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Abstract

Structural class characterizes the overall folding type of a protein or its domain. A number of computational methods have been pro-
posed to predict structural class based on primary sequences; however, the accuracy of these methods is strongly affected by sequence
homology. This paper proposes, an ensemble classification method and a compact feature-based sequence representation. This method
improves prediction accuracy for the four main structural classes compared to competing methods, and provides highly accurate predic-
tions for sequences of widely varying homologies. The experimental evaluation of the proposed method shows superior results across
sequences that are characterized by entire homology spectrum, ranging from 25% to 90% homology. The error rates were reduced by
over 20% when compared with using individual prediction methods and most commonly used composition vector representation of pro-
tein sequences. Comparisons with competing methods on three large benchmark datasets consistently show the superiority of the pro-
posed method.
� 2006 Elsevier Inc. All rights reserved.
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Knowledge of protein structure plays a key role in anal-
ysis of protein functions, protein binding, rational drug
design, and many other related fields and applications.
The structure is organized on several levels, which include
secondary, tertiary, and quaternary structure. Despite
assuming a complex three-dimensional structure and hav-
ing a relatively irregular surface, proteins are characterized
by quite simple and regular local folding patterns even if
they bear different biological functions. Protein structural
class prediction is based on identifying these simple pat-
terns, and applying them to proteins with unknown
structures.

In view of this, Levitt and Chothia [36] introduced the
concept of protein structural class about three decades
ago based on a visual inspection of polypeptide chain
topologies in a dataset of 31 globular proteins and divided
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these proteins into four structural classes: all-a, all-b, a/b,
and a + b. The all-a and all-b classes are formed by
sequences that consist of virtually only a-helices and b-
strands, respectively. The a/b class includes proteins with
both a-helices and b-strands, where the latter mainly
include parallel b-sheets. Finally, the a + b class includes
proteins with a-helices and antiparallel b-sheets. One of
the most accurate classifications of protein structural clas-
ses can be found in the curated SCOP (structural classifica-
tion of proteins) database [39]. The basic structural unit of
classification in the SCOP database is either the entire
sequence or a protein domain (structurally conserved frag-
ment of the sequence), depending on if the domains that
compose the sequence belong to the same or different struc-
tural classes.

Over the last twenty years, the number of known protein
structures has significantly increased. As a result, numerous
computational methods have been developed to predict
protein structural class based on the primary amino acid
sequence, beginning in the 1980s [29,40], some
ensembles for protein structural class prediction ..., Biochemical
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advancements made in 1990s [12,19,20,38,48], and the most
recent methods [8,9,16,22,26,43,46]. The early methods
were tested on very limited protein sets, which resulted in
very low performance. More recently, performance results
have ranged from relatively low to high. These methods
were often tested on small datasets, characterized by differ-
ent homology between sequences, and were not reliably
compared with other methods on common data [31]. In
addition, current protein structural class prediction results
are quite poor compared to other protein secondary struc-
ture prediction methods. The goal of our research is to rec-
tify these shortcomings, by applying an ensemble of
classification algorithms and developing a compact feature
representation of protein sequences. We proceed in three
stages:

1. Design of a sequence representation via feature selec-
tion, and selection and setup of an optimal classifier
ensemble.

2. Validation of the proposed method. We quantify the
added value of the feature representation and of the
ensemble. We evaluate the method for high- and low-ho-
mology datasets.

3. Comparison of the proposed method with other state-of-
the-art prediction methods on three large benchmark
datasets characterized by different sequence homologies.

