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Prediction of protein structural class for the twilight zone sequences
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Abstract

Structural class characterizes the overall folding type of a protein or its domain. This paper develops an accurate method for in-silico
prediction of structural classes from low homology (twilight zone) protein sequences. The proposed LLSC-PRED method applies linear
logistic regression classifier and a custom-designed, feature-based sequence representation to provide predictions. The main advantages
of the LLSC-PRED are the comprehensive representation that includes 58 features describing composition and physicochemical prop-
erties of the sequences and transparency of the prediction model. The representation also includes predicted secondary structure content,
thus for the first time exploring synergy between these two related predictions. Based on tests performed with a large set of 1673 twilight
zone domains, the LLSC-PRED’s prediction accuracy, which equals over 62%, is shown to be better than accuracy of over a dozen
recently published competing in silico methods and similar to accuracy of other, non-transparent classifiers that use the proposed
representation.
� 2007 Elsevier Inc. All rights reserved.
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Despite assuming a multitude of complex three-dimen-
sional structures and bearing a wide range of biological
functions proteins are characterized by simple and regu-
lar local folding patterns. Structural class categorizes var-
ious proteins into groups that share similarities in the
local folding. Prediction of structural classes is based
on identifying these folding patterns based on thousands
of already categorized proteins, and applying these pat-
ters to millions of proteins with unknown structures but
known amino acid (AA) sequences, i.e., as of March
13, 2007, release 22 of the NCBI’s RefSeq database stores
3,438,099 sequences.

One of the most accurate classifications of structural
classes can be found in the expert-curated SCOP (Struc-
tural Classification of Proteins) database [32] (as of Octo-
ber 2006, release 1.71 of SCOP stores 75,930 sequences).
The basic structural unit of classification in this database
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is either the entire sequence or a protein domain (structur-
ally conserved fragment of the sequence). SCOP database
is organized as a hierarchy of known protein and protein
domain structures where first level is based on the struc-
tural class. There are four major structural classes: all-a,
all-b, a/b, and a + b. The all-a and all-b classes represent
structures that consist of mainly a-helices and b-strands,
respectively. The a/b and a + b classes contain both a-heli-
ces and b-strands where the a/b class includes mainly par-
allel b-strands and a + b class includes anti-parallel
strands.

Structural class prediction is usually performed in two
steps. First, the AA sequences are transformed into a
fixed-length feature vectors. Next, the feature vectors are
fed to a classification algorithm to perform the prediction.
The last twenty years have seen numerous methods for
computational prediction of protein structural class.
Majority of the prediction methods use relatively simple
sequence representations such as composition vectors,
auto-correlation function based on non-bonded residue
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energy, polypeptide composition, pseudo AA composition
and complexity measure factor [2,7,22,26,41,46]. A few
recent methods developed more advanced representations
that either combine physicochemical properties and
sequence composition or optimize one selected type of
the representation [21,23,25]. Different classification algo-
rithms, including fuzzy clustering [38], neural network [4],
Bayesian classification [39], rough sets [8], component-cou-
pled [46], information discrepancy [22,26], logistic regres-
sion [21,25,23], decision tree [7,10], and support vector
machine [5,6,10,25], have been already used. Recent works
also explored application of complex classification models,
such as ensembles [25], bagging [10], and boosting [7,14].
However, some of these algorithms were tested on small
datasets with uncontrolled (often high) sequence homol-
ogy, which results in an overestimated prediction accuracy
[23]. At the same time, secondary structure of homologous
sequences can be reliably predicted [34], and this informa-
tion can be used to come up with the corresponding struc-
tural class.

