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Abstract 

Drug-protein interactions underlie the desired therapeutic actions and the adverse side-effects of a significant 

majority of drugs. Computational prediction of drug-protein interactions facilitates research in drug discovery, 

characterization, and repurposing. Similarity-based methods that do not require knowledge of protein structures are 

particularly suitable for druggable genome-wide predictions of drug-protein interactions. We review 35 high-impact 

similarity-based predictors that were published in the past decade. We group them based on three types of 

similarities and their combinations that they use. We discuss and compare key aspects of these methods including 

source databases, internal databases and their predictive models. Using our novel benchmark database, we perform 

comparative empirical analysis of predictive performance of seven types of representative predictors that utilize 

each type of similarity individually and all possible combinations of similarities. We assess predictive quality at the 

database-wide drug-protein interaction level and we are the first to also include evaluation over individual drugs. 

Our comprehensive analysis shows that predictors that use more similarity types outperform methods that employ 

fewer similarities, and that the model combining all three types of similarities secures AUC of 0.93. We offer a 

comprehensive analysis of sensitivity of predictive performance to intrinsic and extrinsic characteristics of the 

considered predictors. We find that predictive performance is sensitive to low levels of similarities between 

sequences of the drug targets and several extrinsic properties of the input drug structures, drug profiles and drug 

targets. The benchmark database and a webserver for the seven predictors are freely available at 

http://biomine.cs.vcu.edu/servers/CONNECTOR/.  
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Introduction	

Therapeutic activity of most of the drugs is determined by their interactions with target molecules, of which about 

95% are proteins [1-3]. Knowledge of the associations between drug compounds and their protein targets is essential 

for a wide range of pharmaceutical and bioinformatics studies. These studies include screening drug candidates that 

targets specific disease-associated genes/proteins [4-7], drug repurposing (searching for targets associated with 

diseases that are not yet known to benefit from the existing drugs) [8-12], discovery and characterization of side-

effects that stem from the interactions with non-therapeutic off-targets [13-17], and elucidation of the druggable 

human proteome, which is defined as the complement of human proteins that interact with drugs [2, 18-21]. 

Consequently, many databases of drug-protein interactions (DPIs) have been released [22-69]. Besides offering the 

annotations of interactions, these databases provide relevant information about drugs and proteins, such as drug 

structures [34-38, 66-69] and sequences of protein targets [39-44, 52-56]. However, most of these databases are 

limited to a small portion of the human proteome that includes proteins with known structures [70]. The databases 

are complemented by computational methods that generate putative drug-protein pairs on a large, up to the whole 

proteome scale. These predictions can be used to facilitate discovery of new DPIs by constraining the scope of 

expensive and time consuming in vitro and in vivo experiments that are employed to discover and validate the 

putative DPIs [71-73]. They are also utilized to develop databases of pre-computed putative DPIs [74-76] and were 

used to facilitate discovery of the therapeutic mechanisms and side-effects of drugs [17, 77, 78]. 

 

Computational prediction of DPIs typically incorporates information about drugs and structures or sequences of 

target proteins. The computational methods could be categorized into protein structure-based and similarity-based 

methods [79-81]. The protein structure-based methods utilize the 3-dimentional (3D) structure of the target protein(s) 

and typically perform molecular docking of an often known or otherwise modelled structure of the compound into 

the protein structure. However, recent works estimate that only about 20% to 30% of the human proteins have 3D 

structures [82-84], which means that the protein structure-based methods are limited to a relatively small fraction 

of the human proteome. Moreover, they cannot be used for proteins with a substantial amount of intrinsically 

disordered regions [21] while recent works show that as many as 44% of human proteins contain at least one long 

(30 or more consecutive residues) disordered region [85, 86]. Finally, the computational cost of the structure-based 

predictions is relatively high due to the long runtime of docking [79]. At the same time, a full complement of 

sequences is available for the human proteome and can be used by the similarity-based methods. The similarity-

based methods are developed based on assertions that similar drugs likely target the same proteins and that similar 

proteins tend to interact with the same drugs [79, 87-89]. This boils down three types of similarities between drug 

structures, drug profiles, and protein target sequences. Various similarity-based methods rely on different ways to 

represent and quantify one or more of these three similarities. The predictive quality of these approaches depends 

on how the similarities are quantified, how many are used, and how they are combined together. We focus on the 

similarity-based methods given that they can be applied over the entire human proteome and that they are more 

computationally tractable when compared to the structure-based methods.  

