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ABSTRACT

Motivation: Nucleotides are multifunctional molecules that are
essential for numerous biological processes. They serve as sources
for chemical energy, participate in the cellular signaling and they
are involved in the enzymatic reactions. The knowledge of the
nucleotide–protein interactions helps with annotation of protein
functions and finds applications in drug design.
Results: We propose a novel ensemble of accurate high-throughput
predictors of binding residues from the protein sequence for ATP,
ADP, AMP, GTP and GDP. Empirical tests show that our NsitePred
method significantly outperforms existing predictors and approaches
based on sequence alignment and residue conservation scoring.
The NsitePred accurately finds more binding residues and binding
sites and it performs particularly well for the sites with residues
that are clustered close together in the sequence. The high
predictive quality stems from the usage of novel, comprehensive
and custom-designed inputs that utilize information extracted from
the sequence, evolutionary profiles, several sequence-predicted
structural descriptors and sequence alignment. Analysis of the
predictive model reveals several sequence-derived hallmarks of
nucleotide-binding residues; they are usually conserved and flanked
by less conserved residues, and they are associated with certain
arrangements of secondary structures and amino acid pairs in the
specific neighboring positions in the sequence.
Availability: http://biomine.ece.ualberta.ca/nSITEpred/
Contact: lkurgan@ece.ualberta.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Nucleotides are multifunctional molecules that are essential for
numerous biological processes. The nucleotides are structural units
of nucleic acid chains, and they serve as sources for chemical
energy, participate in the cellular signaling and they are involved
in the enzymatic reactions. As of June 2010, 5293 proteins in the
Protein Data Bank (PDB) are annotated as ‘nucleotide binding’,
and nucleotides constitute ∼15% of biologically relevant ligands
included in this database (Dessailly et al, 2008; Goto et al., 2002).

∗To whom correspondence should be addressed.

This demonstrates the ubiquity and the substantial interest in the
protein–nucleotide interactions.

Past two decades observed a substantial effort in identification
and characterization of the nucleotide-binding sites. Most of
these approaches are based on the analysis of known nucleotide-
binding sequences and structures, which were used to identify
conserved motifs in protein sequences and structures. For instance
the Walker A and B sequence motifs were identified for the
adenine nucleotide-binding proteins (Walker et al., 1982). A fuzzy
recognition template was proposed for the characterization of
the adenylate–protein interactions (Moodie et al., 1996). The
Johnson motif was reported to cover one-third of the adenine
mononucleotide-binding proteins (Denessiouk and Johnson, 2000).
Mao et al. proposed a motif that interacts with the adenine and is
shared by five different protein folds (Mao et al., 2004). Thornton’s
group applied structural motifs in identification and prediction
of adenine-binding sites for functionally uncharacterized proteins
(Nobeli et al., 2001). Moreover, an empirical scoring function was
developed for prediction of the nucleotide-binding sites in protein
structures (Saito et al., 2006). The above methods characterize the
sequence motifs for a relatively narrow range of the nucleotide–
protein interactions, usually only for a selected interaction mode for
a single nucleotide type, or they require tertiary protein structure as
the input, which substantially limits their utility. The large number of
protein chains with unknown structure motivates the development of
computational tools for high-throughput sequence-based annotation
of the nucleotide-binding residues for a wide range of the
nucleotides.

Currently, there is only one method for the prediction of binding
sites/residues from the protein sequence for a comprehensive set
of nucleotides (Firoz et al., 2011). Two other methods predict the
ATP- and GTP-binding residues, respectively (Chauhan et al., 2009,
2010). These two methods input information extracted from the
sequence and the corresponding sequence profile using a window
centered on the predicted residue into a machine learning classifier
that predicts propensity of this residue to interact with the ATP or
GDP. We propose an ensemble of predictors of binding residues for
five common nucleotides in the PDB including ATP, ADP, AMP,
GTP and GDP. Each of these nucleotides binds to at least 50
diverse proteins, i.e. their chains share pairwise sequence similarity
at <40%, which means that they cannot be easily annotated using
the sequence alignment. At the same time, availability of 50 chains
provides sufficient amount of annotated interactions to build a
well-performing predictor. Although the interaction modes for some
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nucleotides, e.g. ATP and AMP, are relatively similar they bind
to different residues. For instance, the ATP molecule contains
three phosphates while AMP contains only one phosphate, and
even though ATP and AMP may bind in the same pocket more
residues will interact with the ATP than with the AMP. This means
that a predictor designed for the ATP binding residues cannot
be simply re-used to predict the binding residues for the other
nucleotides. Therefore, we propose five models that predict the
binding residues for the five most common nucleotides in the PDB.
In contrast to the existing methods (Chauhan et al., 2009, 2010;
Firoz et al., 2011), the proposed NsitePred is characterized by the
following three novel aspects. First, in addition to the sequence and
the sequence profile that are used in the existing predictors, our
method also uses residue conservation scores, predicted secondary
structure, predicted relative solvent accessibility and predicted
dihedral angles to build a comprehensive and custom-designed set of
input features. These additional inputs allow for significantly more
accurate predictions when compared not only with the two existing
predictors but also with popular tools including sequence alignment
and residue conservation scoring. Second, our analysis shows that
the predictions by a machine learning-based classifier that uses the
abovementioned inputs are complementary to the predictions based
on the sequence alignment. To this end, NsitePred implements a
consensus of the machine learning-based and the alignment-based
predictors. Third, analysis of our model reveals several sequence-
derived hallmarks of the nucleotide-binding residues, which are
related to the residue-level conservation and certain arrangements
of secondary structures and amino acid pairs in the vicinity of the
nucleotide-binding residues.