The validation and comparison were performed using
three commonly used test procedures: out-of-sample 10-
fold cross-validation; n-fold cross validation (jackknife
test); and in-sample resubstitution. The latter test was
reported only for consistency with prior work; in-sample
errors should not be used to evaluate prediction models
[31]. The 10-fold cross-validation was applied to design
the prediction method, while the jackknife test was used
to perform comparison with the competing methods.
Materials and methods

Structural classes

The original protein structural classification scheme defined by Levitt
and Chothia included four classes. This scheme has been modified multiple
times by changing the thresholds for the amount of helices and strands
that define a structural class. In 1986 Nakashima and colleagues defined
five structural classes [40], which were redefined with different thresholds
by Chou in 1995 [13]. Chou’s criticism of Nakashima’s classification was
that the thresholds for all-a proteins and all-b proteins were not large
enough to reflect these two structural classes. Chou also used dictionary of
secondary structure of proteins (DSSP) [27] to define content of the sec-
ondary structures. Eisenhaber and colleagues proposed another definition
in 1996 [21], which merges the a + b and the a/b classes into a ‘‘mixed’’
class. These classifications omit irregular or ‘‘n’’ proteins, which are small
in number.

The SCOP classification is performed manually, using structural
elements located in individual domains within the protein. Researchers
claim that the SCOP classification is more natural and provides more
reliable information to study protein structural classes when compared
to the above classifications [15,39,46]. The SCOP classification cur-
rently includes eleven classes [2]: (1) all-a proteins; (2) all-b proteins;
Please cite this article as: Kanaka Durga Kedarisetti et al., Classifier
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(3) a/b proteins; (4) a + b proteins; (5) multi-domain proteins; (6)
membrane and cell surface proteins; (7) small proteins; (8) coiled coils
proteins; (9) low-resolution proteins; (10) peptides; and (11) designed
proteins. Our research focuses on computational prediction of the first
four categories, as they include the great majority of protein sequences
and were the basis for most comparable approaches [7,9,26,31,43,
44,46].

Related work

Structural class prediction is usually performed in two steps. First,
the primary AA sequence is transformed into a fixed-length feature
vector. Next, the feature vectors are fed to a classification algorithm to
perform the prediction. The early computational prediction methods
represented the primary sequence using only the composition vector-
and threshold-based class definitions, and applied discriminant analysis
with simple distance definitions as the classification algorithm. Exam-
ples include the Euclidean distance [40], the Hamming distance [29], and
the Mahalanobis distance [12]. Later prediction methods used more
complex classification algorithms, and the same composition vector-
based representation. Examples include the maximum component
coefficient principle algorithm [48], least correlation angle algorithm
[11], fuzzy clustering [43,49], artificial neural networks [19,20,38], vector
decomposition [21], the component-coupled geometric classification
algorithm [15], Bayesian classification [46], and most recently support
vector machines [9] and logit boosting [22]. The most noticeable pro-
gress among these algorithms is the inclusion of the coupling effect
among different AAs [14,15]. Recent works also improve structural class
prediction by using alternative sequence representations. Examples
include auto-correlation functions based on non-bonded residue energy
[7], polypeptide composition [26,37,44], and functional domain compo-
sition [16]. However, these algorithms are often only tested on very
small datasets, with uncontrolled (often high) sequence homology. This
tends to result in an overestimated prediction accuracy. In addition,
they do not perform reliable comparison with other algorithms on
common datasets and some incorrectly perform out-of-sample tests
[28,31]. Finally, they use a relatively limited feature-based sequence
representation.

Motivation

There are several factors that motivate development of a new method
for protein structural class prediction:

• The accuracy of secondary structure prediction [23] can be significantly
improved by incorporating knowledge of structural classes. This can
lead to a reduction of the search space of possible conformations of
the tertiary structure [3,14].

• The huge and growing gap between known protein sequences (over 2
million protein sequences stored in National Center for Biotechnology
Information (NCBI) database) and known protein structures (37658
structures stored in Protein Data Bank (PDB) [4] as on July 11,
2006). Development of a reliable computational method for prediction
of structural classes for new, unclassified protein sequences is essential.

• Sequence homology has a significant impact on prediction accuracy.
While this is well known, this factor is generally uncontrolled in predic-
tion experiments. For example, the commonly used ‘‘359’’ dataset [15]
is highly homologous, leading to over 80% prediction accuracy [7,9].
However, low accuracies (often about 50%) are the norm for low-ho-
mology datasets [31,46]. In addition, some researchers assert that pre-
diction methods are only viable for datasets with less than 30%
homology [46], as sequence-alignment-based prediction is effective for
higher-homology datasets.