 

A total of 11 surveys that were written in the last five years have focused on the similarity-based methods [79, 90-

99]. We also found two other articles that focus on related topics including biological profiles [100] and machine 

learning tools [101] that are employed in the DPI predictions. The 11 surveys summarize relevant databases, review 

representative methods and discuss common criteria that are used to evaluate predictive performance. 

Supplementary Table S1 assesses scope of these articles with the number of methods they reviewed, coverage of 



recent predictors, inclusion of summary of databases used by the considered predictors, and presence of empirical 

assessment and analysis of sensitivity of predictive quality. The two most comprehensive surveys cover 28 [98] and 

27 predictors [91] while the remaining nine articles discuss fewer than 20 methods. In most cases, over half of the 

methods that were reviewed was published in the past five years. This reflects growing interest in the similarity-

based predictors. However, at least eight methods that were published in 2016 and 2017 [102-109] were not included 

in any of these articles. While most of the surveys provide a brief discussion of the available DPI databases, they 

are not necessarily the databases that are used by specific predictors to compute the similarity values. Actually only 

one article provides a more complete discussion that introduces specific databases which are utilized by the ten 

predictors that this survey covers [79]. A complete summary of the DPI databases that covers modern methods is 

still missing, which is why we include this topic. We survey 35 predictors and investigate two types of relevant 

databases: internal databases which are intrinsic to the predictors and source databases that are used to derive the 

internal databases. Moreover, only four surveys provide empirical assessment of predictive performance of 

similarity-based DPI predictors [79, 90, 98, 99]. While they provide quantitative and comparative analysis, they 

focus on a limited set of approaches. In particular, they only consider certain types and combinations of similarities. 

They also do not perform sensitivity analysis, i.e., they do not analyze whether and how predictive performance 

changes with intrinsic and extrinsic characteristics of the considered predictors. To summarize, while the previous 

surveys offer useful insights they also have several drawbacks. In particular, they miss several recent similarity-

based DPI predictors, provide shallow treatment of databases used by these predictors, offer incomplete empirical 

analysis, and do not include sensitivity analysis. 

 

To this end, we: 1) focus on a comprehensive set of 35 similarity-based DPI predictors including the largest set of 

recent predictors; 2) offer in-depth summary of the internal and source databases that these predictors use; 3) provide 

complete empirical assessment of predictive quality for representative predictors that use different similarities; and 

4) include sensitivity analysis. We cover the latest advances. The considered predictors include 22 that were 

published in the last five years and eight that were published since 2016. We define the three main types of 

similarities that these 35 methods use to predict compound-protein interactions, describe key architectural details 

of these tools and comment on their impact. Our empirical evaluation encompasses representative approaches that 

rely on each of three main types of drug and protein similarities and ensemble predictors that combine two and three 

types of similarities. Moreover, we compare these ensembles to the methods based on a single similarity. Besides 

providing the overall predictive performance of the considered predictors, we are the first to consider predictive 

quality across individual drugs. Finally, our arguably the most comprehensive to date sensitivity analysis 

investigates whether and how the predictive performance depends on several intrinsic and extrinsic factors, e.g., the 

number of targets that are a priori known for a given drug. 

Qualitative review of the similarity-based methods for the 
prediction of drug-protein interactions 

Selection of similarity-based methods 

We searched the PUBMED repository [110] in April 2018 for relevant articles using the following query: (predict* 

[Title/Abstract] AND (drug target interaction [Title/Abstract] OR drug protein interaction [Title/Abstract])). The 

query generated 170 possibly germane articles. We manually processed these results to select articles that describe 



similarity-based predictors that were published in reputable journals, i.e., journals with impact factor > 3.5. We 

collected the impact factors from the latest Journal Citation Reports that was released by Clarivate Analytics 

(formerly Thomson Reuters) on June 14, 2017 [111]. The resulting 35 similarity-based DPI predictors are included 

in this review [102-109, 112-138]. This list is longer than the lists covered in the prior surveys which also include 

methods published in conference proceedings, lower impact factor journals as well as methods that target 

ligand/chemical-protein interactions besides DPIs. 