2 METHODS

2.1 Dataset
The nucleotides that were considered in this study contain at least one of
the five nucleobases, a 5-carbon sugar and 1–3 phosphates. We extracted
all complexes from PDB that included these nucleotides; we need these
structures to obtain annotation of the binding residues to build and evaluate
our predictor. The maximal pairwise sequence identity of the resulting protein
chains for each of the nucleotides was reduced to 40% with CD-hit (Li and
Godzik, 2006). We include the nucleotides with at least 50 chains in the
corresponding set. The relatively low identity assures that these nucleotides
bind a wide range of protein chains, which makes it challenging to find the
binding residues using the sequence alignment. The availability of at least
50 chains provides us with a sufficient amount of annotated binding residues
to build and evaluate a well-performing predictor.

Dataset 1 includes 227, 321, 140, 56 and 105 chains that were released in
PDB before 10 March 2010 and that bind to ATP, ADP, AMP, GTP and GDP,
respectively. Similar to the annotation of the DNA- and small ligand-binding
residues (Chen and Kurgan, 2009; Luscombe et al., 2001), a given residue
is annotated as ‘nucleotide binding’ if at least one of its non-hydrogen atom
is <3.9 Å away from a non-hydrogen atom of the nucleotide. As suggested
in (Luscombe et al., 2001), atoms within 3.9 Å are considered to interact
through the van der Waals contacts. Dataset 1 includes 4688 ADP-binding,
3393 ATP-binding, 1756 AMP-binding, 853 GTP-binding and 1577 GDP-
binding residues, and 121158, 80409, 44009, 18888 and 36561 non-binding
residues, respectively.

Dataset 2 consists of nucleotide-binding chains that were released after
10 March 2010. The maximal pairwise sequence identity in Dataset 2 was
reduced to 40%. Moreover, if a given chain in Dataset 2 shares >40% identity
to a chain in Dataset 1 and both chains interact with the same nucleotide,
then we remove the chain from Dataset 2. This assures that the Dataset 2 is

independent of the Dataset 1 and can be used to test models developed using
Dataset 1. Consequently, Dataset 2 includes 17, 25, 18, 6 and 9 chains that
bind to ATP, ADP, AMP, GTP and GDP, respectively.

Dataset 3 consists of chains that do not interact with nucleotides, and
is used to evaluate whether the NsitePred would ‘overpredict’ nucleotide-
binding residues. We use the pre-culled list of 1853 PDB chains generated
by the PISCES server (Wang and Dunbrack, 2003) at 20% sequence identity,
which correspond to high-quality structures with maximal resolution of 1.6 Å
and maximal R-factor of 0.25. Next, among this set of representative proteins,
we remove all chains that (potentially) interact with nucleotides. Any chain
that shares >40% identity to any chain in Dataset 1 (which is used to build our
predictive model), or which is annotated as nucleotide-binding in the Gene
Ontology database (Ashburner et al., 2000), or which binds to nucleotides
among the depositions in the PDB is removed. As a result, we extracted 1372
chains that do not interact with the nucleotides.

The datasets can be found at http://biomine.ece.ualberta.ca/nSITEpred/

2.2 Evaluation criteria and test procedure
We use 5-fold cross validation to assess predictions on Dataset 1. Dataset
2 and 3 are used as independent datasets to assess the prediction models
that are built utilizing Dataset 1. The sequences in Dataset 1 are randomly
divided into 5-folds, of which four are used for training and the one for
testing; each of the 5-folds is used once as the test fold. We evaluate (i) the
binary value that defines whether a given residue does or does not bind
to a given nucleotide; and (ii) the real value that quantifies the probability
of binding to the nucleotide. The binary predictions were assessed
using five measures: Precision(PREC)=TP/(TP+FP);Recall (REC)=
TP/(TP+FN);Specificity(SPEC)=TN/(FP+TN); Accuracy(ACC)=
(TP+TN)/(TP+FP+TN+FN);MCC= (TP∗TN−−FP∗FN)/sqrt[(TP+
FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)] where TP (true positives) and TN
(true negatives) are the counts of correctly predicted binding and non-binding
residues, respectively, FP (false positives) are non-binding residues that
were predicted as binding, and FN (false negatives) are binding residues that
were predicted as non-binding. The precision, recall and specificity evaluate
quality of predictions for the predicted binding residues, native binding
residues and native non-binding residues, respectively. The Matthews
correlation coefficient (MCC) evaluates the overall predictive quality. MCC
values are between −1 and 1 with higher values for better predictions;
0 means that all residues are predicted as binding (or non-binding).

The receiver operating characteristic (ROC) curves were used to examine
the predicted probabilities. For each value of probability P achieved by
a given method (between 0 and 1), all residues with probability �P are
set as the binding residue and all other residues are set as the non-binding
residues. Next, the TP−rate=TP/(TP+FN) and the FP-rate=FP/(FP+TN)
are calculated to draw the ROC curve and we use the area under the
curve (AUC) to quantify the predictive quality. Unlike the measures that
assess the binary predictions, which depend on the cutoff threshold to
define binding/non-binding residues, the AUC value considers all possible
thresholds and thus it provides a more comprehensive evaluation.