• Several empirical studies have shown that the performance of ensemble
machine learning approaches is superior to individual learning algo-
rithms in various applications in structural biology including protein
fold classification [10,18,45]. To the best of our knowledge, ensembles
have never been applied for structural class prediction. A multi-classi-
ensembles for protein structural class prediction ..., Biochemical
rc.2006.07.141.



Table 1
SCOP structural class distribution in the datasets used in this study

Dataset All-a All-b a/b a + b Total

359 76 81 94 81 332
1189 223 294 334 241 1092
25PDB 443 443 346 441 1673
50PDB 637 921 1214 870 3642
70PDB 742 1101 1389 1318 4243
90PDB 840 1657 1553 1162 5212
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fier method for structural class prediction was developed by Feng et al.
[22], but they did not consider heterogeneous classifiers (a key strength
of ensemble methods).

• Finally, existing methods for structural class prediction have relatively
low accuracy when compared to other secondary structure prediction
methods.

We propose a novel ensemble prediction method that is more accurate
than competing individual classifiers, and which provides good perfor-
mance over a range of sequence homologies.

Overview of the proposed method

An overview of the proposed method is shown in Fig. 1. We begin by
creating an extensive feature-based sequence representation (including the
composition vector, autocorrelations of hydrophobicity indices, etc.) and
then reducing the dimensionality of the feature space via feature selection.
The resulting features vectors are fed to four heterogeneous classifiers,
which each output a predicted structural class. Finally, these predictions
are combined by a specialized ‘‘voting’’ module that outputs the final
prediction.

Datasets

Source datasets. We consider a total of six datasets characterized by
different sequence homology in this study. Out of these, four datasets with
strictly controlled sequence homology, i.e., 25PDB, 50PDB, 70PDB, and
90PDB with the sequence homology of 25%, 50%, 70%, and 90%,
respectively, are used for the design of the prediction method. The 25PDB
dataset [25] and the remaining two datasets were used in previous studies,
and are used to compare the designed method with other competing
methods. These two datasets are ‘‘359’’ [15] and ‘‘1189’’ [46]. The six
datasets were processed using the PDB release as of June 2005 and were
filtered based on the four SCOP classes, i.e., sequences belonging to other
or undetermined SCOP labels were removed. The class distribution within
these datasets is given in Table 1. Next, we briefly describe how these
datasets were generated.

The ‘‘359’’ dataset includes highly homologous sequences (over 95%
homology) and was extensively used to evaluate various structural class
prediction methods. ‘‘1189’’ and 25PDB datasets are both low-homol-
ogy datasets (40% and 25% homology, respectively), which have been
used in previous studies of structural class prediction methods. The
other three datasets are similar to 25PDB in that homology in these
datasets is strictly controlled. They are based on the clusters50, clus-
ters70, and clusters90 lists published on the PDB web site as of June
2005. The latter datasets were extracted using the CD-hit (Cluster
Database at High Identity with Tolerance) program [32]. After
removing duplicate protein domains and filtering based on the four
SCOP classes, these three datasets include 3642, 4243, and 5212
sequences, respectively.
Fig. 1. Proposed ensemble method fo
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Preparation of the controlled homology datasets. The 25PDB, 50PDB,
70PDB, and 90PDB datasets were constructed to explicitly control
dataset homology in our study. However, in addition to controlling
homology, we had to control other characteristics of the datasets,
especially class distribution. All machine learning algorithms are neg-
atively impacted by imbalance between different classes; in general, the
more prevalent classes will tend to dominate the learning process. The
original 25PDB, 50PDB, 70PDB, and 90PDB datasets are highly
unbalanced with respect to the distribution of the SCOP labels.
Additionally, the original 50PDB, 70PDB, and 90PDB datasets contain
a significant amount of overlapping sequences, i.e., protein domains
from clusters50 are listed in clusters70 and protein domains from
clusters70 are included in cluster90. These characteristics make the
comparison of prediction accuracies between the datasets very difficult.
Therefore, these datasets were transformed into balanced datasets with
minimal overlaps (25HPDB, 50HPDB, 75HPDB, and 90HPDB), in
three steps:

1. We filtered all 50PDB domains from 70PDB to obtain the 70–50PDB
dataset. Similarly, we filtered all 70PDB domains from 90PDB and
obtained the 90–70PDB dataset.