On the other hand, low homology sequences pose a sub-
stantial challenge. Virtually all secondary structure predic-
tion methods use sequence alignment that requires at least
�30% homology between the query sequence and
sequence(s) used to predict its structure [37]. The proteins
characterized by a lower, 20–30%, homology with
sequences that are used to predict their structure are called
the twilight zone proteins [35]. More than 95% of all
sequence pairs detected in the twilight zone have different
structures [35], which significantly reduces the prediction
accuracy. For instance, prediction of the secondary struc-
ture for homologous sequences by the state-of-the-art
alignment-based methods yields about 80% accuracy, while
for the twilight zone sequences it drops to only 65–68%
[31]. Similarly, in case of structural class prediction accura-
cies for highly homologous protein datasets reach over
90%, while they drop to about 57% in case of the twilight
zone sequences [23].

A substantial number of sequences for which tertiary
structure was recently solved belong to the twilight zone,
demonstrating the extent of the problem. We collected all
sequences entered to the Protein Data Bank (PDB) in
2005 and aligned these sequences (using Smith–Water-
man algorithm) with sequences stored in PDB before
2005. Among 1657 sequences, 40.1% belong to the
twilight zone, 27% belong to non-twilight zone, and
32.9% were identical (100% sequence homology) when
compared with proteins stored in PDB before 2005.
The large number of twilight zone proteins that are of
interest to the community and relatively low prediction
accuracy for these sequences that is provided by the
existing structural class prediction methods serve as our
motivation.

To this end, we propose a novel in silico method that
aims to improve prediction accuracy for the twilight zone
proteins. The proposed method, referred to as LLSC-
PRED, uses a custom-designed sequence representation
and a transparent linear logistic regression model to predict
structural classes.
Materials and methods

Dataset. The proposed method is designed and tested on a large set of
twilight zone sequences. The dataset, referred to as 25PDB, was selected
based on the 25% PDBSELECT list [18], which includes proteins scanned
with high resolution and with low, on average 25%, homology. The
dataset was originally developed and published in [23]. It contains 1673
proteins and domains, which include 443 all-a, 443 all-b, 346 a/b, and 441
a + b sequences.

Feature based sequence representation. The sequence representation
design is based on a comprehensive list of feature sets that were previously
used for prediction of protein structural class, secondary structure content,
function, family, and solvent accessibility, and a set of four new features
that correspond to the predicted secondary structure content, see Tables 1
and 2. The content prediction aims to quantify the amount of residues in
the sequence that assume helical and strand conformation. The beneficial
impact of the predicted content was first investigated in [24]. The LLSC-
PRED method is the first to apply the content prediction to improve the
structural class prediction. Two recent content prediction methods were
used [29,45] and the strand/helix content values were computed based on
protein sequences and using 10-fold cross validation. The resulting set of
2121 features was next processed by a feature selection method to obtain
the final, customized representation.

Proposed sequence representation. Since the considered feature sets
include large number of features, a feature selection method was used to
reduce the dimensionality and potentially improve the prediction accu-
racy. A correlation-based feature subset selection method (CFSS) was
used [17]. It evaluates a given subset of features, which is found using best
first search based on the hill-climbing with backtracking, by considering
the individual predictive ability of each feature along with the degree of
redundancy between them. We also tested half a dozen other feature
selection methods, and concluded that the CFSS provides the best results.
The feature selection was performed using 10-fold cross validation to
avoid overfitting, and features that were found significant by the CFSS in
at least 1-fold were selected. As a result, 58 features were selected among
the original set of 2021 features, see Table 3.

The proposed representation includes at least one feature from each
feature set listed in Table 1; we also tried other feature sets but only those
that provide significant features are listed. The most consistent, i.e.,
selected in all folds, features include the predicted content values (for both
secondary structures and prediction methods) and autocorrelation func-
tions. The composition-based features, with significant number of features
related to collocated AAs pairs, were also found useful.

