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ABSTRACT 

Motivation: Off-target interactions of a popular immunosuppressant 

Cyclosporine A (CSA) with several proteins besides its molecular 

target, cyclophilin A, are implicated in the activation of signaling 

pathways that lead to numerous side effects of this drug. 

Results: Using structural human proteome and a novel algorithm for 

inverse ligand binding prediction, ILbind, we determined a compre-

hensive set of 100+ putative partners of CSA. We empirically show 

that predictive quality of ILbind is better compared to other available 

predictors for this compound. We linked the putative target proteins, 

which include many new partners of CSA, with cellular functions, 

canonical pathways and toxicities that are typical for patients who 

take this drug. We employed complementary approaches (molecular 

docking, molecular dynamics, SPR binding analysis, and enzymatic 

assays) to validate and characterize three novel CSA targets: cal-

pain 2, caspase 3, and p38 MAP kinase 14. The three targets are 

involved in the apoptotic pathways, are interconnected, and are 

implicated in nephrotoxicity.  

Contact: lkurgan@ece.ualberta.ca 

1 INTRODUCTION  

First identified in 1972, cyclosporine A (CSA) was purified from 

the fungus T. inflatum (Agathos et al., 1987). This drug is primari-

ly used an immunosuppressant to prevent rejection in solid organ 

transplants (Tedesco and Haragsim, 2012). The mechanism of 

action of CSA involves binding to its therapeutic target cyclophilin 

A and forming a complex with calcineurin (Tedesco and Haragsim, 

2012). Cyclophilin A is a peptidylprolylisomerase located in the 

cytoplasm that is inhibited by binding of CSA (Takahashi et al., 

1989). Peptidylprolylisomerases are involved in the isomerization 

of proline peptide bonds in oligopeptides and allow accelerated 

folding of a protein. Calcineurin is a calcium/calmodulin depend-

ent serine/threonine protein phosphatase that is specifically in-

volved in the dephosphorylation of transcription factors involved 

in signaling events including nuclear factor of activated T-cells 
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(NFAT). The binding of CSA to cyclophilin and calcineurin pre-

vents the dephosphorylation of NFAT, thwarting transit to the 

nucleus. NFAT is critical for initiation of promoters that stimulate 

the production and activation of T cells; consequently the immune 

response is shut down (Tedesco and Haragsim, 2012). CSA is also 

used to treat several disease states including heart failure, psoriasis, 

and rheumatoid arthritis. Unfortunately, use of CSA is associated 

with severe side effects including nephrotoxicity, fibrosis, hepato-

toxicity and cardiotoxicity, and their mechanistic details remain 

unclear (Tedesco and Haragsim, 2012; Rezzani, 2004). CSA was 

shown to interact with many proteins other than its molecular tar-

get, cyclophilin A. These off-target interactions could be involved 

in the activation of signaling pathways that lead to the undesirable 

symptoms and their knowledge could be exploited in other disease 

states. As a few examples, CSA-induced nephrotoxicity involves 

renal tubular dysfunction that is thought to results from a blockade 

of the mitochondria permeability transition pore component cyclo-

philin D (Devalaraja-Narashimha et al., 2009). CSA also causes 

endoplasmic reticulum (ER) stress by inhibiting the ER localized 

cyclophilin B (Lee et al, 2012) and indirectly activates other pro-

teins, such as TGF-β that is involved in fibrosis (Wolf, 2006). 

Motivated by the ubiquity of the protein-CSA interactions, we 

utilized inverse ligand binding predictions (Xie et al., 2011) to 

comprehensively determine putative partners of CSA. This predic-

tion uses structures of a few protein-ligand (drug) complexes, in 

our case the available CSA-cyclophilin complexes, to predict other 

targets of CSA on the structural human proteome scale. The pre-

dictions were generated with the ILbind method that was recently 

shown to accurately find distant targets (targets that have structur-

ally different folds compared to the proteins that are known to 

interact with the given compound) for a diverse set of over 30 

small organic ligands (Hu et al., 2012). Similar inverse ligand 

binding-based approaches that utilized older predictors were used 

to find novel targets for other compounds, such as Comtan (Kin-

nings et al., 2009), CEPT inhibitors (Xie et al., 2009), and Raloxi-

fene (Sui e al., 2012). We empirically show that predictive perfor-

mance of ILbind is better when compared with other available 

predictors. We assessed selected top-ranked putative partners of 

CSA in the context of their involvement in the toxicity-related 

pathways and we focused on several targets that are potentially 
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associated with nephrotoxicity. We modeled their interactions with 

CSA using docking and we verified their binding and changes in 

the corresponding enzymatic activity using in vitro assays. 