We analyzed statistical significance of the differences in the MCC and
AUC values between predictions generated by NsitePred and the other
considered methods. The MCC values are available for all methods, while
the AUC values cannot be calculated for an alignment-based predictor that
provides only a binary annotation. The MCC and AUC values are calculated
per sequence (using the cross-validated predictions) for each method and we
compare them using a paired test. Since these values are not normal, as tested
using Shapiro–Wilk test at the 0.05 significance, we use the non-parametric
Wilcoxon rank sum test to measure the differences between the paired MCC
(AUC) values calculated for two predictors. We annotate the difference as
significant when the P-value<0.01.

2.3 Architecture
For a given protein sequence we use PSIPRED (McGuffin et al., 2000) to
predict the secondary structure, REAL Spine3 (Faraggi et al., 2009) to predict
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the relative solvent accessibility (RSA) and dihedral angles, and PSIBLAST
(Altschul et al., 1997) to generate the PSSM profile. These inputs together
with the sequence are processed using a sliding window to compute a set of
numeric features that describe the residue in the center of the window; the
features are inputted into a support vector machine (SVM) classifier, which
outputs probability of nucleotide binding for this residue. We use the ‘one-
against-the rest’ strategy to build the SVM models. This machine learning-
based approach is named as SVMPred. Moreover, we run the BLAST-based
alignment between the predicted sequence and sequences in the training
dataset for a given nucleotide type. The residues in the predicted sequence
that were aligned with the binding residues in the best aligned training chain
are predicted as the binding residues, i.e. they are assigned with probability
that equals 1 while the other residues are assigned with probability that equals
0. The proposed NsitePred method implements a consensus of SVMPred
and the alignment-based predictor by averaging the probabilities generated
by SVMPred and the alignment-based predictor.

2.4 Feature-based sequence representation
The SVMPred utilizes both sequence and predicted structural descriptors,
including the secondary structure, dihedral angles and RSA, to generate
features. We utilize a sliding window of size 17 centered on the predicted
residue to extract the features, which include

• Predicted secondary structure generated by the PSIPRED for each
residue in the window.

• Predicted RSA and dihedral angles (phi and psi angles) generated by
the REAL Spine3 for each residue in the window.

• PSSM profile generated by PSIBLAST with default parameters using
the NCBI non-redundant database. We include the scores for each
of the 20 substitution amino acid types and we also compute the
average substitution score over all amino acid types in each of the
following four groups, hydrophobic (Ala, Cys, Ile, Leu, Met and Val),
negatively charged (Asp and Glu), positively charged (His, Lys, Arg)
and carboxamide containing (Asn and Gln).

• Terminus indicator is set to 1 for the first and the last three residues
in the sequence, and it equals 0 for the other positions.

• Secondary structure segment indicators for helix/strand/coil on both
sides of the predicted residue, which annotate whether a helix or a
strand segment (or neither) is predicted to the left or right of the
residue in the center of the window.

• Residue conservation scores are calculated from the PSSM values
for each position based on the Shannon entropy (referred to
as conservation A) and based on two formulas that incorporate
background frequency of amino acids (Capra and Singh, 2007; Wang
and Samudrala, 2006), which are named conservation B and C,
respectively.

• Collocation of significant AA pairs for the residues in the window.
This involves finding the frequency of the amino acids pairs with
gaps, as defined in (Chen et al., 2007, 2009), formed between the
residue in center of the window and another residue up to five
positions away. Similarly as in (Senes et al., 2000), we use P-values
to select the collocated pairs that are significantly associated with
nucleotide-binding residues.

Details concerning the calculation of the features are given in the
Supplementary Material. We note that the terminus and the secondary
structure segment indicators, collocation of the amino acid pairs and the
predicted secondary structure, RSA, and dihedral angles were never before
used to predict the nucleotide-binding residues.

2.5 Feature selection and parameterization
The same features, except for the collocated amino acids pairs are considered
to predict binding residues for each of the five nucleotides. Some of

these features may not be relevant to the prediction of the nucleotide-
binding residues and they could be also redundant (correlated) with each
other. Therefore, we performed feature selection to remove the irrelevant
and redundant features. The selection was performed using the 5-fold
cross validation separately for each of the five nucleotide types. First, the
biserial correlation (Tate, 1954) between each of the features and the binary
annotation of the binding residues was calculated for each of the five training
sets. The averaged, over the five training sets, correlation values were used
to rank the features. We used a wrapper-based feature selection with the
forward best first search. More specifically, for a given list of feature F=
[fi where i=1,2,...,n] sorted in the descending order by their average biserial
correlation and an empty list S that stores the selected features, we add the
top-ranked feature from F to S and run a linear SVM (Fan et al., 2005, 2008)
with default parameters (i.e. linear kernel and complexity constant C =1)
using feature set S in the cross validation regime. If the addition of the top-
ranked feature improves the average AUC value over the five test folds, then
this feature is retained in S; otherwise it is removed. We repeat that until F
is empty, i.e. we scan the entire feature set once. Next, the SVM classifier
is parameterized on the selected feature set. We considered the polynomial
and the Radial Basis Function (RBF) kernels. For the polynomial kernel, the
complexity constant C is initially fixed at 1 and the degree of the polynomial
is adjusted between 0.5 and 5 with step=0.5. The degree that results in the
highest cross-validated AUC value is selected, and next we adjust C using
consecutive powers of 2 between 2−3 and 25. Similarly for the RBF kernel,
the gamma parameter is first optimized using the 2−7–23 range when C
is fixed at 1, and next C is adjusted using the 2−3–25 range. We selected
the parameters that maximize the cross-validated AUC and we performed
a separate parameterization each of the five nucleotide types; the optimized
parameters for each nucleotide type are given in the Supplementary Table S1.

