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Abstract

Motivation: Intrinsically disordered protein regions interact with proteins, nucleic acids and lipids. Regions
that bind lipids are implicated in a wide spectrum of cellular functions and several human diseases. Motivated
by the growing amount of experimental data for these interactions and lack of tools that can predict them
from the protein sequence, we develop DisoLipPred, the first predictor of the disordered lipid-binding residues
(DLBRSs).

Results: DisolLipPred relies on a deep bidirectional recurrent network that implements three innovative
features: transfer learning, bypass module that sidesteps predictions for putative structured residues, and
expanded inputs that cover physiochemical properties associated with the protein-lipid interactions. Ablation
analysis shows that these features drive predictive quality of DisoLipPred. Tests on an independent test
dataset and the yeast proteome reveal that DisoLipPred generates accurate results and that none of the
related existing tools can be used to indirectly identify DLBR. We also show that DisoLipPred’s predictions
complement the results generated by predictors of the transmembrane regions. Altogether, we conclude that
DisoLipPred provides high-quality predictions of DLBRs that complement the currently available methods.
Availability: DisoLipPred’s webserver is available at http://biomine.cs.vcu.edu/servers/DisoLipPred/

Contact. lkurgan@vcu.edu

1 Introduction

Many proteins include one or more intrinsically disordered regions (IDRs), which are defined as segments of
protein sequence that lack stable three-dimensional structure under physiological conditions [1-3]. Recent
studies suggest that proteins with IDRs are common across all domains of life [4, 5] and carry out many cellular
functions [6, 7]. In particular, IDRs were shown to interact with proteins, DNA, RNA, lipids, and a variety of
small molecules [8-15]. However, only several hundred of these interactions were annotated experimentally
[15, 16]. This annotation gap has motivated the development of computational methods that use protein
sequences to predict IDRs interacting with specific partner types [16-20]. Importance of these methods was
underscored in the recent large community-driven Critical Assessment of protein Intrinsic Disorder (CAID) [21].
CAID introduced a new category of disorder predictions that focus specifically on disordered binding regions,
which attracted submissions from 11 methods. Moreover, recently released centralized webserver for the
disorder prediction, DEPICTER, includes predictions of the interacting IDRs [22].

While IDRs interact with a wide range of partners, such as proteins, nucleic acids and lipids, nearly all
current predictors focus on the protein-binding IDRs [18-20, 23]. A recent survey has identified 21 predictors of
the IDRs that interact with proteins [16]. Some of more popular methods in this category include ANCHOR [24,
25], MoRFpred [26, 27], MoRFChiBi [28, 29] and OPAL [30, 31]. In contrast, there is only one method,
DisoRDPbind [32, 33], for the prediction of the DNA and RNA interacting IDRs and no methods to address
interactions with lipids. The lack of tools could be explained by the insufficient amount of the experimental
data that was needed to train and assess the predictive models. However, recent releases of DisProt database
have delivered large amounts of new experimental annotations [15, 34]. More specifically, version 8.0 of
Disprot [15] provides about 50% more experimental annotations of the lipid binding IDRs when compared with
the previous version 7.2 [34].

Lipids are implicated in many cellular functions including energy storage, signaling, regulation, insulating
and transport [35-39]. Some of these functions involve interactions with proteins and can be characterized
experimentally using immunocytochemistry, cytotoxicity assays, circular dichroism spectroscopy, calcein
leakage and differential scanning calorimetry [40-43]. Intrinsic disorder plays an important role in the protein-
lipid interactions. Research shows that misfolding of certain IDR-containing proteins affects their lipid binding
affinity, resulting in a variety of diseases [44]. For instance, misfolding of the fully disordered lipid-binding a-
synuclein and significantly disordered tau proteins is associated with several neurodegenerative diseases [45-



50]. As another example, SecA from E. coli provides an example of an interaction between IDRs and a lipid bi-
layer [51]. Moreover, some bacteriocins, such as colicin A, unfold to the disordered molten globule state when
they interact with the cytoplasmic lipids of the host cell to perform membrane insertion [52].

Motivated by the recent growth in the annotations of the lipid-interacting IDRs and the functional
importance of these interactions, we present DisoLipPred, first-of-its-kind predictor of the disordered lipid
binding residues (DLBRs). DLBRs are intrinsically disordered, interact with lipids and exclude transmembrane
regions. This means that DisoLipPred produces predictions that complement the results generated with the
current predictors of the transmembrane regions [53-55]. DisoLipPred utilizes a deep neural network to
predict propensity for lipid binding in disordered regions for each amino acid in the input protein sequence.
The design of this tool relies on several innovations. First, we utilize transfer learning. We start with a more
generic network that predicts IDRs that interact with different types of partner molecules, which is motivated
by the large amount of the underlying training data. We freeze this partner type-agnostic network and extend
it to develop the final model that specializes the predictions to the lipid partners. Second, we use literature to
identify physiochemical properties that are associated with protein-lipid interactions and use them to expand
the inputs to the deep network. Third, we deploy a new training and prediction strategy that bypasses
ordered/structured residues. More specifically, we train the deep network models using only the native
disordered residues to identify DLBRs. This focuses our model on identifying DLBRs among other disordered
residues, compared to a more traditional scenario that differentiates DLBRs from both structured and
disordered residues. During the prediction process we use a modern disorder predictor to identify disordered
residues which are processed by our deep network to predict DLBRs. The predicted ordered residues bypass
the network, since by default they exclude DLBRs. We perform ablation analysis that empirically demonstrates
that these innovations lead to significant improvements in the predictive performance when compared to a
more traditional design that exclude these solutions. Such traditional design is characteristic to the current
predictors of the IDRs that interact with proteins and nucleic acids [16, 24-26, 28-31, 33].

