
Critical evaluation of bioinformatics tools for the

prediction of protein crystallization propensity
Huilin Wang, Liubin Feng, Geoffrey I. Webb, Lukasz Kurgan,
Jiangning Song and Donghai Lin
Corresponding authors: Lukasz Kurgan, Department of Computer Science, Virginia Commonwealth University, USA. Tel.: þ1 804-827-3986; Email:
lkurgan@vcu.edu; Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University,
Melbourne, VIC 3800, Australia. Tel.: þ61-3-9902-9304; Fax: þ61-3-9902-9500; Email: Jiangning.Song@monash.edu; Donghai Lin, The Key Laboratory for
Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. Tel.: þ86-592-2186078;
Fax: þ86-592-2186078; Email: dhlin@xmu.edu.cn

Abstract

X-ray crystallography is the main tool for structural determination of proteins. Yet, the underlying crystallization process is
costly, has a high attrition rate and involves a series of trial-and-error attempts to obtain diffraction-quality crystals. The
Structural Genomics Consortium aims to systematically solve representative structures of major protein-fold classes using
primarily high-throughput X-ray crystallography. The attrition rate of these efforts can be improved by selection of proteins
that are potentially easier to be crystallized. In this context, bioinformatics approaches have been developed to predict crys-
tallization propensities based on protein sequences. These approaches are used to facilitate prioritization of the most prom-
ising target proteins, search for alternative structural orthologues of the target proteins and suggest designs of constructs
capable of potentially enhancing the likelihood of successful crystallization. We reviewed and compared nine predictors of
protein crystallization propensity. Moreover, we demonstrated that integrating selected outputs from multiple predictors as
candidate input features to build the predictive model results in a significantly higher predictive performance when com-
pared to using these predictors individually. Furthermore, we also introduced a new and accurate predictor of protein crys-
tallization propensity, Crysf, which uses functional features extracted from UniProt as inputs. This comprehensive review
will assist structural biologists in selecting the most appropriate predictor, and is also beneficial for bioinformaticians to de-
velop a new generation of predictive algorithms.
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Introduction

X-ray crystallography is the main approach that is used to solve
three-dimensional protein structures, accounting for about 90%
of the proteins in the Protein Data Bank (PDB) [1]. Unfortunately,
this method is characterized by a high attrition rate related to a
difficult task of obtaining diffraction-quality protein crystals.
Protein crystallization experiments often involve ‘trial-and-error’
attempts, and are composed of several laborious steps including
sequence cloning, protein expression, solubility analysis, purifi-
cation and ultimately production of diffraction-quality protein
crystals [2–4]. Depending on the source, the success rate of the
overall crystallization process was reported to range between 2%
and 10% [5–9]. Consequently, a large portion of the overall cost
(up to 70%) is spent on the failed attempts [10]. Moreover, avail-
ability of a large and growing number of sequenced proteins (the
UniProt database [11] includes over 66 million protein sequences)
puts pressure to increase the high-throughput of structural deter-
mination pipelines. To bridge this widening sequence-structure
gap, the Structural Genomics Consortium (SGC) was founded fol-
lowing the successful footsteps of sequencing efforts [12–14]. The
primary task of SGC is to solve at least one representative struc-
ture for each biologically important protein-fold family by using
primarily high-throughput X-ray crystallography [15–17]. To ex-
pedite this process, it is necessary to select feasible target pro-
teins for structural determination, which cover novel fold
families [18]. Both the selected target proteins and their ex-
perimental progresses and statuses are available in the target-
registration database TargetTrack (http://sbkb.org/tt/) [19, 20]. As
of 8 October 2016, only 4.7% of cloned proteins (10 763/230 782
proteins) have been structurally solved according to the data in
TargetTrack. This suggests that the currently existing prediction
algorithms for target selection could be further improved and
optimized.

Target selection remains a challenging task [21, 22], owing to
complex sequence-structure relationships and our limited
understanding of biophysical properties of proteins as well as
complicated factors controlling protein crystallization [23, 24].
Bioinformatics tools capable of predicting the propensity of a
given protein to yield diffraction-quality crystals, have been de-
veloped to facilitate target selection and help streamline labori-
ous trial-and-error experimental steps. These bioinformatics
tools can be used to select alternative structural orthologues
with high likelihoods of successful crystallization, thereby po-
tentially reducing the attrition rates. They were also used to
perform large-scale assessments of protein crystallization pro-
pensities (CPs) of entire proteomes [21] and collections of prote-
omes [25]. A variety of bioinformatics tools have been
developed in the past decade. They mostly focus on predicting
protein solubility [26–28], and crystallization [2–4, 10, 29–34],
based on protein crystallization-dependent factors, including
transmembrane regions [35, 36], secondary structure elements
[37, 38], signal peptides [39] and disordered segments [40]).
These bioinformatics tools can provide useful information to
guide protein crystallization [23, 41].

In this comprehensive review, we discuss recent progresses
in developing protein sequence-based bioinformatics tools for
the prediction of protein CP. These prediction tools were de-
veloped by exploiting significant differences between collections

of crystallizable and non-crystallizable proteins using statistical
and machine-learning algorithms. They can be categorized into
three major classes. The first class is based on physicochemical
properties predicted from protein sequences, which are used to
differentiate crystallizable and non-crystallizable proteins. The
commonly used properties include sequence length, isoelectric
point (pI), 20 standard amino acid composition, hydrophobicity,
frequencies of hydrophobic, hydrophilic, positively charged,
negatively charged and neutral amino acid residues and dipep-
tide composition as well as tripeptide composition. These bio-
informatics tools predict protein CP solely based on amino acid
sequence, and are characterized by relatively low runtime, in the
order of< 1 s per protein. They include SECRET [30], CRYSTALP
[31], OB-Score [29], ParCrys [32], CRYSTALP2 [33], MCSG-Z score
[42], SCMCRYS [43] and Crysalis [3].

The second class uses putative structural features predicted
from protein sequences including secondary structures, intrin-
sically disordered regions and solvent accessibilities of residues,
in addition to physicochemical properties. These bioinformatics
tools use a large set of structural features, such as hydrophobi-
city and side-chain entropy of putative protein surface, fre-
quency of buried amino acid residues, number of disordered
regions and composition of secondary structures. These fea-
tures are in line with the recent results obtained on a large set
of proteins [3]. These results suggested that the sites of protein
crystallization-dependent non-optimality might involve the
biases associated with side-chain entropy, disordered regions,
solvent-exposed regions and C- and N-termini localization [3].
The extension to use putative structural features aims to im-
prove the predictive performance as a trade-off for a longer run-
time. The increase in runtime is owing to the reason that
computation of the putative structural features requires gener-
ation of multiple sequence alignment with the PSI-BLAST pro-
gram [44]. Typically, these bioinformatics tools take 0.5–3 min to
process a query protein sequence on a modern desktop com-
puter. The corresponding predictors include XtalPred [45], PXS

[24], SVMCRYS [34], PPCPred [4], XANNPred [46], RFCRYS [47],
CRYSpred [48], XtalPred-RF [10] and PredPPCrys [2].

A new bioinformatics tool named Crysf constitutes the third
class, which will be introduced in this article. Crysf uniquely
applies functional features of protein sequences extracted from
UniProt as the input for predicting protein CP. Thus, Crysf can
be used for selecting feasible target proteins from UniProt for
structural determination.