2.6 Considered baseline predictors
The NsitePred is compared with the current predictors for the ATP and GDP,
ATPint (Chauhan et al., 2009) and GTPbinder (Chauhan et al., 2010), the
method proposed by Firoz et al. (2011) and three baseline predictors based
on the residue conservation, sequence alignment and a simple classifier
similar to the methods in (Chauhan et al., 2009, 2010) that uses evolutionary
profile:

• Rate4site program (Pupko et al., 2002) predicts functional sites by
finding conserved residues. We first run PSIBLAST with the query
sequence against the NCBI non-redundant database. For chains with
at least three significant matches, we created alignments of the best
50 sequences, which is the default for the web version of Rate4site
(Ashkenazy et al., 2010), using ClustalW (Larkin et al., 2007) and we
inputted them into Rate4site. Rate4site generates conservation score
for each residue, and the residues with the lower scores, which indicate
higher conservation, have a higher probability to be binding residues.
We use these scores to compute ROC curves and the corresponding
AUC values. We threshold these scores by maximizing the MCC value
on the entire dataset to obtain binary predictions. The AUC and MCC
values are computed separately for each nucleotide type.

• Sequence alignment using BLAST identifies similar sequences or
segments from an annotated (with the nucleotide-binding residues)
dataset for a given query sequence. This approach predicts the binding
residues by using the nucleotide-binding annotations from the best
aligned sequence, i.e. sequence with lowest E-value. We execute
the BLAST-based alignment between a query sequence and all other
sequences (except the query sequence itself) in the dataset for a given
nucleotide type. The residues in the query sequence that were aligned
with the binding residues on the best aligned chain are predicted as
the binding residues.

• PSSM profile is widely used in related sequence-based predictors,
including ATPint (Chauhan et al., 2009) and GTPbinder (Chauhan
et al., 2010). We build a simple predictor that uses SVM (with the
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same parameters as the corresponding SVM in SVMPred) and
takes PSSM profile as the input to validate the effectiveness of
the sequence representation proposed in this work. This allows us
to estimate improvements provided by the new features based on
conservation scores and predicted secondary structure, RSA, and
dihedral angles.

3 RESULTS

3.1 Comparison with the existing methods
Table 1 compares the NsitePred with the ATPint (using on
the web server at www.imtech.res.in/raghava/atpint/), GTPbinder
(www.imtech.res.in/raghava/gtpbinder/) and the three baseline
predictors based on the alignment, conservation scoring and
evolutionary profiles. We use the tripeptide-based GTPbinder,
which outperforms the single-residue and dipeptide-based versions
(Chauhan et al., 2010), in two configurations including
the GTPbinder_PSSM that utilizes PSSM profiles and the
GTPbinder_seq that is based solely on the protein sequence.

For Dataset 1, across predictions for the five nucleotide types, the
NsitePred obtains AUC�0.83, MCC�0.38 and accuracy >0.96.
Our method outperforms the other approaches by a statistically
significant margin for bothAUC and MCC measures.Although some
other approaches provide higher precision, recall or specificity, the
NsitePred provides favorable balance between these three measures.
The sensitivities and specificities, for which predictions are binarized
with different cutoff thresholds, achieved by NsitePred and the
competing methods are given in the Supplementary Table S2. Based
on the MCC, which provides an overall estimate of the quality
of the binary predictions, the NsitePred is superior to SVMPred
and the BLAST-based predictor, followed by the PSSM profile-
based predictor, and the Rate4site. We note that the consensus-based
NsitePred achieves higher AUC and MCC values and a better
balance between the precision and recall than SVMPred. This
suggests that the predictions from SVMPred are complementary to
the alignment-based predictions. Since the Rate4site only considers
the residue conservation, its relatively low predictive performance
could be explained by the fact that the conserved residues could also
include binding residues for other types of ligand such as the metal
ions, carbohydrates, peptides, etc. This explanation is supported by
the relatively high recall (i.e. high fraction of the correctly predicted
native binding residues) coupled with the low specificity (which
indicates an over-prediction of the binding residues) which are
achieved by the Rate4site.

