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Abstract 
Efforts to elucidate protein-DNA interactions at the molecular level rely in part on accurate predictions of 
DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the 
DNA-binding residues, they are DNA type agnostic and significantly cross-predict residues that interact with 
other ligands as DNA-binding. We leverage a custom-designed machine learning architecture to introduce 
DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single stranded DNA. 
DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and imple-
ments a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. 
Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods 
that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use 
of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show 
that DNAgenie’s outputs that are converted to coarse-grained protein-level predictions compare favorably 
against recent tools that predict which DNA-binding proteins interact with double stranded vs. single stranded 
DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results pro-
duced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promis-
ing leads for several hundred previously unknown putative DNA binders. These results suggest that 
DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie’s 
webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/. 
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1 Introduction  
Protein-DNA interactions drive regulation of gene expression and DNA processing and repair [1, 2]. These 
interactions involve single-stranded DNA (ssDNA), double-stranded DNAs (dsDNA) [3], and a number of 
noncanonical DNA structures that include G-quadruplex [4-6], cruciform [7], i-motif [8], triplex [9], and hair-
pins [10], to name a few. The ssDNA-binding proteins are involved in DNA replication, recombination, and 
repair while the dsDNA-binding proteins play key roles in numerous cellular processes that include DNA 
cleaving, chromosome packing and transcription [11, 12]. The dsDNA assumes several functionally different 
conformations with the B-DNA being the most abundant form and A-DNA and Z-DNA being the other com-
mon dsDNA subtypes [13, 14]. A-DNA and B-DNA are right-handed double helices that differ in the spatial 
arrangement of the base pairs while Z-DNA is a left-handed duplex. Structural details of protein-DNA com-
plexes are used to gain invaluable mechanistic insights into the corresponding protein functions [15-17], to 
characterize different modes of protein-DNA interactions [18] and to address a variety of other basic science 
and applied studies. The source data for these studies is generated by experimental techniques, such as X-ray 
crystallography and NMR. However, application of these techniques is relatively expensive and time-consum-
ing. For instance, the structural genomics consortia reported solving about 13,500 structures over 15 years at 
the cost of 2 billion dollars, which converts to an average per-protein cost of $148,000 [19]. Consequently, 
cost- and time-efficient computational methods have been used to support and advance studies of protein-
DNA interactions. 
 
The computational methods that characterize these interactions on the protein side are categorized into two 
groups: structure-based vs. sequence-based [20]. The former category identifies whether and how a given pro-
tein interacts with DNA by comparing the structure of a query protein to the structures of similar proteins that 
are in complex with DNA [21]. However, such structural information is available for a relatively small subset 
of DNA-binding proteins. A quick search of Protein Data Bank (PDB) reveals about 5,600 protein-DNA com-
plexes [22]. While homology modeling can be used to improve coverage by modeling proteins with unknown 
structure, this approach is computationally expensive, was estimated to cover only about 25% of proteins 
overall and 19% of eukaryotic proteins [23], and the resulting structural models may lack in quality for accu-
rate prediction of interactions [24, 25]. 
 
The sequence-based predictors use protein sequence to provide either a coarse-grained level prediction of 
DNA-binding proteins (i.e., they identify DNA-binding proteins without details about the underlying interac-
tions) or to predict DNA-binding residues (i.e., they identify the DNA-binding amino acids in the protein se-
quence) [20]. While they produce results at a lower resolution (protein-level and residue-level) compared to 
the atomic-level results generated by the structure-based methods, they can be applied to analyze any of the 
millions of proteins with the known sequences. The protein-level sequence-based predictors, which include 
DNA-Prot [26], DNAbinder [27], and StackDPPred [28], were summarized in a recent survey [20]. Here, we 
focus on the sequence-based methods that predict DNA-binding residues. They provide more details compared 
to the predictors of DNA-binding proteins while their results can be still used to identify DNA-binding pro-
teins. Recent reviews [20, 29] and literature search reveal over a dozen residue-level sequence-based methods 
that include (chronologically) DBS-pred [30], DBS-PSSM [31], BindN [32], DNABindR [33], DP-Bind [34], 
DISIS [35], BindN-RF[36], DBindR [37], ProteDNA [38], NAPS [39], BindN+ [40], DNABR [41], Tar-
getDNA [42], DRNApred [43], hybridNAP [20], and DNApred [44]. Predictions generated by these tools pro-
vide useful clues that support functional characterization of proteins. As an example, DRNApred [43] was re-
cently used to characterize proteomes of coronaviruses [45] and japanese encephalitis virus [46], to function-
ally characterize BEX3 [47] and σETF [48] proteins, and to investigate interactome of ANKRD55 [49]. Alt-
hough the residue-level methods generally produce accurate results [29], recent works reveal that they suffer a 
significant drawback. Namely, they incorrectly cross-predict residues that interact with other ligands (RNAs, 
proteins and small molecules) as DNA-binding [29, 50, 51]. For instance, depending on a method used, be-
tween 23% and 60% of the native RNA-binding residues were shown to be cross-predicted as DNA-binding 
[29]. In other words, these methods fail to reliably differentiate between interactions with DNA, RNA, pro-
teins and small molecules. This is explained by the fact that they were trained using datasets consisting solely 
of DNA-binding proteins, whilst lacking proteins that interact with the other partners [29, 52]. 
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The current residue-level methods provide DNA type-agnostic predictions, i.e., their predictions do not differ-
entiate between different types of DNAs. There is a handful of the protein-level predictors that tackle predic-
tion of proteins that interact specifically with ssDNA and dsDNA [12, 53-56]. However, these methods predict 
the DNA type for the known DNA-binding proteins (i.e., they assume that the input protein binds DNA), do 
not differentiate between different types of dsDNA, and do not identify the DNA binding residues. The current 
lack of the residue-level methods that address DNA type-specific predictions is a substantial downside, given 
that the knowledge of the interacting DNA type provides useful functional clues [11, 12]. However, an accu-
rate prediction of interactions with specific DNA types is rather challenging given that the existing methods 
struggle to differentiate between even more distinct partner type, such as DNA, RNA, protein and small mole-
cules. 
 
Motivated by the lack of suitable tools to solve these problems (i.e., DNA-agnostic prediction and cross-pre-
dictions), we introduce the first predictor of DNA-type specific binding residues in protein sequences, 
DNAgenie. We compile and share a new dataset that covers carefully curated A-DNA, B-DNA and ssDNA-
interacting proteins as well as proteins that bind other partners to facilitate addressing the cross-predictions. 
DNAgenie combines a custom-designed machine learning architecture and a comprehensive physiochemical 
profile extracted from the input protein sequence to accurately predict A-DNA, B-DNA and ssDNA binding 
residues. At the coarse-grained level, these predictions can be used to identify A-DNA, D-DNA and ssDNA 
binding proteins, proteins that do not interact with DNA, as well as to differentiate between DNA types for the 
known DNA-binding proteins. Correspondingly, we compare the ability of DNAgenie to identify the DNA 
type for the DNA-binding proteins with the recently released best-performing tool [56]. Moreover, we use 
DNAgenie to produce and analyze putative A-DNA, B-DNA and ssDNA-binding proteins and residues in the 
human proteome. 