As nearly 20 bioinformatics tools have been developed for
predicting protein CP, it might be difficult to choose the most
suitable tool for a given protein. Thus, we herein review a com-
prehensive group of protein sequence-based CP predictors. We
focus on several practical aspects of these predictors including
their usability and utilities. In particular, we discuss the used
predictive models, benchmark training and test data sets and
the inputs. We also describe how to select these predictors and
their availability. Furthermore, we will evaluate and compare
their predictive performances using two up-to-date benchmark
data sets, which include the proteins with recently annotated
statuses derived from TargetTrack [19]. We believe that this
comprehensive review will assist structural biologists in select-
ing the most suitable tools for their projects.
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Materials and methods
Collection of annotations of crystallization trials

TargetTrack (http://sbkb.org/tt/) is a structural genomics target-
registration database serving as a successor of the PepcDB
database [19]. It provides detailed annotations regarding experi-
mental progresses and statuses of target proteins deposited by
>40 structural genomics centers worldwide. We downloaded
the most recent experimental records (9 September 2015) from
TargetTrack, comprising 335 993 proteins and 944 479 experi-
mental trials. Each protein is associated with potentially mul-
tiple trials representing a set of experimental procedures, which
were used to determinate the three-dimensional (3D) structure
of this protein. Inspired by previous works [2, 4], we constructed
a new data set (named ‘TTdata’) based on the data extracted
from TargetTrack using the following four criteria:

1. We only extracted X-ray crystallography-based experimen-
tal trials annotated with the most advanced experimental
statuses. These statuses include ‘selected’, ‘cloned’, ‘ex-
pressed’, ‘soluble’, ‘purified’, ‘crystallized’, ‘diffraction’, ‘crys-
tal structure’ or ‘in PDB’. We grouped the proteins with the
status of ‘crystal structure’ or ‘in PDB’ as crystallizable pro-
teins (defined as the ‘CRYS’ class), and grouped those with
other statuses as non-crystallizable proteins (defined as the
‘NCRYS’ class).

2. We only selected the experimental trials annotated with two
states: ‘work stopped’; ‘in PDB’ or ‘crystal structure’.

3. We did not extract the experimental trials both before
1 January 2009 and after 31 December 2014. This could en-
sure that we only extracted recent data and excluded trials
that are potentially still ongoing at present.

4. We eliminated non-crystallizable proteins sharing >100%
sequence identity with crystallizable proteins. The sequence
identity was quantified by the CD-Hit program [49].

The constructed TTdata includes 81 279 non-crystallizable
proteins and 103 247 crystallizable proteins.

Collection of functional annotations

We retrieved functional annotations of the proteins from
UniProt (http://www.UniProt.org/), which included 549 008 pro-
teins from the Swiss-Prot database and 50 011 027 proteins from
the TrEMBL database (on 14 July 2015). Swiss-Prot is a collection
of entries that are reviewed and manually annotated using a lit-
erature search and curator-evaluated computational analysis.
TrEMBL is not reviewed in which proteins are annotated com-
putationally. We mapped the proteins in TTdata to both Swiss-
Prot and TrEMBL via one-by-one matching of sequences sharing
100% sequence identity. Totally, 5849 crystallizable proteins
(positive samples) and 4907 non-crystallizable (negative sam-
ples) proteins were mapped to the Swiss-Prot database, consti-
tuting the Swiss-Prot data set. Additionally, 8491 crystallizable
(positive samples) and 21 426 non-crystallizable (negative sam-
ples) proteins were mapped to the TrEMBL database, comprising
the TrEMBL data set.

Training and benchmark test data sets

Based on the Swiss-Prot and the TrEMBL data sets, we con-
structed the training and test data sets using the following three
steps:

1. We eliminated sequence redundancy (proteins with >25%
sequence identity) within crystallizable proteins contained

in either Swiss-Prot or TrEMBL, also eliminated that within
non-crystallizable proteins contained in each data set. The
sequence identity was qualified by using a combination of
CD-Hit [49] and BLAST [44]. Eliminating sequence redun-
dancy within each data set was based on the observation
that the proteins with similar sequences could possess dis-
tinct CPs [2]. Totally, the Swiss-Prot data set contains 2798
crystallizable and 3096 non-crystallizable proteins (denoted
as the ‘SP’ data set), while the TrEMBL data set contains 4994
crystallizable and 9794 non-crystallizable proteins (denoted
as the ‘TR’ data set).

2. Either the SP data set or the TR data set was randomly div-
ided into six equally sized subsets. The first five subsets
were merged together to form the training data set (denoted
as ‘SP_train’ or ‘TR_train’), while the remaining sixth subset
worked as the independent test data set (denoted as
‘SP_test’ or ‘TR_test’).

3. We further eliminated the proteins sharing >25% sequence
identity with those used in other predictors. The resulting
four data sets were named as ‘SP_train_nr’, ‘SP_test_nr’,
‘TR_train_nr’ and ‘TR_test_nr’, respectively. These data sets
can be downloaded from http://nmrcen.xmu.edu.cn/crysf/.

To examine whether the functional features of similar pro-
teins can be used to predict CP, we mapped TTdata-derived se-
quences to Swiss-Prot and TrEMBL data sets via one-by-one
matching of sequences sharing>90% sequence identity. The re-
sultant data sets were named ‘SP0.9’ and ‘TR0.9’, respectively.
Hence, each protein in SP0.9 or TR0.9 is associated with one or
more orthologous proteins in the Swiss-Prot data set or the
TrEMBL data set.

Encoding of protein functional features

We extracted the functional annotations from UniProt, and con-
verted them into numeric functional features as the inputs of
the predictive models. We executed the same encoding algo-
rithm to extract functional features from Swiss-Prot and
TrEMBL databases, both adopting the same data format.
Functional annotations of proteins in UniProt are specified by
several fields, e.g. ‘RN’, ‘FT’, ‘CC’, ‘PE’ and ‘SQ’. We used a num-
ber of different types of functional annotations including
FT (e.g. SIGNAL PROPEP, NP_BIND and DISULFID), CC (e.g.
FUNCTION, SUBUNIT, INTERACTION, SUBCELLULAR LOCATION
and PTM) and PE (i.e. protein existence), as well as annotations
of subcellular locations. A detailed list of the UniProt-derived
functional features is shown in Supplementary Table S1.

For each protein, a given functional annotation was encoded
into a numeric feature according to the following protocol: a
value of ‘1’ was assigned if a protein had a given annotation,
and ‘0’ if the annotation was not present. If a given annotation
was repeated for the same protein, then the corresponding
value of the feature was set to the number of repetitions, e.g.
number of certain types of binding sites or inclusion of multiple
domains (refer to Supplementary Table S1). A total of 91 func-
tional features were encoded for each protein based on the
UniProt-derived annotations. These features were normalized
as follows:

featN
i ¼

1
1þ feati

where feati is the real value of the i-th considered feature, and
featN

i is the normalization value.
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Performance evaluation

Motivated by previous works [2–4], we used the area under the
curve (AUC) scores as the primary measures to evaluate the pre-
dictive performances of these predictors. The AUC value quanti-
fies the area under the receiver operating characteristic curve
(ROC) by plotting the true-positive rate against the false-
positive rate. Additionally, we used several other measures to
quantify the performance when assessing binary predictions
(i.e. crystallizable versus non-crystallizable):

Matthews Correlation Coefficient MCCð Þ

¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p

Accuracy ACCð Þ ¼ TPþ TN
TPþ TNþ FPþ FN

Sensitivity SENSð Þ ¼ TP
TPþ FN

Specificity SPECð Þ ¼ TN
TNþ FP

Precision PREð Þ ¼ TP
TPþ FP

where TP, FP, TN and FN are the numbers of true positives, false
positives, true negatives and false negatives, respectively. TP
and TN denote the numbers of correctly predicted crystallizable
and non-crystallizable proteins, respectively, while FP and FN
represent the numbers of incorrectly predicted crystallizable
and non-crystallizable proteins, respectively.