2 Materials and methods
2.1 Datasets

We collect experimental data to establish training, validation and test datasets. We use the training and
validation datasets to design and optimize our predictive model. Moreover, we use two sets of the training and
validation datasets to facilitate the transfer learning: one to produce the generic network that predicts IDRs
that interact with different types of molecules (hamed ALL datasets) and second to specialize this network to
predict DLBRs (named LIPID datasets). We exclude the test set from the training/optimization process and use
it solely to perform comparative assessment against alternative, indirect approaches to predict DLBRs. We
summarize the data collection process in Supplementary Figure S1. These datasets are composed of three
types of proteins: proteins with DLBRs, proteins with other IDRs and fully structured proteins. We collect the
proteins with IDRs and DLBRs from version 8 of DisProt [56]. We exclude disordered regions with an
ambiguous function or structure annotations, which are tagged in DisProt. We identify and use the proteins
with IDRs that have annotated functions to derive the test and LIPID datasets to minimize the likelihood of
false negative annotations; we place the other proteins from DisProt into the ALL dataset. Moreover, inspired
by recent works [21, 57], we further process the proteins from DisProt to ensure that we use high-quality
annotations of structured regions. Instead of assuming that regions that lack disorder annotations are by
default structured, we map the unannotated regions to the sequences of the protein structures from Protein
Data Bank (PDB) [58], for which we mask the disordered residues. We utilize the protocol from [57] that relies
on the alignment with Basic Local Alignment Search Tool (BLAST) algorithm [59]. The regions in the DisProt
sequences that share >90% similarity and e-value <0.1 with at least one masked PDB sequences are assumed
structured. We collect the fully structured proteins from PDB [58]. We minimize the likelihood that these
proteins include IDRs by collecting high-resolution (<2A) monomers that do not have disordered regions (i.e.,
structure is resolved for all amino acids) and which map into full UniProt sequences based on SIFTS [60]. We
also collect training datasets for the alternative predictors that we compare with on the test dataset (which are
listed in Section 3.2). We combine the four collections of proteins (31 proteins with DLBRs from DisProt, 1704
proteins with other IDRs from DisProt, 31306 fully structured proteins from PDB, and 38619 training proteins
from the alternative predictors) and cluster the resulting set of 71,660 proteins using the CD-HIT algorithm
with 25% similarity [61]. We place the entire clusters that must exclude training proteins from the alternative



predictors into the test dataset. This way test dataset shares <25% similarity with our training and validation
datasets and the training datasets from other predictors. We remove the training proteins from the alternative
predictors after placing a given cluster into a corresponding dataset. Using this approach, we identified 19
proteins with DLBRs and 100 proteins with other IDRs that can be placed into the test dataset (i.e., they are
sufficiently dissimilar to the training and validation proteins). We matched the 100 proteins with IDRs with the
equal number of randomly chosen fully structured proteins that are also dissimilar to the training and
validation proteins, which results in the test dataset with 219 proteins. We place the remaining 1446 proteins
with IDRs into the ALL dataset and match their number with the same number of randomly picked remaining
fully structured proteins, i.e., these disordered and fully structured proteins were not included in the clusters
that we utilize to derive the test dataset. We divide the ALL dataset into training and validation subsets by
randomly selecting half of the proteins (1,446 proteins) into each partition. We derive the LIPID dataset from
the ALL dataset by including the proteins with DLBRs and replicating the numbers the fully structured proteins
and proteins having IDRs from the test dataset. Consequently, the LIPID dataset includes 100 fully structured
proteins and 100 proteins with the other IDRs that we select at random from proteins in the ALL dataset and
11 proteins with DLBRs. We divide the LIPID dataset into training and validation subsets by placing 1/3 of the
211 proteins (69 proteins) into the validation partition and 2/3 (142 proteins) into the training partition. We
provide details of the test, ALL and LIPID datasets, including their overall sizes and numbers of annotated
residues, in Supplementary Table S1. The datasets, including sequences and annotations, are available at
http://biomine.cs.vcu.edu/servers/DisoLipPred/.

We use a secondary test dataset to empirically assess whether DisoLipPred’s predictions of DLBRs in fact
exclude the transmembrane regions. We sourced this TM (transmembrane) test dataset from a recent study
that introduced SCAMPI2 predictor of the transmembrane regions [53]. We clustered the transmembrane
proteins used in that study together with the proteins from the complete training dataset using CD-HIT at 25%
similarity and selected the transmembrane proteins from clusters that exclude the training proteins. We
combine these transmembrane proteins with the transmembrane proteins from the test dataset to devise the
TM dataset. This dataset includes 25 proteins, 15,978 amino acids and 4,308 transmembrane spanning
residues, and shares <25% sequence similarity to the training datasets.