2 Methods 

2.1 Datasets 

The training and benchmarking of DNAgenie’s predictive model require a high-quality dataset of proteins that 
are experimentally annotated for interactions with a broad range of ligands. The annotations of the protein-
DNA interactions serve as the ground truth to train and test predictive models. The annotations of the interac-
tions with the other ligands (RNA, proteins and small molecules) are necessary to train a model that can accu-
rately separate them from the protein-DNA interactions and to quantify the cross-predictions. We curated the 
data for the DNA-binding proteins from Protein Data Bank (PDB) [22]. First, we collected high-quality struc-
tures (resolution < 3Å) of proteins in complex with DNA. We ensure that the DNA chain is sufficiently long 
to determine DNA type, i.e., we reject complexes where the DNA sequence < 15 nucleotides long. Using ge-
ometry of the DNA molecule we identify 123 protein-ssDNA complexes, 185 protein-A-DNA complexes, and 
954 protein-B-DNA complexes. Next, we map the PDB chains of these DNA-binding proteins into the corre-
sponding full UniProt [57] sequences using SIFTS [58] to comprehensively annotate interactions with DNA 
and the other partners. Using the SIFTS’s data, we identify other PDB chains that map to a given UniProt se-
quence. We combine the corresponding residue-level annotations of interactions extracted using the BioLip 
database [59] across these chains. This way we map experimental annotations of the binding residues from 
potentially multiple structures and from across multiple ligand types (including DNA-binding residues) onto a 
given UniProt sequence. This procedure, which was used in several recent studies [20, 52, 60], was shown to 
produce about 27% more complete coverage of the interactions compared to earlier works that use a single 
complex to annotate interactions [20]. 
 
We also curate a set of proteins that bind non-DNA partners. First, we select a clustered (to 30% sequence 
similarity) set of high-quality protein structure (resolution < 3Å) from PDB that do not interact with DNA. 
Like for the DNA-binding proteins, we map the PDB chains into the corresponding UniProt sequences with 
SIFTS. Next, we remove proteins that could bind DNA based on the information in UniProt, i.e., we eliminate 
proteins with “transcription factor” and “DNA binding” keywords and annotations. We comprehensively an-
notate residue-level interactions for the remaining proteins using the abovementioned approach and BioLip. 
We select a subset of these proteins at random to match the number of the annotated DNA-binding proteins. 
Finally, we cluster the resulting combined set of the DNA-binding and the non-DNA binding proteins at 30% 
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similarity using Blastclust to divide these data into training and test datasets. We place 70% of the resulting 
clusters into the training dataset, which we use to compute and optimize machine learning models, and the re-
maining 30% into the test dataset, which we use to empirically and comparatively evaluate the optimized 
models. This protocol ensures that the similarity between the training and test proteins is below 30%. We 
show a detailed breakdown of these datasets in Supplementary Table S1. These datasets are available at 
http://biomine.cs.vcu.edu/servers/DNAgenie/. 
 
We use a recently released RNA-T benchmark dataset which includes 17 well-annotated RNA-binding pro-
teins, utilizing the mapping protocol described above [20]. This dataset facilitates measurement of the cross-
predictions among the RNA-binding residues. This is motivated by the fact that some of the RNA structures 
are similar to the A-DNA structure. RNA-T includes 409 RNA-binding residues and 5,867 non-binding resi-
dues. The similarity of proteins in this dataset is below 30% when compared to the training dataset. 

2.2 Assessment criteria 

DNAgenie produces six predictions for every residue in the input protein sequence: three real-valued propen-
sities that quantify likelihood that a given residue binds A-DNA, B-DNA and ssDNA; and three binary scores 
that categorize a given residue as A-DNA, B-DNA, ssDNA or non-DNA-binding. The binary predictions are 
produced by thresholding propensities, i.e., residues with propensities above a threshold are assumed binding, 
and otherwise they are assumed non-binding. Since the numbers of A-DNA, B-DNA, and ssDNA binding res-
idues are much smaller compared to the non-binding residues (i.e., the data is highly imbalanced), some of the 
popular metrics, such as accuracy, should not be employed since their values are biased by the imbalance. We 
quantify the quality of the binary predictions using sensitivity (rate of correct predictions among the native 
binding residues) that is measured using thresholds that are set to maintain specific low values of false positive 
rate (FPR) at 5%, 10%, and 20%, which is equivalent to specificity of 95%, 90%, and 80%, respectively. This 
facilitates side-by-side comparisons between different predictors for each of the three thresholds. Moreover, 
we assess the cross-prediction using several metrics that were introduced in recent studies [20, 29, 52, 60, 61] 
including RatioCPR-D (ratio of the cross-prediction rate for DNA to sensitivity), RatioCPR-L (ratio of the 
cross-prediction rate for the other ligands to sensitivity), RatioOPR (ratio of the over prediction rate to sensi-
tivity) using the binarity predictions that rely on the 5% FPR threshold (specificity = 0.95). The values of 
these ratios > 1 suggest that a given predictor produces proportionally more correct than incorrect predictions, 
while ratios ≤ 1 mean that its outputs are at the level of a random predictor or worse. Inspired by related stud-
ies [20, 43, 51, 60-62], we assess the propensities with the commonly used AUC (area under the ROC curve), 
AULCratio, AUCPC-D, AUCPC-L, and AUOPC. Larger values of the latter three measures (AUCPC-D, 
AUCPC-L and AUOPC) correspond to worse predictions, meaning predictions that are characterized by 
higher amounts of the cross/over-predictions. We provide detailed definitions of the above metrics in the Sup-
plement. 

2.3 DNAgenie model 

DNAgenie employs a custom-designed two-layer architecture where the predictions generated by machine 
learning (ML) models in the first layer are refined in the second layer to reduce the cross-predictions (Figure 
1).  
 
The first layer includes four color-coded ML models that predict real-valued residue-level propensities for 
binding with A-DNA, B-DNA, ssDNA and with a collection of other partners that includes proteins, RNA and 
small molecules. The high predictive performance of this layer stems from the use of the comprehensive phys-
iochemical profile that we produce from the input protein sequence. This profile covers a wide range of char-
acteristics that are relevant to the protein-ligand interactions including relative solvent accessibility (RSA), 
intrinsic disorder and secondary structure that are predicted directly from the sequence, relative amino acid-
level propensities (RAAP) that quantify tendency of amino acids to bind specific ligand types (RNA, DNA 
and proteins), evolutionary conservation (ECO), and biophysical properties including hydrophobicity, polarity 
and charge [20]. For instance, literature suggests that the DNA-binding residues are conserved, locate on the 
protein surface, and that certain amino acids are more likely to interact with DNA [20, 53, 63]. We predict 
RSA, intrinsic disorder and secondary structure directly from an input protein chain using ASAquick [64], IU-
Pred2A [65] and the single-sequence version of PSIPRED [66], respectively. We select these methods based 
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on their high predictive performance and low runtime. We develop the RAAP values for the A-DNA, B-DNA 
and ssDNA binding using a recently published approach [20]; we discuss these novel features in Section 2.4. 
We generate the evolutionary conservation scores from the alignment profiles produced by fast HHblits tool 
[67]. We compute hydrophobicity, polarity and charge using indices from the AAindex database [68]. We pro-
cess this comprehensive profile using a sliding-window approach to produce 423 features that quantify the re-
spective characteristics individually and in combination with each other (e.g., we quantify the number of 
charged and conserved residues on the predicted surface). We detail these features in Supplementary Table S2.  
 

