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Production of high-quality crystals is one of the main bottlenecks in the X-ray crystallography driven pro-
tein structure determination. Availability of structure determination data repositories, such as TargetDB
and PepcDB, and flexibility in target selection in structural genomics motivate development of methods
that predict crystallization propensity from a given protein sequence. We introduce a novel linear model
tree-based meta-predictor, MetaPPCP, which takes advantage of the complementarity of state-of-the-art
protein crystallization propensity predictors to provide predictions with about 80% accuracy. Our method
combines predictions of XtalPred and CRYSTALP2 with information concerning isoelectric point, hydrop-
athy and number of solved structures for similar sequences. Empirical comparison shows that MetaPPCP
outperforms current predictors including OB-Score, XtalPred, ParCrys, and CRYSTALP2. MetaPPCP obtains
over 92% accuracy for over a half of its predictions that have probability (propensity to be predicted as
crystallizable or crystallization resistant) of above 0.8. The proposed method could provide useful input
for target selection procedures of current structural genomics efforts.

� 2009 Elsevier Inc. All rights reserved.
Introduction

Proteins are organic compounds composed of amino acids
arranged in a linear chain polymer. They adopt an immense variety
of shapes which allows them to implement a wide variety of func-
tions such as transportation, signaling, catalysis, formation of the
cell cytoskeleton, immune responses, etc. Knowledge of the ter-
tiary protein structure is vitally important for understanding and
manipulating their biochemical and cellular functions, which is
used in drug design [1], to gain insights into various diseases [2]
and to decipher protein–ligand interactions [3]. We currently
know over 8 millions non-redundant protein chains while the cor-
responding structure is known for ‘‘only” about 55 thousand pro-
teins deposited into the Protein Data Bank (PDB) database [4].
This wide sequence-structure gap calls for increased efforts in
acquiring protein structures, such as structural genomics (SG) [5].
The SG initiatives perform protein family-directed structure analy-
ses in which a group of proteins is targeted and structure(s) of rep-
resentative members are determined and used to represent the
entire group [6].

The most popular method for determination of the protein
structure, which accounts for approximately 86% of the solved
and deposited structures, is X-ray crystallography [7]. One of the
main challenges for the SG initiative it that only about 2–10% of
ll rights reserved.
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pursued targets yield high-resolution structures [8]. Analysis of
data published in the TargetDB database [9], a world-wide reposi-
tory for information on the experimental progress and status of
targets selected for structure determination, shows that only about
8.6% of input chains are successfully crystallized and 4.6% gives dif-
fraction quality crystals [7]. Estimates show that failed attempts
account for more than 60% of the structure determination costs
[10]. Several strategies have been proposed to improve the success
rate [11,12], but the production of high-quality crystals is still one
of the major bottlenecks in the protein structure determination
[13–15].

The fact that SG allows for certain flexibility in selection of the
chains for the crystallization-based structure determination moti-
vates development of methods that predict/assess crystallization
propensity for a given protein sequence. The existing crystalliza-
tion propensity predictors include SECRET [16], OB-Score [17],
CRYSTALP [18], XtalPred [10,19], ParCrys [20], and CRYSTALP2
[21]. Some of them were already successfully used to improve
structure production at SG centers [17,19]. Two early methods,
namely SECRET and CRYSTALP, accept only sequences between
46 and 200 amino acids in length. The remaining predictors are
characterized by similar prediction accuracy of about 70% [21]
and differ in their design and the information used as their input
[7]. Recent results, which are empirically confirmed in this study,
show that although these predictors provide similar predictive per-
formance, their predictions are complementary with each other.
For instance, CRYSTALP2 is shown to provide correct predictions
for about 15% and 13% of protein chains that XtalPred and ParCrys,
respectively, predict incorrectly and XtalPred and ParCrys provide
rotein crystallization propensity, Biochem. Biophys. Res. Commun. (2009),
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correct predictions for 15% and 14% of chains for which CRYSTALP2
makes mistakes [21]. Also, large scale tests demonstrate that about
90% of the chains can be correctly predicted by at least one of the
four methods, which suggests that an ensemble of these methods
could provide improvements when compared with the individual
predictors [7]. A simple vote-based combination of these predic-
tors provides only relatively minor improvements, e.g. accuracy
of 73.6% vs. 70.6% was obtained with a vote-based ensemble and
best performing individual method, respectively [7], which moti-
vates development of more advanced meta-predictors. Advanced
ensembles, which utilize classification models on the outputs gen-
erated by atomic (base) predictors, were already found useful in re-
lated studies including prediction of protein folds [22], secondary
structure [23], and gene function [24], to name just a few. To this
end, we introduce a novel linear model tree-based meta-predictor
for protein crystallization propensity, named MetaPPCP, which
takes advantage of the complementarity of the state-of-the-art
protein crystallization propensity predictors to improve the quality
of the prediction. The proposed method is characterized by a novel
design in which protein chains are partitioned into subsets using a
decision tree, where for each subset a different logistic regression
model is used to predict the crystallization propensity.
Materials and methods