2. Number of sequences for the structural class that has minimum num-
ber of records for each of the 25PDB, 50PDB, 70PDB, and 90PDB
datasets was found.

3. The number of sequences for each SCOP class in a dataset was
equalized.
r the

ense
rc.20
(a) Since, there is no overlap between 25PDB and 50PDB, the corre-
sponding balanced datasets, i.e., 25HPDB and 50HPDB, were creat-
ed by selecting all sequences from the class with the minimum
number of records and randomly (without replacement) drawing
the same number of sequences for the remaining classes.
(b) To reduce the overlap, the remaining two balanced datasets, i.e.,
70HPDB and 90HPDB, were created by adding sequences from
50PDB to the 70–50PDB dataset, and from 70PDB to the 90–
70PDB dataset. For the class with the minimum number of records
all sequences were included, and for the remaining classes the added
sequences were randomly drawn (without replacement) from 50PDB
to 70PDB, respectively.
structural class prediction.

mbles for protein structural class prediction ..., Biochemical
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Fig. 2. Distribution of class labels in the 25HPDB, 50HPDB, 70HPDB,
and 90HPDB datasets.
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As a result, 1384, 2548, 2968, and 3360 domains were included in the
25HPDB, 50HPDB, 70HPDB, and 90HPDB datasets, respectively, see
Fig. 2.

Feature representation of protein sequences. The protein sequences were
initially represented using a comprehensive set of 122 features, grouped
into 20 feature sets (see Table 2). This was reduced to 34 features through
Table 2
Feature representation

Feature set ID Feature set name Abbr.

1 Sequence length L
2 Molecular weight M
3 Isoelectric point I
4 Composition vector CV
5 1st order composition moment vector 1-CMV

6 2nd order composition moment vector 2-CMV

7 R group RG
8 Exchange group EXG

9 Hydrophobic group HG
10 Electronic group EG
11 Chemical group C
12 Other groups O

13 Auto-correlation-1 AC1

14 Sum of hydrophobicity-1 SH1
15 Average of hydrophobicity-1 AH1
16 Sum of the running three-average

of hydrophobicity-1
A3H1

17 Auto-correlation-2 AC2

18 Sum of hydrophobicity-2 SH2
19 Average of hydrophobicity-2 AH2
20 Sum of the running three-average

of hydrophobicity-2
A3H2

Table 3
Results of the selection of the best feature sets

Feature set ID (see Table 2)

1 2 3 4 5 6 7 8 9 10 1

# features in a set 1 1 1 20 20 20 5 3 2 5 1
# features selected by 1 0 0 13 4 3 3 0 1 3 1

Any of 3 feature selection methods in at least 5-folds.

Please cite this article as: Kanaka Durga Kedarisetti et al., Classifier
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the application of several feature selection algorithms on the original set of
122 features.

Our aim in feature selection was to develop a compact and
accurate representation of protein sequences. The 34 features used in
our final representation were selected using the ‘‘1189’’ dataset and
three feature selection methods: (1) feature subset consistency (FSC)
method selects a subset of features for maximum consistency in the
class values when the training instances are projected onto the feature
subset [34]. (2) Wrapper subset selection (WSS) method is a classifi-
cation-based wrapper that uses the Naı̈ve Bayes algorithm [30]. (3)
Feature correlation (FC) method selects a subset of features that are
highly correlated with the class while having low inter-correlation [24].
Each feature selection method was executed using 10-fold cross-vali-
dation test. Individual ‘‘best’’ features were selected in two steps:

