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Prediction of protein crystallization using collocation of amino acid pairs
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Abstract

While above 80% of protein structures in PDB were determined using X-ray crystallography, in some cases only 42% of soluble puri-
fied proteins yield crystals. Since experimental verification of protein’s ability to crystallize is relatively expensive and time-consuming, we
propose a new in silico prediction system, called CRYSTALP, which is based on the protein’s sequence. CRYSTALP uses a novel fea-
ture-based sequence representation and applies a Naı̈ve Bayes classifier. It was compared with recent, competing in silico method,
SECRET [P. Smialowski, T. Schmidt, J. Cox, A. Kirschner, D. Frishman, Will my protein crystallize? A sequence-based predictor, Pro-
teins 62 (2) (2006) 343–355], and other state-of-the-art classifiers. Based on experimental tests, CRYSTALP is shown to predict crystal-
lization with 77.5% accuracy, which is better by over 10% than the SECRET’s accuracy, and better than accuracy of the other considered
classifiers. CRYSTALP uses different and over 50% less features to represent sequences than SECRET. Additionally, features used by
CRYSTALP may help to discover intra-molecular markers that influence protein crystallization.
� 2007 Elsevier Inc. All rights reserved.
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Proteins are nano-scale machines that catalyze chemical
reactions (enzymes), form the cytoskeleton (tubulin), per-
form transporting functions (hemoglobin), implement
immune responses (antibodies), regulate cell processes
(hormones), etc. Their wide range of functionality is due
to ability to adopt a huge number of three-dimensional
shapes, although they are all assembled using only 20
building blocks, called amino acids (AAs). Four distinct
levels of protein structure, i.e., primary (linear) sequence
of AAs, secondary, tertiary and quaternary structure, are
usually distinguished. Knowledge of the tertiary (three-di-
mensional) protein structure is of pivotal importance to
the understanding and manipulation of protein’s biochem-
ical and cellular functions.

The protein sequence can be deduced from known DNA
sequence, and can be learned based on Edman degradation
and mass spectrometry methods, which are relatively cheap
and easy to perform for virtually all proteins. Currently,
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over 2.8 million of nonredundant protein sequences are
known and can be obtained from large repositories like
National Center for Biotechnology Information (NCBI).
At the same time, the tertiary structure is more difficult
to obtain. The two mainstream methods that are widely
used to determine the tertiary structure of proteins are
the nuclear magnetic resonance (NMR) spectroscopy and
the X-ray crystallography [12,13]. However, these methods
have some limitations and are not suitable for all proteins.
The main advantage of NMR is that the structure is deter-
mined in solvent, and therefore the obtained structure is
native. The biggest advantage of the X-ray crystallography
is that it is easier to perform and takes less time than NMR.
As of October 2006, there are over 32,500 of protein struc-
tures in the Protein Data Bank (PDB) that are solved by
X-ray crystallography, which is over five times more than
the number of structures determined by NMR (less than
6000) [2].

The motivation for this work comes from the fact that
not all proteins can be crystallized. Some of the X-ray crys-
tallography experiments are unsuccessful, which results in
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the wastage of both resources and time. For instance, only
42% of the soluble purified proteins that were used for ini-
tial crystallization trials of the nonmembrane proteins of
the archeaon Methanobacterium thermoautotrophicum

yielded crystals [18]. If a computational method could pre-
dict, with acceptable accuracy, which sequence could be
successfully crystallized, the experimental success rate for
the crystallization would be improved. The increase of suc-
cess rate would save resources that could be devoted to the
successful crystallization of additional proteins.