Datasets. We use a dataset composed of 2000 protein chains
which was originally introduced in [21] and which was developed
using procedure proposed in [20]. The crystallizable proteins were
extracted from sequences deposited in TargetDB and they include
the last 1000 depositions as of December 2008. The non-crystalliz-
able sequences, which correspond to the actual construct se-
quences used, were extracted from the last 1000 trial sequences
as of December, 2008, deposited into PepcDB [25]. Duplicate se-
quences were removed and the remaining sequences were pro-
cessed to remove the N-terminal hexaHis tag and LEHHHHHH
tag at the C-terminus, which are introduced to ease purification.
This dataset was randomly divided into two disjoint subsets,
TRAINING dataset composed of 1500 chains that is used to train
and parameterize the proposed method (using 5-fold cross valida-
tion procedure) and TEST500 dataset that is used to compare Meta-
PPCP with existing method. We also use TEST144 dataset which is
the largest test set from [20] and which consists of 72 crystallizable
and 72 non-crystallizable chains. The datasets are available from
http://biomine.ece.ualberta.ca/MetaPPCP/MetaPPCP.html.

Quality measures. The predictions were compared with the origi-
nal annotations from the TargetDB to assess the prediction quality.
Four outcomes are possible: TP (true positive)/FN (false negative)
which corresponds to crystallizable chains that were correctly/
incorrectly predicted as crystallizable/non-crystallizable, respec-
tively, and FP (false positive)/TN (true negative) which indicates
that non-crystallizable chains were incorrectly/correctly predicted
as crystallizable/non-crystallizable, respectively. The predictions
were assessed based on the following quality indices:

accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� 100

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

TPR ¼ TP
TPþ FN

TNR ¼ TN
TNþ FP
Please cite this article in press as: M.J. Mizianty, L. Kurgan, Meta prediction of p
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The accuracy measures the fraction of correct predictions
among all predictions. The Matthews Correlation Coefficient
(MCC) is confined to h�1,1i interval where 0 corresponds to predic-
tion equivalent to a random classification. Higher MCC value corre-
sponds to better performance of the prediction method. TPR (true
positive rate) and TNR (true negative rate) quantify the fraction of
correctly predicted crystallizable (positive) and non-crystallizable
(negative) proteins, respectively. We also report receiver-operator
characteristics (ROC) curves that present a graphical plot of the TP
rate = TP/(TP + FN) against FP rate = FP/(FP + TN). This is performed
by thresholding the probabilities (confidence values) that are gen-
erated together with the predicted classes (crystallizable vs. non-
crystallizable). These plots are also used to compute the area under
the ROC curve (AROC). The higher the AROC value is the better the
predictive power of the corresponding method.

Design of meta-predictor. The considered inputs (features) for
the proposed meta-predictor encompass outputs generated by
OB-Score, ParCrys, XtalPred, and CRYSTALP2 predictors. They in-
clude predicted class (crystallizable vs. non-crystallizable) and pre-
diction score (estimated prediction probability) for the four
methods. We also consider information generated by the XtalPred
server, which includes length and isoelectric point (pI) of the input
sequence, its Gravy and instability index values, average number of
insertions in the alignment compared to homologs (structures with
similar sequence) in non-redundant (NR) database, number of
homologs in NR and PDB databases, and predicted percentage of
coils, coiled coils, longest disorder region, transmembrane helices,
and signal peptides [10,19]. We evaluated a wide range of predic-
tion models implemented in WEKA platform [26] that include lin-
ear logistic regression (LOG) and nonlinear Support Vector
Machine (SMV), probabilistic Naïve Bayes (NB), C4.5 decision tree
(C4.5), and logistic model tree (LMT). Each of the classification
models was parameterized using the full set of features and 5-fold
cross validation on the TRAINING dataset. The parameters for SVM
include kernel types (RBF kernel with different widths, polynomial
and normalized polynomial with different degrees) and complexity
parameter C, ridge value for LOG, tree pruning factor and minimal
number of instances at leaf nodes for C4.5, and minimal number of
instances in leaves for LMT. The parameterized classifiers were
used to perform two best-first search based feature selections.
The features were either added one at the time starting with empty
set (forward search) or they were removed one at the time starting
with the set of all features (backward search). The features were
added/removed based on the average, over the 5-folds, MCC value
of a given parameterized classifier that uses the selected features.
We repeated the cross validations for up to five times using ran-
domized division into 5-folds for as long as the coefficient of vari-
ation (the ratio of the standard deviation to the mean) was below
0.02 to assure a robust estimate of the MCC value. Next, each clas-
sifier was parameterized again using the selected feature set and 5-
fold cross validation on the TRAINING dataset. As a result, we have
15 designs where five types of prediction models are executed on
three different feature sets.