2 METHODS 

The datasets, methods related to computational modeling, experimental 

analysis, and evaluation protocols are described in the Supplement. Briefly, 

we collected structures of protein-CSA complexes and used them to predict 

other protein targets of CSA in the structural human proteome using IL-

bind. The top ranked targets were analyzed with Ingenuity platform and 

their association with CSA was investigated based on manual scanning of 

relevant publications. Three targets that are involved in apoptotic pathways 

with links to nephrotoxicity were further analyzed using docking and mo-

lecular dynamics simulations, and were validated experimentally with 

Surface Plasmon Resonance (SPR) and enzymatic assays. 

3 RESULTS 

3.1 Empirical evaluation of predictions 

Predictions generated by ILbind were empirically compared 

against predictions from other relevant approaches: SMAP (Xie 

and Bourne, 2008) and FINDSITE (Brylinski and Skolnick, 2008). 

Native targets of CSA were collected from multiple sources in-

cluding Protein Data Bank (PDB) (Berman et al., 2000), Bind-

ingDB (Liu et al., 2007) and DrugBank (Knox et al., 2011). Details 

of the assessment are explained in the Supplement. First, we se-

lected the best performing (based on the AUtpr100 value) output of 

SMAP and FINDSITE, which are raw score and identity score, 

respectively, to assess their predictions. Using ILbind, we identi-

fied 38% of the native targets of CSA in the top 0.3% of its predic-

tions. The last column in Table 1 shows that ILbind found all na-

tive targets in the top 65% (66% when clustering proteins at 80%) 

of its predictions, compared to the top 72 (73) and 92% (96%) of 

the predictions from SMAP and FINDSITE, respectively. Table 1 

also reveals that ILbind obtains higher predictive performance 

(based on the area under the TPR curve, AUtpr, for 10%, 20% and 

100% of the top scoring predictions) compared with the other two 

predictors. The corresponding absolute improvements compared to 

the second best method are modest at about 1% (relative improve-

ments are 100%*(0.44-0.43)/0.43=2.3%, 2.1%, and 1.2% for 

AUtpr10, AUtpr20 and AUtpr100,respectively) and statistically sig-

nificant, except for the AUtpr100 measure. 

We also performed a more detailed assessment of predictions for 

the top 100 predicted targets from each method. We expanded the 

annotation of the CSA targets collected from PDB, BindingDB and 

DrugBank (direct targets) with the targets found in articles from 

PUBMED (indirect targets). The indirect targets were identified by 

PUBMED search using names of the drug and a given putative 

target protein and assuming that the target interacts with CSA if 

there is at least one article that links them together using a mean-

ingful association derived by reading the full article; the results for 

ILbind are given in Suppl. Table S1. Moreover, we included pre-

dictions performed using molecular docking with AUTODOCK 4 

(Osterberg et al., 2002), motivated by popularity of this method 

(Sousa et al., 2006). Since docking is computationally expensive 

we limited the scope to the top 100 targets predicted by ILbind, 

SMAP or FINDSITE. Docking for each of these targets was re-

peated 40 times; we used the four representative CSA confor-

mation collected from the template targets (PDBid 3pmp_B, 

2rmc_A, 1ikf_H, and 2oju_A) to accommodate for flexibility of 

this drug and we run each conformation 10 times to accommodate 

for the randomization related to the use of a genetic algorithm in 

AUTODOCK 4. The lowest docking energy over the 40 runs was 

used to score predictions from docking. We used the top 100 tar-

gets with lowest energies from the docking-based results to per-

form assessment and we compared these results with the top 100 

targets generated by ILbind, SMAP, and FINDSITE; each set of 

the top 100 targets was clustered at 80% identity and we assessed 

the results for the corresponding clusters. The TPRs of ILbind, 

AUTODOCK, SMAP, and FINDSITE are 0.54±0.07, 0.45±0.05, 

0.43±0.04, and 0.35±0.06, respectively. This means that 54% (32 

out of 59) of the clusters in the top 100 targets predicted by ILbind 

are known to bind CSA; this rate is significantly higher (based on 

the t-test) than the TPRs of the other four methods (p-value<0.01).  