To date, the factors that determine the successful crys-
tallization of proteins are not clear. At the same time, oth-
ers have observed that the propensity of a given protein to
yield crystal under a given range of experimental condi-
tions is an individual protein trait [16]. Therefore, we could
expect that the ability to form crystals is related to the
underlying protein sequence. To investigate this problem
we need a dataset that includes sequences which are catego-
rized into those that can and cannot be crystallized. Such
dataset would allow finding patterns (regularities) using
machine learning methods (classification and feature selec-
tion algorithms) that are associated with both crystallizable
and noncrystallizable proteins. Smialkowski and the col-
leagues recently prepared such dataset and proposed a
method, called SECRET, for prediction of protein crystal-
lization [16]. The dataset contains 192 sequences that were
determined only by NMR (noncrystallizable) and 226
sequences that can be crystallized and were determined
by X-ray crystallography (and potentially also by NMR).
The two classes of protein are referred to as NMR_ONLY
and XRAY_NMR, respectively. Following the authors of
[16], the hypothesis that sequences in NMR_ONLY cannot
be crystallized is justified by the fact that X-ray crystallog-
raphy is easier and costs less, and thus this technique is the
first choice if the protein can be crystallized. Although this
may not be true for all sequences, the NMR_ONLY class
was considered acceptable to represent sequences that can-
not be crystallized [16]. Despite that this dataset represents
the best that can be extracted from PDB, it is characterized
by two important limitations:

1. Both crystallizable and noncrystallizable sequences were
made nonredundant at the 50% sequence homology
using CD-HIT [11] to avoid bias towards a certain set
of homologous sequences (family) of proteins. Although
this allows for an unbiased prediction, we note that in
some cases crystallization of a homologue of a crystalliz-
able protein may be difficult. Therefore, both our
method and method proposed in [16], which are based
on this dataset, are limited to prediction of crystalliza-
tion for nonhomologous proteins, and should not be
used in prediction aimed at assessing crystallization of
a homolog.

2. Since NMR-resolved proteins in PDB include only small
and medium proteins, while larger proteins were exclu-
sively determined by X-ray, the dataset includes
sequences with 200 or less AAs to avoid the sequence
length bias. As a result, both prediction methods are lim-
ited to small and medium size proteins. Given that suffi-
cient number of large NMR-only proteins will be
deposited to PDB, our future work includes redesigning
the prediction method to encompass larger proteins.

The limitations of the SECRET method, which motivate
our work, include use of a large number of features to rep-
resent protein sequences and low prediction accuracy that
equals 67% (50% accuracy can be obtained by a coin flip).
Additionally, this method performs prediction in a black-
box manner, i.e., the prediction model could not be inter-
preted and as a results the authors did not describe what
factors impact ability/inability of a protein to crystallize
[16]. In contrast, our method uses significantly fewer fea-
tures, predicts with over 77% accuracy, and allows formu-
lating factors that could potentially be associated with
protein crystallization. At the same time, both our and
the SECRET methods are limited by one more factor,
i.e., they consider only intra-molecular interactions, while
the impact of the inter-molecular, i.e., protein–protein
interaction and/or protein–precipitant interaction, were
not included in the prediction model.

In our paper, we use the above dataset that was made
available to us by the Frishman’s lab [16] to build a classi-
fication model that predicts whether a sequence can be
crystallized or not. The classification consists of two steps:
(1) the protein sequence is converted into representation
that consists of a fixed size feature vector, and (2) the fea-
ture values are entered into the classification model to pre-
dict the protein class (crystallizable/noncrystallizable). We
performed the same design and test procedures as in [16].
Namely, we applied 10-fold cross validation to design
and select feature representation ([16] used less stringent
5-fold cross-validation) and 10-fold cross-validation to test
and compare the classifiers.
Materials and methods

Prediction methods. The SECRET method uses 103 features selected
using wrapper based (with Naı̈ve Bayes classifier) forward feature selec-
tion from the set of features representing frequencies of mono-, di-, and
tripeptides. It applies a collection of Gaussian kernel based Support
Vector Machines with that were combined using Naı̈ve Bayes meta-clas-
sifier to perform prediction.

In contrast, the proposed method, which we called CRYSTALP, uses a
different set of 46 features generated using a novel concept of collocated
AA pairs (explained later in the paper), and a simple Naı̈ve Bayes classifier
[6]. The proposed method is conceptually simple, easy to implement, uses
50% less features than SECRET, and is shown to outperform the com-
peting method with respect to the predictive accuracy. We also compare
our solution, which is based on Naı̈ve Bayes classifiers, to other designs
that use the same features and different, state-of-the-art classifiers.