Overview and classification of the similarity-based methods 

The similarity-based predictors of DPIs are implemented based on the assertions that similar drugs may share the 

same protein targets and that similar proteins may interact with the same drugs. Therefore, the core aspect that 

defines these predictions is how to measure the drug-drug and protein-protein similarities. These similarities are 

typically quantified using the chemical structures of drugs, side-effect profiles of drugs, and sequences of their 

protein targets. In other words, the predictors rely on three main types of similarities: drug structure similarity (DSS), 

drug profile similarity (DPS), and protein sequence similarity (PSS). 

 

Prediction of DPIs is performed in three steps. First, a user provides inputs in the form of drug structure, drug profile, 

and/or protein sequence(s) of known target(s) for the input drug; whatever is necessary for the selected similarity-

based approach. The predictors rely on two components: a predictive model and a database of known DPIs. In the 

second step, similarities between the input drug structure and/or profile and the structures and profiles of the drugs 

in the database are computed. If target(s) of the query drug are known or can be collected from the database (the 

query drug is already included in the database), then similarity between the target of the query drug and all proteins 

targets in the database is also computed. In the third step, the predictive model combines the similarities to produce 

a propensity which quantifies likelihood that the query drug interacts with protein targets included in the database. 

 

The three types of similarities can be combined to formulate an ensemble predictor with the underlining goal to 

improve predictive quality when compared to using a single similarity. Many of the predictors proposed in recent 

years rely on the ensembles that include two or three similarity types. Consequently, we categorize the 35 considered 

predictors into three groups: the methods that apply one type of similarity (1S), ensemble models that combine two 

types of similarities (2S), and ensembles of all three similarities (3S). Table 1 summarizes how these predictors 

quantify and combine different similarities. 

 

Table 1 includes six 1S predictors. Four methods [104, 108, 127, 135] measure DSS based on Tanimoto coefficient 

[139] that quantifies similarity between drug structures which are represented using molecular fingerprints [140, 

141]. One predictor applies a statistical test over a set of DSSs based on Tanimoto coefficients between an input 

drug and a group of drugs in its internal database which are known to bind the input protein target [112]. The other 

method, DrugMiner, converts protein sequences into numeric feature vectors that represent physicochemical 

properties and amino acid compositions. Subsequently, it quantifies PSS for these feature vectors using machine 

learning algorithms and estimates druggability of a given protein based on its PSS to the known drug targets [102]. 

 

There are twenty three 2S models that utilize two types of similarities. Besides listing the similarity types we also 

define how they are combined together to generate predictions. Almost all of the 2S methods (21 out of 23) integrate 

DSS and PSS. Eleven predictors [113, 116, 119-121, 124, 126, 132-134, 136] quantify DSS using the SIMCOP 

algorithm [142, 143] while two other predictors [131, 137] utilize Tanimoto coefficient; these 13 methods rely on 



sequence alignment algorithms such as BLAST [144] and Smith-Waterman [145] to measure PSS. A set of eight 

other methods represents drug structures and protein sequences using feature vectors that quantify DSS and PSS 

and they apply machine learning algorithms to generate predictions. These algorithms include kernel functions [105, 

106, 115, 118, 123, 138], neural networks [103], and decision trees [109]. DPS is adopted rarely. Only two 2S 

predictors combine DPS with DSS [114, 125]. They define drug side-effect profile as a vector of binary values that 

indicate the presence or absence of specific side-effect terms. They quantify DPS based on weighted Tanimoto 

coefficients that measure similarities between side-effect profiles. The predictive models applied in these methods 

reveal that DPS could be used to infer DPIs in a similar way to DSS. This approach assumes that drugs that have 

similar side-effects are likely to target the same proteins. The drug profiles that were used in Ref. [114] have 

motivated the development of the SIDER database which stores drug side-effect information [146, 147]. This 

resource was later used in other works that we review including another 2S model [125] and three 3S methods [107, 