Forward-feature selection

Because some of the 91 features could be irrelevant to the pre-
diction of CP (i.e. have low predictive power), and some could be
redundant (cross-correlated with each other), we performed
systematic selection of a subset with relevant and non-
redundant features [50]. We performed sequential forward-
feature selection (FFS), which was also previously used in
related studies [51–53]. In FFS, the initial set of the features was
divided into two groups: FFS candidate-feature set and FFS
selected-feature set. At the beginning, the FFS selected-feature
set was empty, and the initial FFS candidate-feature set was the
complete feature set. In each round of FFS, each feature from
the FFS candidate-feature set was added into the FFS selected-
feature set. The latter was used to build a model (i.e. the support
vector regression [SVR]-based model, as explained in section
2.7.1), and evaluate its predictive performance with the AUC
value. We only added significant features into the FFS selected-
feature set capable of improving the AUC value. Such a manner
of selecting a set of features enabled maximizing the AUC value.
We performed the entire selection process exclusively on the
training data sets, and then assessed the predictive perform-
ance using 5-fold cross-validation test on these data sets.

Design of two new predictors

SVR models
We used the LIBSVM package 2.82 [54] to train and construct
SVR models. There are three types of available kernels imple-
mented in LIBSVM, namely sigmoid, radial basis function (RBF)
and polynomial. We used the RBF kernel to perform feature

selection and build the SVR models on the training data sets,
thereafter evaluated the corresponding predictive performances
using 5-fold cross-validation test. We made use of all three
available kernels to build the final models with the selected-fea-
ture subsets. The respective kernel parameters (C and c) were
optimized by a grid search algorithm. The SVR models with the
highest AUC values among the three kernel types were used to
predict the CP.

Design of the CrysComb meta-predictor
Several predictors have been developed for predicting protein
CPs (Table 1). We assessed whether they could be integrated
into a meta-predictor to obtain predictive performances higher
than individual predictors. We used 31 selected outputs from
eight predictors as candidate input features to build the inte-
grated CrysComb model on SP_train_nr and TR_train_nr data
sets. The eight predictors include OB-Score, CRYSTALP2,
SVMCRYS, PPCPred, SCMCRYS, XtalPred-RF, PredPPCrys and
Crysalis.

Three recently developed predictors, PPCPred [4], PredPPCrys
[2] and Crysalis [3], allow predicting propensities for completing
selected steps involved in the protein crystallization process. In
detail, they predict propensities for sequence cloning failure,
protein material production failure, purification failure and
crystallization failure, as well as successful crystal structure de-
termination (CRYs). The design of the CrysComb predictor also
includes the selection of an optimal subset from these inputs
using the abovementioned FFS method. This selection was per-
formed on the training data sets by using 5-fold cross-
validation test.

Design of the Crysf predictor
We extracted and encoded UniProt-derived protein functional
features to establish the Crysf predictor and its variants
including:

1. Crysf, which uses functional features excluding the PE score
to build SVR models using SP_train_nr and TR_train_nr data
sets extracted from Swiss-Prot (SP) and TrEMBL (TR) data
sets, respectively. More specifically, the PE score (1–5) indi-

cates the type of experimental evidence supporting the ex-
istence of a given protein, with ‘1’ representing strong
existence (refer to the footnote in Supplementary Table S1).

2. Crysf_PE, which uses all functional features including the PE
score to build SVR models on SP_train_nr and TR_train_nr
data sets.

3. Crysf_Comb, which uses functional features (excluding the
PE score) integrated with selected outputs from Crysalis
(10 features) [3] to build SVR models on SP_train_nr and
TR_train_nr data sets.

4. Crysf_S, which builds SVR models on the SP0.9 and TR0.9
data sets using the functional features (excluding the PE
score) by averaging the feature values of target-protein
homologs with >90% sequence identity.

We performed feature selection for each version of the Crysf
predictor on the corresponding training data sets using 5-fold
cross-validation test. Then, we used the selected features to
build the SVR models on the training data sets. Finally, we
applied these models to evaluate their predictive performances
on the test data sets, and compared these versions of Crysf with
the currently existing predictors of protein CP.
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Performance comparison for the predictors of protein CP

We evaluated and compared the predictive performances of a
comprehensive set of the currently existing predictors for pro-
tein CP. Eight predictors previously developed are showed in
Table 1. These predictors are available to the end users via ei-
ther a webserver or a standalone program, including OB-Score
[29], CRYSTALP2 [33], SVMCRYS [34], PPCPred [4], SCMCRYS [43],
XtalPred-RF [10], PredPPCrys [2] and Crysalis [3]. We compared
the predictive performances of our newly developed functional
annotation-based predictor Crysf and the CrysComb meta-
predictor with other predictors. Additionally, we also reviewed
the fDETECT tool [25] which provided a large-scale analysis of
all known complete proteomes, even though it is not accessible
for most of the end users.

Results and discussion
Review of the currently existing predictors for protein CP

We sorted chronologically and compared nine currently exist-
ing predictors and our new Crysf predictor in Table 1. We re-
viewed and discussed the architectures of these predictors
including the used input features, used predictive models and
the data sets used to train and test these models.

The nine predictors were developed between 2006 and 2016,
several of which were developed in the past 3 years. The data sets
used to develop these tools were derived from a number of rele-
vant public databases, including TargetDB [20], PepcDB [19] and
TargetTrack [20]. Table 1 indicates that the most popular predict-
ive model is either support vector machine (SVM) or its variant,
SVR. The two most popular predictive models were used by six of
ten considered predictors. One of the important differences be-
tween these predictors is their prediction scopes. While the ma-
jority of these tools predict the protein CP, or more precisely the
propensity for the diffraction-quality crystallization, three tools
(PPCPred, PredPPCrys and Crysalis) also predict the propensity for
successfully completing some of the crucial steps during the crys-
tallization process. We herein discuss the prediction scopes and
architectural details of these tools in a chronological order.

OB-Score [29] uses the Z-score scale to estimate protein CP,
which measures the similarity of the grand average of hydro-
phobicity calculated by the Kyte–Doolittle scale (termed as
GRAVY) [55], and that of isoelectric point (pI) computed from
the sequence using Bioperl [56], to the GRAVY-pI distributions
of previously annotated crystallizable and non-crystallizable
proteins. Structural genomics data have demonstrated that
both pI and GRAVY could be used as markers of protein CP [29,
57], which has motivated their uses in OB-score. The pI value
can work as a marker for protein solubility, purification and
crystallization, while GRAVY is an indicator of transmembrane
proteins that are more difficult to be crystallized.

CRYSTALP2 [33] is an updated version of CRYSTALP [31], which
eliminates the limitation of the earlier version applicable only for
short protein chains (i.e.<200 AAs). It uses a kernel-based predict-
ive model to predict the propensity of a query protein sequence to
produce diffraction-quality crystals. CRYSTALP2 considers a large
number of input features including the composition and colloca-
tion of AAs, pI and hydrophobicity. It uses a small subset of these
features selected empirically to maximize predictive performance.
This predictor was established based on a data set extracted from
the TargetDB [20] and PepcDB [19] databases, which contains 728
crystallizable and 728 non-crystallizable proteins.

SVMCRYS was developed in 2010 [34], which was trained on
the same data set as CRYSTALP2. This predictor uses sequence-

derived information as the input of the SVM model, including
physicochemical properties extracted from the AAindex data-
base [58] and secondary structures predicted with PSIPRED [59].

PPCPred was developed in 2011 [4]. It is the first tool that not
only predicts the CP, but also predicts the propensities for com-
pleting several selected steps involved in the crystallization pro-
cess. These steps include protein production, purification,
crystallization and finally the typically considered production of
diffraction-quality crystals. This tool assesses the likelihood of
a query protein to be crystallized, and also identifies potential
bottlenecks in the crystallization process. PPCPred uses a large
training data set to train the SVM models, which contains 2408
crystallizable and 4760 non-crystallizable proteins extracted
from PepcDB [19]. Besides using the sequence-derived features,
this predictor also uses structural features related to predicted
secondary structures (pSS), intrinsically disordered regions and
relative solvent accessibility. This is the first approach that ex-
ploited the new type of the inputs by integrating sequence-
derived features with structural features.

