the strength of the binding with the help of the gene expression

data [106].

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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