122, 130]. However, SIDER focuses on marketed drugs and so the information about drug side-effects it provides 

is narrower when compared to drug structures that encompass a wider spectrum of drugs and protein sequences that 

span the entire human proteome. This is likely the reason why DPS is less frequently employed. Moreover, none of 

the 23 2S methods combines DPS with PSS. There are two ways in which the predictors combine two similarities. 

Five predictors apply a simple summation and weighted summation of two similarities [114, 124-126, 137]. The 

other predictors employ a more complex approach that typically involves operations such as maximum, 

multiplication, and geometric mean of multiple similarities. 

 

There are six 3S methods that combine all three similarities. They utilize the same approaches to quantify DSS and 

PSS as the 1S and 2S models. Three of the six methods compute DPS based on the cosine correlation coefficients 

between side-effect profiles [117, 122, 128] while two other models use Tanimoto coefficients [107, 130]. The sixth 

predictor [148] defines drug profiles using the ATC codes, which represent hierarchical classification of drugs and 

measure semantic similarity between ATC codes [129]. Like for the 2S methods, the 3S models utilize either a 

simple summation [128, 130] or a more complex approach to combine similarities [107, 117, 122, 129]. 

  

The same types of similarities are also utilized in other related predictive efforts. For instance, they are used to 

predict drug-disease associations [149, 150].  

Assessment of predictive performance and sensitivity of predictive performance to 

characteristics of predictors 

Another important aspect of the considered DPI predictors is the assessment of their predictive performance. The 

predictions are always provided at an interaction level, which means that the predictive models identify whether a 

given drug-protein pair interacts. Two early predictors were assessed solely using the interacting drug-protein pairs 

(see “Scope of evaluation” column in Supplementary Table S2) [114, 127]. While such assessment evaluates true 

positive rate (TPR), which is defined as fraction of interactions that are correctly identified, it lacks the ability to 

assess specificity, which measures the fraction of correctly predicted non-interactions. The other 33 methods provide 

assessment for both interacting and non-interacting drug-protein pairs. This type of assessment is more complete as 

it measures not only TPR but also the capability to correctly identify the non-interacting pairs that constitute 

majority of all possible drug-protein pairs. Moreover, the considered 35 predictors report their predictive 

performance over all drug-protein pairs that span multiple drugs. This means that they did not assess and compare 

predictive quality for individual drugs (see “Predictive quality” column in Table 1). However, drugs differ in their 

structures, profiles, and the number and type of protein partners that they bind to, and these factors likely impact 



the predictive performance. 

 

Besides quantifying predictive performance, it is also essential to justify the use of ensembles. Since the ensembles 

require more computations and are more complex to implement than the 1S models, they must offer other benefits 

to balance these drawbacks. In particular, these benefits typically boil down to higher predictive performance when 

compared to the 1S methods. Only six out of 23 2S methods compare 2S model with 1S to quantify the 

corresponding improvement in the predictive quality evaluated per interaction (see “Benefit of ensemble” column 

in Table 1) [114, 116, 118, 120, 125, 137]. Additionally, three 3S methods provide empirical evidence that the 

ensemble of three similarities boosts the predictive quality at interaction level when compared to the 2S ensembles 

[117, 122, 128]. While this suggests that ensemble models may provide more accurate results than the 1S models, 

follow up studies are needed to explore the benefits of ensembles using both per interaction and per drug evaluation. 

Moreover, none of these methods has comprehensively compare all three 1S, three 2S, and one 3S models, which 

would provide more insights on the use of the similarity-based predictors. 