 
Figure 1. Architecture of DNAgenie. The input box denotes the physiochemical profile derived directly from the input 
protein sequence that covers relative amino acid propensities (RAAP) for binding, relative solvent accessibility (RSA), 
intrinsic disorder (Disorder), secondary structure (SS), and evolutionary conservation (ECO) and several other relevant 
biophysical properties. Seven machine learning models used by DNAgenie are denoted by color-coded boxes including the 
four models in the first layer that generate unrefined putative residue-level propensities for A-DNA, B-DNA, ssDNA and 
other (protein/RNA/small molecule) binding and the three models in the second layer that generate the refined putative 
residue-level propensities for A-DNA, B-DNA and ssDNA binding. 

The input for the second layer consists of the four predictions for the A-DNA, B-DNA, ssDNA and 
RNA/protein/small molecule binding passed from the first layer. Supplementary Table S3 describes features 
that are encoded from these four predictions, which we use as the input to the three color-coded ML models in 
the second layer. The second layer refines A-DNA, B-DNA and ssDNA predictions to minimize the cross-
predictions. The cross predictions are reduced by comparing the unrefined putative residue-level propensities 
for the A-DNA, B-DNA and ssDNA interactions against each other and against the putative propensities for 
protein/RNA/small molecule binding. In other words, the refined residue-level propensities for A-DNA, B-
DNA and ssDNA binding generated by DNAgenie can be seen as the cross-prediction reduced versions of the 
unrefined propensities generated in the first layer. 
 
We consider five popular ML algorithms to train predictive model in both layers: logistic regression, weighted 
k-nearest-neighbor (kNN), Naïve Bayes, random forest, and support vector machine. We motivate this selec-
tion by the successful use of these algorithms in related studies [20, 34, 43, 69-74]. However, in contrast to the 
past designs, we incorporate several innovative ideas including the use of the second/refinement layer that 
aims to reduce the cross-predictions, utilization of the RNA/protein/small molecule binding predictor in the 
first layer that facilitates the refinement, development and use of the novel RAAP for A-DNA, B-DNA and 
ssDNA binding, and consideration of a broad range of ML algorithms to develop the predictive model. We do 
not utilize the nowadays popular deep learning models since the amount of the training data is insufficient for 
their training (Supplementary Table S1), which would likely lead to overfitting. We use an empirical approach 
to adapt the predictive models trained with these five algorithms to the prediction of the specific DNA types 
and to maximize their predictive performance. We explore two-dimensional search space defined by empirical 
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feature selection and selection of the ML algorithms. Feature selection aims to select a subset of the consid-
ered features that share low mutual correlation (i.e., which do not duplicate each other) and which are predic-
tive for a specific DNA type. For each DNA type we use wrapper feature selection with the best-first search 
[75] to select the best-performing subset of non-redundant features for each of the five ML algorithms. This 
allows us to adapt the same input profile to build accurate and selective models that predict residues that inter-
act with A-DNA, B-DNA and ssDNA. The entire empirical design process relies exclusively on the 5-fold 
cross-validation tests on the training dataset. More precisely, we parametrize the models for first layer and the 
second layers inside the same cross-validation loop, ensuring that we do not overfit this dataset.  
 
We compare results produced by the five ML algorithms on the training dataset in Supplementary Table S4. 
The results show that the support vector machine outperforms the other algorithms for the prediction of the 
residues that interact with each of the three DNA types. Support vector machine secures the highest AUC and 
AUCLratio scores coupled with the lowest/best AUCPC-D, AUCPC-L and AUOPC values. This suggests that 
this ML model provides the most accurate predictions of the DNA-binding residues and the lowest rates of the 
cross-predictions. The support vector machine relies on the popular radial basis function kernel and we tune its 
hyperparameters C (complexity coefficient) and  (width of the kernel function) using grid search where the 
parameter values are expressed as 2x and x = -10, -9, -8,…, 10. Consequently, we use the support vector ma-
chine models to implement DNAgenie.  
 
These optimized models encapsulate relations between the selected physiochemical characteristics and DNA-
binding, circumventing the need to use sequence alignment or homology. This means that DNAgenie can be 
used to predict virtually any protein sequence, irrespective of its similarity to other proteins, which we demon-
strate empirically on the test dataset. 

2.4 A-DNA, B-DNA and ssDNA interaction indices 

We develop three new relative amino acid propensity (RAAP) indices which quantify likelihood that a given 
amino acid interacts with A-DNA, B-DNA and ssDNA. We follow a recent approach that has produced simi-
lar indices for binding to RNA, (type-agnostic) DNA and proteins [20]. First, we use Composition Profiler 
[76] to compute relative amino acid propensity for a specific DNA type by contrasting the corresponding set 
of DNA binding residues against the non-DNA binding residues collected from the training dataset. Next, we 
normalize these propensities across the three DNA types by first scaling them to the unit range and adjusting 
the scaled scores based on ranked averages across the DNA types. We list the resulting indices in Table 1. 

Table 1. Relative amino acid propensities (RAAP) for binding A-DNA, B-DNA and ssDNA. 

Amino 
Acid Type 

Propensity for A-DNA 
binding  

Propensity for B-DNA 
binding  

Propensity for ssDNA 
binding  

A 0.03 0.10 0.03 
R 1.00 1.00 1.00 
N 0.50 0.38 0.35 
D 0.10 0.06 0.19 
C 0.18 0.08 0.00 
Q 0.35 0.36 0.14 
E 0.09 0.03 0.06 
G 0.22 0.22 0.34 
H 0.56 0.56 0.50 
I 0.14 0.09 0.22 
L 0.06 0.00 0.10 
K 0.76 0.76 0.56 
M 0.15 0.18 0.15 
F 0.19 0.19 0.38 
P 0.00 0.15 0.08 
S 0.34 0.34 0.18 
T 0.36 0.50 0.36 
W 0.62 0.35 0.62 
Y 0.38 0.62 0.76 
V 0.08 0.14 0.09 

 
We empirically test ability of these indices to identify residues that interact with A-DNA, B-DNA and ssDNA. 
For a set of training proteins that interact with a given DNA type, e.g. A-DNA binding proteins, we compute 
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differences of the A-DNA, B-DNA and ssDNA index values between the residues that interact with A-DNA 
and the remaining residues in the sequence. We compare these three differences and we mark a given protein 
as correctly predicted if the difference for the A-DNA index (the index for the selected DNA type) is higher 
than the difference for the other indices. This corresponds to a result where the A-DNA index is successful in 
marking the binding residues with the correct DNA type. We perform this test for the training proteins sets 
that bind A-DNA, B-DNA and ssDNA and summarize these results in Supplementary Table S5. The A-DNA 
index correctly predicts 70% of the A-DNA binding proteins compared to only 23% and 7% of proteins that 
are incorrectly recognized as B-DNA and ssDNA; the corresponding rate of improvement over the second 
most common outcome is 70/23 = 3.04. Similarly, the B-DNA index correctly finds 54% of B-DNA binding 
proteins, with the rate of improvement 54/31 = 1.74, while the ssDNA index marks 58% of the ssDNA pro-
teins correctly, with the rate of improvement 58/24 = 2.42. These empirical results demonstrate that the three 
indices differentiate between the residues that interact with A-DNA, B-DNA and ssDNAs. We use these indi-
ces as one of the key innovative elements in the physiochemical profile utilized by DNAgenie and to adapt the 
current DNA type agnostic predictors of DNA binding residues to predict interactions with A-DNA, B-DNA 
and ssDNA. 