SCMCRYS uses a scoring card-based predictive model opti-
mized with a genetic algorithm, and input features derived dir-
ectly from the sequence in the form of p-collocated amino acid
pairs [43]. SCMCRYS trained and tested the SCM models on the
same data sets as PPCPred.

XtalPred-RF [10] extends the original XtalPred predictor [45],
which uses a random forest-based predictive model selected
from those constructed by several machine-learning methods.
The random forest model was trained and tested on the data
sets extracted from PSI’s TargetTrack database. Its test data set
covers 2265 crystallizable and 2335 non-crystallizable proteins.
The input features used in this predictor include the predicted
protein surface ruggedness, hydrophobicity, side-chain entropy
of surface residues and amino acid composition of the predicted
protein surface [10]. The new feature, protein surface rugged-
ness, is defined as a ratio of absolute solvent accessibility to the
total accessible area of a protein. This feature denotes the ex-
tent to which the surface of a protein is regarded as more ‘rug-
ged’ or less ‘rugged’ than an average expected for a protein of a
given size.

fDETECT was developed as a part of a large-scale study that
assessed X-ray crystallography-derived structural coverage of
8.7 million non-redundant proteins from �2000 complete prote-
omes across all kingdoms of life [25]. fDETECT extends the
architecture of PPCPred by removing computationally intensive
features based on putative structural information and adding a
large set of runtime-efficient features. fDETECT was designed to
be computationally fast (0.8 ms per sequence) and can be used
to process large sets of proteins.

Inspired by PPCPred, PredPPCrys was developed to predict
the propensities for sequence cloning, protein material produc-
tion, purification, crystallization and ultimately, production of
diffraction-quality crystals [2]. It uses a comprehensive set of
sequence-derived features, some of which were calculated with
the PROFEAT webserver [60]. PredPPCrys considers 2924 features
and the two-layer SVM architecture. It has been demonstrated
that the two-layer design has an improved predictive perform-
ance over a single-layer design [2].

Crysalis is a CP predictor, which can be also used to compu-
tationally assess crystallizability of protein mutants [3]. This
tool has been successfully used to enhance the expression level
and purity of the ATP binding domain of the EspI protein from
Mycobacterium tuberculosis [61]. More precisely, Crysalis can be
used to (1) select crystallizable target proteins, (2) identify poten-
tial single-point mutations that might enhance protein CP and (3)
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annotate target proteins based on their predicted structural prop-
erties. The latter include putative transmembrane segments,
functional domains and conserved residues, putative secondary
structure, putative disordered regions and putative solvent acces-
sibility. Similar to PredPPCrys, this tool is based on a two-layer
SVM model using sequence-derived features as its inputs.

Besides these predictors described above, several other pre-
dictors can be also applied to predict protein CP. However, these
predictors are not currently accompanied by either a standalone
program or a webserver, which makes them less accessible to
the end users. They include SECRECT (2006) [30], CRYSTALP
(2007) [31], ParCrys (2008) [32], MCSG-Zscore (2010) [42],
XANNpred (2011) [46], CRYSpred (2012) [48] and RFCRYS (2012)
[47]. Additionally, the SERp tool (available at http://services.mbi.
ucla.edu/SER/) was developed to assess protein crystallizability
based on the concept of surface-entropy reduction [62, 63].

Evaluation of the performances of selected predictors for
protein CP

We evaluated predictive performances of the nine tools based
on two benchmark data sets. Figure 1 illustrates ROC curves of
the eight currently existing predictors and the new Crysf pre-
dictor on the SP_test_nr and TR_test_nr data sets. The predicted
CP indicates a likelihood of obtaining diffraction-quality crystals
for a query protein. Expectedly, predictors with larger AUC
scores would provide higher performances for predicting pro-
tein CP.

We also evaluated the performances of these predictors for a
binary classification (crystallizable proteins versus non-
crystallizable proteins) based on several popular measures:
Matthew’s correlation coefficient (MCC), accuracy, specificity,
sensitivity and precision. As shown in Tables 2 and 3, the AUC
values of the eight currently existing tools range between 0.597
and 0.736 on SP_test_nr, and between 0.600 and 0.725 on
TR_test_nr. The top-ranking predictors were Crysalis,
PredPPCrys, XtalPred-RF and PPCPred. Similarly, the arguably
most representative single measure of the binary prediction,
MCC, ranges between 0.172 and 0.381 on SP_test_nr, and be-
tween 0.134 and 0.381 on TR_test_nr. The top three predictors
were Crysalis, PredPPCrys and PPCPred, which provided

relatively accurate prediction results with MCC� 0.3. Overall,
these data indicated that the majority of these predictors
offered relatively good predictive performances.

Figure 1. ROC curves of nine predictors of protein CP based on (A) the SP_test_nr data set; (B) the TR_test_nr data set. The AUC values of these predictors are shown.

Note that the Crysf predictor has three versions: Crysf, Crysf_Comb and Crysf_PE.

Table 2. Performance comparison of the available predictors of pro-
tein CP evaluated on the SP_test_nr data set

Method AUC MCC ACC (%) SPEC (%) SENS (%) PRE (%)

OB-Score 0.642 0.214 60.6 59.3 62.7 49.5
CRYSTALP2 0.597 0.172 59.3 56.4 61.3 47.2
SVMCRYS 0.632 0.257 62.7 61.0 65.3 51.6
PPCPred 0.683 0.301 66.1 68.6 62.0 55.7
SCMCRYS 0.662 0.220 61.4 61.9 60.7 50.3
XtalPred-RF 0.695 0.216 64.8 83.1 36.0 57.4
PredPPCrys 0.715 0.381 69.7 55.3 81.3 69.4
Crysalis 0.736 0.371 67.7 62.7 75.3 56.2
Crysf 0.835 0.512 75.4 79.4 71.8 79.9
Crysf_Comb 0.844 0.516 75.6 79.4 72.3 80.1
Crysf_PE 0.876 0.650 82.0 89.2 75.7 88.9

Values in bold highlight the best predictive performance for the corresponding

measure. MCC: Matthew’s correlation coefficient; ACC: accuracy; PRE: precision;

SEN: sensitivity. SPE: specificity.

Table 3. Performance comparison of the available predictors of pro-
tein CP evaluated on the TR_test_nr data set

Method AUC MCC ACC (%) SPEC (%) SENS (%) PRE (%)

OB-Score 0.618 0.223 59.5 52.4 70.2 49.1
CRYSTALP2 0.622 0.179 58.4 55.5 62.9 48.0
SVMCRYS 0.600 0.201 57.3 47.2 72.9 47.4
PPCPred 0.674 0.267 63.5 63.1 64.2 53.1
SCMCRYS 0.619 0.180 58.8 57.5 60.9 48.3
XtalPred-RF 0.672 0.134 62.4 94.3 13.4 60.6
PredPPCrys 0.717 0.312 66.0 65.7 66.3 55.1
Crysalis 0.725 0.320 66.2 65.4 67.3 55.9
Crysf 0.731 0.318 67.9 72.7 59.5 55.6
Crysf_Comb 0.840 0.490 75.5 76.2 74.1 64.2
Crysf_PE 0.780 0.478 76.4 95.4 43.5 84.3

Values in bold highlight the best predictive performance for the corresponding

measure. MCC: Matthew’s correlation coefficient; ACC: accuracy; PRE: precision;

SEN: sensitivity. SPE: specificity.
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Given that these predictors are organized chronologically in
Tables 2 and 3, we observed a strong trend that the newer tools
provide improved predictive performances compared with the
older tools. The corresponding Pearson correlation coefficients be-
tween the year of publication and the AUC values obtained on
TR_test_nr and SP_test_nr are 0.75 and 0.81, respectively. Note
that, these tools were evaluated and compared on both
TR_train_nr and SP_train_nr, and the corresponding results are
shown in Supplementary Tables S2 and S3. The primary differ-
ence between these data sets is the quality of functional annota-
tions, which is relevant to the assessment of the Crysf predictor as
it uses these annotations as the inputs of the SVR model.