The above designs were compared against a baseline predictor
based on a majority-vote in which the output is the most frequent
prediction of its base methods. Since we consider four base meth-
ods (OB-Score, ParCrys, XtalPred, and CRYSTALP2), we selected the
best performing, according to MCC values, configuration among
four combinations of three methods and four designs in which
all four methods are used and where the tie-break (2 vs. 2 split
decision) is resolved by applying the prediction of one of the meth-
ods. We also estimated an upper limit of the prediction quality for
a meta-predictor by assuming that a given prediction is correct if at
least one of the four methods provides a correct prediction for the
corresponding protein sequence.
rotein crystallization propensity, Biochem. Biophys. Res. Commun. (2009),
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Table 1
Summary of results, ordered by MCC values, on the TRAINING, TEST500, and TEST144 datasets. Results on TRAINING set include the best configurations of ensembles based on
SVM, LMT (MetaPPCP), NB, LOG, and C4.5 classifiers, baseline majority vote-based ensemble, and existing predictors including ParCrys, CRYSTALP2, XtalPred, and OB-Score. The
results on the TEST500 and TEST144 datasets compare MetaPPCP, SVM-based meta-predictor, ParCrys, CRYSTALP2, XtalPred, and OB-Score.

Dataset Prediction method No. of
features

Accuracy MCC TRP TNR

Type Classifier Feature selection Parameters

TRAINING Meta SVMa Forward best-first RBF kernel, width = 2.5, C = 2 12 79.33 0.59 0.88 0.71
LMTa Forward best-first # inst. = 15 5 78.40 0.58 0.88 0.69
NBa Backward best-first Not applicable 12 77.67 0.57 0.90 0.65
LOGa Forward best-first Ridge = 1.0E-8 8 77.47 0.55 0.84 0.71
C4.5a Backward best-first Pruning = 0.05, # inst. = 20 6 76.80 0.55 0.89 0.65
Majority vote-based ensembleb 4 73.12 0.48 0.86 0.60
At least one correctc 4 90.53 0.82 0.99 0.82

Base ParCrysd 8 69.73 0.41 0.83 0.56
CRYSTALP2e 88 69.60 0.40 0.77 0.62
XtalPredf 9 69.27 0.39 0.75 0.63
OB-Scored 2 68.80 0.39 0.85 0.53

TEST500 Meta MetaPPCP 5 81.00 0.63 0.89 0.73
SVM-based ensemble 12 79.80 0.60 0.87 0.73

Base OB-Scored 2 73.00 0.49 0.89 0.58
ParCrysd 8 73.40 0.48 0.84 0.63
XtalPredf 9 72.40 0.45 0.77 0.68
CRYSTALP2e 88 68.40 0.37 0.73 0.64

TEST144 Meta MetaPPCP 5 80.56 0.61 0.82 0.79
SVM-based ensemble 12 75.69 0.51 0.78 0.74

Base OB-Scored 2 67.36 0.38 0.88 0.47
ParCrysd 8 68.75 0.38 0.79 0.58
XtalPredf 9 79.17 0.58 0.79 0.79
CRYSTALP2e 88 75.69 0.52 0.79 0.72