3 Results 

3.1 Comparative assessment of the predictions of the A-DNA, B-DNA and ssDNA 
binding residues 

We benchmark predictions on the independent test dataset that covers the three types of DNA-binding resi-
dues, residues that bind the other ligand types and the non-binding residues. The assessment compares predic-
tions against the native annotations of A-DNA, B-DNA, ssDNA, RNA, protein, and small molecule binding. 
This allows us to evaluate the quality of the residue-level A-DNA, B-DNA and ssDNA binding predictions 
and to assess the extent of cross-predictions of the DNA-binding among the residues that interact with the 
other partner molecules. The test dataset shares low (<30%) sequence similarity to the training data that was 
used in the cross-validation setting to design and optimize DNAgenie. The low similarity and the exclusion of 
the test set during the design process ensure that the measured performance reflects values that are expected 
when DNAgenie is applied on proteins for which sequence alignment or homology could not produce accurate 
results. 
 
Since DNAgenie is the first method that predicts A-DNA, B-DNA and ssDNA-binding residues, we compare 
it against a baseline implemented as a random-level predictor and the closest alternatives represented by a cu-
rated selection of state-of-the-art sequence-based predictors of DNA-binding residues: BindN+ [40], Tar-
getDNA [42], hybridNAP [20] and DNApred [44]. These tools satisfy three selection criteria: availability as 
webservers or standalone software; fast predictions (under 10 minutes for an average size protein chain); and 
recent release, with the exception of the older and popular BindN+. We adapt their DNA type-agnostic predic-
tions to cover the three DNA types by using A-DNA, B-DNA and ssDNA interaction indices that we devise 
using an approach described in a recent study [20]. Briefly, each index quantifies propensities of the 20 amino 
acids for interaction with a specific DNA type, reflecting compositional differences between the DNA type-
specific binding residues and residues that do not bind DNA. We multiply the original DNA type agnostic pre-
dictions by the indices to secure the three DNA type specific predictions for each of the four current predic-
tors. This improves these predictions compared to using the original DNA type-agnostic prediction for each of 
the three DNA types. We demonstrate that empirically in Section 2.4. 
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Table 2. Predictive performance of DNAgenie, the random baseline, and the DNA type-augmented predictions produced 
by the four state-of-the-art residue-level predictors of DNA-binding residues. We assess robustness of the predictive qual-
ity to different datasets by performing 10 tests on randomly selected 50% proteins from the test dataset. We report the 
corresponding averages and standard deviations. Statistical significance of differences in the predictive performance be-
tween DNAgenie and each of the other five predictors is quantified with the t-test for normal measurements as tested with 
the Anderson-Darling test; otherwise we use the Wilcoxon rank sum test. ++ and + mean that DNAgenie is significantly 
better at p-value < 0.01 and p-value < 0.05, respectively; = means that the difference is not significant (p-value ≥ 0.05). 
The sensitivities are reported at 5%, 10% and 20% FPR. Bold font identifies the most accurate predictor for a given met-
ric and DNA type. 

DNA type Predictors 
Sensitivity 
at 5% FPR 

Sensitivity 
at 10% FPR 

Sensitivity 
at 20% FPR 

AUC AULCratio 

A-DNA 

Random baseline 0.050±0.005++ 0.110±0.008++ 0.209±0.018++ 0.514±0.006++ 0.951±0.109++ 
TargetDNA 0.268±0.016++ 0.411±0.028++ 0.622±0.020++ 0.774±0.016++ 5.839±0.653++ 
HybridNAP 0.185±0.025++ 0.322±0.017++ 0.493±0.019++ 0.702±0.014++ 4.084±0.850++ 
BindN+ 0.196±0.035++ 0.361±0.029++ 0.527±0.034++ 0.722±0.014++ 4.633±0.995++ 
DNApred 0.310±0.021++ 0.464±0.026++ 0.650±0.019++ 0.789±0.017++ 7.196±0.801++ 
DNAgenie 0.483±0.058 0.676±0.026 0.831±0.052 0.886±0.037 11.896±1.163 

B-DNA 

Random baseline 0.052±0.004++ 0.099±0.005++ 0.201±0.011++ 0.507±0.006++ 0.998±0.082++ 
TargetDNA 0.326±0.014++ 0.464±0.015++ 0.636±0.018++ 0.794±0.009++ 8.200±0.490++ 
HybridNAP 0.219±0.012++ 0.357±0.013++ 0.515±0.015++ 0.716±0.008++ 5.225±0.401++ 
BindN+ 0.270±0.014++ 0.383±0.012++ 0.567±0.015++ 0.746±0.009++ 6.691±0.552++ 
DNApred 0.354±0.016++ 0.529±0.020++ 0.663±0.015++ 0.811±0.009++ 9.350±0.536++ 
DNAgenie 0.472±0.044 0.644±0.041 0.824±0.037 0.884±0.015 11.156±1.161 

ssDNA 

Random baseline 0.047±0.004++ 0.108±0.023++ 0.219±0.026++ 0.502±0.005++ 0.933±0.093++ 
TargetDNA 0.193±0.016++ 0.351±0.052++ 0.560±0.039++ 0.757±0.025++ 3.999±0.563++ 
HybridNAP 0.142±0.014++ 0.245±0.034++ 0.454±0.039++ 0.683±0.018++ 2.729±0.505++ 
BindN+ 0.153±0.025++ 0.281±0.051++ 0.491±0.044++ 0.709±0.025++ 3.346±0.425++ 
DNApred 0.213±0.039++ 0.412±0.051++ 0.576±0.045++ 0.774±0.027++ 4.816±0.723++ 
DNAgenie 0.487±0.063 0.691±0.088 0.850±0.066 0.907±0.018 16.581±2.509 