1. Selection of best feature sets (see Table 3). First, we compute the
number of features for each feature set that are selected in at least
5-folds by any of the three selected feature selection methods. These
features are strongly correlated with the SCOP labels. Next, to select
only significant properties (feature sets), every feature set for which
at least 50% of the features were selected by this rule is found (bol-
ded and underlined in Table 3).
# features Brief description

1 Number of AAs in a protein sequence
1 Sum of the molecular weights of the neutral, free AAs
1 Sum of isoelectric point values of the AAs

20 normalized composition percentage of each AA
20 1st order composition vector that incorporates

composition and position of each AA
20 2nd order composition vector that incorporates

composition and position of each AA
5 Combines hydropathy, molecular weight, and pI

3 Some AAs can be substituted by other
without impact on the structure

2 Divides AAs into hydrophobic and hydrophilic
5 Divides AAs into neutrals, electron donors or acceptors

19 Chemical groups associated with the AAs
7 Divides AAs into charged, polar, aromatic, small, tiny,

bulky, and polar uncharged
6 Autocorrelations computed using the

Black and Mould hydrophobic index [5]
1 Sum of Black and Mould hydrophobicity index
1 Average of Black and Mould hydrophobicity index
1 Sum of running three-average of

Black and Mould hydrophobicity index
6 Autocorrelations computed using the

Eisenberg’s hydrophobic index [17]
1 Sum of Eisenberg’s hydrophobic index
1 Average of Eisenberg’s hydrophobicity index
1 Sum of running three-average of Eisenberg’s

hydrophobicity index

Total # features

1 12 13 14 15 16 17 18 19 20

9 7 6 1 1 1 6 1 1 1 122
0 4 1 0 1 5 1 0 1 42

ensembles for protein structural class prediction ..., Biochemical
rc.2006.07.141.



Table 4
Results of the selection of the feature-based sequence representation

Feature set abbr. Total # features # selected features Selected features

L 1 1 Sequence length
CV 20 13 Composition of A, C, D, E, G, I, L, M, P, Q, T, V, Y residues
RG 5 3 Non-polar (A,V,L,I,M,G), positively charged (K,H,R),

and negatively charged (D,E) residue sets
HG 2 1 Hydrophilic polar with uncharged side chain
EG 5 3 Electron donor (D,E,P,A), weak electron donor (V,L,I),

and neutral (G,H,W,S) residue sets
AC1 6 4 First 4 autocorrelations computed using the Black and Mould hydrophobic index
SH1 1 1 See Table 2
A3H1 1 1 See Table 2
AC2 6 5 First 4 and 6th autocorrelations computed using the Eisenberg’s hydrophobic index
SH2 1 1 See Table 2
A3H2 1 1 See Table 2
Total 49 34 Total

Fig. 4. Accuracy of the three ensembles of classifiers on the controlled
homology datasets.
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2. Selection of individual best features from the best feature sets (see
Table 4). To reduce the number of features we select only those fea-
tures that were selected by the rule in step 1 and belong to the best
feature sets. This finally results in 34 features shown in Table 4.

In Table 4 we use boldface to indicate relationships between the 34
selected features. The AAs selected from the composition vector mostly
belong to the non-polar and negatively charged groups (R group feature
set), and to the electron donor groups (electronic group). This shows that
polarity, charge, and electron donor properties may have an impact on the
folding into a specific structural class. We also observe that hydropho-
bicity is strongly related to prediction of structural classes. More specifi-
cally, a number of autocorrelations, which focus on local conformations
and are likely to be sensitive to helical structures, were included in the final
34 features. This agrees with the findings of other researchers with respect
to the prediction of protein secondary structure content [33,50].