Prediction method. The structural class prediction was performed using
linear logistic regression classifier, which is based on LogitBoost learning
with linear regression functions as base learners [28]. In this classifier, a
given instance (protein sequence) is classified into one of the four struc-
tural classes using

jpredicted ¼ arg max
j

P ðC ¼ j j X ¼ xÞ

where class variable C takes on four values j = {all-a, all-b, a/b, a + b},
P(C = j |X = x) is to the posterior class probability for class j, and x is
the feature vector that represents the sequence. Logistic regression models
posterior probabilities using linear functions in x ensuring that they sum
to 1 and remain in [0,1]. The linear regression model is specified in terms
of log-odds that separate each class from the ‘‘base class’’ J such that

log
PðC ¼ j j X ¼ xÞ
P ðC ¼ J j X ¼ xÞ ¼ n0;j þ nT

j x

where the parameter vector nj is estimated (learned) based on training se-
quences (in their feature-based representation) using LogitBoost algorithm
[15]. As a result, the prediction model is transparent, i.e., nj values can be
used to estimate the relative predictive value of the corresponding features.



Table 1
Feature sets used to develop the proposed sequence representation

Feature sets (# features) Description Prior applications References

Sequence length (1) N (# AA in the sequence) Secondary structure
content, and structural
class predictions

[19,23,25,33]
Index-based Average isoelectric

point (1)
pI ¼ 1

N

PN
i¼1pI i, see Table 2 for pIi values

Auto-correlation functions
based on FHi, EHi

and Hp indices (25)

Aa
n ¼ 1

N�n

PN�n
i¼1 aiaiþn where a defines the corresponding

physicochemical AA index; two hydrophobicity
indices, i.e., the Fauchere–Pliska’s (FH) with
n = 1, 2, . . . , 10 [13] and the Eisenberg’s (EH) [11]
n = 1, 2, . . . , 6, and the hydropathy (Hp) index [27]
with n = 1,2 . . . , 9 were used; see Table 2

Protein content,
structural class, and
solvent accessibility
prediction

[23,25,29,30,44,45]

Auto-correlation functions
based on cumulative
FHi index (6)

Acuma
n ¼

PN�n

i¼1

Pi

j¼1
aj

� �
�
Piþn

j¼1
aj

� �

N�n where a is the

Fauchere–Pliska’s (FH) [13] index with

n = 1, 2, . . . , 6; see Table 2

Protein content
prediction

[20]

Sum of hydrophobicities
based on FHi and
EHi indices (2)

Ha
sum ¼

PN
i¼1ai where a is the Fauchere–Pliska’s

(FH) [13] or the Eisenberg’s (EH) [11] index;
see Table 2

Protein structural class
prediction

[25]

Sum of 3-running average
of hydrophobicities
based on FHi and
EHi indices (2)

Ha
sum3 ¼

PN�3
i¼1

Piþ3
j¼i aj

� �.
3 where a is the

Fauchere–Pliska’s (FH) [13] or the
Eisenberg’s (EH) [11] index; see Table 2

Protein structural class
prediction

[25]

AA composition Composition vector (20) CVi the composition percentage of ith AA
in the sequence; see Table 2

Protein structure,
structural class and
content predictions

[7–9,12,23,25,33,
36,43–45]

Composition of collocated
AA pairs (2000)

CVAAiAAj , CVAAi-AAj , CVAAi - -AAj , CVAAi - - -AAj ,
CVAAi- - - -AAj for ith and jth AAs, see Table 2
for the AA index assignment; this is the
composition percentage of collocated AA pairs,
i.e., AAiAAj denotes dipeptides, AAi-AAj, denotes
two AAs separated by a single gap, and AAi- -AAj,
AAi- - -AAj, and AAi- - - -AAj denote two AAs
separated by 2, 3 and 4 gaps, respectively; there
are 400 pairs for each gap size

Secondary structure
prediction

[3]

First and second order
composition moment
vector (40)

CMVk
i ¼

Pxi
ı5j¼1

nk
ijQk

d¼1
ðN�kÞ

where nij represents the jth

position of the ih AA, ni is the frequency

of ith AA in the sequence, and k = 1,2 is the

order of the CMV; CMV for k = 0

reduces to CV

Protein content and
structural class
predictions

[23,25,36]

Property groups R groups (5) RGi where i = 1, 2, . . . , 5; i = 1 corresponds to nonpolar
aliphatic AAs (AVLIMG), i = 2 to polar uncharged
AAs (SPTCNQ), i = 3 to positively charged AAs
(KHR), i = 4 to negative AAs (DE), and i = 5 to
aromatic AAs (FYW); the composition percentage
of each group in the sequence is computed