Ease of use and functionality of these predictors

The functionality and ease of use of the nine predictors were
discussed and compared, focusing on their utilities as bioinfor-
matics tools that can be readily used by non-bioinformaticians.
More specifically, we considered the following aspects: (1) avail-
ability and usefulness of the webserver; (2) availability and use-
fulness of the standalone software; (3) ability of the tool to
support batch predictions consisting of multiple query se-
quences; (4) runtime; and (5) the format of the prediction out-
put. The tools and their major relevant characteristics are
summarized in Table 1.

Most of the nine predictors are available as webservers. They
require only an Internet connection and a web browser. The
computations are performed on the server side. The end user
simply needs to go to the corresponding URL (Table 1), copy and
paste the FASTA-formatted sequence(s) and click the ‘start’ but-
ton. After the job is processed, the prediction output will be re-
turned either to the web page or to the user-provided email
address. This means that these tools are accessible even for less
computer savvy users. A few tools, including OB-Score,
SVMCRYS and SCMCRYS are provided in a form of source code.
These tools allow users to execute batch computations on Linux
operating systems. However, non-bioinformaticians might find
it difficult to install and run these predictors on their local com-
puters. For example, SVMCRYS requires users to install the SVM
software on the top of the source code. It also only accepts the
input protein sequence in a specific format.

Similarly to the tools offered as standalone software, most of
the webservers provide the ability to perform predictions on mul-
tiple query protein sequences at the same time. This makes it
convenient to compare the predicted CPs for a set of protein se-
quences. Both CRYSTALP2 and PPCPred can support batch predic-
tion for a maximum of 100 and 5 query protein sequences per run
in FASTA format, respectively. The XtalPred-RF’s webserver
allows submission of up to 10 protein sequences, while Crysalis
and Crysf enable large-scale proteome-wide prediction analysis
by allowing users to run a batch of up to 10 000 protein sequences.
The PredPPCrys’s webserver does not support batch prediction.

The runtime required for processing a query sequence is an-
other major factor, particularly when these predictors are used
for selecting targets from a large number of protein candidates.
As described above, features used as the inputs by these tools
can be grouped into three major categories: sequence-based
features, structural features and functional features (Table 1).
The structural features are composed of the pSS, disordered re-
gions and relative solvent accessibility. Calculation of these
structural features requires a longer runtime (in minutes) as
compared with that of the other categories of features (in
seconds). The prediction on a typical query sequence takes
1–3 min for PPCPred, XtalPred-RF and PredPPCrys, and takes

<1 s for the other predictors. Both Crysf and fDETECT are among
the fastest predictors with a runtime of milliseconds for com-
pleting a prediction on a single query sequence.

Overall, three important factors including the availability of
webservers, ability to process batch predictions of multiple pro-
tein sequences and the low runtime, make these predictors
friendly for non-bioinformaticians. Consequently, these tools
enjoy a relatively heavy workload. For example, as a webserver
released in 2011, PPCPred has been used by >4600 unique users
from 73 countries (source: Google Analytics as of Sept 2016).

We also compared the prediction outputs of these predictors.
OB-Score [29] requires a user to run the prediction in the
command-line, and returns its prediction output in a tab-
delimited format. The output includes the protein ID, OB-Score,
GRAVY, pI, mol_wt (molecular weight) and sequence length. The
value of OB-Score ranges from �5.3 to 9.1. CRYSTALP2 [31] classi-
fies a query protein as either crystallizable or not-crystallizable,
and assigns a confidence score ranging from 0 to 1, e.g. ‘Protein
T0404 is non-crystallizable with 0.403 confidence’.

SVMCRYS is available as a standalone software [43], which re-
quires the users to provide the training data set for constructing
the predictive model. This predictor produces a binary output, i.e.
‘resistant-to-crystallization’ or ‘amenable-to-crystallization’ with-
out a numeric propensity score.

Once a user runs a prediction, SCMCRYS produces three out-
put files: ‘testfile.results’, ‘testfile_ori.csv’ and ‘testfile_result.csv’.
The ‘testfile.results’ file stores the predicted propensity score
varying between around 300 to 600. The ‘testfile_ori.csv’ and
‘testfile_result.csv’ files store the original score from the predict-
ive model and summarize predictive performances on user-input
training and test data sets, respectively.

PPCPred [4] maps a query protein into one of several catego-
ries: ‘fail to produce protein material’, ‘fail to purify’, ‘fail to
crystallize’ and ‘yield diffraction-quality crystals’, along with
the predicted CP ranging from 0 to 1. The output results also in-
clude predicted propensities for several selected steps involved
in the crystallization process, including production of protein
material fails, purification fails, crystallization fails and yielding
diffraction-quality crystals. These scores are used to anticipate
which steps of the crystallization process are more likely to fail
for the proteins that cannot be crystallized. The prediction re-
sults from PPCPred can be downloaded as a CSV file.

XtalPred-RF [10] identifies a query protein as one of several
categories that describe the likelihood of protein crystallization.
Its output encompasses protein sequence length, gravy index,
instability index, pI, coiled coils, percentage of coil structure,
transmembrane helices, signal peptide and insertion score.
These predicted physicochemical and structural characteristics
are of benefit to follow-up experimental design and target selec-
tion. In addition, XtalPred-RF performs the BLAST [44] search for
homologs of the query protein in both NCBI NR database (a non-
redundant database of NCBI clustered at 60% sequence-identity
level) [64] and PDB [1].

PredPPCrys [2] offers the propensity scores for five major
steps in the crystallization process. Similarly to PPCPred,
PredPPCrys identifies a query protein as either crystallizable
protein or non-crystallizable protein, and then predicts the pro-
pensities for cloning, production, purification, crystallization
and structure determination.

The Crysalis webserver offers two modes for the services,
including ‘Prediction mode’ and ‘Design mode’ [3]. The end users
can submit jobs under the ‘Prediction mode’ to predict protein
CPs. The ‘Design mode’ is used for computational design and
analysis of non-crystallizable proteins predicted with low CPs.

8 | Wang et al.

Deleted Text: to 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbx018/-/DC1
Deleted Text: 3.3 
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: crystallization propensitie
Deleted Text: ,
Deleted Text: ,
Deleted Text: ri
Deleted Text: predicted secondary structures (
Deleted Text: )
Deleted Text:  (pDISO),
Deleted Text: surface 
Deleted Text:  (pRSA)
Deleted Text: -
Deleted Text: utes
Deleted Text: econd
Deleted Text: over 
Deleted Text: ,
Deleted Text: 30
Deleted Text: ,
Deleted Text: -
Deleted Text: 32
Deleted Text: 44
Deleted Text: ,
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: crystallization propensity
Deleted Text: s
Deleted Text: ,
Deleted Text: ,
Deleted Text: 45
Deleted Text: ue
Deleted Text: 65
Deleted Text: crystallization propensitie
Deleted Text: utilized 
Deleted Text: crystallization propensitie


Crysalis produces three types of outputs: ‘prediction results’
(equivalent to ‘Prediction mode’), ‘computational design’ and
‘protein structural and functional annotation’. The computa-
tional design results suggest some residues to undergo single
mutation analysis, and illustrate them on a hotspot map, and
also provide a list of top 20 ranked single mutations potentially
capable of enhancing the likelihood of successful crystallization.
This webserver also provides predicted structural characteristics,
including secondary structures, intrinsically disordered regions,
solvent accessibility and functional domains as well as conserved
sites. These results can be downloaded from the Crysalis web-
server for the further analysis.