Feature generation. Composition vector is a simple sequence represen-
tation that is widely used in prediction of various structural aspects
[3,7,9,15,19]. Given 20 alphabetically ordered (A, C, . . ., W, Y) AAs, which
are denoted as AA1, AA2, . . . ,AA19, and AA20, and the number of occur-
rences of AAi in the sequence that is denoted as ni, the composition vector
is defined as



Table 2
Features selected using CFSS/best-first-search feature selection method
from the set of 2000 p-collocated AA pairs; the feature selection method
also included one more feature, which is the composition of AA Tyrosine

p = 0 p = 1 p = 2 p = 3 p = 4

DL HH EC AG CS
EH IC FQ CL DN
LR LE IP EL FT
PD QL LE EQ GR
RI TE QS HS IG
RT TT SL LD MA
SS YF TG MA MY
WC WV NI NH
YT YN NQ TG

TY
VT
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where k is the length of the sequence.
A new representation, which is based on frequency of collocation of

AA pairs in the sequence, was developed for the proposed prediction
method. Our motivation was that the composition vector is insufficient to
represent a sequence, since it only counts the frequencies of individual
AAs. At the same time, frequencies of AA pairs (dipeptides) provide more
information since they reflect interaction between local (with respect to the
sequence) AA pairs. Based on this argument, we would count all dipep-
tides in the sequence. Since there are 400 possible AA pairs (AA, AC,
AD, . . . ,YY), a feature vector of that size is used to represent occurrence of
these pairs in the sequence. For instance, if AG pair occurs four times in a
sequence, the corresponding value in the vector is set to 4, while if KN pair
would not occur in the sequence, the corresponding values would be set to
0. Since short-range interactions between AAs, rather than only interac-
tions between immediately adjacent AAs, have impact of folding [4], the
proposed representation also considers collocated pairs of AAs, i.e. pairs
that are separated by p other AAs. Collocated pairs for p = 0, 1, . . . , 4 are
considered, where for p = 0 the pairs reduce to the dipeptides. These pairs
can be understood as the dipeptides with gaps. For each value of p, there
are 400 corresponding feature values. Table 1 summarizes both compo-
sition vector and p-collocated AA pairs with respect to their corresponding
number of features. As a result, we propose representation that includes
total of 400(4 + 1) + 20 = 2020 features.

Feature selection. As the abovementioned proposed representation
includes relatively large number of features, a feature selection method
was used to reduce the dimensionality and potentially improve the pre-
diction accuracy. A correlation-based feature subset selection method
(CFSS) was used [5]. CFSS evaluates the value of a subset of features by
considering the individual predictive ability of each feature along with the
degree of redundancy between them. The strategy for searching subsets
was the best-first-search method. Best-first-search explores the space of
attribute subsets by using the greedy hill-climbing augmented with the
backtracking. We also tested several other feature selection methods, and
concluded that the CFSS method provides the best results. The feature
selection was performed using 10-fold cross-validation to avoid overfit-
ting, and features that were found significant by the feature selection
method in at least 5 folds were selected. Among the original set of 2020
features, 46 features, which include 45 collocated AA pairs (see Table 2),
and a composition vector value for AA Tyrosine (Y) were selected.
Results and discussion

Experimental setup

The classification systems used to develop and compare
the proposed method were implemented in Weka, which is
a comprehensive open-source library of machine learning
methods [17]. The proposed CRYSTALP method was
compared with several state-of-the-art classifiers such as
Support Vector Machine (SVM) [8], Multiple Logistic
Regression [10], instance learning based IBK algorithm
[1] and C4.5 decision tree [14] using the same 46 features
to represent sequences. It was also compared with the com-
peting SECRET method, which utilizes a different sequence
Table 1
Size of feature sets for the proposed sequence representation

Feature representation Composition vector Collocated AA pairs

Adjacent pairs (dipeptides

Number of features 20 400
representation. The experimental evaluation was per-
formed using 10-fold cross-validation to avoid overfitting
and assure statistical validity of the results. The reported
results include the following quality indices: accuracy, sen-
sitivity, specificity, and Matthews’s correlation coefficient
(MCC).