a Results based on 5-fold cross validation on the TRAINING dataset.
b The best performing majority-vote ensemble with 4 base predictors and CRYSTALP2 as the tie-breaker.
c Estimate of the upper limit on prediction quality of a meta-predictor in which a prediction is assumed correct if any of the four base predictors provides correct result.
d Results computed using the ParCrys/OB-Score server at http://www.compbio.dundee.ac.uk/xtal/.
e Results computed using the CRYSTALP2 model at http://biomine.ece.ualberta.ca/CRYSTALP2/CRYSTALP2.html.
f Results computed using the XtalPred server at http://ffas.burnham.org/XtalPred/.
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Table 1 compares the best, with respect to the MCC values,
results from the 5-fold cross validation on the TRAINING dataset
obtained with each of the five prediction model types (among
the results on the three features sets), with the results obtained
on the whole TRAINING dataset (without cross validation) of the
baseline ensemble and the four base predictors. As expected, each
of the five classifier-based ensembles provides predictions that
outperform results from the four state-of-the-art existing predic-
tors as well as the results with the majority vote-based method.
The improvements in accuracy range between 3.5 and 10 percent-
age points. The best performing meta-predictors achieve around
79% accuracy, while the upper limit is estimated to be 90.5%. The
two top scoring ensembles are based on SVM and LMT classifiers
where the former uses 12 features and the latter only 5. Subse-
quent analysis on the test datasets, see Table 1, shows that the
SVM-based solution does not generalize into other dataset as well
as the LMT-based method. Also, the LMT model is white-box (can
be analyzed and understood by users) and is less complex as it uses
fewer features. The LMT [27], which is selected to implement the
proposed MetaPPCP method, is a binary decision tree, which is
built using C4.5 algorithm [28], with linear regression models,
which are derived with the LogitBoost algorithm [29], at the leaves.
Predictions are obtained by descending the tree branches to a leaf
and using the associated linear model to compute class member-
ship probabilities.

PðcrystallizableÞ ¼ eLRcryst=ðeLRcryst þ eLRnoncrystÞ
Pðnon-crystallizableÞ ¼ eLRnoncryst=ðeLRnoncryst þ eLRcrystÞ

where LRcryst and LRnoncryst are the values produced by the lin-
ear regression models for the crystallizable and non-crystallizable
classes, respectively. Since in our binary prediction problem
Please cite this article in press as: M.J. Mizianty, L. Kurgan, Meta prediction of p
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LRcryst = �LRnoncryst, see Fig. 1, the probability of a given chain
to be predicted as crystallizable/non-crystallizable increases as
the value its corresponding linear model (LRcryst/LRnoncryst)
increases.
Results

Prediction model

The LMT model of the proposed MetaPPCP method is shown in
Fig. 1. The model is based on five features that include the CRY-
STALP2 prediction, and prediction score, number of homologs in
PDB, Gravy hydropathy index [30], and pI values provided by the
XtalPred server. Using HR1946 target sequence from TargetDB as
an example, the corresponding Gravy index = �0.35, pI = 7.97,
number homologs in PDB = 15, CRYSTALP2 prediction = 0 (non-
crystallizable) and XtalPred score = 5. Since the XtalPred score
equals 5, we use the LR6 model to compute LR6cryst = �1.0569
and LR6noncryst = 1.0569. These values are used to calculate
P(crystallizable) = 0.11 < P(non-crystallizable) = 0.89, and thus this
target is predicted as non-crystallizable with probability of 0.89.

The most likely reason for inclusion of the XtalPred and
CRYSTALP2 predictions is that they are characterized by stronger
complementarity when compared with the other two base meth-
ods. More specifically, 84.9% of proteins in the TRAINING dataset
are correctly predicted by XtalPred or CRYSTALP2, while 77.4%
are successfully predicted by OB-Score or ParCrys. This agrees with
the results shown in [7]. The isoelectric point and hydrophobicity
were used, similarly as in MetaPPCP, to implement both OB-Score
and ParCrys methods, which also explains why output from these
two methods was not utilized.
rotein crystallization propensity, Biochem. Biophys. Res. Commun. (2009),
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Fig. 1. The proposed prediction model; the decision tree is shown on the left and the linear regression (LR) models from the leaf nodes are shown on the right. The left most
‘‘LR1 19 (71/29)” leaf node denotes that its corresponding linear regression is LR1, and that this node concerns 19% of the input proteins among which 71% are crystallizable
and 29% are non-crystallizable.
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Comparison with existing predictors

The MetaPPCP method was compared with OB-Score, ParCrys,
XtalPred, and CRYSTALP2 on the two test datasets, TEST500 and
TEST144, see Table 1. The results demonstrate that MetaPPCP out-
performs the existing methods by 7.6 and 1.4 percentage points on
the two datasets, respectively. The smaller difference on the
TEST144 dataset can be explained by its relatively small size. The
proposed model consistently provides predictions with about
80% accuracy, while the second best on the TEST144 dataset Xtal-
Pred obtains 72% accuracy and is ranked behind OB-Score and Par-
Crys on the TEST500 dataset. All considered predictors are
characterized by TPR higher than TNR, which indicates that they
perform better when predicting propensity of crystallizable chain
when compared with the predictions for the crystallization resis-
tant chains. Depending on the test dataset used, MetaPPCP cor-
rectly predict 82% or more crystallizable chains and 73% or more
non-crystallizable proteins. To compare, XtalPred correctly pre-
dicts 79/68% or more of the crystallizable/crystallization resistant
chains, respectively.
Fig. 2. The ROC curves for the predictions of MetaPPCP, ParCrys, CRYSTALP2, XtalPred, a
values are given in figure legends.