The AUC, MCC, precision, specificity and accuracy of ATPint are
lower than the values achieved by NsitePred and the three baseline
predictors, see Table 1, and they are also lower than it was reported
in (Chauhan et al., 2009). The likely reason for that is the fact
that the ATPint authors used a balanced number of binding and
non-binding residues to design and evaluate their method, which
resulted in the lower predictive quality when applied here to the
full chains. Our results indicate that the ATPint over-predicts the
ATP-binding residues, which is evidenced by the low specificity
and precision, i.e. a high number of false positives. We show that, as
expected and as shown in (Chauhan et al., 2010), GTP_binder that
utilizes the evolutionary profile (GTPbinder_PSSM) outperforms
the version that does not use this information (GTPbinder_seq).
The PSSM-based GTP_binder achieves AUC=0.8 and MCC=0.39
that are lower than the values achieved by the NsitePred (by the

statistically significant margin) and the BLAST-based predictor, and
higher than the values achieved by the PSSM profile-based predictor
and Rate4site.

The ROC curves based on the predictions on Dataset 1 are shown
in Figure 1. The figure focuses on the FP rates <0.05 since only
∼4% of residues bind to nucleotides; the full ROC is given in the
Supplementary Figure S1. The BLAST-based predictor does not
provide the probabilities, and thus we include a single point that
corresponds to its binary predictions. The ROC curves reveal that
NsitePred provides higher TP rates for the FP values between 0.01
and 0.05 when compared with the other methods for each of the five
types of the ligands.

Table 2 compares NsitePred with the existing methods, including
the recent method proposed by Firoz et al. (2011), and baseline
predictors on Dataset 2, which consists of chains that were released
after the NsitePred was designed and which are dissimilar to chains
in the Dataset 1 that was used to build the predictive models. We
did not evaluate the method by Firoz et al. on Dataset 1 because
the training set used by these authors overlaps with our Dataset 1.
Similar to the results on Dataset 1, NsitePred achieves significantly
higher AUC and MCC values when compared with the other
methods, including ATPint, GTPbinder and the method by Firoz
et al. (2011), for all five nucleotide types. NsitePred improves by
0.01–0.02 inAUC and 0.01–0.04 in MCC, depending on a nucleotide
type, over the predictions from SVMPred by implementing the
consensus of SVMPred and the BLAST-based alignment. These
improvements are shown to be statistically significant. A detailed
summary of sensitivities and specificities achieved by NsitePred
and the competing methods are shown in the Supplementary Table
S3. The ROC curves of NsitePred and the other methods on
Dataset 2 are given in the Supplementary Figures S2 (for the FP
rates <0.05) and S3 (entire range of FP rates). The ROC curves
reveal that NsitePred provides higher TP rates for the FP values
between 0.012 and 0.05 when compared with the other methods
for each of the five types of the nucleotides. We also evaluated the
predictive quality of the considered methods for prediction of all
nucleotide-binding residues. In this case, a residue is defined as a
‘nucleotide-binding’ if it interacts with any of the five nucleotides,
and a residue is predicted as a ‘nucleotide-binding’ when a given
method predicts that this residue interacts with any of the five
nucleotides; see the ‘All’ row in Table 2. Similarly as for the
prediction of individual nucleotide types, NsitePred achieves higher
AUC, MCC and recall than the remaining methods, while the
BLAST-based predictor achieves higher precision, specificity and
accuracy, see Table 2.

Based on a request from a reviewer, we test the NsitePred on
the original datasets that were used to develop and test ATPint and
GTPbinder. We use the same inputs and parameterization for the
NsitePred (as for the Datasets 1, 2 and 3) and perform 5-folds
cross validation that duplicates the tests done in (Chauhan et al.,
2009, 2010). Specifically, we first annotate positive samples (binding
residues) and negative samples (non-binding residues). Next, we
randomly select a subset of the non-binding residues that equals
to the number of binding residues. Finally, the binding and non-
binding residues are combined and divided (per residue) into 5-folds
to perform cross validation. The results of NsitePred, ATPint and
GTPbinder are given in the Supplementary Table S4. We note that
NsitePred generates higher AUC, MCC, precision, sensitivity and
specificity than ATPint and GTPbinder.
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K.Chen et al.

Fig. 1. The ROC curves for the NsitePred (denoted using thick solid lines
with filled circle markers), SVMPred (denoted using thick solid lines with
hollow square markers), ATPint (thick solid line with x markers), GTPbinder
(thick solid lines using cross and hollow triangle markers), Rate4site (thick
solid line without markers) and the predictor based on the PSSM with
the SVM classifier (thin solid line with cross makers) for predictions on
Dataset 1. The FP-rate is constrained to [0,0.05] range and the BLAST-based
solution is shown using a single point (star marker on gray background) that
corresponds to the binary predictions.

3.2 Performance on non-binding chains
We also assess the predictive quality of NsitePred and the other
methods on protein sequences that do not interact with nucleotides
(Dataset 3). We measure the error rate, which is defined as ratio
between the number of false positives (FPs) and the total number
of residues, for all considered methods; we note that there are no
positive (nucleotide-binding) residues in this dataset. The error rates
of NsitePred are 0.48, 1.15, 0.76, 0.93 and 0.67% for ATP, ADP,
AMP, GTP and GDP, respectively, see Supplementary Table S5. The
error rates of NsitePred are slightly higher than the error rates of
BLAST-based method and SVMPred, but lower than the error rates
of ATPint and GTPbinder. We note that NsitePred predicts 3.6 and
3.1%, 3.2 and 3.1%, 2.4 and 2.2%, 2.6 and 4.0%, and 3.3 and 4.3% of
the residues in Dataset 1 and Dataset 2 as ATP-, ADP-, AMP-, GTP-
and GDP-binding residues, respectively. These results demonstrate
that NsitePred predicts fewer nucleotide-binding residues for the
non-binding chains than for the nucleotide-binding chains.