Crysf exploits the UniProt-derived functional annotations to
predict the protein CP. While this tool could offer more accurate
prediction results, as shown in Tables 2 and 3, it can only be used
to assess CPs for the proteins available in UniProt. Thus, Crysf
would be more suitable to guide structural biologists to select
feasible proteins from UniProt, but less appropriate for guiding
the rational design of truncated constructs. Users can submit ei-
ther UniProt IDs or FASTA-formatted sequences to the Crysf web-
server for the prediction. This webserver has pre-calculated CPs
for the proteins available in UniProt, which is updated periodic-
ally to reflect new contents of the UniProt resource. Note that the
predictive performance of the Crysf predictor is dependent on
the quality and reliability of the functional annotations derived
from the database. As expected, Crysf could provide prediction
results more accurate for the Swiss-Prot entries but relatively less
accurate for the TrEMBL entries.

The improved performance of the CrysComb
meta-predictor

We first calculated the AUC values of the SVR models built with
each of 31 outputs from the eight predictors, and found that all
these outputs were contributory for the prediction of protein CP
on both the SP_train_nr and TR_train_nr data sets (Figure 2A
and B). We also found that the CrysallisII_CRYs model achieved
the highest AUC value in the 31 SVR models (Figure 2A and B)
on either SP_train_nr or TR_train_nr (Figure 2A and B).

Thus, we used the 31 outputs as candidate input features to
optimize the CrysComb models. On SP_train_nr, we selected
16 features as the inputs to train the CrysComb model, obtaining
a AUC value (0.817). The 16 features were derived from four pre-
dictors including Crysalis, PredPPCrys, SVMCRYS and PPCPred
(Figure 2C). Note that the AUC value of the CrysComb model was
higher than those of the 16 SVR models built with each of the 16
features as an individual input (Figure 2C), including that of the
best-performing individual model CrysallisII_CRYs (AUC: 0.794;
Figure 2A; Supplementary Table S4).

Similarly, we selected 22 features as the inputs to train the
CrysComb models on TR_train_nr, obtaining a high AUC value
(0.744). The 22 features were derived from six predictors including
Crysalis, PredPPCrys, XtalPred_RF, PPCPred, SCMCRYS and OB-
Score predictors (Figure 2D). The CrysComb model achieved a sig-
nificantly increased AUC value compared with the 22 SVR models
built with individual features (Figure 2D). Note that the best-
performing individual model CrysallisII_CRYs only obtained an
AUC value of 0.665 (Figure 2B; Supplementary Table S4).

Figure 2. Relative importance and contributions of 31 individual features (i.e. the outputs from eight predictors) selected for building the integrated CrysComb model

on SP_train_nr and TR_train_nr data sets. (A and B) AUC values of the SVR models built with each of the individual features on (A) SP_train_nr and (B) TR_train_nr.

(C and D) Cumulative AUC values of the SVR models selected during the feature selection process based on (C) SP_train_nr and (D) TR_train_nr.
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The Crysf predictor

Four versions of the Crysf predictor
The Crysf predictor has four versions: Crysf, uses functional an-
notations excluding PE scores; Crysf_PE, uses all functional an-
notations; Crysf_Comb, uses functional annotations excluding
PE scores, which are integrated with the outputs from Crysalis;
Crysf_S, uses the functional features of target proteins derived
from their homologs. For each version of the Crysf predictor,
the feature subsets were constructed by performing feature se-
lection experiments on SP_train_nr and TR_train_nr using 5-
fold cross-validation test. The curves of AUC against the num-
ber of FFS-selected features (FFS order) are showed in
Supplementary Figure S1. The highest AUC values associated
with the feature subsets used in Crysf_Comb (Supplementary
Figure S1B and D) were larger than those used in Crysf
(Supplementary Figure S1A and C), i.e. 0.852 versus 0.838 based
on SP_train_nr, 0.817 versus 0.735 based on TR_train_nr.

Performance comparison among Crysf and other predictors
Crysf, Crysf_PE and Crysf_Comb were assessed and compared
with other current predictors (Tables 2 and 3). Crysf outper-
formed other currently existing predictors on SP_test_nr, while
it showed the similar performance as Crysalis and PredPPCrys
on TR_test_nr. This was owing to this reason that SP_test_nr
was constructed based on higher quality functional annotations
from Swiss-Prot, while TR_test_nr based on lower quality func-
tional annotations from TrEMBL.

By exploiting the PE score as an extra functional feature,
Crysf_PE could obtain improved predictive performances on
both SP_test_nr and TR_test_nr. However, as a portion of PE¼ 1
entries is associated with available crystal structures for given
proteins, Crysf_PE is potentially related to the bias of using a pri-
ori information regarding crystallizability as input features.
Thus, Crysf_PE might be not suitable to the prediction of CPs for
those proteins.

By integrating the functional features (without the PE score)
with the outputs from Crysalis, Crysf_Comb achieved better pre-
dictive performances on two test data sets SP_test_nr and
TR_test_nr (Tables 2 and 3). Notably, the AUC values of
Crysf_Comb were 0.844 on SP_test_nr and 0.840 on TR_test_nr,
while those of Crysalis were 0.736 on SP_test_nr and 0.725 on
TR_test_nr, respectively. The MCC values were increased from
0.371 (Crysalis) to 0.516 (Crysf_Comb) on SP_test_nr, and
enhanced from 0.320 (Crysalis) to 0.490 (Crysf_Comb) on
TR_test_nr. These results demonstrated that Crysf_Comb had
improved predictive performances compared with Crysalis.
Furthermore, Crysf_Comb also displayed AUC values higher
than Crysf, i.e. 0.844 versus 0.835 on SP_test_nr, and 0.840 versus
0.731 on TR_test_nr. Similarly, Crysf_Comb showed enhanced
MCC values compared with Crysf on both SP_test_nr (0.516 ver-
sus 0.512) and TR_test_nr (0.490 versus 0.318). Similar results
were also obtained on two training data sets SP_train_nr and
TR_train_nr (Supplementary Tables S2 and S3).

Predictive performances of Crysf_S were assessed on both
the SP0.9 and TR0.9 data sets, which used the functional fea-
tures to describe target-protein homologs with> 90% sequence
identities. Compared with Crysalis, Crysf_S achieved higher
AUC values, in detail, 0.755 versus 0.673 on SP0.9, 0.742 versus
0.672 on TR0.9 (Supplementary Table S6).

These results demonstrated that: (1) UniProt-derived func-
tional features could be used to accurately predict protein CP;
(2) higher predictive performance could be achieved by using
higher quality functional features extracted from the Swiss-Prot

database; (3) an integrated predictor using both sequence-based
features and functional features could obtain improved predict-
ive performance compared with the predictors using solely ei-
ther sequence-based features or functional features; (4) Crysf
and its variant Crysf_Comb provide higher predictive perform-
ances than other predictors. Note that different versions of
Crysf are limited to the proteins with available functional anno-
tations in either Swiss-Prot or TrEMBL.

Quantitative analysis of functional features and obstacles related to
protein crystallization
The UniProt-derived functional features used in Crysf are cate-
gorized into six major types: protein polymerization, UniProt
feature (FT), posttranslational modification (PTM), database re-
sources (DR), protein subcellular location and others including
reference number and PE. Supplementary Table S7 shows a list
of functional features selected for Crysf from SP_train_nr and
TR_train_nr data sets.