2.2 Evaluation criteria

DisoLipPred provides two outputs: numeric propensity score and binary values. The propensity quantifies
likelihood that a given amino acids in the input protein sequence is the DLBR. The binary values identify
putative DLBRs and they are derived from the propensities using a threshold, i.e., residues with propensities >
threshold are assumed to bind lipids. We use the area under curve of receiver operating curve (AUC) to assess
propensities. The ROC is a relation between true-positive rates (TPR = TP/(TP+FN)) and false-positive rates (FPR
= FP/(FP+TN)) computed using thresholds equal to the set of all unique propensities, where TP and TN are the
numbers of correctly predicted disordered lipid-binding residues and non- disordered lipid-binding residues,
respectively; FN is the number of disordered lipid-binding residues incorrectly predicted as non- disordered
lipid-binding residues; and FP is the number of the non-disordered lipid-binding residues incorrectly predicted
as disordered lipid-binding residues. We use sensitivity = TPR and F1 = 2TP/(2TP+FP+FN), which is a harmonic
mean of sensitivity and precision, to assess the binary predictions. Importantly, we standardize these across
predictors by setting the thresholds for the binary predictions to obtain the same low FPR = 10% (i.e.,
specificity = 90%). This means that the F1 and sensitivity values are measured at the same FPR = 10%,
facilitating direct side-by-side comparisons of these metrics between different predictors.
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Figure 1. Prediction workflow of DisoLipPred.

We also assess statistical significance of the differences in predictive performance between DisoLipPred
and other methods considered in the comparative study. This test assesses whether the improvements
offered by DisoLipPred would consistently hold over multiple different test datasets. Correspondingly, we
sample 50% of the test proteins 100 times to create 100 different test sets. We use the Student’s paired t-test
if the performance metrics follow normal distribution, and otherwise we use the Wilcoxon signed-rank test.
We test normality with the Anderson-Darling test at the 5% significance.

2.3 DisolipPred architecture

The DisolLipPred architecture consists of four main modules (Figure 1): bypass module, sequence profile
module, deep neural network and rescaling module. The input protein sequence is first processed by SPOT-
Disorder [62], one of the most accurate disorder predictors according to multiple recent assessments including
the CAID experiment [21, 57, 63]. The SPOT-Disorder’s predictions are fed into the bypass module that
separates the predicted disordered residues, which are subsequently processed by the deep network to
predict DLBRs, from the predicted order residues, which bypass the deep network prediction. Next, sequences
of proteins with the predicted disordered residues are used to derive sequence profiles. The profiles
incorporate sequence-derived structural and functional information that is relevant to the prediction of DLBRs.
They are utilized as the input to a deep neural network that predicts propensity for disordered lipid binding
and which is designed using transfer learning. Finally, the rescaling module normalizes and merges the outputs
from the deep network with the predictions of the ordered residues from the bypass module, producing the
final predictions.

2.3.1 Bypass module

DLBRs are localized in the disordered regions. The main challenge for DisoLipPred is to identify these lipid-
binding residues among the other disordered residues. Consequently, during the training process we train and
validate the deep network on the native disordered residues. We exclude the ordered residues from training
since they can be accurately identified with one of the currently available accurate disorder predictors. We use
the highly-accurate SPOT-Disorder predictor [62] for that purpose. The bypass module separates disordered
from ordered residues based on the SPOT-Disorder’s predictions, such that the putative ordered residues
bypass the prediction process while the putative disordered residues are selected for prediction with the deep
network. The SPOT-Disorder generated propensities for the putative ordered residues are rescaled and
combined with the deep network generated propensities in the rescaling module to produce the propensities



for DLBRs. We use ablation analysis (section 3.1) to demonstrate that the approach that applies the bypass
module provides more accurate results than the direct prediction of DLBRs from all residues.

2.3.2 Sequence profiles

The sequence profiles provide a rich source of information that is relevant to the prediction of DLBRs and
derived directly from the sequences. We use two profiles to facilitate the transfer learning. One for the
partner-agnostic portion of the deep network that aims to predict interacting disordered residues (red areas in
Figure 1) and the other for the part of the deep network that predicts DLBRs (green areas in Figure 1).

The partner-agnostic profile relies on a comprehensive collection of predictors of structure, intrinsic
disorder and disorder functions, with particular focus on the prediction of the interacting disordered regions.
We use the predictions of the solvent accessibility from ASAquick [64], secondary structure from PSIPRED [65],
disorder from SPOT-Disorder [62], protein, DNA and RNA interacting disordered regions from DisoRDPbind [32,
33], protein-binding disordered regions from ANCHOR 2 [25], and disordered linker regions from DFLpred [66].
This profile is summarized in Supplementary Table S2.

The second profile, which serves as the input to predict DLBRs, focuses on the sequence-derived
information that is specific to the lipid-binding. We use two relevant structural properties, the putative solvent
accessibility and secondary structure generated with ASAquick [64] and PSIPRED [65], respectively, putative
disorder from SPOT-Disorder [62], and a curated set of 46 physiochemical properties of amino acids that are
associated with protein-lipid interactions [67]. These properties were selected empirically from a
comprehensive collection of over 530 physiochemical indices from the AAindex database [68] based on their
ability to discriminate between lipid-binding and non-lipid binding proteins [67]. They include hydrophobicity,
hydrophobic moment, charge, isoelectric point, transfer energy, activation Gibbs energy of unfolding at pH 9.0,
solvation free energy, propensity for helical and sheet conformations, and propensity for side chain
interactions. Complete list of these properties is in Supplementary Table S3.