Results and comparison with competing methods

Each of the abovementioned classifiers was optimized
(by adjusting internal parameters) with respect to accuracy.
The optimization was performed using 10-fold cross-vali-
dation and the proposed set of 46 features. We first com-
pare the CRYSTALP with the other classifiers (these
methods use the same feature based sequence representa-
tion), and next with the competing SECRET method.

The best, optimized results for the CRYSTALP and the
other four classifiers are shown in Table 3. The proposed
CRYSTALP, which uses simple Naı̈ve Bayes, provides
the best accuracy that equals 77.51%. The CRYSTALP
applies Naı̈ve Bayes that uses kernel estimator for numeric
attributes [6]. The second best SVM achieves 76.08% accu-
racy when using polynomial kernel (we also considered
Gaussian kernel). The other three methods provide lower
accuracies.

The proposed CRYSTALP method gives the best over-
all accuracy, highest sensitivity for crystallizable class,
highest specificity for noncrystallizable class and the best
MCC value. IBK with the optimal number of neighbors
set at 13 gives the highest specificity for crystallizable pro-
teins and highest sensitivity for noncrystallizable proteins.
In short, the results demonstrate superiority of the pro-
posed CRYSTALP method over the other commonly used
classifiers.
) 1-Collocated pairs . . . p-Collocated pairs Total

400 . . . 400 400(p + 1) + 20



Table 3
Prediction quality of the proposed CRYSLAP method and the other four classifiers

Method Accuracy (%) Crystallizable Noncrystallizable MCC Confusion matrix

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) TP FP FN TN

CRYSTALP 77.51 82.74 77.27 71.35 77.84 0.55 187 55 39 137
SVM 76.08 78.32 77.63 73.44 74.21 0.52 177 51 49 141
Logistic regression 71.53 73.01 73.99 69.79 68.72 0.43 165 58 61 134
IBK 72.49 68.58 77.89 77.08 67.58 0.46 155 44 71 148
C4.5 61.96 62.83 65.44 60.94 58.21 0.24 142 75 84 117

The results were based on the proposed feature set that includes 46 features.
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The results of CRYSTALP were compared with the
recently proposed competing SECRET method [16]. Since
the authors of SECRET used the same data and experi-
mental setup (10-fold cross-validation) we can directly
compare the results, see Fig. 1.

CRYSTALP achieved 10.5% better accuracy than
SECRET (77.51% vs. 66.99%) and significantly higher
MCC (0.53 vs. 0.34) when compared with SECRET. The
sensitivity and specificity for both protein classes obtained
by CRYSTALP are also higher than the same values
achieved by SECRET. Direct comparison of the confusion
matrixes that were achieved by both methods shows that
CRYSTALP predicts significantly more true positives
(187 vs. 147) and similar (slightly larger) number of true
negatives (137 vs. 133) when compared with SECRET.
This illustrates that CRYSTALP provides better quality
in predicting crystallizable proteins. Additionally,
SECRET uses 103 features to represent the sequence and
a complex classifier that applies multiple SVMs and a
Naı̈ve Bayes as the meta-classifier. In contrast, the pro-
posed CRYSTALP uses about 50% less features and simple
(and very fast to learn) Naı̈ve Bayes classifier.

In the nutshell, the CRYSTALP method is shown to
outperform, on virtually all aspects, the competing
SECRET method.

Discussion of the proposed sequence representation

Although features selected for the CRYSTALP method
may seem random (see Table 2), below we discuss several
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Fig. 1. Comparison between CRYSTALP and SECRET methods: (A) accura
proteins, and (C) sensitivity and specificity for the class of noncrystallizable
SECRET, while the dark gray (blue/right) bar corresponds to the CRYSTALP
the reader is referred to the web version of this paper.)
interesting patterns that concern the proposed sequence
representation.