3.2 Analysis of targets predicted with ILbind 

We analyzed the putative CSA-protein interactions provided by 

ILbind and investigated whether these interactions could be re-

sponsible for the side effects experienced by patients taking CSA. 

We focused on the top 199 high-scoring targets generated by IL-

bind; these targets and their annotations are available in Suppl. 

Table S1. They were annotated as supported by direct evidence of 

binding to CSA (based on PDB, BindingDB and DrugBank) or 

indirect evidence (based on search in PUBMED); otherwise they 

were annotated as having no prior evidence of binding to CSA.  

Suppl. Figure S5A shows the cumulative number of putative tar-

gets in each of these three types of annotations and their ILbind 

scores. The direct evidence exists for cyclophilins and ILbind gen-

erated high scores for the corresponding top 42 cyclophilins and 

cyclophilin-like folds. We found 48 targets with indirect evidence 

and another 109 targets that were annotated as not being supported 

by evidence. The ILbind scores for these targets were relatively 

high, above 0.65, which was indicative of a high likelihood of 

interaction. Figure 2B, which shows scores over the entire struc-

tural human proteome, reveals that below the 0.65 cut-off the IL-

bind scores plateau and would be less useful to discriminate the 

off-targets from non-binding targets. Overall, the results show that 

our top putative targets include both confirmatory and new results. 

Table 1. Benchmark results for ILbind, SMAP, and FINDSITE for the 

prediction of CSA binding in the structural human proteome.   

Dataset Predictor AUtpr10 AUtpr20 AUtpr100 
% proteome 

where all 

targets found 

Clustered 

at 90% 

similarity 

ILbind 0.44±0.09 = 0.48±0.07 = 0.78±0.04 = 65±9 = 

SMAP 0.43±0.09 + 0.47±0.08 + 0.77±0.04 = 72±9 + 

FINDSITE 0.40±0.10 + 0.42±0.10 + 0.66±0.07 + 92±6 + 

Clustered 

at 80% 

similarity 

ILbind 0.39±0.08 = 0.43±0.07 = 0.76±0.04 = 66±5 = 

SMAP 0.38±0.08 + 0.41±0.07 + 0.75±0.03 = 73±9 + 

FINDSITE 0.37±0.08 + 0.39±0.08 + 0.66±0.07 + 96±3 + 

We report mean ± stdev and significance of differences between a given method and 

ILbind; + denotes p-value < 0.05; = for p-value ≥ 0.05 (see Supplement for details). 
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Table 2.  Top scoring pathways, molecular and cellular functions and 

toxicities generated by Ingenuity for the considered putative CSA targets.  

Top canonical pathways p-values # targets 

IL-17 Signaling 

Acute Phase Response Signaling 

Dendritic Cell Maturation 

8.51e-10 

9.31e-10 

1.48e-09 

9 

12 

12 

Top molecular and cellular functions p-values # targets 

Cell Death and Survival 

Cellular Function and Maintenance 

Cell Morphology 

Cellular Movement 

Lipid Metabolism 

3.91e-14 

7.76e-14 

5.04e-11 

1.55e-10 

4.47e-10 

64 

53 

50 

42 

45 

Top toxicity functions p-values # targets 

Hepatotoxicity 

 

Liver Necrosis/Cell Death 

Liver Proliferation 

Liver Inflammation 

Liver Damage 

Liver Hepatitis 

5.12e-10 

7.24e-08 

2.10e-06 

6.43e-06 

2.36e-05 

15 

12 

8 

9 

8 

Cardiotoxicity 

 

Cardiac Necrosis/Cell Death 

Heart Failure 

Cardiac Hypertrophy 

Cardiac Proliferation 

Cardiac Damage 

3.02e-08 

2.81e-05 

8.03e-05 

1.16e-04 

6.90e-04 

13 

9 

13 

5 

4 

Nephrotoxicity 

 

Kidney Failure 

Renal Inflammation 

Renal Nephritis 

Renal Necrosis/Cell Death 

Renal Fibrosis 

3.65e-08 

3.66e-08 

3.66e-08 

3.06e-06 

2.38e-04 

12 

13 

13 

14 

4 

p-values are calculated using the right-tailed Fisher Exact Test to evaluate whether the 

targets are involved in a given function, considering the number of molecules in the 

Ingenuity Knowledge Base that are included in the corresponding network. “# targets” 

indicates the number of putative CSA targets that overlap with a given function. 