Protein structural
class and secondary
structure predictions

[25,42]

Electronic groups (5) EGi where i = 1, 2, . . . , 5; i = 1 corresponds to electron
donor AAs (DEPA), i = 2 to weak electron donor
AAs (LIV), i = 3 to electron acceptor AAs (KNR),
i = 4 to weak electron acceptor AAs (FYMTQ),
and i = 5 to neutral AAs (GHWS); the composition
percentage of each group in the sequence is computed

Protein secondary
structure and
structural
class predictions

[16,23,25]

Chemical groups (10) CGi these groups are defined based on composition
of chemical group that constitute the side chains [16]
where i = 1, 2, . . . , 10 corresponds to C, CAROM, CH,
CH2, CH2RING, CH3, CHAROM, CO, NH, OH side
chain groups, respectively. The composition percentage
of each chemical group in all side chains in the
sequence is computed

Secondary structure content (4) ContentHf and contentEf where H corresponds to helix
content, E corresponds to strand content and f
corresponds to the prediction method, i.e., method
by Lin and Pan (LP) [30] and by Zhang and
colleagues (Z) [45]; the content values were
predicted using 10-fold cross validation

Protein content
prediction

[30,45]
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Table 2
The AA indices

Amino acid Code AA index Physicochemical index

pI FH EH Hp

Alanine A 1 6.01 0.42 0.62 1.8
Cysteine C 2 5.07 1.34 0.29 2.5
Aspartate D 3 2.77 �1.05 �0.9 �3.5
Glutamate E 4 3.22 �0.87 �0.74 �3.5
Phenylalanine F 5 5.48 2.44 1.19 2.8
Glycine G 6 5.97 0 0.48 �0.4
Histidine H 7 7.59 0.18 �0.4 �3.2
Isoleucine I 8 6.02 2.46 1.38 4.5
Lysine K 9 9.74 �1.35 �1.5 �3.9
Leucine L 10 5.98 2.32 1.06 3.8
Methionine M 11 5.47 1.68 0.64 1.9
Asparagine N 12 5.41 �0.82 �0.78 �3.5
Proline P 13 6.48 0.98 0.12 �1.6
Glutamine Q 14 5.65 �0.3 �0.85 �3.5
Arginine R 15 10.76 �1.37 �2.53 �4.5
Serine S 16 5.68 �0.05 �0.18 �0.8
Threonine T 17 5.87 0.35 �0.05 �0.7
Valine V 18 5.97 1.66 1.08 4.2
Tryptophan W 19 5.89 3.07 0.81 �0.9
Tyrosine Y 20 5.67 1.31 0.26 �1.3
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Result and discussion

Experimental setup

Classification algorithms used to develop and compare
the proposed method were implemented in Weka, which
is a comprehensive open-source library of machine learning
methods [40]. The proposed LLSC-PRED method was
comprehensively compared with competing methods which
use other sequence representations and best performing
Support Vector Machine (SVM) classifier using the same
58 features to represent sequences. The comparison
includes three state-of-the-art groups of competing
algorithms:

- methods that apply optimized representations [21,23,25]
- recent advanced multi-classifier systems including boost-

ing [7], ensembles [25], and bagging [10]
- best performing SVM [6] and information discrepancy