3.3 Contribution of specific input types
We assess contributions of specific input types for the prediction
of the nucleotide-binding residues with NsitePred. The inputs
are categorized into five groups: (i) the BLAST-based prediction;
(ii) predicted secondary structure (including the secondary structure
segment indicator) and dihedral angles; (iii) PSSM profile and
conservation scores; (iv) predicted relative solvent accessibility; and
(v) the features calculated from the primary sequence, including the

collocation of AA pairs and terminus indicator. The contributions of
these feature groups are assessed in two ways. First, we compare
NSitePred with versions of our method where one type of input
is excluded; see Supplementary Table S6. Second, we calculate
the predictive quality of the models that take only one feature
group as inputs, see Supplementary Table S7. The exclusion of
PSSM profile and conservation scores leads to a larger decrease
in the AUC and MCC than the exclusion of other input types,
which suggests that the evolutionary information plays a key role
in determination of the nucleotide-binding residues. On the other
hand, the removal of the predicted relative solvent accessibility
has the smallest impact to the predictive quality, i.e. we observe
a decrease of 0.4% in AUC and 0.8% in MCC on average for five
nucleotides on two datasets. Similar observations are made when
using one feature group as inputs. The group that includes PSSM
profile and conservation scores provides higher AUC values than the
remaining groups. The BLAST-based features provide the highest
MCC values. Moreover, we note that all feature groups, including
the lowest scoring predicted relative solvent accessibility, are useful
for the prediction of the nucleotide-binding residues, i.e. the AUC
and MCC values are above 0.5 and 0 respectively, for each of the
five feature groups.

3.4 Similarity between the prediction models for
different types of nucleotides

Some of the considered nucleotides (e.g. ATP and ADP) have
similar structures, which means that they may bind to the same
pocket, while some other nucleotides (e.g. AMP and GTP) have less
similar structures. Consequently, we assessed whether the prediction
model for one nucleotide identifies the binding residues of other
nucleotides. We use the prediction model for a given nucleotide, e.g.
ATP, to predict the nucleotide-binding residues for sequences that
interact with the other nucleotides, i.e. ADP, AMP, GTP and GDP.
Dataset 2 is divided into five subsets with the ATP-, ADP-, AMP-,
GTP- and GDP-binding chains, respectively. We calculate recall for
each of the five prediction models and each subset of the nucleotide-
binding chains; see Supplementary Table S8. Recall quantifies the
fraction of the natively binding residues for a given nucleotide type
that are predicted by a given model. The results show that the
highest recall is obtained when a given model predicts chains that
bind the corresponding nucleotide type, e.g. when NsitePred_ATP
predicts the ATP-binding chains. This shows that the models are, as
expected, specialized to predict binding for their ‘own’ nucleotide.
We note that relatively high recall values are achieved by the ATP
predictor when it predicts the ADP-binding residues and by the ADP
predictor when it predicts the ATP-binding residues. The same is
also observed when the GTP and GDP models predict the GDP-
and GTP-binding residues, respectively. This suggests that structural
similarity between the ligands, which impacts the similarity in
their binding, is also observed among the predictions generated by
NsitePred. However, the recall is substantially smaller when a given
model is used to predict binding residues for nucleotides that are
less similar, e.g. when NsitePred_ATP predicts the AMP-, GTP-
and GDP-binding chains. This indicates that when the structures of
nucleotides are different, the corresponding prediction models are
also different, which motivates the development of consensus-based
predictors.
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3.5 Evaluation per binding site
Besides the evaluation at the residue level, we investigate the quality
of the predictions at the binding site level. A given binding site,
which is made of residues that interact with the same molecule, is
assumed to be correctly predicted if at least 50% of its residues
are correctly predicted. We vary the per-residue precision between
0.05 and 0.8 (the number of correctly predicted binding sites is
approximately 0 when the precision >0.8) with 0.05 step to control
the number of FPs. This is performed by thresholding the predicted
probabilities (we vary the threshold to obtain the binary predictions)
for all methods except for the BLAST-based predictor, which is
represented with one point that corresponds to its binary prediction.
Supplementary Figure S4 shows that NsitePred correctly predicts
∼62% of the ADP-binding sites, 38% of the ATP-binding sites, 19%
of the AMP-binding sites, 76% of the GDP-binding sites and 37% of
the GTP-binding sites at the precision that equals 0.5, i.e. when half
of the predicted binding residues are correct. To compare, the PSSM-
profile based predictor correctly predicts only 6, 0, 0, 34 and 2% of
the binding sites for theADP,ATP,AMP, GDP and GTP, respectively,
when considering the same precision. The Rate4site predictor cannot
achieve such high precision for any of the five types of nucleotides,
and thus we assume that its success rate equals 0. The ATPint and
GTPbinder_seq also cannot correctly predict any sites at precision
of 0.5, while the GTPbinder_PSSM correctly predicts ∼13% of
the GTP-binding sites. When compared with the BLAST-based
predictor at the same precision, the NsitePred correctly finds 5–15%
more binding sites. Overall, the results indicate that the NsitePred
captures more binding sites than the other predictors, especially at
the higher precision rates.