2.3.3 Transfer learning of the deep bidirectional recurrent neural network model

Transfer learning is a training strategy where knowledge learned from a source domain/dataset is transferred
to a related target domain/dataset to improve the learning in the target domain [69]. This strategy is deployed
when the target dataset has limited amount of data compared to a more data-rich source dataset, and is
particularly useful for training the data-hungry deep neural networks [70]. Transfer learning was recently
applied to predict secondary structures of RNA [71], caspase and metalloprotease cleavage sites [72], MHC-I
peptide binding [73] and transcription factor binding [74], but it was never used to develop predictors of
interacting disordered regions. Prediction of DLBRs offers an ideal scenario for the transfer learning. While we
have a relatively limited amount of DLBRs (3,392 residues), the amount of the data concerning a generic set of
interacting IDRs is very substantial (161,641 residues). Thus, we first build a partner-agnostic deep network
using the complete training dataset, which we then freeze and extend with additional layers to develop the
target network that predicts DLBRs using the target training dataset. We adopt deep recurrent networks given
their recent success with the prediction of disorder [62, 75, 76].

The partner-agnostic network consists of two long short-term memory layers that are sandwiched between
fully connected dense layers with ReLu activation function in the internal layers and the sigmoid activation
function at the output layer (Supplementary Figure S2A). We use the RMSprop optimizer, binary cross entropy
as the loss function, dropout rate of 0.5 (to minimize overfitting), and dynamic adjustment of the learning rate
which we set to gradually decrease as the training progresses. This network uses the partner-agnostic profile
as the input. We optimized the number of layers and the number of neurons per layer using an iterative
approach where we start from a small size and increase it by a small increment until AUC measured for the
prediction of interacting IDRs on the validation set decreases in two consecutive iterations.

The optimized partner-agnostic network is transferred to develop the target network. We remove the
output layer from the partner-agnostic model and freeze it. We connect the last layer of this network to
several additional layers that narrow down the partner-agnostic prediction to the partner-specific prediction of
DLBRs. This network extends the partner-agnostic profile with the additional inputs relevant to the prediction
of DLBRs that we discuss in Section 2.3.2. This extension includes multiple bidirectional long short-term
memory layers placed between fully connected dense layers (Supplementary Figure S2B). Similar to the
training of the partner-agnostic network, we optimize the size of the additional layers using the increment
approach that maximizes AUC for the prediction of DLBRs on the validation set.



2.3.4 Rescaling module

We combine the disordered lipid-binding propensities generated by our deep recurrent neural network for the
disordered residues predicted with SPOT-Disorder and the SPOT-Disorder’s propensity scores for the predicted
ordered residues. First, we normalize the outputs from the deep neural network to the unit range. We also
rescale the SPOT-Disorder’s propensities for predicted ordered residues, which bypass the neural network, so
they cover the 0 to 0.5 range. This aims to minimize risk of missing out the lipid-binding residues among the
incorrect predictions of order from SPOT-Disorder. This way, these false negatives can be predicted with
moderately high scores.

3 Results
3.1 Ablation analysis

The three main innovations underlying DisoLipPred include the use of the transfer learning, lipid-binding
features and the bypass module. We perform ablation analysis to quantify the impact of these innovations on
the predictive performance of DisoLipPred. To do that, we compare the results produced by the DisoLipPred
model with the three setups where one of these features is removed and the setup where all three features
are removed (Table 1). For instance, in the setup 1 we exclude transfer learning by removing the partner-
agnostic network and relying solely of the lipid binding neural network. The bypass module works by training
and testing the deep network on the disordered residues and sidestepping the deep network predictions for
the putative ordered residues. The training process utilizes the native disordered residues while during
tests/predictions we use the predictions from SPOT-Disorder. In setup 3, we evaluate the impact of using the
predicted disordered residues for both training and testing/predictions. The setup 4 excludes all three
innovations where for the bypass feature we train/test the deep network using both disordered and ordered
residues. This bare-bone predictor is comparable to current deep learners that are used to predict disorder
[62, 76, 77] and the protein binding IDRs [78, 79]. We trained each of the five setups separately by maximizing
the AUC on the validation set.

Table 1. Experimental setups for the ablation study.

Setup Use of transfer learning  Use of lipid features Bypass module during training
DisoLipPred Yes Yes Native disorder vs native order

1 No Yes Native disorder vs native order

2 Yes No Native disorder vs native order

3 Yes Yes Predicted disorder vs predicted order
4 No No No

Table 2. Predictive performance of DisoLipPred and its variants from the ablation analysis (Table 1) on the test dataset. We perform the
assessment on the complete test dataset, and also on the subset of disordered residues from the test dataset. We quantify the binary
metrics (sensitivity, specificity and F1) at fixed sensitivities (sens) of 0.70 and 0.50 and fixed specificities (spec) of 0.90 an 0.70. This
enables direct comparison of the binary metrics between different variants. We assess the statistical significance of the differences
between the results produced by DisoLipPred and each of the variants using procedure explained in Section 2.2. Values in bold and
italics font indicate that DisoLipPred provides significantly better result when compared with its variant (p-value <0.05).