 
Table 2 quantifies predictive performance of DNAgenie and compares it with the baseline and the four alter-
natives. Results show that DNAgenie provides very accurate predictions across the three DNA types, with 
AUCs ranging between 0.88 (for B-DNA) and 0.91 (for ssDNA); Supplementary Figure S1A gives the corre-
sponding ROC curves. The same is true based on the other metrics including AULCratio that quantifies the 
ratio of the measured AUC scores to the AUC scores of a random predictor for conservative predictions where 
the amount of the predicted DNA-binding residues does not exceed the amount of the native DNA-binding 
residues. Per this definition, the AULCratio values for the random baseline are around 1 while higher values 
denote more accurate results. DNAgenie secures AULCratio scores that span between 11.16 (for B-DNA) and 
16.58 (for ssDNA), which corresponds to 1,116% and 1,658% improvement over the baseline, respectively. 
Moreover, sensitivity values of DNAgenie computed based on the conservative scenario with low 5% false 
positive rate (specificity=95%) equal 48%, 47% and 49% for the A-DNA, B-DNA and ssDNA binding. In 
other words, nearly half of the DNA-binding residues are correctly predicted at this low false positive rate. 
The sensitivity values increase to the range between 0.64 to 0.69 when FPR is set to 10% and further increase 
to the range between 0.82 to 0.85 when FPR is set to 20%. The relation between sensitivity and specificity val-
ues is expressed by the ROC curves shown in Supplementary Figure S1A. We note that DNAgenie provides 
the best sensitivity values for the same specificity when compared to all other approaches, i.e., its ROC curves 
are above the other curves by a wide margin. Overall, Table 2 reveals the DNAgenie’s results for the three 
DNA types that we quantify with multiple metrics are statistically significantly better than the baseline and the 
predictions generated by the four current augmented DNA type-agnostic predictors (p-value < 0.01). The best 
of these methods, DNApred, obtains AUCs of 0.79, 0.81 and 0.77 for the prediction of the A-DNA, B-DNA 
and ssDNA interactions, respectively. 
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Table 3. Assessment of cross predictions generated by DNAgenie, the random baseline, and the DNA type-augmented 
predictions produced by the four state-of-the-art residue-level predictors of DNA-binding residues. Lower values of the 
AUCPCs and higher ratio values denote more accurate predictions (lower amount of cross-predictions). We assess ro-
bustness to different datasets by performing 10 tests on randomly selected 50% proteins from the test dataset. We report 
the corresponding averages and standard deviations. Statistical significance of differences in the predictive performance 
between DNAgenie and each of the other five predictors is quantified with the t-test for normal measurements as tested 
with the Anderson-Darling test; otherwise we use the Wilcoxon rank sum test. ++ and + mean that DNAgenie is signifi-
cantly better at p-value < 0.01 and p-value < 0.05, respectively; = means that the difference is not significant (p-value ≥ 
0.05). The binary assessments (CPR-D, CPR-L and OPR) are normalized between different predictors to maintain the 
same 5% FPR (specificity = 0.95). Bold font identifies the most accurate predictor for a given metric and DNA type. 

DNA type Predictors AUCPC-D 
RatioCPR-D at 

5% FPR 
AUCPC-L 

RatioCPR-L at 
5% FPR 

AUOPC 
RatioOPR at 5% 

FPR 

A-DNA 

Random 0.503±0.016++ 1.055±0.241++ 0.483±0.014++ 1.076±0.215++ 0.488±0.010++ 1.055±0.213++ 
TargetDNA 0.517±0.021++ 0.928±0.098++ 0.278±0.019++ 4.281±0.485++ 0.220±0.015++ 5.991±0.375++ 
HybridNAP 0.504±0.018++ 0.905±0.133++ 0.345±0.015++ 3.091±0.566++ 0.293±0.014++ 3.924±0.504++ 
BindN+ 0.520±0.023++ 0.786±0.169++ 0.319±0.016++ 3.058±0.609++ 0.272±0.014++ 4.265±0.770++ 
DNApred 0.513±0.024++ 1.002±0.096++ 0.260±0.020++ 5.264±0.480+ 0.204±0.016++ 6.887±0.433++ 
DNAgenie 0.317±0.051 2.007±0.376 0.152±0.037 7.295±2.277 0.110±0.025 10.584±1.336 

B-DNA 

Random 0.492±0.015++ 0.944±0.119++ 0.504±0.007++ 1.106±0.107++ 0.493±0.006++ 1.021±0.076++ 
TargetDNA 0.454±0.014++ 1.246±0.077++ 0.248±0.014++ 4.797±0.698= 0.203±0.009++ 6.785±0.334++ 
HybridNAP 0.472±0.011++ 1.210±0.126++ 0.319±0.018++ 3.531±0.548++ 0.282±0.008++ 4.469±0.257++ 
BindN+ 0.457±0.018++ 1.438±0.251++ 0.281±0.016++ 3.996±0.595= 0.251±0.009++ 5.520±0.281++ 
DNApred 0.455±0.016++ 1.150±0.056++ 0.230±0.014++ 5.786±0.805++ 0.187±0.009++ 7.373±0.364++ 
DNAgenie 0.291±0.027 2.374±0.550 0.172±0.017 4.343±0.567 0.102±0.012 9.864±0.925 

ssDNA 

Random 0.517±0.005++ 1.225±0.396++ 0.515±0.004++ 1.146±0.328++ 0.515±0.003++ 1.140±0.274++ 
TargetDNA 0.552±0.031++ 0.680±0.111++ 0.297±0.029++ 2.829±0.547++ 0.234±0.025++ 4.366±0.655++ 
HybridNAP 0.525±0.017++ 0.708±0.091++ 0.355±0.021++ 2.404±0.570++ 0.312±0.018++ 2.938±0.492++ 
BindN+ 0.536±0.027++ 0.707±0.111++ 0.329±0.026++ 2.409±0.430++ 0.285±0.025++ 3.308±0.527++ 
DNApred 0.549±0.033++ 0.689±0.113++ 0.278±0.032++ 3.525±0.644++ 0.217±0.027++ 5.038±0.848++ 
DNAgenie 0.154±0.025 4.872±0.807 0.161±0.033 4.689±0.961 0.097±0.022 10.064±1.195 

3.2 Analysis and evaluation of the cross-predictions 

We empirically analyze the cross-predictions among the residues that interact with different DNA types and 
among the residues that bind non-DNA ligands (proteins, RNA and small molecules). Inspired by related 
works [29, 52], we quantify the cross-predictions among the DNA-binding residues with the area under the 
cross-prediction curve for DNA (AUCPC-D) and cross-prediction rate for DNA (CPR-D). These two 
measures quantify the extent to which a given type of DNA binding is predicted among the residues that bind 
the other two types of DNA. Lower values of area correspond to fewer cross-predictions. To ease interpreta-
tion, the cross-prediction rate is computed as a ratio (RatioCPR-D) between the number of the cross predic-
tions and the sensitivity (the number of correct predictions for a given DNA type). This way random-level pre-
dictions have ratio = 1, with higher values denoting the rate of improvement over the random baseline. We 
also assess the cross-predictions among the residues that interact with the other ligands (proteins, RNA and 
small molecules) based on two metrics, AUCPC-L and RatioCPR-L. Finally, we evaluate the rate of incorrect 
predictions among the non-binding residues with AUOPC (area under the over-prediction rate curve) and Ra-
tioOPR (ratio of over-prediction rate among the non-binding residues and sensitivity). We define these metrics 
in Section 2.2. 
 