based algorithms [22,26].
Table 3
Proposed feature-based sequence representation

Features

# Feature names

7 AHp
2, AHp

4, AFH
2, contentHLP, contentELP, contentHZ, contentEZ

2 pI, HFH
sum3

1 CVF

2 CVD-V, EG5

1 CVL- - -G

5 CVEQ, CVA, CVT, CG10, HEH
sum

8 CVV-I, CVV-V, CVC- -C, CVV- - - G, CVH, CVP, CMV2
Q, RG3

12 CVM-K, CVV- -G, CVA- - -A, CVG- - -V, CVP- - -C, CVV- - -P, N, CVK, HFH
su

20 CVEY, CVGI, CVMN, CVC-Q, CVI-I, CVM- -P, CVW- -N, CVY- -C, CVW- - -P

CMV1
Q;CMV1

T, CMV2
G, RG1, EG1, AEH

2, HEH
sum3, AcumFH

4

The experimental evaluation was performed using two
out-of-sample tests, i.e., 10-fold cross validation and jack-
knife tests, to avoid overfitting and assure statistical valid-
ity of the results [23]. The tests were performed on the
twilight zone 25PDB dataset, and the reported results
include overall accuracy (the number of correct predictions
divided by the total number of test sequences), accuracy for

each structural class (number of correct predictions for a
given class divided by the number of sequences from this
class), Matthews’s correlation coefficient (MCC) for each
structural class, and generalized squared correlation

(GC2). The MCC values range between �1 and 1, where
0 represents random correlation, and bigger positive (neg-
ative) values indicate better (lower) quality of the predic-
tion for a given structural class. Since MCC works only
for binary classification, we also reported GC2, which is
based on v2 statistics. The GC2 values range between 0
and 1, where 0 corresponds to worst possible classification
(no correct predictions) and 1 corresponds to perfect clas-
sification. MCC and GC2 are described in detail in [1].

Results and comparison with competing methods

The classification results for the 13 competing methods,
LLSC-PRED and two SVM classifiers are compared in
Table 4. The LLSC-PRED and the two SVMs use the pro-
posed 58 features and were optimized to maximize overall
accuracy based on 10-fold cross validation (we used both
polynomial and Gaussian kernels for SVMs). The compet-
ing methods use the original author’s setup including the
sequence representation and the algorithm’s parameters.

The LLSC-PRED gives over 62% accuracy for both out-
of-sample tests. The only other comparable results are gen-
erated by using SVM on the proposed representation.
Although LLSC-PRED and SVM share similar accuracy,
the proposed linear logistic regression model is transparent
and easy to interpret (see next section), while the SVM
models are virtually impossible to comprehend. The
remaining, competing methods obtain accuracies that
range between 35% and 60%.

The only two competing methods that reach 60% accu-
racy are also based on a custom-designed representation
that includes both composition and physicochemical prop-
# Folds, in which CFSS found a given
feature significant

10
8
7
6
5
4
3

m, AcumFH
3, AcumFH

6, AHp
3 2

, CVG- - - -V, CVI- - - -E, CVI- - - -G, 1



Table 4
Summary of the experimental results; [22] was not originally tested using 10-fold cross validation and thus we also did not report these results

Algorithm Sequence representation (# features) References Accuracy MCC GC2

all-a all-b a/b a + b Overall all-a all-b a/b a + b

Jackknife Competing methods SVM (Gaussian kernel) CV (20) [6] 68.6 59.6 59.8 28.6 53.9 0.52 0.42 0.43 0.15 0.17
LogicBoost with decision tree CV (20) [7] 56.9 51.5 45.4 30.2 46.0 0.41 0.32 0.32 0.06 0.10
Bagging with random tree CV (20) [10] 58.7 47.0 35.5 24.7 41.8 0.33 0.26 0.22 0.06 0.06
LogitBoost with decision stump CV (20) [10] 62.8 52.6 50.0 32.4 49.4 0.49 0.35 0.34 0.11 0.13
SVM (3rd order polyn. kernel) CV (20) [10] 61.2 53.5 57.2 27.7 49.5 0.46 0.35 0.39 0.11 0.13
Multinomial logistic regression Custom dipeptides (16) [21] 56.2 44.5 41.3 18.8 40.2 0.23 0.20 0.31 0.06 0.05
Information discrepancy Dipeptides (400) [22,26] 59.6 54.2 47.1 23.5 47.0 0.46 0.40 0.24 0.04 0.12
Information discrepancy Tripeptides (8000) [22,26] 45.8 48.5 51.7 32.5 44.7 0.39 0.39 0.25 0.06 0.11
Multinomial logistic regression Custom (34) [25] 71.1 65.3 66.5 37.3 60.0 0.61 0.51 0.51 0.22 0.25
SVM with RBF kernel Custom (34) [25] 69.7 62.1 67.1 39.3 59.5 0.60 0.50 0.53 0.21 0.25
StackingC ensemble Custom (34) [25] 74.6 67.9 70.2 32.4 61.3 0.62 0.53 0.55 0.22 0.26
Multinomial logistic regression Custom (66) [23] 69.1 61.6 60.1 38.3 57.1 0.56 0.44 0.48 0.21 0.21
SVM (1st order polyn. kernel) Autocorrelation (30) [23] 50.1 49.4 28.8 29.5 34.2 0.16 0.16 0.05 0.05 0.02