Complete dataset Disordered residues in the test dataset
Setup AUC Spec=0.90 Spec=0.70 Sens=0.70 Sens=0.50 AUC Spec=0.90 Spec=0.70 Sens=0.70 Sens=0.50
Sen F1 Sen F1 Spec F1 Spec F1 Sen Fl Sen F1 Spec F1 Spec F1
DisoLipPred | 0.781 0.382 0.145 0.745 0.111 0.731 0.115 0.831 0.124| 0.635 0.286 0.201 0.500 0.161 0.465 0.138 0.699 0.161
1 0.747 0.290 0.112 0.287 0.044 0.278 0.047 0.492 0.047| 0.572 0.162 0.118 0.469 0.151 0.438 0.133 0.666 0.148
2 0.745 0.327 0.125 0.154 0.024 0.234 0.044 0.370 0.038| 0.603 0.146 0.175 0.421 0.142 0.430 0.130 0.564 0.132
3 0.726 0.260 0.101 0.296 0.046 0.344 0.051 0.513 0.049| 0.593 0.117 0.129 0.326 0.108 0.369 0.121 0.552 0.116
4 0.678 0.123 0.049 0.418 0.064 0.506 0.067 0.650 0.066| 0.396 0.046 0.035 0.201 0.068 0.181 0.096 0.352 0.086




We compare predictive performance of the five setups on the test dataset in Table 2. Supplementary Table S4
compares these methods on the validation dataset. Both tables assess the predictions on the complete
datasets as well as on the subset of the disordered residues. The latter evaluation quantifies the ability of
these models to solve a more difficult problem of identifying DLBRs among other disordered regions i.e., DLBR
are more similar to other disordered residues than to the ordered residues.

DisoLipPred offers accurate predictions with AUC = 0.78 and high sensitivity and specificity values. We
calibrate the binary predictions based on thresholds that fix sensitivity to 0.70 and 0.50 and that fix specificity
to 0.90 and 0.70. This facilitates direct comparison of sensitivity, specificity and F1 values between different
setups. Compared to the complete DisoLipPred model, we note a noticeable and statistically significant drop in
the predictive performance for all metrics and ablation variants (p-value < 0.05). Among the setups where one
of the innovations is removed, the largest drop is for the setup 3 where we manipulate the bypass feature. This
suggests that our deep networks can be better trained to recognize DLBR among native disordered residues
than among the predicted disordered residues. The errors from the disorder predictions and the networks
training seem to accumulate in the latter case. The results further substantially decline when all three
innovations are removed (setup 4). This means that the contributions of the novel design features are
complementary.

As expected, tests on the native disordered residues (right side of Table 2) lead to lower predictive
performance across all methods. However, DisoLipPred still provides reasonably accurate predictions (AUC =
0.64 and substantially higher sensitivity and specificity valulues). The ablation variants consistently
underperform compared to the complete model (p-value < 0.05), with the bare-bone model (setup 4)
performing at the random levels: AUC < 0.5 and sensitivity, specificity and F1 near zero. This demonstrates that
the basic deep network is incapable of predicting DLBRs since it can only solve the trivial problem of
differentiating DLBRs from ordered residues (AUC = 0.68 on the complete dataset vs. 0.40 on the disordered
residues). In other words, the three innovations that we introduce are essential to provide accurate
predictions.

3.2 Comparative assessment on the test dataset

We compare DisolipPred to current alternatives that can be indirectly used to predict DLBR. We consider
three categories of the indirect predictors. First, we include methods that predict transmembrane regions in
protein sequences. We select predictors with publicly available implementations/servers that include one
recently released method, SCAMPI 2 [53], and one older and highly-cited method, Phobius [54]. While DLBRs
predicted by DisoLipPred exclude transmembrane regions, we investigate whether the transmembrane region
predictors could be used to also predict DLBRs. Second, we cover disorder predictors since DLBR are one of the
functional subtypes of the disordered residues. We choose 10 disorder predictors that were considered in
recent comparative surveys [57, 63]: DisEMBL-465 (trained using X-ray structures) and DisEMBL-HL (trained to
predict disorder-like loop conformations) [80]; three versions of ESpritz [81]: ESpritz-Xray (trained on X-ray
structures), ESpritz-NMR (trained on NMR structures) and ESpritz-DisProt (trained on the DisProt database
data); two flavors of IUPred [82, 83]: IUPred-short (trained to predict short IDRs) and IUPred-long (trained to
predict long IDRs); GlobPlot [80] and SPOT-Disorder [62]. Third, we include representative predictors of
disorder function, such as DisoRDPbind [32, 33] that predicts the disordered RNA binding, DNA binding and
protein binding residues, ANCHOR 2 [25] that predicts disordered protein binding residues and DFLpred [66]
which predicts disordered linkers. Finally, we compute a baseline results based on sequence alighment to the
training proteins. We perform this alignment with BLAST [59], where DLBR annotations are transferred from
the aligned positions in the most similar training proteins that secures e-value < 1.0. We setup the e-value
parameter to maximize performance on the test dataset.



Table 3. Predictive performance on the test dataset. We perform the assessment on the complete test dataset, and also on the subset
of the native disordered residues from the test dataset. We quantify the binary metrics (sensitivity and F1) at the fixed specificity = 0.9.
for the predictors that produce the propensity scores. We use the default sensitivity, F1, and specificity values for the other three
methods that produce only binary predictions: SCAMPI 2, Phobius and BLAST. We assess the statistical significance of the differences
between the results produced by DisoLipPred and every other tool using procedure explained in Section 2.2. Values in bold and italics
font indicate that DisoLipPred provides significantly better results when compared with a given other predictor (p-value <0.05).
Methods are sorted in the ascending order by their AUC within each predictor type group.