 

Another interesting aspect is sensitivity of predictive performance to certain characteristics of predictors. For 

example, in a scenario where the query drug is dissimilar to the drugs in the internal database of a given predictor, 

DSS and DPS are likely to be ineffective. On the other hand, if the query drug has sufficient levels of similarity to 

some of the drugs in the internal database then we can use these similar drugs to likely accurately predict the protein 

targets. Similarity between the user-provided inputs and the contents of the internal database of a given predictor 

relies on an intrinsic property of this predictor (i.e., its database). On the other hand, predictive performance could 

be also affected by extrinsic to the predictor and known a priori properties of the query drug and targets, such as the 

drug promiscuity. For instance, it might be easier to identify DPIs for a drug that target numerous proteins because 

this increases a chance to find many other similar targets in the internal database. Analysis of sensitivity of 

performance to these characteristics would help to calibrate the expectations of predictive quality and optimize the 

design of predictors for specific use cases. However, this type of sensitivity analysis was never addressed in the past 

studies (see “Sensitivity analysis” column in Table 1). 

 

Besides quantifying predictive performance in silico, some of these predictive tools were also assessed 

experimentally. In that case, the correctness of the putative DPIs that they generate was verified by in vitro binding 

assays and cell assays. This type of validation was done for the earliest predictor [112], the method that first defined 

DPS [114], and in one recent study [107]. 

Impact of the similarity-based methods 

One way to measure the impact is to consider the impact factors of venues where these methods were published. 

We also collect and compare their citation counts. Supplementary Table S2 lists the journal impact factors that were 

collected from the Journal Citation Reports (Clarivate Analytics, 2017) [111]. While by design these methods were 

published in journals with impact factor > 3.5, the median impact factor of these journals is 5 and four journals have 

impact factor > 10. The table also shows total and annual counts of citations which were collected from Google 

Scholar on April 1, 2018. The annual count is measured as an average citation frequency per calendar year (365 

days) calculated over the period from publication date until April 1, 2018. The three pioneering methods that were 

published in 2007 and 2008 [112-114] have together accumulated 2260 citations. This number is greater than the 

combined citation count (1966) of the remaining 33 predictors. These three highly cited predictors include the 

earliest 1S and 2S models that defined the three main types of similarities for the DPI prediction. Moreover, most 



of the 35 considered methods enjoy high levels of annual citations (median = 10), in many cases exceeding the 

corresponding journal impact factors (median = 5). This result suggests that the similarity-based DPI predictors 

elicit strong interest of the scientific community. 

Databases used by the similarity-based methods 

One of the key factors that affect the quality of the similarity-based methods is data contents of internal databases 

which are a part of these methods. The internal databases contain native DPIs that are derived from anywhere 

between one and six source databases. These sources include MDDR [22, 23], PDSP Ki [24], BRENDA [25-33], 

BindingDB [34-38], TTD [39-44], KEGG BRITE [45-51], DrugBank [52-56], GLIDA [57, 58], KEGG DRUG [45-

51], SuperTarget [59, 60], Matador [59], STITCH [61-65], and ChEMBL [66-69] (see “Source databases” column 

in Supplementary Table S2). Supplementary Table S2 shows that most of the internal databases cover between 276 

and 7,739 drugs. Some of the internal databases also include other drug-like molecules, and correspondingly their 

sizes are larger and they span between 22,839 and 105,946 molecules. The number of protein targets in the internal 

databases ranges between 246 and 6,662, with the median of 989. These are typically human proteins, except for 

nine methods that do not explicitly specify organism information of the proteins that they use (see “Focus on human 

proteins” column in Supplementary Table S2). These numbers are comparable to an expected scale of druggable 

human proteome, which is estimated to include between 1,000 and 3,000 proteins [2, 19-21]. Another important 

measure that quantifies coverage of the internal databases is the number of DPIs. This number varies between 1,731 

and 155,208 with median of 5,127. While some databases include a large number of drugs or targets (e.g., databases 

for SEA, SDTNBI and EnsemDT/KRR predictors), they cover a relatively low number of DPIs per drug. The 

density of DPIs, which is calculated as the average number of DPIs per drug, varies widely between 1.1 and 11.5 

(see “DPIs/drug” column in Supplementary Table S2). Databases with low densities might be missing a substantial 

number of DPIs and consequently the corresponding predictors might provide inaccurate values of similarities. 