3.6 Impact of the degree of spread of the binding
residues in the protein chain

Some nucleotide binding sites consist of a single segment in the
protein chain, e.g. the p-loop motif GXXXXGKS(T)T, while other
sites are composed of binding residues that are sparsely distributed
over the sequence. We study the relation between this degree of
the spread of the binding residues in the chain and the predictive
quality. We quantify this spread/clustering of the binding residues
using a spread index that reflects the average number of non-binding
residues between the consecutive binding residues in the chain, and
that equals zero when a given site consists of a single segment of the
consecutive binding residues. In other words, larger spread values
correspond to sites that are composed of the binding residues that
cover a longer fragment in the input sequence, relative to the total
number of the binding residues in a given site. A detailed definition
of this index is provided in the Supplementary Material.

We sorted all binding sites for a given nucleotide type in the
ascending order according to their spread index values, and we
divided them into five equally sized subsets where the first subset
contains 20% of sites with the lowest spread. The average spread
values for each subset and the corresponding predictive quality for
NsitePred calculated based on the 5-folds cross validation on Dataset
1 are shown in Figure 2. Figure 2A shows the average precision
(fraction of correct prediction among the predicted binding residues)
at the recall that equals 0.5, while Figure 2B gives the average
recall (fraction of correctly predicted native binding residues) at
the precision that equals 0.5. The results show that both precision
and recall decline with the increasing spread value, and that this

Fig. 2. Relation between the predictive quality (y-axis) and the spread index
values (x-axis). The binding sites for a given nucleotide type, which are sorted
in the ascending order based on their spread index values, are divided into
five equally sized subsets where the first subset (the left-most point) contains
20% of sites with the of the lowest spread, and the fifth subset (the right-most
point) with the 20% of sites with the highest values. (A) shows the average
precision (over the sites in a given subset) at the recall=0.5. (B) shows the
average recall at the precision=0.5.

trend is independent of the nucleotide type. The NsitePred performs
very well for compact sites, i.e. sites that include residues that are
clustered close in the sequence, and its quality declines when the
binding residues are spread over a longer fragment of the protein
chain. Moreover, this relation also explains the differences in the
predictive quality for different nucleotide types. The average spread
values for the binding sites for the GDP,ADP,ATP, GTP andAMP are
2.53, 2.93, 3.25, 3.35 and 3.53, respectively. The Pearson correlation
coefficients between these spread values and the correspondingAUC
and MCC values achieved by NsitePred, see Table 1, equal −0.96
and −0.98, respectively.

3.7 Sequence-derived hallmarks of nucleotide-binding
residues

The significant improvements in the quality of the prediction of
the binding residues for the five considered nucleotides between
the NsitePred and the PSSM profile-based predictions (denoted as
PSSM+SVM), see Tables 1, suggest that the increased quality stems
from the use of the novel inputs proposed in this work. This means
that the nucleotide-binding residues could be characterized using
the information concerning their conservation and the predicted
secondary structure, RSA, and dihedral angles. We analyze features
used by the NsitePred to find the corresponding sequence-derived
markers of the nucleotide-binding residues.

We focus on the features that were selected for at least three
nucleotide types; they are listed in Supplementary Table S9.
We observe that the selected features that are based on the
predicted secondary structure, RSA, and psi angles are biased
to positions in the sequence that are toward the N-terminus
from the predicted residue. We investigate this asymmetry (the
lack of use of the positions toward the C-terminus at the same
position (relative to the predicted residues) computed for all
native nucleotide-binding residues and the non-binding residues,
respectively, i.e. ratio=average value of a given feature for
the nucleotide-binding residues divided by the average for the
non-binding residues. The value close to 1 indicates that similar
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average values are observed for the binding and the non-binding
residues, and thus the corresponding feature at this position does
not differentiate between these two types of residues. The ratios
along the 17 positions of the sliding window used by the NsitePred
for the probabilities of secondary structures, RSA values, dihedral
angles and the three conservation scores are shown in Figure 3. As
our feature selection suggests, the plots for the secondary structure,
dihedral angles and RSA are asymmetric, which is in contrast to the
conservation scores that are symmetric. We note the particularly high
ratios for the predicted probabilities of strands at the positions that
are 4–5 residues toward the N-terminus. These ratios show that the
nucleotide-binding residues are characterized by over twice higher
probabilities of the predicted strand residues for these positions
when compared with the non-binding residues. Moreover, positions
toward the C-terminus show ratios relatively close to 1, i.e. between
0.826 and 1.001. We also observe that the helix is less likely to occur
toward the N-terminus when compared with positions toward the
C-terminus, which coincides with the above preference toward the
strands. Similarly (as expected), the ratios for the phi and psi angles
follow the pattern of the secondary structures, although they vary
in a smaller range, e.g. ratios for the psi angles vary between 0.926
and 1.196, with the larger values only toward the N-terminus. The
RSA values are smaller toward the N-terminus and close to 1 toward
the C-terminus, which explains the bias toward the former positions
among the selected features. The plot indicates that residues located
near by and toward the N-terminus from the nucleotide-binding
residues are less likely to be solvent exposed. The ratios for the
three conservation scores are symmetrically distributed around the
central residue. Their largest values are at the central position, which
indicates that the nucleotide-binding residues are more conserved
than the non-binding residues. These three plots also reveal that the
residues at the adjacent positions have smaller ratios, which means
that the nucleotide-binding residues are flanked by residues with a
smaller degree of conservation.