This paper SVM (1st order polyn. kernel) Custom (58) This paper 77.4 66.4 61.3 45.4 62.7 0.65 0.54 0.55 0.27 0.28
SVM (Gaussian kernel) Custom (58) This paper 76.5 64.6 63.3 44.9 62.3 0.65 0.53 0.54 0.26 0.28
LLSC-PRED Custom (58) This paper 75.2 67.5 62.1 44.0 62.2 0.63 0.54 0.54 0.27 0.27

10-fold cross validation Competing methods SVM (Gaussian kernel) CV (20) [6] 67.9 59.1 58.1 27.7 53.0 0.51 0.42 0.41 0.14 0.16
LogicBoost with decision tree CV (20) [7] 51.9 53.7 46.5 32.4 46.1 0.38 0.37 0.31 0.07 0.10
Bagging with random tree CV (20) [10] 53.5 51.0 37.6 22.0 41.2 0.28 0.30 0.22 0.04 0.06
LogitBoost with decision stump CV (20) [10] 63.2 53.5 50.9 32.4 50.0 0.48 0.36 0.36 0.12 0.14
SVM (3rd order polyn. kernel) CV (20) [10] 61.4 54.0 55.2 27.4 49.2 0.46 0.35 0.37 0.10 0.13
Multinomial logistic regression Custom dipeptides (16) [21] 56.9 44.2 42.2 17.7 40.2 0.24 0.20 0.32 0.04 0.06
Multinomial logistic regression Custom (34) [25] 69.9 65.3 66.5 38.4 60.0 0.60 0.52 0.51 0.23 0.25
SVM with RBF kernel Custom (34) [25] 70.2 61.6 67.6 39.6 59.8 0.60 0.49 0.53 0.22 0.25
StackingC ensemble Custom (34) [25] 73.4 67.3 69.1 29.8 59.9 0.59 0.52 0.54 0.18 0.25
Multinomial logistic regression Custom (66) [23] 69.1 60.5 59.5 38.1 56.7 0.56 0.44 0.48 0.20 0.21
SVM (1st order polyn. kernel) Autocorrelation (30) [23] 52.4 49.7 0.3 30.4 35.1 0.18 0.16 0.05 0.06 0.02

This paper SVM (1st order polyn. kernel) Custom (58) This paper 77.7 66.8 60.7 45.4 62.8 0.64 0.54 0.54 0.28 0.28
SVM (Gaussian kernel) Custom (58) This paper 76.1 65.0 63.6 45.8 62.6 0.66 0.53 0.54 0.27 0.28
LLSC-PRED Custom (58) This paper 74.7 66.4 62.7 45.8 62.4 0.63 0.54 0.54 0.27 0.28
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erties [25]. The most accurate method that uses the most
popular and simple composition vector based representa-
tion obtained 54% accuracy [6]. In general, simple represen-
tations result in low accuracy for the twilight zone proteins.
This highlights the importance of the sequence representa-
tion, i.e., we believe that future improvements will be pos-
sible by designing more advanced representations rather
than using more advanced classification methods. On the
other hand, SVM and logistic repression classifiers are
shown to perform the best on this challenging, low-homol-
ogy prediction problem.