DR is the largest type of the selected functional features
(18 selected features as shown in Supplementary Table S8).
DR is used to describe the presence of a given protein in
protein-annotation DR, such as EMBL, Gene3D, KEGG and
ProteinModelPortal. FT is the second largest type of functional
features (11 selected features). Protein polymerization is con-
sidered as a major obstacle in the crystallization process, and
might result in protein aggregation or lead to various forms of
microheterogeneity [65, 66]. This explains why Crysf includes
the functional features describing the polymerization of a given
protein. Furthermore, protein subcellular localization is also an
important factor for crystallization. Nine and six protein subcel-
lular localization-related features are included in Crysf based on
SP_train_nr and TR_train_nr, respectively. In addition, protein
crystallization trials have indicated that PTMs could influence
the success rate of crystallization [23, 66–69]. Thus, Crysf also
includes PTM-related features, which quantify whether a given
query protein undergoes PTM such as glycosylation and
acylation.

We calculated statistical significances of differences in all
functional feature values between crystallizable and non-
crystallizable proteins on SP_train_nr and TR_train_nr
(Supplementary Table S9). These results indicate whether and
which functional features were useful to discriminate between
crystallizable and non-crystallizable proteins. We also rank pre-
dictive performances (AUC values) and statistical significances
(P-values) of individual functional features (Figure 3). The se-
lected functional features are labeled with red asterisks.
Furthermore, we analyzed five selected functional features with
the lowest P-values (Supplementary Figure S2), including
FT_TRANSMEM, DR_SMR, various polymerization state, homo/
hetero-polymerization state and dimer.

The first discriminative feature (Supplementary Table S9),
FT_TRANSMEM, describes the number of membrane-spanning
regions. As expected, Supplementary Figure S2A demonstrates
that the more membrane-spanning regions a full-length pro-
tein has, the more difficult it is to crystallize this protein. The
second discriminative feature, DR_SMR, denotes the number
of annotation records in the SWISS-MODEL repository, which
quantifies the number of 3D structural models generated by
automated homology modeling for a given protein [70].
Supplementary Figure S2B illustrates that proteins with more
homology-based models tend to be easier to be crystallized
compared with those without or with fewer homology-based
models. This observation is in good agreement with the previ-
ous results [26].
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The last three discriminative features depict protein poly-
merization, including various polymerization state (single state,
multiple states, no-statement), homo/hetero-polymerization
state (homo-polymer, hetero-polymer, no-statement) and
dimer (yes, no). Our analysis shows that proteins with various
polymerization states and hetero-polymeric proteins are more
difficult to be crystallized (Supplementary Figure S2C and D). In
addition, we also demonstrate that homo-polymeric proteins
and dimeric proteins tend to be more crystallizable
(Supplementary Figure S2D and E).

Large-scale prediction of CP for proteins from UniProt and PDB
We applied Crysf_Comb, the most accurate variant of the Crysf
predictor, to conduct a large-scale prediction of CP for >50 mil-
lion proteins derived from UniProt, including Swiss-Prot and
TrEMBL. The prediction results can be downloaded from http://
nmrcen.xmu.edu.cn/crysf/data/reviewed.results (549 008 pro-
teins derived from Swiss-Prot, 44.9 MB) and http://nmrcen.xmu.
edu.cn/crysf/data/tremb.results (50 011 027 proteins derived
from TrEMBL, 4.0 GB). We calculated the distribution of protein
CP scores ranging from �1 to 1 (Figure 4) with a threshold at
zero. The CP scores for Swiss-Prot-derived proteins are skewed
to higher values (skewness¼ 0.458) compared with those for
TrEMB-derived proteins. This might result from the evidence
that TrEMBL contains more proteins with incomplete functional

annotations than Swiss-Prot [11]. However, Swiss-Prot-derived
proteins show an almost similar fraction of crystallizable pro-
teins as TrEMB-derived proteins (27% versus 29%).

In a recent study, the fDETECT tool predicted that about 25%
of modeling families of proteins were crystallizable, which were
derived from �2000 fully sequenced genomes in UniProt
(8 652 940 non-redundant proteins) [25]. The protein families
mean the clusters of proteins sharing high sequence similarity,
for which structural models can be obtained through homology
modeling. This proportion of crystallizable proteins predicted
by fDETECT is similar to that predicted by Crysf_Comb.

It should be noted that a portion of proteins with available
crystal structures in PDB were predicted as ‘non-crystallizable’
proteins. We analyzed the CP scores of 12 162 non-redundant
proteins shared by Swiss-Prot and PDB databases. We further
classified these proteins in PDB into five groups according to
their structural resolutions: A,<1.5 Å; B, 1.5–2.0 Å; C, 2.0–2.5 Å;
D, 2.5–3.0 Å; E,>3.0 Å. As shown in Supplementary Figure S3,
these classified proteins in PDB have high likelihoods of being
successfully crystallized and structurally solved compared with
those unclassified proteins in Swiss-Prot. The median CP scores
of the A, B, C, D and E groups are 0.284, 0.182, 0.121, 0.082 and
�0.087, respectively. In contrast, the median CP score of all pro-
teins in Swiss-Prot is �0.204, which is distinctly lower than
those of the five groups. The average CP scores are 0.265, 0.206,

Figure 3. Statistical significances and predictive performances of individual features computed from UniProt-derived functional annotations based on SP_train_nr and

TR_train_nr. (A and B) Features are ranked according to their AUC values obtained using 5-fold cross-validation test. The features with AUC>0.51 are shown. (C and D)

Features are ranked according to their P-values calculated by the Wilcoxon rank-sum test. The features with P-value<0.01 are shown. Features selected for building

the Crysf model are labeled with red asterisks. A detailed description of these functional features can be found in Supplementary Table S1.
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0.167, 0.126 and �0.048 for the A, B, C, D and E groups, respect-
ively (Figure 5). However, the average CP score is �0.205 for all
proteins in Swiss-Prot. Our large-scale analysis suggests a po-
tential relation between the resolution of a PDB entry and its
putative CP score. Using the CP score of �0.205 as a threshold,
we calculated the proportions of the five groups of proteins pre-
dicted as crystallizable proteins: A, 88.3%; B, 83.4%; C, 81.2%; D,
78.2%; E, 63.5%. However, only 46.8% of the proteins in Swiss-
Prot were predicted as crystallizable proteins.

On the other hand, other predictors also generated false
negatives for the proteins in PDB. Even if these proteins have
been structurally solved, these predictors still predicted them as
‘non-crystallizable’ proteins. There are several potential reasons
for the false negatives. First, while a given protein is wrongly
predicted as ‘non-crystallizable’ protein, it might have still a
relatively high CP score. Note that the binary prediction results
are dependent on a threshold of the CP score (e.g. a zero thresh-
old is used in Crysf_Comb). Proteins with CP scores> the thresh-
old will be predicted as crystallizable proteins. Expectedly,
lowering the threshold will increase the number of putative
crystallizable proteins, and correspondingly decrease the false

negatives. Second, the predictors such as Crysf were developed
mostly based on high-throughput protein crystallization data
from Structural Genomics Centers. However, a portion of crystal
structures deposited in PDB was determined traditionally by
structural biologists using specialized equipment, unique proto-
cols and laborious trial-and-error efforts. Potentially, these
structures could not be determined by using high-throughput
crystallization-to-structure pipelines. Thus, the prediction of CP
primarily based on the high-throughput protein crystallization
data would potentially result in false negatives. In addition, the
quality and scope of the training data set would limit predictive
performances of Crysf and other predictors.