We also note that several features extracted from the PSSM profile
(including the aggregations using certain amino acid groups) and
certain collocated amino acid pairs are included among the selected
features, and thus they can be used to formulate sequence-derived
hallmarks of the nucleotide-binding residues. The PSSM profile-
based features are likely correlated with the formation of certain
secondary structure types, e.g. the scores aggregated for the
hydrophobic residues is associated with the formation of strands
and coils. Three amino acid pairs, GXXXS, GXG and GXS,
where ‘X’ indicates a wild card residue (any amino acid type) and
where the right-most residue is located at the center of a sliding
window, are found to be strong markers for the nucleotide-binding
residues. These collocated pairs are related to the p-loop motif,
GXXXXGKS(T), which is characteristic to the interactions with
ATP (Saraste et al., 1990).

3.8 Case study
We demonstrate the predictions generated by the NsitePred for the
chain A of cell division control protein 6 (PDB code: 1FNN) that
interacts with the ADP. The predictive quality of the considered
methods for this target is similar to their average quality on the entire
dataset. The native ADP-binding residues, the binary predictions,
and the probabilities predicted by NsitePRED, Rate4site, BLAST
and PSSM+SVM methods are shown in Figure 4. The binding

Fig. 3. The ratios, which are calculated as the average of values of a given
feature for the nucleotide-binding residues divided by the average for the
non-binding residues, at the 17 positions in the sliding window used by
NsitePred. The ratios are calculated for the predicted secondary structures
(helix, strand and coil), RSA, dihedral angles (phi and psi), and the three
conservation scores based on the Shannon entropy (conservation A) and
formulas proposed in (Wang and Samudrala, 2006) (conservation B), and in
(Capra and Singh, 2007) (conservation C). The x-axis shows the positions
in the sequence relative to the predicted residues, which is at 0.

residues are clustered into four segments, which include positions
14–22, 54–59, 193–205 and 226–230. The second binding segment
consists of six consecutive binding residues while the other three
segments include interspersed binding and non-binding residues.
The NsitePred correctly predicts 15 out of the 17 ADP-binding
residues and produces one FP. The SVMPred generates the same
binary predictions as the NsitePred method. The PSSM+SVM
method and the BLAST-based predictor predict 5 binding residues
and they also produce 2 and 0 FPs, respectively. The Rate4site
correctly finds 15 binding residues, but it also generates 49 FPs.
The predicted binding residues on the protein surface and the
structure of the nucleotide are given in the Supplementary Figure
S5. We also observe several of the abovementioned hallmarks
of the nucleotide-binding residues. The second binding segment,
GTGKTV, includes the collocated amino acid pair GXG. The GXXR
and LXXR pairs, which are significantly associated with the ADP-
binding residues, are found in the first and the fourth binding
segments, respectively. Moreover, the conservation scores for the
residues in these pairs are below -0.85, which is the threshold to
binarize the predictions from the Rate4site. Consequently, the above
collocated amino acid pairs and their conservation scores explain
why the first and the fourth binding segment are captured by the
NsitePred and the Rate4site predictors; the other two predictors fail
to find them since they do not consider this information. We note that
strands are predicted 3–7 residues left (toward the N-terminus) from
the binding residues that make up the second and third segments;
these positions are also characterized by relatively low probability
of prediction of the helical conformation.

4 CONCLUSION
The NsitePred is a collection of five accurate sequence-based
predictors that identify binding residues for the five most populated
nucleotides in the PDB, including ATP, ADP, AMP, GTP and
GDP. Empirical results demonstrate that NsitePred outperforms
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Fig. 4. Comparison of predictions for chain A of cell division control protein 6 (PDB id: 1FNN). Plots at the top show the predicted probabilities for
PSSM+SVM (in red), Rate4site (green) and NsitePred (blue). Conservation scores generated by the Rate4site were divided by 10 to fit the figure. The dotted
horizontal lines denote the cut-offs used to binarize the probabilities. The corresponding binary predictions are shown using dots (one dot per residue) at
the bottom. Black dots denote native ADP-binding residues, and blue, red, green and gray denote predictions from NsitePred, PSSM+SVM, Rate4site and
BLAST, respectively. The secondary structure is shown in horizontal line below the x-axis with strands in yellow, helices in light green and coil in orange.

the existing ADPint and GTPbinder methods, as well as solutions
based on the sequence alignment and residue conservation
scoring. The favorable predictive quality stems from the usage
of novel custom-designed input features that are based on the
sequence, the sequence-derived evolutionary profiles, the sequence-
predicted structural descriptors and the BLAST-based alignment.
Our study shows that NsitePred performs particularly well for
the binding sites in which the binding residues are clustered
close together in the sequence. Analysis of the features used in
the predictive model reveals several interesting hallmarks of the
nucleotide-binding residues, which are related to the arrangement
of secondary structures, dihedral angles and certain amino acid
pairs in the specific neighboring positions in the sequence. The
NsitePred is implemented as a web server that is available at
http://biomine.ece.ualberta.ca/nSITEpred/.
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