The most accurate predictions concern all-a class (75–
77% accuracy), while the best results for all-b and a/b clas-
ses range between 65% and 67% and between 61% and
63%, respectively. The lowest accuracy (44–45%) is
obtained for the a + b class. This trend is universal for
all tested method, although the corresponding accuracies
are lower. The main reason for good performance for
all-a class is that these sequences are helix rich and helical
structures are the easiest to predict, i.e., a helix is formed by
a single, continuous sequence segment and is characterized
by highly repetitive structure.

Finally, we note that evaluations using both accuracy/
class accuracy and GC2/class MCC result in very similar
conclusions.
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Analysis of the prediction model

The LLSC-PRED generated a linear prediction model
shown in Table 5. The remaining features, i.e., those
among the selected 58 features that are not listed in Table
5, assumed corresponding parameter vector values equal 0
for all four structural classes.

The model shows relative predictive value of individual
features for each of the structural classes. The features with
negative (positive) nj values have detrimental (promoting)
effect on the prediction, i.e., their positive values result in
lower (higher) score while the structural class with the high-
est score is selected.

For the all-a class, the predicted strand content has
strong detrimental effect; this correlates with the class def-
inition. A negative relation between composition moment
of Glutamine ðCMV2

QÞ and promoting effect of the Pro-
line’s composition (CVP) and hydrophobicity-based auto-
correlation ðAEH

2Þ are also characteristic for this class.
For the all-b class, the predicted strand (helix) content

has strong promoting (inhibitory) effect; this again agrees
with the class definition. The Histidine’s composition
(CVH) is found to be positively associated with this class,
while the increased amount of Alanine (CVA) lowers the
probability of the corresponding sequence to belong to
the all-b class.

For the a/b class, the strongest promoting effect is asso-
ciated with the composition moment of Glutamine
ðCMV2

QÞ and the high amount of nonpolar aliphatic resi-
dues in the sequence (RG1). The inhibitory effect is pro-
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vided by the positively charged AAs (RG3) and the compo-
sition moment of Glycine ðCMV2

GÞ.
The a + b class is characterized by the lowest nj values,

which results in the lowest prediction accuracy. The only
significant features include Histidine’s composition
(CVH), composition moment of Glycine ðCMV2

GÞ, and
the detrimental effect of the large number of positively
charged AAs (RG3) and Lysine residues (CVK).

Individual features usually provide promoting effect on
one class, while at the same time they have detrimental
effect on other classes. In other words, they are selective
for a given class. For instance, ðCMV2

QÞ has positive
impact on the a/b class and detrimental effect on all-a class,
predicted strand content has detrimental effect on all-a
class and positive effect on all-b class, RG3 has promoting
effect on all-b class and inhibitory effect on both a/b and
a + b classes, etc. Finally, we note that RG3 and RG1

groups and CVH and CVA compositions were also included
in the sequence representation proposed in [25].

Summary and conclusions

The structural class prediction for the twilight zone
sequences is a challenging problem. This paper presents a
novel approach that aims to improve the prediction accu-
racy via designing a composite (of AA composition, phys-
icochemical properties and predicted secondary structure
content) sequence representation. In contrast to equally
well performing Support Vector Machine (SVM) based
classifier, the proposed LLSC-PRED method applies easy
to comprehend and fast to train linear logistic regression
classifier.

Based on an extensive experimental comparison between
the proposed and over a dozen of competing methods, the
LLSC-PRED is shown to break 60% barrier [39] and
achieves overall accuracy of over 62%. This result is
matched only by SVM that applies the proposed sequence
representation. To compare, the accuracy of the best-per-
forming SVM that applies a simple, non-composite repre-
sentation equals 54%.

The main contribution of this paper is the proposed
sequence representation that includes 58 features. This rep-
resentation, together with the transparent prediction model
may help uncovering hidden relations between important
physicochemical sequence properties and the structural
classes. Based on our experimental results, we believe that
future improvements will be possible by designing better
sequence representations rather than applying more com-
plex classifiers.
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