One of the patterns associated with the noncrystallizable
proteins is the LE/EL pairs. LE is selected in 1-collocated
and 2-collocated AA pairs, and EL is selected in 3-collocat-
ed pairs. The DL dipeptide and 3-collocated LD pair are
also associated with the noncrystallizable proteins. We note
that the higher the occurrence frequency of these collocated
pairs in the sequence, the lower the probability that this
sequence can be crystallized. We show detailed data for
the 1-collocated LE pair and the DL dipeptide in
Fig. 2A, i.e., the numbers inside the bars show how many
proteins that contain a given number of collocated pairs
are in fact noncrystallizable. One explanation for such con-
sistency is that aspartate (D) and glutamate (E) have simi-
lar side chains. Moreover, substitution matrices (such as
BLOSUM), have a relatively high value for the DE pair,
which means that these AAs are characterized by a high
exchange rate.

On the other hand, proteins that contain more of the
MA, TG, and TY/YT pairs have higher probability to
crystallize. Example data for the 4-collocated TG pair
and 3-collocated MA pair are shown in Fig. 2B.

The occurrence of the abovementioned pairs may give
insights to discover factors that either enable or prevent
the protein crystallization. Although we could not find
direct and consistent interactions between the side chains
of the residues in these pairs, we note that, for instance,
the 1-collocated LE and DL dipeptide are characterized
by high probability to form a helix, see Fig. 3. This agrees
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cy and MCC, (B) sensitivity and specificity for the class of crystallizable
proteins. The light gray (yellow/left) bar corresponds to performance of
method. (For interpretation of the references to color in this figure legend,
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Fig. 2. (A) Probability of noncrystallizable proteins in function of the frequency of the 1-collocated LE pair (white bar) and the DL dipeptide (gray bar),
(B) probability of crystallizable proteins in function of the frequency of the 4-collocated TG pair (white bar) 3-collocated MA pair (grey bar). The numbers
inside the bars show how many proteins that contain a given number of collocated pairs are in fact noncrystallizable/crystallizable.

Fig. 3. Examples tertiary structure of proteins that contain significant
number of the collocated pairs: (A) structure of chain A of 1p68, which
contains five 1-collocated LE pairs; (B) structure of chain A of 1n3k,
which contains three DL dipeptides; all pairs (shown in black) are inside
helices.
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with results of our previous study that shows that Leucine
is strongly associated with formation of helices [4]. Statisti-
cal analysis in [4] shows that 1-collocated LE pair and the
DL dipeptide have 0.71 and 0.50 probability of forming
helix, respectively. Such intra-molecular interactions,
which are related to formation of secondary structures,
may have influence on the protein crystallization.
Summary and conclusions

A high quality predictor for protein crystallization
would improve the success rate for X-ray crystallography,
and as a result researchers could reroute resources to struc-
ture discovery for other proteins. Therefore, we propose
CRYSTALP method that uses a novel protein sequence
representation, which includes only 45 features, and applies
a Naı̈ve Bayes classifier. This method can be used to predict
if small and medium size (<200 AAs), nonhomologous,
proteins can be crystallized. CRYSTALP takes into
account only intra-molecular factors, which are encoded
in the protein’s chain, while it may not provide reliable pre-
dictions when inter-molecular factors must be considered.

Based on 10-fold cross-validation tests, the proposed
CRYSTALP is shown to predict the protein crystallization
with 77.5% accuracy, which is 10% higher than the analo-
gous results (for the same data and tests) achieved by the
state-of-the-art, recently proposed competing SECRET
method, and is also better when compared with four other
machine learning methods. CRYSTALP also uses less then
half of the number of features than the SECRET method
and provides several interesting hypotheses with respect
to intra-molecular factors that are associated with protein
crystallization. We show that repeated occurrence of cer-
tain collocated AA pairs is correlated with crystallization
or inability of a sequence to crystallize, which may provide
a basis for discovery of crystallization markers. Our future
work will include extending the method to predict crystal-
lization for larger proteins and to incorporate inter-molec-
ular interactions.
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