Ensemble of classifiers. The proposed prediction method consists of
four base classifiers that are combined into an ensemble, all of which is
implemented in the WEKA environment [47]. We first optimize the
parameters for the individual base classifiers for the ‘‘1189’’ dataset using
10-fold cross validation. Two of these classifiers work relatively well with
low homology datasets: logistic regression (LgRe), which implements
multinomial regression [35], and support vector machines (SVM), which is
a kernel-based method [41]. The other two classifiers perform best on high-
homology datasets: instance-based (IB1) classifier, which implements the
nearest-neighbor algorithm [1], and random forest (RF), which constructs
a collection of decision trees [6]. The performance of the four base clas-
sifiers using 10-fold cross-validation on the four controlled homology
datasets is shown in Fig. 3.
Fig. 3. Accuracy of the four base classifiers on the controlled homology
datasets.
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We examined three different ensemble techniques (voting, multi-
scheme, and stacking) to select the optimal method to combine the base
classifiers. Voting is a generic method that combines classifier results using
an unweighted average of the classification probability estimates. Multi-
scheme is another generic method that selects one classifier amongst the
ensemble to perform the classification based on their performance on the
cross-validation test. Finally, stacking uses the predictions of the base
classifiers as attributes in a new training set that keeps the class labels. This
new meta-training set is used to train a meta classifier that is used to
predict the class. We used a recent implementation of stacking, called
stackingC, which is characterized by improved performance and superior
results for multi-class data [42]. The prediction accuracy of the three
ensembles for the controlled homology datasets is compared in Fig. 4.

The results show superiority of the stackingC method. A paired t-test
between the stackingC and the other two ensemble methods gave t values
of 5.12 and 2.36 for the voting and multi-scheme methods, respectively.
The differences are thus statistically significant at 99% and 95% signifi-
cance levels for the voting and multi-scheme methods, respectively.
Therefore, the stackingC method was used to implement the ensemble.

Results and discussion

Validation of the proposed prediction method

Our aim in this section is to evaluate the added value of
the proposed feature representation, as well as that of the
ensemble method. We empirically compare our proposed
method with the best results of the individual base classifi-
ensembles for protein structural class prediction ..., Biochemical
rc.2006.07.141.
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ers, and with the use of the composition vector representa-
tion (the most common representation in structural class
prediction). We used the controlled-homology datasets
and 10-fold cross-validation in all of our experiments, in
which we consider four configurations:

1. The proposed ensemble that uses 34 features to repre-
sent protein sequences (stackingC-34f).

2. The proposed ensemble that uses CV to represent
protein sequences (stackingC-CV).

3. The best results for each of the datasets generated by
base classifiers using the 34 feature representation
(best base-34f).

4. The best results for each of the datasets generated by
base classifiers using CV representation (best base-
CV).

Our results are shown in Fig. 5.
The classification accuracies range between 49% and

73%. The t value between stackingC with the proposed rep-
resentation and the best base-34f, stackingC-CV, and best

base-CV is 2.73, 12.0, and 24.4, respectively. Therefore,
Fig. 5. Evaluation of the proposed protein sequence representation and
the ensemble of classifiers.

Table 5
Comparison with other prediction methods (the highlights show results of the

Dataset Classification algorithm Sequence representation

359 Support vector machine 66 features
Instance-based classifier 66 features

StackingC ensemble 34 features
Information discrepancy classifier Polypeptides compositi
Support vector machine CV
Component Coupled Auto-correlations
Geometric classifier CV
Geometric classifier CV

1189 StackingC ensemble 34 features
Logistic regression 66 features
Bayes classifier CV
Support vector machine CV

25PDB StackingC ensemble 34 features
Logistic regression 66 features
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the differences are statistically significant at 95%, 99.9%,
and 99.95% levels, respectively. Overall the proposed mod-
el improved the classification accuracy by up to 10.8%
when compared to using single classifiers and CV represen-
tation. This graph yields three main findings:

1. Prediction of structural classes is more difficult on
low-homology sequences than for higher-homology
data, i.e., the best results for 25HPDB are about
60%, while the best results for 90HPDB are about
73%.

2. The proposed feature-based representation of pro-
tein sequences on average reduced the error rates
by 20.1% when using the ensemble (on average
8.6% reduction of the average error rate of the
stackingC-CV method that equals 42.9%) and by
17.9% when using individual classifiers (on average
8.0% reduction of the average error rate of the best

base-CV method that equals 44.1%). The reductions
for individual datasets range between 15.6% and
22.5%.