Predictor Complete test dataset Disordered residues in the test dataset
Type Name AUC Sensitivity F1  Specificity AUC Sensitivity F1  Specificity
Transmem-  SCAMPI 2 N/A 0.019 0.016 0.98 N/A 0.019 0.035 0.99
brane regions Phobius N/A 0.016 0.024 1.00 N/A 0.016 0.031 1.00
Baseline BLAST alignment N/A 0.000 0.000 1.00 N/A 0.000 0.000 1.00
DFLpred 0.338 0.037 0.015 0.90 0.554 0.109 0.081 0.90
Disorder DisoRDPbind-RNA 0.450 0.035 0.014 0.90 0.517 0.028 0.022 0.90
function ANCHOR 0.637 0.229 0.090 0.90 0.446 0.178 0.129 0.90

predictors DisoRDPbind-Protein  0.556 0.016 0.006 0.90 0.276 0.002 0.001 0.90
DisoRDPbind-DNA 0.636 0.211 0.083 0.90 0.554 0.062 0.047 0.90

GlobPlot 0.530 0.225  0.088 0.90 0.482 0.167 0.123 0.90
ESpritz-NMR 0.571 0.216  0.085 0.90 0.412 0.113 0.084 0.90
disEMBL-465 0.610 0.119  0.048 0.90 0.433 0.048  0.037 0.90
disEMBL-HL 0.619 0.143 0.056 0.90 0.477 0.066 0.050 0.90
Disorder IUPred-long 0.626 0.256  0.100 0.90 0.420 0.167 0.123 0.90
predictors IUPred-short 0.632 0.257 0.100 0.90 0.441 0.142 0.105 0.90
ESpritz-Xray 0.659 0.114 0.046 0.90 0.428 0.070  0.053 0.90
VSL2B 0.673 0.205 0.081 0.90 0.433 0.057  0.045 0.90
SPOT-Disorder 0.692 0.155 0.062 0.90 0.361 0.043 0.033 0.90
ESpritz-DisProt 0.768 0.355 0.135 0.90 0.498 0.065 0.049 0.90
DLBR DisoLipPred 0.781 0.382 0.145 0.90 0.635 0.286 0.201 0.90
predictor

Table 3 compares DisolLipPred’s predictive performance against the indirect predictors and the baseline.
We derive the binary predictions from the propensity scores using thresholds that we adjust to set FPR = 0.1
(specificity = 0.9). This allows us to directly compare the other binary metrics (sensitivity and F1) between
methods. DisoLipPred provides accurate predictions of DLBRs on the test dataset, with AUC = 0.78 and
sensitivity = 0.38 at FPR = 0.10. The latter means that DisoLipPred offers 3.8-fold increase in the rate of correct
to incorrect predictions. Tests of statistical significance of differences reveal that the DisoLipPred’s predictions
are significantly better than the results of all 17 indirect methods and the baseline (p-value < 0.05). The poor
performance of the baseline alighment stems from the low sequence similarity, < 25%, between the training
and test proteins. The most accurate of the indirect predictors include Espritz-DisProt (AUC = 0.77, sensitivity =
0.35), SPOT-Disorder (AUC = 0.69, sensitivity = 0.16), and VSL2B (AUC = 0.67, sensitivity = 0.21). The ROC
curves the test dataset for the best-performing methods, including DisoLipPred, SPOT-Disorder, VSL2B, Espritz-
DisProt, are available in the Supplementary Figure S3. They reveal a large margin of improvement for
DisoLipPred, particularly for low values of FPRs, i.e., conservative predictions where rate of false positives is
low. We highlight the results from the two predictors of transmembrane regions that secure near zero (0.02)
sensitivity at 0.1 specificity, which means that they do not predict DLBRs. We further investigate these
methods using a dataset of transmembrane proteins in Section 3.4.

The prediction of DLBRs requires to separate these residues from structured residues and from other
disordered residues. The first task of differentiating disorder from order can be solved accurately by current
methods, as demonstrated by recent assessments of disorder predictors [21, 57]. This is why several disorder
predictors secure relatively high AUCs of on the test dataset. The second task is hard, which is apparent from
the results computed on the native disordered residues in the test dataset (the right side of Table 3). They
reveal that disorder predictors cannot reliably discriminate DLBRs from the other disordered residues, which is
expected since they were not designed for this prediction. More specifically, AUCs of the top disorder
predictors, Espritz-DisProt, SPOT-Disorder, VSL2B, are 0.50, 0.36 and 0.43, respectively. Some of these AUCs
are substantially below 0.5, suggesting that the scores for the DLBRs are lower than for the other disordered
residues. This could be explained by the fact that DLBRs fold upon binding, therefore having higher propensity



to be structured from some other disordered residues. However, the ability to use these predictions to find
DLBRs would hinge on first correctly predicting disordered residues. Only DisoLipPred solves the hard
prediction by producing relatively accurate results for the disordered residues (AUC = 0.64, F1 =0.20 and
sensitivity = 0.29 at specificity = 0.90), with the other predictors scoring at random levels (AUCs < 0.55) and
these differences being statistically significant (p-value < 0.05).