After removing similar proteins among the 199 targets, e.g., we 

had multiple targets that included cyclophilin A domain, we per-

formed IPA analysis with Ingenuity release 2012-11-01 for 111 

targets out of the 144 unique targets; the remaining 33 targets were 

not recognized by Ingenuity. The results are summarized in Table 

2. The top canonical pathways are IL-17 signaling, acute phase 

response signaling, and dendritic cell maturation, all critical for 

immune system activation, corresponding with the CSA’s intended 

purpose. The top associated molecular and cellular function is cell 

death and survival with 64 out of the considered 111 targets being 

involved. We also found a wide range of significantly associated 

toxicities including hepatotoxicity, cardiotoxicity, and nephrotoxi-

city, each supported by over a dozen of our putative CSA targets 

that are identified in Suppl. Table S1. Suppl. Figure S6 provides a 

detailed overview of the various types of heart, liver and kidney 

toxicities and their association with the putative targets that we 

identified. Each of the corresponding 14 toxicity types was con-

nected with at least seven targets and is associated with targets that 

were categorized as having indirect and no prior evidence. In short, 

we found that our putative targets of CSA are associated with rele-

vant pathways and cellular function and with several types of tox-

icities that are observed in patients who take this drug. 

3.3 Analysis of interactions of CSA with CAPN2, 

CASP3, and MAPK14 

We selected three putative targets that were identified by ILbind: 

calpain 2 (CAPN2), caspase 3 (CASP3), and p38 mitogen-

activated protein kinase 14 (MAPK14), to further characterize and 

experimentally validate their interactions with CSA. This selection 

was motivated by our focus on targets that participate in the apop-

totic response seen with the CSA treatment (Eckstein et al., 2005; 

Sato et al., 2011; de Arriba et al., 2013) and since enzymatic assays 

to monitor their binding and activity were readily available. Our 

analysis shows that CAPN2, CASP3, and MAPK14 are involved in 

renal, cardiac and liver necrosis (Suppl. Figure S6). These targets 

can be also linked to each other via the apoptotic pathway (Suppl. 

Figure S7). CAPN2 was identified to be involved in the regulation 

of the apoptotic CASP3 by cleaving and reducing CASP3 activity 

and potentially playing a protective role (Bizat et al., 20003). As 

apoptosis progresses, CASP3 becomes involved in degrading an 

endogenous calpain inhibitor, calpastatin, leading to CAPN2 de-

pendent plasma membrane disruption and necrosis (Neumar et al., 

2003). Furthermore, direct linkage between CASP3 and MAPK14 

was found in human and rat cells (Alvarado-Kristensson et al., 

2004; McLaughlin et al., 2001). We hypothesized that binding of 

CSA to these novel targets may trigger apoptosis and account for 

the severity of some side effects of this compound. 

3.3.1 Molecular docking We performed molecular dynamics 

(MD) simulations to model flexibility of the drug molecule and the 

three target proteins and docking with AUTODOCK 4 to provide 

putative molecular level details of the protein-drug interactions 

(see Supplement for details). In total, 300 docking simulations (10 

MD-generated conformations of CSA and 10 of each of the 3 tar-

gets) were performed. These docking results were ranked by their 

binding energies and top 10 hits per target were used as a starting 

point for an all-atom solvated MD simulation to investigate stabil-

ity and pose of CSA within the corresponding binding pockets of 

each target. We repeated docking using the Molecular Operating 

Environment (MOE) induced fit algorithm (www.chemcomp/com) 

to validate AUTODOCK results. Although there are relatively 

minor variations in the docking results, the overall binding poses 

generated by the two methods are similar for the three targets 

(Suppl. Figure S8). We note that we focus on confirming that CSA 

binds these targets rather than on providing precise binding modes. 