The Crysf webserver
We provide an online webserver (http://nmrcen.xmu.edu.cn/
crysf/) for applying the Crysf predictor to predict CPs based on
user-submitted protein sequences of interest. The query protein
sequences are specified in either the UniProt-ID or the UniProt-
FASTA format. The Crysf webserver provides examples of prop-
erly formatted inputs. To facilitate target selection for a large
set of candidate proteins, this webserver also supports batch
prediction on multiple protein sequences (up to 10 000) in a sin-
gle request. It allows two types of functional annotations as the
inputs for the predictive model: reviewed annotations derived
from Swiss-Prot; unreviewed annotations derived from TrEMBL.
Different runtime is required for the prediction on one query
protein sequence using different types of functional annota-
tions, i.e. 5 s and 2 min for annotations derived from Swiss-Prot
and TrEMBL, respectively. Furthermore, this webserver also
allows submission of mixed target queries using functional an-
notations derived from both Swiss-Prot and TrEMBL. The run-
time is about 2 min per query. In this case, the Crysf webserver
will select a suitable predictive model to conduct the prediction
based on the entries in UniProt associated with the query pro-
tein sequences.

Limitations and future directions

To date, nearly 20 sequence-based bioinformatics tools have
been developed for predicting protein CP. Eight currently exiting
predictors are accessible to the users via either the standalone
software or the webservers. While some of these predictors
offer relatively accurate prediction results with ease of use, they
also have certain drawbacks. These predictors basically take

Figure 5. Distributions of CP scores calculated by Crysf_Comb for the proteins

shared by Swiss-Prot and PDB databases. The proteins in PDB were classified

into five groups according to their structural resolutions.

Figure 4. Distributions of CP scores calculated by Crysf_Comb for proteins in (A) Swiss-Prot and (B) TrEMBL. The red squares and simulated lines indicate the fraction of

the proteins with given putative CPs to all proteins in Swiss-Prot and TrEMBL.
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protein sequences as the inputs, without consideration of some
other factors which would potentially influence protein CP. We
herein list these factors as follows: the used experimental
protocols; lack of resources that could lead to abandoning cer-
tain proteins; human elements such as potentially lacking con-
sistency and oversight; dynamic nature of annotations related
to CP; quality of data from public repositories including
TargetTrack and PDB, which are used to build and validate pre-
dictive models. These factors are difficult to be appropriately
considered in predictive models, which might bring down the
upper limit of the predictive performance. Some of these factors
are even virtually impossible to be considered. For instance,
more resources are available for certain proteins of biological
significance or practical importance, thus increasing their chan-
ces to be structurally solved, while other more routine proteins
might be scraped with lesser amount of efforts.

In particular, it is necessary to consider the differences
among experimental protocols used by different structural biol-
ogy laboratories. These differences are associated with the de-
velopment of laboratory-specific protein production protocols
and crystallization screens, including use of specific vectors, ex-
pression systems and inclusion of metal ions, detergents and
molecular chaperones [16]. Ability to consider these factors will
ultimately depend on the availability of well-annotated data.
While these data are available in TargetTrack, they are currently
relatively sparse (incomplete). Nevertheless, it could be ex-
pected that we would obtain more high-quality data with suffi-
cient quantities for building predictive models. We thus
anticipate the release of a next generation of CP predictors,
which would incorporate these intrinsic factors with the pre-
dictive models to provide more accurate predictions and to an-
swer ‘what-if’ queries. These queries would simulate different
scenarios for the same protein sequence with the assumption
of using different experimental protocols. It could be expected
that the next generation of CP predictors will predict which of
these setups are the most suitable to maximize CPs.

Another relevant factor is the quality of the data set. First,
some of inaccurate and unreliable data from the source data-
bases were used to build and validate predictive models [71, 72].
Moreover, as the technology progresses over time, some pro-
teins previously considered as non-crystallizable proteins,
would be identified as crystallizable proteins. Functional fea-
tures of these proteins would be updated in predictive models.
A recent research has demonstrated that, to some extent the
predictive performances of protein CP predictors degrade over
time [4]. Thus, we strongly suggest that the developers of these
bioinformatics tools periodically re-optimize the predictive
models using up-to-date data sets.

On the other hand, we could develop new and improved pre-
dictors through exploiting new types of the inputs for predictive
models. Note that the currently exiting tools rely primarily on
both the features derived directly from the protein sequence
and certain structural features predicted from the sequence.
Here we present a new predictor Crysf, which explores func-
tional features extracted from the UniProt resource as a new
type of inputs. We have demonstrated that the Crysf_Comb pre-
dictor, which integrates functional features used in Crysf with
the prediction outputs from Crysalis, could provide higher pre-
dictive performance than Crysf and Crysalis individually. To
further improve the prediction performance, we would exploit
new types of information related to the functional, structural or
taxonomic features deduced from query protein sequences.
Given that protein CP varies to a large extent in the context of
taxonomic classification [25], we thus suggest that the

taxonomic features could be integrated into the inputs exten-
sively used in the currently exiting predictors, which would sig-
nificantly enhance predictive performances. Furthermore, the
predictors of protein CP could be extended to perform design of
constructs that are more viable for structural determination.
Several attempts to computationally score mutations have been
made to potentially enhance the protein CP [3, 63].

Conclusions

We contribute a comprehensive review and assessment of bio-
informatics tools for predicting protein CP. This comparative re-
view provides useful guidance for both bioinformaticians and non-
technical end users of these tools. We discuss new research direc-
tions that would spur development of more accurate predictors.
These include importance of inclusion of details concerning ex-
perimental protocols into the predictive models and use of high-
quality and recent data to train and validate predictive models.

We also furnish useful hints to assist structural biologists in
selecting appropriate predictors suitable for their research
needs. We discuss the availability of nine predictors, and detail
their inputs, outputs and architectures. Our results indicate that
different predictors have different strengthens and weakness,
in particular by trading off predictive performance for runtime.
We find that Crysf, Crysalis, CRYSTALP2, fDETECT, OB-Score
and SVMCRYS are the most suitable tools for rapid (runtime-ef-
ficient) target selection for large candidate proteins, with
fDETECT being the fastest tool. On the other hand, PPCPred,
XtalPred-RF and PredPPCrys are slower owing to the use of puta-
tive structural features. Notably, four predictors including
Crysalis, PPCPred, PredPPCrys and XtalPred-RF provide more ac-
curate prediction results. Moreover, several recently published
predictors of CP, in particular PPCPred, PredPPCrys and Crysalis,
can also predict the propensities to complete a set of selected
steps involved in the crystallization process. These steps in-
clude cloning, material production and purification. In addition,
we demonstrate that the CrysComb meta-predictor, which inte-
grates the selected outputs from eight predictors as candidate
input features to build the predictive model, provides signifi-
cantly higher predictive performance than the individual pre-
dictors. We also contribute a new predictor of CP, Crysf, which
uses a novel type of inputs that rely on functional annotations
of proteins extracted from UniProt. We show that Crysf offers
better predictive performance with high runtime-efficiency.
However, this predictor can be used only for the proteins with
functional annotations available in UniProt, in contrast to other
predictors that use just a readily available protein sequence as
input. A freely available webserver that implements the Crysf
predictor is available at http://nmrcen.xmu.edu.cn/crysf/, and
the webpage provides details about this webserver.

Key Points

• This article provides a useful guide to facilitate selec-
tion of protein crystallization prediction tools.

• We review the availability, ability for batch predic-
tions, details of the predictive models, runtime and
applications of nine bioinformatics tools for predicting
protein crystallization propensity.

• We herein introduce Crysf, a new tool using functional
annotation-derived inputs. Integration of Crysf with
the currently existing tool Crysalis provides better
predictive performances.
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• Comparison of predictive performances of the crystal-
lization propensity predictors reveals that Crysf,
Crysalis, CRYSTALP2 and OB-Score are best suited for
fast proteome-wide target selection, whereas PPCPred,
XtalPred-RF and PredPPCrys are suitable for refining
the target selection and prioritization after the first
round of target selection.

• Independent tests on two up-to-date test data sets in-
dicate that the predictive performances can be further
improved by integrating the outputs from multiple
predictors as the inputs for the predictive model.

Supplementary Data

Supplementary data are available online at http://bib.oxfordjour
nals.org/.
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