3.3 Predictions on the Saccharomyces cerevisiae proteome

We apply DisoLipPred to predict DLBRs for the complete Saccharomyces cerevisiae proteome that we source
from UniProt [84]. The Baker’s yeast proteome includes 6,049 protein sequences and 2,936,363 residues. This
is one of the most accurately sequenced proteomes; BUSCO (Benchmarking Universal Single-Copy Orthologs)
scores its completeness at 99.6% [85]. We calibrate the binary predictions to 0.48% prediction rate (% putative
DLBRs in the genome), which corresponds to the rate of the native DLBRs in the DisProt database. We exclude
the putative DLBRs if they form segments of < 6 consecutive residues since the shortest experimentally
annotated disordered lipid binding regions in DisProt are 6 residues long. We share these predictions on the
DisoLipPred’s website at http://biomine.cs.vcu.edu/servers/DisoLipPred/. We predict that about 4.9% of the
yeast proteins have putative DLBRs (Figure 2A). Majority of these proteins have less than 5% of residues
predicted as DLBRs, however, about 0.7% of the yeast proteins have a substantial amount of over 5% DLBRs
(Figure 2B).
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Figure 2. Summary of the DisoLipPred’s predictions on the Saccharomyces cerevisiae proteome. Panel A shows the fraction of the yeast
proteins predicted to have DLBRs. Panel B is the histogram of the putative content of DLBRs for the 4.9% of the yeast proteins with
DLBRs.

We validate these predictions using the gene ontology (GO) annotations from UniProt. These annotations
are independent of the ground truth data used in the test dataset. First, we select a subset of the yeast
proteins that include the “lipid” keyword in their molecular function GO term and the “membrane” keyword
within their cellular component GO term. The resulting set of 309 proteins is likely to be enriched in the
proteins that have DLBRs; we call it GO lipid associated protein set. Second, we compute the rate of proteins
predicted to have DLBRs in the GO lipid associated protein set using DisoLipPred and compare it to the rate of
these predictions generated with the second-best ESpritz-DisProt method (Table 2). We calibrate the ESpritz-
DisProt’s predictions the same way as the predictions from DisoLipPred. Third, we calculate the expected rate
of proteins with the putative DLBRs in the yeast proteome. We compute the rate for a randomly selected set
of 309 yeast proteins and repeat this experiment 100 times to establish distribution of the expected rates. The
results are summarized in Figure 2. The mean of the distribution for DisoLipPred’s predictions is 4.9% (Figure
3A) and corresponds to the overall rate of proteins with DLBRs in yeast (Figure 2A).
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Figure 3. Analysis of the DisoLipPred predictions (Panel A) and the Espritz-DisProt predictions (panel B) for the yeast proteins. The black
arrows identify the rate of the putative proteins with DLBRs in the GO lipid associated protein set (i.e., set of 309 yeast proteins that
share “lipid” keyword in the molecular function GO term and the “membrane” keyword in the cellular component GO term). Red lines
show the distributions of the expected rates of the putative proteins with DLBRs, which we establish based on measuring the rate for
100 randomly selected sets of 309 yeast proteins.

DisoLipPred predicts 10.3% of proteins in the GO lipid associated protein set as having DLBRs. This rate
doubles the expected rate of 4.9% and the difference is statistically significant based on the distribution of the
expected values in Figure 3A (p-value < 0.01). On the other hand, the calibrated predictions from ESpritz-
DisProt identify only 0.97% of the GO lipid associated protein set as having DLBRs. This rate is below the
expected rate of the ESpritz-DisProt’s predictions (red line in Figure 3B), for which median is 1.5%. This
suggests that the GO lipid associated proteins are overall depleted in disorder. In spite of the disorder
depletion, the rate of the DisoLipPred’s predictions of DLBRs is 10.3/0.97 = 10.6 times higher than the rate of
the ESpritz-DisProt’s predictions, providing further support for our claim that DisoLipPred’s predictions are
accurate.

Table 4. Predictive performance on the TM dataset. The performance is measured assuming that the native transmembrane regions
constitute positive annotations. Both transmembrane predictors (SCAMPI 2 and Phobius) produce only binary predictions and thus

their prediction rate cannot be calibrated. Instead, we calibrate the rate of the DisoLipPred’s predictions to match the specificity of
SCAMPI 2 and Phobius.

Predictor Sensitivity  Specificity PPR F1

SCAMPI 2 0.795 0.91 0.279 0.780
DisoLipPred at SCAMPI 2 specificity 0.041 0.91 0.076 0.063
Phobius 0.574 0.94 0.197 0.663
DisoLipPred at Phobius specificity 0.035 0.94 0.050 0.059