3. Similarly, the application of the ensemble reduced the
errors on average by 2.6% (on average 1.1% reduction
of the average error rate of the best base-CV method
that equals 44.1%) and by 5.3% (on average 1.8%
reduction of above the average error rate of the best

base-34f method that equals 36.1%) when the CV
and the proposed representations were used, respec-
tively. The reductions range between �1.5% and
8.7%.

This shows that the biggest reduction of error rates
(improvement of accuracy) was achieved through the cus-
tom protein sequence representation, but at the same time,
classifier ensembles also improved our predictions, espe-
cially for sequences characterized by higher homology.
proposed method)

Accuracy [%] Reference

Resubst. Jackknife

100 97.0 Kurgan and Homaeian [31]
100 97.0 Kurgan and Homaeian [31]

100 96.4 This paper
on vector 100 95.8 Jin et al. [26]

93.0 95.2 Cai et al. [9]
96.7 90.5 Bu et al. [7]
94.4 84.7 Bu et al. [7]
94.3 84.1 Chou and Maggiora [15]

95.2 58.9 This paper
62.0 53.9 Kurgan and Homaeian [31]
63.8 53.8 Wang and Yuan [46]
57.8 52.3 Kurgan and Homaeian [31]

87.6 59.9 This paper
62.2 57.1 Kurgan and Homaeian [31]

ensembles for protein structural class prediction ..., Biochemical
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Comparison with competing methods

The three standard benchmarking datasets, i.e., ‘‘359’’,
‘‘1189’’, and 25PDB, were used to compare the proposed
method with other competing structural class prediction
methods. The jackknife and resubstitution results together
with the corresponding references are shown in Table 5.

For the smallest, highly homologous ‘‘359’’ dataset our
methods achieved one of the highest results, which is only
0.6% lower than results of Kurgan and Homaeian [31] who
used twice as many features to represent the protein
sequences. At the same time, our accuracy for this dataset
is higher than accuracy of all other methods that used a
similar number of features. For the ‘‘1189’’ dataset, which
includes sequences of up to 40% homology, the proposed
method obtained 5% improvement in accuracy (10.8%
reduction of error rate) when compared with the two other
papers. Finally, results on the 25PDB dataset again show
superiority of the proposed method; 2.8% improvement
(6.5% reduction of error rate) was achieved when com-
pared to results in [31] despite using half as many features.
In short, the results show that the proposed structural class
prediction method improves accuracy for almost all consid-
ered datasets, while applying a compact feature
representation.

Summary and conclusion

This paper proposes a novel method for prediction of
structural classes based on protein sequences. The method
applies a custom designed feature-based representation of
the sequences and an ensemble of four complementary
classifiers to improve prediction accuracy for sequences
of varying homology. Two classifiers are characterized by
relatively high accuracy for low-homology sequences, while
the other two by high accuracy for high homology sequenc-
es. Four controlled homology (25%, 50%, 70%, and 90%)
datasets, which were extracted from the PDB, were used
to select the best ensemble method and a compact feature
representation. Experimental tests have shown that the
application of the new sequence representation (which
includes 34 features that describe AA composition, polari-
ty, electric charge, and hydrophobicity) and the stacking
ensemble gave on average 9.8% increase in accuracy (on
average the error rates were reduced by 22.3%) when com-
pared with the commonly used composition vector repre-
sentation and the best individual classifiers. The error
rates were reduced by 21.2%, 21.4%, 22.3%, and 24.4% in
function of increasing homology for the four controlled
homology datasets, showing that the improvements are rel-
atively large across the entire spectrum of sequence similar-
ity levels.

The proposed prediction method was compared with
other competing prediction methods, which include sup-
port vector machines, regression, and geometric classifiers,
on three benchmark datasets. Our method was superior to
most other methods, with the exception of result for the
Please cite this article as: Kanaka Durga Kedarisetti et al., Classifier
and Biophysical Research Communications (2006), doi:10.1016/j.bb
most homologous dataset given in [31]. The prediction
accuracy ranges between 60% for the low-homology
sequences and over 73% accuracy for the high homology
sequences. To compare, the latest competing methods
report 52% accuracy [44] and 57% accuracy [31] for analo-
gous problems.