The binding poses of CSA for the three targets generated with 

AUTODOCK that correspond to the minimal docking energy 

among the 10 simulations are shown in Suppl. Figure S9. To com-

pare, the binding poses for the four representative positive controls 

(targets in complex with CSA), which were also computed com-

bining MD and docking, are in Suppl. Figure S10. In spite of a 

limited flexibility of the backbone of the CSA peptide, its fairly 

flexible side chains allowed it to adopt distinctive conformations 

(Suppl. Figure S4) and to have different geometries in binding 

sites. The topologies of the binding sites for the positive controls 

ranged from a flat and open where CSA circulates a hydrophobic 

protrusion (Suppl. Figure S10D) to a compact and closed pocket 

where CSA is buried in a deep cleft (Suppl. Figure S10A). Similar 

binding poses are observed for the three putative targets, where the 

interaction with MAPK14 (Suppl. Figure S9C) is characterized by 

the lowest docking energy. The energies for CASP2, CAPN2, and 

MAPK14 are -40.5, -45.5, and -60.7 kcal/mol, respectively. To 
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compare, the docking energies of the positive controls which are at 

-42.1 kcal/mol for FAB fragment IGG1-kappa, -55.1 for Cyclo-

philin A, -60.4 for Cyclophilin C, and -60.9 for the cyclophilin-like 

protein. The fact that the docking energies obtained for the putative 

targets are similar to the energies obtained for the known targets 

suggests that CSA may bind these putative targets. 

3.3.2  SPR and enzymatic validation We performed SPR analy-

sis for CAPN2, MAPK14, and CASP3 (Fig. 1), the positive con-

trol, cyclophilin A, and the negative control, NFKB (Suppl. Figure 

S9). Our prior experience with SPR showed that higher coupling 

amounts generate more non-specific interactions for small mole-

cules; thus we monitored the total coupling and limited it to <2500 

RU. We run a dilution series of CSA (8000, 4000, 2000, 1000, 

500, 250, 125 and 0 nM) in triplicate. Clinical use of CSA is usual-

ly between 100 nM and 1600 nM (Hauser, 1998) with this range 

covering most clinical and physiological situations. Using BiaE-

valuation we computed kinetic association and dissociation rate 

constants and affinity KD (Suppl. Table 2) to describe drug-target 

complex formation and stability. We utilized specific enzymatic 

assays to monitor the effect of CSA on the enzymatic activity of 

CAPN2, MAPK14 and CASP3 (Fig. 1), further validating the CSA 

interactions and presenting a possible hypothesis regarding the 

effect of CSA on cellular signaling events. 

The positive control (ILbind score of 0.86) shows robust binding 

(Suppl. Figure S11A) and strong kinetics. Our measurements, with 

the average KD of 30 nM, 0.253 uM-1s-1 association rate and 

6.6x10-3s-1 dissociation rate (Suppl. Table S2), are in agreement 

with previous work where KD was in the range of 7 nM to 40 nM 

(Wear et al., 2005; Kawai et al, 1998) and association and dissocia-

tion rates were 0.86 uM-1s-1 and 10x10-3 s-1, respectively (Wear et 

al., 2006). The negative control NFKB (ILbind score of 0.58) has 

no appreciable binding (Suppl. Figure S11B) and thus kinetics 

could not be calculated; to the best of our knowledge NFKB has 

not been identified to interact with CSA. These results show that 

SPR discriminates between positive and negative targets. The 0.58 

score is low since the ILbind scores range between 0.32 and 0.86, 

with majority of them < 0.65 (Suppl. Figure S5B). NFKB is ranked 

2312 among the 9652 considered proteins.  
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Figure 1.  Purified enzyme activity measurements (on the left) and real-time sensorgrams (on the right) for the interaction of CSA with calpain 2 (CAPN2; 

panel A), p38 mitogen-activated protein kinase 14 (MAPK14; panel B), and caspase 3 (CASP3; panel C); see Supplement for details. All measurements 

were done in triplicate and the corresponding averages are shown. The sensorgrams are at 8000, 4000, 2000, 1000, 500, 250, 125 and 0 nM concentration of 