Please cite this article in press as: M.J. Mizianty, L. Kurgan, Meta prediction of p
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Comparison using ROC curves, see Fig. 2, shows that MetaPPCP
outperforms all competing methods for the entire range of FP and
TP rates on the TEST500 dataset. The AROC of MetaPPCP, which
equals 0.88, is larger by 0.11 when compared with the second best
predictor. The results on the smaller TEST144 dataset show that
MetaPPCP provides favorable TP rates for small FP rates and is out-
performed only by XtalPred for larger FP rates. At the same time,
the proposed method still obtains the largest AROC value on this
dataset.

Discussion

The proposed prediction model demonstrates that isoelectric
point, Gravy index, and availability of solved homolog structures
can be successfully used to augment and combine predictions from
the XtalPred and CRYSTALP2 methods. The utility of this information
is supported by prior works which demonstrate strong relation be-
tween hydropathy/isoelectric point and the crystallization propen-
sity [15,17,19,31] and which use these indices in related studies,
nd OB-Score on TEST500 (left panel) and TEST144 (right panel) datasets. The AROC

rotein crystallization propensity, Biochem. Biophys. Res. Commun. (2009),
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Fig. 3. The distribution of the prediction accuracy (black bars) and percentage of
predictions (white bars) in the function of the probability of the prediction of
crystallizable proteins for the TEST500 dataset.
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such as for suggesting optimal pH ranges for crystallization screen-
ing [32,33] and prediction of the protein production success (which
covers processes between DNA cloning and protein purification)
[19].

The decision tree from Fig. 1 divides the protein chains into 6
groupings that are formed by descending along the branches to
the leaf nodes. Three of these sets, which correspond to LR1, LR2,
and LR5 models, cover chains that are predominantly crystalliz-
able, another two (LR4 and LR6) include proteins that are predom-
inantly resistant to crystallization and the remaining LR3 includes
approximately equal number of both protein classes. Using the
subset corresponding to LR6 as an example, we observe (see
regression coefficients in Fig. 1) that larger values of the Gravy in-
dex and smaller pI are associated with proteins that are more likely
to crystallize. On the contrary, for the data in the LR2 leaf node, the
probability of successful crystallization increases as the Gravy in-
dex decreases and the pI increases. The complex nature of the rela-
tions between crystallization propensity and pI and Gravy indices,
which are nonlinear and have multiple optima, was observed for
data generated at the Joint Center for Structural Genomics [19].
Our model attempts to partition the sequence space into subspaces
that allows for an accurate linear multivariate approximation of
these relations.

The proposed meta-predictor has an explicit human-readable
model, which requires information coming from two based predic-
tors, XtalPred and CRYSTALP2. In spite of its simple design, Meta-
PPCP provides predictions with over 80% accuracy and is shown
to outperform existing methods on both considered test datasets.
Our model also outputs probability of the prediction, P(crystalliz-
able) = 1 � P(non-crystallizable), which indicates confidence in
the prediction outcome that corresponds to the class (crystallizable
vs. non-crystallizable) associated with higher probability. Fig. 3
shows that predictions with high probabilities (for either class)
are characterized by better performance than the predictions
where probabilities for the two classes are similar. For instance,
predictions with probabilities >0.9 for crystallizable/non-crystal-
lizable class are 89.3/98.4% accurate, respectively. The MetaPPCP
obtains the accuracy of 92.2% for the approximately 57% of predic-
tions that have probability >0.8 for one of the classes.

We note that all investigated crystallization propensity predic-
tors consider only intra-molecular factors encoded in the protein
chain. They may not provide accurate predictions when inter-
molecular factors such as protein–protein and/or protein–precipi-
tant interactions, buffer composition, etc. must be considered.
These methods are limited to predictions for non-redundant
chains. We recommend the use of the surface entropy reduction
server [34] when assessing crystallization of close homologs.
Please cite this article in press as: M.J. Mizianty, L. Kurgan, Meta prediction of p
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Conclusion

We introduce a novel white-box sequence-based protein crys-
tallization propensity predictor. The proposed method provides
predictions with about 80% accuracy and is shown to outperform
current methods. Our model confirms that isoelectric point and
hydropathy are important for the crystallization prediction. The
probabilities produced by the proposed method can be used to
indicate higher quality predictions. For instance, predictions with
probabilities of above 0.8 are characterized by over 92% accuracy.
We believe that our model could provide useful input for target
selection procedures utilized by structural genomics centers and
structural biologists.
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