Table 3 reveals that DNAgenie produces minimal amounts of cross-predictions across the three DNA types. 
On average, over the three DNA types, DNAgenie secures RatioCPR-D = 3.08, RatioCPR-L = 5.44 and Ra-
tioOPR = 10.17. The fact that RatioCPR-D < RatioCPR-L means that the amount of the cross-predictions be-
tween the three DNA types is larger compared to the cross-predictions of DNA binding among residues that 
interact with the other molecules. This is expected given that the different DNA types are much more similar 
to each other compared to the similarity between the DNA and the other molecules (proteins, RNA and small 
molecules). However, even for the most challenging case, the corresponding RatioCPR-D shows that 
DNAgenie is 308% better than the baseline. To compare, the best alternative, DNApred, substantially cross-
predicts between the three DNA types (average RatioCPR-D = 0.95, which is at the level of the baseline) and 
produces more cross predictions among the residues that bind the other partners (average RatioCPR-L = 4.86). 
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The cross-prediction curves shown in the Supplementary Figure S1B (for DNA-binding residues), S1C (for 
the other ligand types) and S1D (for the non-binding residues) reveal a large margin of improvement between 
the DNAgenie’s curves and the curves of the other methods. These plots demonstrate that the improvements in 
the DNAgenie’s cross-prediction rates are consistent over the entire range of the sensitivity values. Moreover, 
Table 3 shows that the corresponding AUCPC-D, AUCPC-L and AUOPC scores produced by DNAgenie are 
significantly better when compared with the other methods and for each DNA type (p-value < 0.01). 
 
Empirical analysis also reveals that the major reason for the low amounts of the cross-predictions is the use of 
the second (refinement) layer in the DNAgenie’s model. While the first layer’s models achieve the average 
AUCPC-D (area under the curve that quantifies rate of the incorrect predictions of DNA binding across DNA 
types) = 0.29, this area shrinks to 0.25 (16% improvement) after the refinement in the second layer. When bro-
ken by the DNA type, AUCPC-D decreases from 0.35 to 0.32 for A-DNA (p-value = 0.15), from 0.33 to 0.29 
for B-DNA (p-value < 0.05) and from 0.19 to 0.15 for ssDNA (p-value < 0.05). This means that the use of the 
second layer provides consistent improvements, over the three DNA types, which in case of B-DNA and 
ssDNA are also statistically significant. By contrast, DNApred yields the average AUCPC-D=0.51. 
 

 
Figure 2. Comparison of the cross-predictions rates among the RNA binding residues (i.e., fraction of the RNA-binding 
residues predicted as A-DNA, B-DNA and ssDNA-binding residues) in the RNA-T dataset. Similar to Table 2, the predic-
tions are normalized between different predictors to maintain the same 5% FPR (specificity = 0.95) on the test dataset. 

3.3 Assessment of the cross-predictions in RNA-binding proteins 

We analyze the cross-predictions among the RNA-binding proteins since the A-form of DNA is structurally 
similar to some of the RNA structures. Moreover, recent work demonstrates that predictors of DNA-binding 
residues cross-predict over 20% of RNA-binding residues as DNA-binding [43]. Figure 2 illustrates the cross-
prediction rates on the recently published RNA-T benchmark dataset, i.e., the rate of the prediction of A-
DNA, B-DNA and ssDNA residues among the native RNA-binding residues. When considering predictions of 
the A-DNA binding residues, TargetDNA, hybridNAP and BindN+ cross-predicts over 15% of the RNA-
binding residues as A-DNA-binding residues while DNApred and DNAgenie yield the lowest/best rates at 
about 11.5% and 7.1%, respectively. On average, across the three DNA types, DNAgenie obtains the lowest 
cross prediction rate at 10.2%, compared to 16.3% for hybridNAP, 17.1% for DNApred, 17.9% for Tar-
getDNA and 21.5% for BindN+. These are relatively low rates given that DNAgenie secures the average sen-
sitivity of 48.1% (4.7 times higher compared to the cross-prediction rate) for the DNA-binding residues (Table 
2). This test demonstrates that DNAgenie accurately differentiates between DNA-binding and RNA-binding 
residues.  

3.4 Comparative assessment of the predictions of dsDNA and ssDNA binding pro-
teins 

Several methods are available for the coarse-grained prediction that identifies whether a given DNA-binding 
protein interacts with ssDNA or dsDNA [12, 53-56]. We apply the residue-level predictions of A-DNA, B-
DNA and ssDNA binding residues generated by DNAgenie to differentiate between the ssDNA and dsDNA 
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partners for the DNA-binding proteins in the test dataset. We compute the propensity for the ssDNA binding 
at the protein level by calculating the average of the residue-level propensities for the predicted ssDNA bind-
ing residues. Similarly, we use one minus the average of the propensities for the A-DNA and B-DNA binding 
residues to quantify the protein-level propensity for the dsDNA binding. We compare these results with the 
most recent protein-level predictor by Sharma and colleagues that was shown to outperform the older tools 
[56]. We use the author-provided implementation of this tool to collect the protein-level propensities for the 
ssDNA and dsDNA binding. We report results for the two best performing ensembles of three machine learn-
ing models: ensemble 1 that relies on the majority-based prediction and ensemble 2 that select the model with 
the highest propensity [56]. For the ensemble 1, we use the propensity that is calculated as the average of the 
propensities of the 2 or 3 models that are in the majority, while for ensemble 2 we use the propensity of the 
selected model. Table 4 summarizes the results. We setup the binary predictions to the same 5%, 10% and 
20% FPRs, which allows us to directly compare the corresponding sensitivity values across different methods. 

Table 4. Predictive performance of DNAgenie and the ensembles 1 and 2 proposed by Sharma and colleagues for the 
prediction of ssDNA and dsDNA partners of the DNA binding proteins in the test dataset. The binary assessment with 
sensitivity is normalized between different predictors to maintain the same 5%, 10% and 20% FPR. Bold font identifies 
the most accurate predictor for a given metric. 

Protein-level predictor of ssDNA 
and dsDNA binding 

Sensitivity 
at 5% FPR 

Sensitivity 
at 10% FPR 

Sensitivity 
at 20% FPR 

AUC 

Ensemble 1 0.17 0.34 0.68 0.786 
Ensemble 2 0.24 0.26 0.42 0.739 
DNAgenie 0.42 0.44 0.73 0.863 

 
DNAgenie offers better coarse-grained predictions of the ssDNA and dsDNA binding proteins. The sensitivity 
computed at the 5% FPR is higher by 18% and AUC improves from 0.786 to 0.863 when compared with the 
best current tool. Supplementary Figure S2 gives the corresponding ROC curves. We note that DNAgenie ad-
ditionally provides accurate predictions of the DNA-binding residues that are categorized by DNA type into 
A-DNA, B-DNA and ssDNA. In contrast, the other methods do not predict the DNA binding residues and do 
not differentiate between different dsDNA types.  