The results suggest that application of an ensemble of
classifiers together with appropriate feature representation
has a high potential to provide accurate prediction of pro-
tein structural classes.

Acknowledgment

This research was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada.
References

[1] D. Aha, D. Kibler, Instance-based learning algorithms, Machine
Learning 6 (1991) 37–66.

[2] A. Andreeva, D. Howorth, S. Brenner, T. Hubbard, C. Chothia, A.
Murzin, SCOP database in 2004: refinements integrate structure and
sequence family data, Nucleic Acid Research 32 (2004) D226–D229.

[3] I. Bahar, A.R. Atilgan, R.L. Jernigan, B. Erman, Understanding the
recognition of protein structural classes by amino acid composition,
Proteins 29 (1997) 172–185.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I. Shindyalov, P. Bourne, The Protein Data Bank, Nucleic
Acids Research 28 (2000) 235–242.

[5] S. Black S, D. Mould, Development of hydrophobicity parameters to
analyze proteins which bear post- or cotransitional modifications,
Analytical Biochemistry 193 (1991) 72–82.

[6] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[7] W-S. Bu, Z-P. Feng, Z. Zhang, C-T. Zhang, Prediction of pro-

tein(domain) structural classes based on amino-acid index, European
Journal of Biochemistry 266 (1999) 1043–1049.

[8] Y. Cai, Is it a paradox or misinterpretation? Proteins 43 (2001) 336–
338.

[9] Y. Cai, X.J. Liu, X.B. Xu, K.C. Chou, Support vector machines for
prediction of protein domain structural class, Journal of Theoretical
Biology 221 (2003) 115–120.

[10] O. Camoglu, T. Can, A.K. Singh, Y.F. Wang, Decision tree based
information integration for automated protein classification, Journal
of Bioinformatics and Computational Biology 3 (3) (2005) 717–742.

[11] K.C. Chou, C.T. Zhang, A new approach to predicting protein
folding types, Journal of Protein Chemistry 12 (1993) 169–178.

[12] K.C. Chou, C.T. Zhang, Predicting protein-folding types by distance
functions that make allowances for amino-acid interactions, Journal
of Biological Chemistry 269 (1994) 22014–22020.

[13] K.C. Chou, A novel approach to predicting protein structural classes
in a (20–1)-D amino acid composition space, Proteins 21 (1995) 319–
344.

[14] K.C. Chou, C.T. Zhang, Prediction of protein structural classes,
Critical Review in Biochemistry and Molecular Biology 30 (1995)
275–349.

[15] K.C. Chou, G.M. Maggiora, Domain structural class prediction,
Protein Engineering 11 (1998) 523–538.

[16] K.C. Chou, Y.D. Cai, Prediction protein structural class by
functional domain composition, Biochemical and Biophysical
Research Communications 321 (2004) 1007–1009.

[17] J. Cornette, K.B. Cease, H. Margalit, J.L. Spouge, J.A. Berzofsky, C.
DeLisi, Hydrophobicity scales and computational techniques for
detecting amphipathic structures in protein, Journal of Molecular
Biology 195 (1987) 659–685.
ensembles for protein structural class prediction ..., Biochemical
rc.2006.07.141.



988 K.D. Kedarisetti et al. / Biochemical and Biophysical Research Communications 348 (2006) 981–988

ARTICLE IN PRESS
[18] S. Diplaris, G. Tsoumakas, P. Mitkas, I. Vlahavas, Protein Classi-
fication with Multiple Algorithms, Proceedings of the 10th Panhel-
lenic Conference on Informatics, 2005, 448–456.

[19] I. Dubchak, I. Muchnik, S.R. Holbrook, S.H. Kim, Prediction of
protein-folding class using global description of amino-acid sequence,
Proceedings of the National Academy of Science 92 (1995) 8700–
8704.

[20] I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, S.H. Kim, Recog-
nition of a protein fold in the context of the SCOP classification,
Proteins 35 (1999) 401–407.
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