CSA using Biacore 3000. 
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CAPN2 is a cytosolic member of calpain family that is activated 

by intracellular calcium signaling and is involved in homeostasis 

and apoptotic signaling (Smith and Schnellmann, 2012). SPR 

shows a substantial increase in binding with the addition of in-

creasing concentrations of CSA (Fig. 1A). Using a luciferase based 

activity assay that measures enzymatic cleavage of a specific sub-

strate utilized by CAPN2, we found that CSA directly binds to 

CAPN2 and affects its enzymatic cleavage activity in a significant 

manner; a 40% increase in activity observed at the highest concen-

tration of CSA (Fig. 1A). Calculation of activity constants and 

curve fitting shows that CSA affects activity of CAPN2 in a quad-

ratic manner over a 2 log concentration of CSA (Fig. 1A). 

MAPK14 is a central kinase that is involved in cellular signaling 

and apoptosis (Wada and Penninger, 2004). Similar to CAPN2, 

SPR indicates that CSA binds to MAPK14 at higher CSA concen-

trations (Fig. 1B). Utilizing a MAPK14 specific enzymatic activity 

assay that measures direct phosphorylation of a MAPK14 substrate 

in the presence of different concentrations of CSA, we show a 50% 

increase in the MAPK14 enzymatic activity, which is approximat-

ed with a quadratic fit (Fig. 1B). 

CASP3 is implicated in apoptosis and is one of the primary 

caspases that is responsible for cellular damage (Slee et al., 1999). 

We observe increasing binding of CSA to CASP3 with greater 

concentrations of CSA (Fig. 1C). Using a luciferase based enzy-

matic activity assay we determined that CSA had a relatively mi-

nor effect on CASP3 activity (Fig. 1C), i.e., ~10% increase in ac-

tivity with higher concentrations of CSA is found.  

Interestingly, CAPN2, MAPK14 and CASP3 have similar IL-

bind scores (0.67, 0.65, and 0.68 respectively) (Suppl. Table 1) and 

comparable SPR curves and RU values (Fig. 1). Although the RU 

values are lower relative to the values observed for cyclophilin A 

(Suppl. Figure S11A), other studies that considered similar small 

molecules showed comparably low RU values to demonstrate 

binding (Nordin et al., 2005; Du et al., 2006). Moreover, these 

lower values also reflect lower coupling to the SPR sensor chip of 

these three proteins when compared to cyclophilin A. The corre-

sponding kinetic analysis (Suppl. Table S2) reveals that CSA inter-

acts with these three targets, although not as strongly as with the 

cyclophilin A. We hypothesize that the physiological significance 

of CSA binding to these off-target proteins should be relevant as 

some of the toxic side effects may be caused by these binding 

events that we show affects the enzymatic properties of these pro-

teins. A more detailed discussion, which links these targets to ne-

phrotoxicity (Peyrou et al., 2007; Ramesh and Reeves, 2005) that 

is observed in patients who take CSA, is provided in Section 5 in 

the Supplement. 

4 DISCUSSION 

We performed a large-scale, structural human proteome wide study 

to find protein off-targets of CSA using state-of-the-art computa-

tional method, ILbind. We empirically demonstrate that predic-

tions generated by ILbind offer good predictive performance. We 

compiled a comprehensive list of 100+ putative targets of this drug 

and we linked these targets with an assortment of cellular func-

tions, canonical pathways and toxicities, which are typical for pa-

tients who take CSA. We employed a complementary arsenal of 

approaches including ILbind, molecular dynamics, molecular 

docking, SPR and enzymatic assays to identify and characterize in 

detail three novel targets of CSA. We show that CSA likely binds 

to and may be an exogenous agonist of CAPN2 and MAPK14, and 

that it also activates CASP3 but to a lesser extent. A detailed dis-

cussion of the functional roles of these interactions is provided in 

the Supplement. Our study may also lead to new discoveries for a 

wide range of toxic responses to CSA for which we found previ-

ously unknown putative proteins targets. Moreover, our pipeline 

could be used to provide insights into side effects and mechanisms 

of action of other small molecule drugs that target proteins. 
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