3.5 Case study 

We showcase blind/de novo prediction produced by DNAgenie on one of the test proteins, human DNA me-
thyltransferase 3A (DNMT3A). This protein shares low 4.9% similarity with the training proteins, i.e., the 
maximal pairwise similarity across all training proteins measured with BLAST is 4.9% [77, 78]. We empha-
size that this case study is meant to illustrate DNAgenie’s predictions and compare them side-by-side with the 
other predictors. Recently released structural details of the interaction of DNMT3A with B-DNA serve as the 
ground truth to assess these predictions [79]. DNAgenie’s predictive quality, expressed with AUC, is similar 
to the average AUCs on the test dataset, representing an average/typical case. Figure 3 illustrates the 3D struc-
ture of the complex with B-DNA with the color-coded annotations of DNAgenie’s predictions. The correct 
predictions of the B-DNA binding residues shown in green (true positives) extend along the double helix. The 
false positives (native non-B-DNA-binding residues incorrectly predicted as B-DNA-binding residues) 
marked in yellow are located nearby the interaction site. We argue that they provide useful clues, especially 
since the native annotations of binding residues rely on a somehow arbitrary distance-based definition, i.e., 
residue is defined as binding if the distance between an atom of this residue and a DNA atom is < 0.5Å + the 
sum of the Van der Waal’s radii of the two atoms [59]. The yellow residues could be marked as green if the 
0.5Å factor would increase. Supplementary Figure S3 provides side-by-side comparison of the B-DNA-
binding predictions produced by DNAgenie and the DNA type-agnostic predictions generated by the four se-
lected sequence-based predictors of DNA-binding residues. DNAgenie successfully identifies 12 of the 23 na-
tive B-DNA-binding residues, with the false positives clustered in a close proximity of the B-DNA binding 
residues. The second-best DNApred correctly finds six B-DNA-binding residues, but with many false posi-
tives scattered along the sequence at positions far from the native B-DNA binding residues. The other three 
tools face similar problems, with predictions distributed along the entire protein chain. This example illustrates 
that DNAgenie produces on average more true positives than the alternative tools, which is evident based on 
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its high sensitivity values in Table 2, and also generates arguably more useful false positives that are localized 
nearby the true positives. 

 
Figure 3. Structure of the human DNA methyltransferase 3A (DNMT3A) in complex with B-DNA (PDB ID: 5YX2 chain 
D). The protein structure is shown with the gray cartoon representation. DNA-structure is represented by the orange double 
helix. The residues represented using color-coded balls identify DNAgenie’s predictions where green are true positives 
(correctly predicted B-DNA-binding residues), red are false negatives (native B-DNA-binding residues incorrectly pre-
dicted as non-B-DNA-binding residues), and yellow are false positives (native non-B-DNA-binding residues incorrectly 
predicted as B-DNA-binding residues). 

3.6 Prediction and analysis of A-DNA, B-DNA and ssDNA binding residues and 
proteins in the human proteome 

We apply DNAgenie to make predictions for the 20,350 proteins from the UniProt’s reference human prote-
ome [57]. We evaluate veracity of these predictions by computing their overlap with the list of the currently 
known DNA-binding proteins. First, we collect the DNA-binding proteins from ENPD, the largest database of 
the nucleic acid-binding proteins [80]. Given natural variations in protein sequences, we annotate human pro-
teins from the UniProt’s reference proteome as DNA-binding if they share over 90% similarity (quantified 
with BLAST) with any of the human DNA-binding proteins from ENPD. This results in a list of 2,062 experi-
mentally annotated DNA-binding proteins. Second, we independently use Pfam domains [81] to annotate 
DNA-binding proteins. We manually analyze Pfam domains in the human proteome and find 672 domains that 
interact with DNA. We identify 2,218 human proteins that have at least one of these domains. Third, we com-
bine the 2,062 DNA-binding proteins from ENPD and the 2,218 proteins that have Pfam’s DNA-binding do-
mains to establish the final set of 2,763 verified DNA-binding proteins. Next, we use the putative A-DNA, B-
DNA and ssDNA-binding residues generated by DNAgenie at the low 5% FPR to identify putative DNA-
binding proteins. We calibrate this residue-level to protein-level prediction conversion to generate the number 
of putative DNA-binding proteins that is similar to the number of the verified DNA-binding proteins. We ap-
ply two conditions to define a given protein as DNA-binding. First, the fraction of putative DNA-binding resi-
dues must be higher than 10% to reduce likelihood of including spurious predictions. Second, the protein must 
include at least one long segment of DNA-binding residues (equivalent of a DNA-binding domain) which is 
composed of at least 90% of residues predicted as A-DNA, B-DNA or ssDNA binding residues within a win-
dow of 15 consecutive residues. This approach generates 2,778 putative DNA-binding proteins, which consti-
tute 13.6% of the human proteome and include 1,201 A-DNA-binding, 1,404 B-DNA-binding, and 713 
ssDNA-binding proteins. 
 
We compare the 2,778 putative DNA-binding proteins against the 2,763 known DNA-binding proteins. 
DNAgenie predicts 529 (25.7%) of the 2,062 ENPD-annotated proteins and 737 (26.5%) of the complete set 
of the 2,763 verified DNA-binding proteins. The amount of the overlap is driven in part by the use of the low 
5% FPR-based predictions, which limits their sensitivity to about 48%, as we show in Table 2. We assess sta-
tistical significance of the overlap between the predicted and the verified DNA-binding proteins by comparing 
the predictions with a randomized baseline. We compute overlap between a randomly selected set of 2,778 
human protein and the 2,763 verified DNA-binding proteins to implement the baseline, and we repeat this 
sampling 1,000 times to establish confidence intervals. The corresponding average and standard deviation for 
the overlap of the baseline are 13.8%±0.6%, with the maximum of 15.5%. The 26.5% overlap generated by 
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DNAgenie is about two times larger than the average of the baseline and this difference is statistically signifi-
cant (p-value < 0.01). 
 
We also analyze novel putative DNA-binding proteins produced by DNAgenie to investigate whether they 
share certain characteristics (i.e., subcellular localization and Pfam domains) that are associated with the 
known DNA-binding proteins. If true, that would suggest that these predictions provide informative leads to 
identify novel DNA-binding proteins. Correspondingly, we further analyze the 2,778 – 737 = 2,041 novel pu-
tative DNA-binding proteins produced by DNAgenie. First, we investigate whether they share subcellular lo-
cation annotations that are characteristic for the verified DNA-binding proteins. Using the GO-slim analysis of 
the cellular component annotations in PANTHER [82], we find 42 cellular components that are statistically 
enriched among the verified DNA-binding proteins, when compared to the reference human proteome (p-
value < 0.05 using the Fisher’s test with the discovery rate correction, fold enrichment > 2, and 15 or more 
occurrences per annotation to ensure robustness of the statistics). We repeat this analysis for the novel putative 
DNA-binding proteins and identify 27 significantly enriched cellular components, out of which 48.1% (13 an-
notations) are in common with the components enriched for verified DNA binders. For context, no signifi-
cantly enriched cellular component are produced when we run the same analysis for a random set of 2,763 hu-
man proteins, which is equivalent to the size of the collection of the verified DNA-binding proteins. Figure 4 
summarizes the cellular components that are enriched in the novel putative DNA-binding proteins. As a cou-
ple of highlights, they are found among ribosomal and mitochondrial proteins, which agrees with literature 
[83, 84]. Second, we examine Pfam domains present in the novel putative DNA-binding proteins. We find that 
10.5% of them include at least one domain that suggests binding to DNA, such as BEX, CENP, Cyclin, 
MBD_C, NPIP, and several types of the zinc finger domains. Overall, we discover that 35.5% of these novel 
DNA binders include at a minimum one of the relevant Pfam domains or is annotated with a cellular compo-
nent term that is associated with the verified DNA-binding proteins. These results suggest that at least some of 
the novel predictions constitute promising leads to identify previously unknown DNA-binding proteins.  
 