3.4 Assessment of predictions on the transmembrane proteins

Given that DLBR are defined as disordered lipid-binding regions that exclude transmembrane segments, we
empirically evaluate whether the DisoLipPred’s predictions in fact exclude the transmembrane residues. We
test DisoLipPred and the two representative predictors of the transmembrane regions, SCAMPI 2 [53] and
Phobius [54], on the TM dataset (Table 4). Here, we use the predictions from these three tools to identify
native transmembrane regions, i.e., transmembrane residues are set as the positives while the other residues,
including a small amount of DLBRs, are set as negatives. Since SCAMPI 2 and Phobius produce only binary
predictions and thus their prediction rate cannot be calibrated, we adjust the rate of the DisoLipPred’s
predictions to match the specificity of each of the two transmembrane predictors. Table 4 shows that as
expected SCAMPI 2 and Phobius provide accurate predictions of the transmembrane regions based on their
high sensitivity scores, i.e., 0.79 sensitivity at the low 0.09 FPR and 0.57 sensitivity at the low 0.06 FPR,
respectively. Their predictive positive rate (PPR) defined as the rate of true positives among the predicted
positives is also relatively high and equals 0.28 and 0.20, respectively. In stark contrast, DisoLipPred’s
sensitivity values calibrated to the rate of predictions from SCAMPI 2 and Phobius are 0.04 and 0.03,
demonstrating that it predicts very few transmembrane resides as DLBRs. These values are substantially
smaller than the corresponding sensitivity values on the test dataset (Supplementary Figure S3). DisoLipPred’s
PPR is higher than its corresponding sensitivity because several proteins in this dataset include DLBRs, which



by definition do not overlap with transmembrane regions. Altogether, these results show that DisoLipPred
accurately differentiates between the transmembrane regions and DLBRs. Moreover, given the
correspondingly low sensitivity of SCAMPI 2 and Phobius for the prediction of DLBRs (Table 3), we conclude
that DisoLipPred predicts lipid interacting residues that complement the results produced by the predictors of
the transmembrane regions.
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Figure 4. DisoLipPred predictions for TatA protein (Uniprot: P69428; DisProt: DP00834). The blue line in the top panel shows the
residue level propensity scores generated by DisoLipPred. The horizontal blue bars at the bottom are the corresponding experimental
annotation of lipid binding regions and the binary prediction from DisoLipPred. The horizontal red bar shows the experimental
annotation of the intrinsic disorder, where grey color identifies regions that lack disorder/order annotations.

3.5 Case study

We illustrate the DisoLipPred’s predictions for one of the test proteins, the Sec-independent protein
translocase protein TatA (UniProt accession number: P69428). Our objective here is to visualize and explain the
predictions, rather than to evaluate their performance. TatA is a membrane associated protein, which is a
subunit of the larger twin-arginine translocation (Tat) system [43]. The Tat system acts as a facilitator to
transport large folded proteins through cellular membranes by creating a protein conducting channel [86, 87].
TatA contains a long IDR (positions 21 to 89) which was characterized with NMR [88]. Furthermore, proton
based NMR revealed that part of this IDR (positions 21 to 44) binds to lipids [43]. Figure 4 shows DisoLipPred’s
predictions for TatA along with the abovementioned native annotations of the disordered and disorder lipid
binding regions. DisoLipPred generates relatively high propensities at the N terminus half of the protein,
resulting in the prediction of a long segment of DLBRs that overlaps with the experimentally determined lipid-
binding region. Interestingly, we predict that the residues at the N terminus are also lipid binding. DisProt does
not offer a conclusive evidence whether this segment is disordered or structured. Our alignment-based
mapping into PDB (see Section 2.1) did not identify a known structure for this segment. Further investigation
of literature reveals support for our prediction, where this segment is shown to likely interact with lipids of the
cell membrane from the cytoplasmic side [89]. Altogether, this prediction agrees with the experimental
annotations and provides support for the hypothesis that the disordered lipid binding region is larger than
DisProt suggests, covering the N-terminus half of the TatA sequence.

3.6 Webserver

DisoLipPred is freely available as a webserver at http://biomine.cs.vcu.edu/servers/DisoLipPred/ . DisoLipPred
webserver takes up to two amino acid sequences in the FASTA format as the input. The entire prediction
process is automated, done on the server side and takes about 2-4 minutes for an average size protein. Users
can optionally provide an email address where we send a notification email with the of the unique URL of
results once the prediction is completed. The webserver provides the output propensities and binary
predictions for each amino acid in the input protein sequence(s). The threshold that we use to generate the
binary predictions corresponds to the 10% FPR on the training dataset. The outputs are available in two
complementary formats: as a parsable text file and an interactive figure. The figure provides a graphical
summary of the predictions with the zoom in/ out functions, ability to hide user-selected panels and take a
screenshot, and mouse hover that shows additional information.




4 Summary

IDRs interact with many partner molecules including proteins, RNA, DNA and lipids. Sequence-based prediction
of these IDRs is currently possible for the interactions with proteins and nucleic acids [18-20, 23]. Motivated by
the growing amount of experimental data and the need to expand coverage of the current predictors, we
conceptualize, design, validate and deploy DisoLipPred, the first predictor of DLBRs. Our solution implements
three innovative features that include the application of transfer learning, bypass module and selected
physiochemical properties associated with protein-lipid interactions.

We deliver a multifaceted validation of the predictions produced by DisoLipPred. The ablation tests show
that the quality of the DisoLipPred predictions is powered primarily by the three innovations. Analysis on the
test dataset reveals that DisoLipPred generates accurate predictions and that current tools that could be
indirectly used to identify DLBR cannot differentiate the lipid-interacting residues from the other disordered
residues. Validation on the complete yeast proteome provides further support for the claim that DisoLipPred
produces accurate results. Moreover, we demonstrate empirically that the DisoLipPred’s predictions
complement the results produced by the predictors of the transmembrane regions. Altogether, our analysis
suggests that DisoLipPred provides high-quality predictions of disordered lipid-binding regions that
complement the currently available tools. DisoLipPred is available via a convenient webserver at
http://biomine.cs.vcu.edu/servers/DisoLipPred/.
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