 
Figure 4. Cellular components that are significantly enriched among the novel putative DNA-binding proteins produced 
by DNAgenie. * identifies annotations that are in common with the components that are significantly enriched in the veri-
fied DNA-binding proteins. The plot is sorted by the number of proteins that have a given enriched annotation (blue bars). 
Analysis was performed with PANTHER where p-values were computed using the Fisher’s test with the discovery rate 
correction, minimal fold enrichment is set to 2, and annotations with 15 or more occurrences are used to ensure robustness 
of the statistics. 
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We list the protein IDs of the 2,778 DNA-binding proteins predicted by DNAgenie in the Supplementary Ta-
ble S6. We also share more detailed information at http://biomine.cs.vcu.edu/servers/DNAgenie/. The latter 
data includes UniProt accession numbers, sequences, predictions of the A-DNA, B-DNA and ssDNA binding 
residues, markers for inclusion in ENPD, and listing of relevant Pfam domains that are categorized as either 
DNA-binding or likely to interact with DNA. 

3.7 DNAgenie webserver 

DNAgenie is publicly available as a webserver at http://biomine.cs.vcu.edu/servers/DNAgenie/; we also offer 
a mirror site at http://www.inforstation.com/webservers/DNAgenie/. With the user’s convenience in mind, the 
webserver performs calculations on the server side and we allow batch predictions for up to five proteins in a 
single request. We encourage users to contact the authors directly in case if large-scale predictions are needed. 
The only required input are the FASTA-formatted protein sequences. The server outputs numeric propensities 
for the A-DNA, B-DNA, and ssDNA-binding and the three corresponding binaries predictions (binding vs. 
non-binding) for each amino acid in the input protein chain(s). The results are available in two convenient 
ways: as an HTML page-formatted report and a parseable csv file. Users have an option to provide email ad-
dress where the links to the results are sent upon completion of the predictions. 

4 Summary 
Prediction of the DNA-binding residues in protein sequence is a difficult problem. The current DNA type-ag-
nostic solutions lack in two aspects: the ability to differentiate DNA-binding residues from the residues that 
interact with other partners (i.e., they cross-predict residues that interact with RNAs, proteins and small mole-
cules as DNA binding); and the ability to predict interactions with specific DNA types. DNAgenie provides 
the first and accurate solution to both challenges, as we demonstrate through extensive comparative empirical 
tests and application to the human proteome. Importantly, DNAgenie does not rely on sequence similarity or 
homology, which means that it provides accurate results for virtually any protein sequence. This is evident 
based on the results on the test dataset, which simulates a scenario where DNAgenie is used to predict se-
quences that share low similarity (<30%) with its training proteins. 
 
There are multiple factors that explain high-quality of the results produced by DNAgenie. First, we utilize the 
training dataset that covers proteins that interact with DNA, RNA, proteins and small molecules, allowing our 
machine learning models to successfully learn to differentiate between different ligand types. This is in con-
trast to the prior tools that were trained using datasets composed solely of the DNA-binding proteins [29, 52]. 
Second, we represent the input protein sequence using a broad physiochemical profile that covers a compre-
hensive collection of relevant sequence-derived structural, evolutionary, biophysical and biochemical infor-
mation. Third, we use the two-layered topology (Figure 1) where we apply the custom-designed second layer 
to refine the initial predictions generated by the first stage, with the objective to minimize the cross-predic-
tions. The use of the comprehensive profile leads to a very accurate prediction of the A-DNA, B-DNA and 
ssDNA binding by the machine learning models from the first layer. On average, over the three DNA types, 
the first-layer models secure AUC = 0.890 and sensitivity = 0.47 at the low 5% FPR. After the refinement in 
the second layer, DNAgenie’s models generate nearly identical average AUC = 0.893 and sensitivity = 0.48 
(at 5% FPR). Importantly, this refinement leads to the statistically significant reduction in the cross-predic-
tions, which we discuss in Section 3.2. More specifically, the average AUCPC-D of the first layer’s models of 
0.29 is improved to 0.25 (16% improvement) after the refinement. To compare, DNApred, the best current 
method (as shown in by its authors [44] and in our Table 2), obtains the average AUC = 0.79, the average sen-
sitivity = 0.29 (at 5% FPR), and the average AUCPC-D = 0.51. The improvements offered by the DNAgenie 
over DNApred and other considered methods are statistically significant for each of the three DNA types (p-
values < 0.05). Moreover, we note that lower predictive performance of DNApred and other methods that we 
compare with can be explained by the fact that they were not originally designed to predict A-DNA, B-DNA 
and ss-DNA binding residues. 
 
We empirically demonstrate that DNAgenie’s predictions on the human proteome significantly overlap with 
the known DNA-binding proteins while also covering several hundred novel putative DNA-binding proteins. 
Utilizing two sources of independent data, Pfam domains and GO annotations, we argue that some of these 
novel putative DNA binders are likely to interact with DNA because they harbor domains that suggest DNA 



15 
 

binding and since they share subcellular locations that are enriched for the currently known DNA-binding pro-
teins. The putative DNA-binding proteins should be investigated experimentally to either confirm or refute the 
predictions. Nowadays, a wide array of methods that include functional proteomics experiments and mass 
spectrometry can be used for that purpose. Some of the popular approaches include affinity purification [85], 
chromatin immunoprecipitation (ChIP) [86, 87] electrophoresis mobility shift assay (EMSA), and more re-
cently CRISPR (regularly clustered interspaced palindromic repeats)-based approaches [88]. 
 
Altogether, the strong predictive performance on the test dataset coupled with the accurate predictions on the 
human proteins, which include numerous promising leads for novel DNA-binding proteins, demonstrate that 
DNAgenie is a valuable tool for computational, sequence-based characterization of protein functions. 
DNAgenie’s webserver, training and test datasets, and predictions and annotations for the human proteins are 
available at http://biomine.cs.vcu.edu/servers/DNAgenie/. 
 
We envision extending DNAgenie in two directions. The current version is limited to the three major DNA 
types: A-DNA, B-DNA and ssDNA. This is due to the lack of a sufficient amount of experimental data for the 
interactions with the other DNA types. While the current amount of data is insufficient to accurately train the 
predictive model and to build an adequately large and dissimilar test dataset, this is likely to change in a near 
future. The other interesting extension is to consider taxonomic differences in the protein-DNA interactions. 
DNAgenie is designed to make predictions across all domains of life, as it was trained on the dataset that co-
vers eukaryotic (36%), bacterial (43%), archaeal (5%) and viral (16%) proteins. However, we anticipate that 
models optimized specifically for eukaryotic vs. prokaryotic proteins would be different and would provide 
more accurate results when used for the taxonomically compatible proteins. 

Key Points 
• Sixteen methods are available for the prediction of the DNA binding residues in protein sequences 
• Current predictors of the DNA-binding residues are DNA type agnostic and significantly cross-predict resi-

dues that interact with other ligands 
• DNAgenie is the first sequence-based predictor of amino acids that interact with A-DNA, B-DNA and sin-

gle stranded DNA 
• DNAgenie offers accurate predictions of the DNA-binding residues, low cross-predictions rates and high-

quality coarse-grained predictions of ssDNA and dsDNA binding proteins 
• DNAgenie identifies promising leads for previously unknown DNA binding proteins in the human prote-

ome 
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