Moreover, higher density of interactions is likely associated with a more complete coverage of interactions for 

individual drugs. The corresponding internal databases can be used to provide a more reliable estimation of 

predictive quality at the drug level.  

 

 

To summarize the qualitative review of the 35 similarity-based DPI predictors, we show that they rely on a variety 

of approaches to quantify DSS, DPS, and PSS. Most of these predictors utilize ensembles that combine two or three 

types of similarities, were published in high impact venues and are highly cited. These studies assess predictive 

performance at the interaction level and some of them have demonstrated that the use of certain ensembles leads to 

improved predictive performance when compared to the use of a single similarity. However, a comprehensive 

empirical comparison of all types of similarities and their ensembles is still missing. Although the current works 

perform empirical assessments over a large number of drug-protein pairs, primarily in the druggable human 

proteome, the density of DPIs in the databases that were utilized in these assessments is rather low. Moreover, per 

drug assessment of the predictive quality was not yet performed. Similarly, sensitivity of predictive performance to 

characteristics of predictors was not yet studied. To this end, we provide comprehensive and in-depth empirical 

comparative analysis for a representative set of similarity-based predictors. First, we build a novel database that 

includes drugs characterized by high density of DPIs. Next, we comprehensively evaluate a representative set of 

predictors that are based on each of the three main types of similarities and the corresponding four possible 

ensembles. Besides evaluating predictive performance at the interaction level, we are the first to perform the drug 

level assessment and to offer a comprehensive analysis of sensitivity of predictive quality to the intrinsic and 



extrinsic characteristics of predictors, i.e., we consider 1S, 2S and 3S models and a relatively large number of 

characteristics. 

Empirical comparative analysis of similarity-based methods for 
prediction of drug-protein interactions 

We empirically evaluate seven representative similarity-based DPI predictors. These seven predictors rely on each 

of the three individually used similarities (DSS, DPS, and PSS) plus four ensembles that combine each pair and all 

three similarities. We delineate the setup for the assessment by describing the seven predictors and defining 

measures and a novel high-quality benchmark database of DPIs that we use to assess the predictive performance. 

Like in the previous studies, we analyze predictive performance at the interaction level. Moreover, we compare all 

seven representative methods, measure and compare predictive performance at the drug level, and provide a 

comprehensive analysis of sensitivity of predictive performance to characteristics of input drugs and proteins. 

Experimental setup 

Computation of similarities 

The key underpinning concepts that define similarity-based predictors of DPIs is how they quantify and combine 

the three similarities. We selected one representative approach drawn from previous works to measure each type of 

similarity. The Tanimoto similarity of chemical structures has been widely applied to quantify DSS [139]. Recent 

comparative studies have demonstrated that Tanimoto similarity is one of the best DSS measures [141, 151, 152]. 

Eleven selected predictors have used the Tanimoto coefficient to quantify DSS [104, 107, 108, 114, 125, 127, 129-

131, 135, 137]. The above reasons motivate our choice of this measure to quantify DSS. Tanimoto coefficient is 

computed based on molecular fingerprint that converts a chemical structure of a given drug into a bit vector of fixed 

size. For a given compound, the fingerprint represents presence of certain substructures with a bit value of 1 and 

their absence with a bit value of 0. Similarity of two drug structures is represented by the similarity between their 

corresponding bit vectors A and B: 

DSS (A, B) = a1b1 / (a1 + b1 – a1b1), 

where a1b1 is a count of corresponding positions where both vectors A and B have values 1, and a1 and b1 are the 

counts of positions with value 1 in vectors A and B, respectively. Higher value of the Tanimoto similarity means the 

two molecules are more structurally similar since they have a higher fraction of similar substructures in common. 

We use the Chemistry Development Kit software [153-156] to generate 1024-bit molecular fingerprints of drug 

structures and to compute the Tanimoto similarity between drugs. 

 

We quantify DPS based on a drug side-effect profile similarity introduced in one of the pioneering predictors that 

utilized this type of similarity for the first time [114]. A given drug is represented by a profile vector that denotes 

presence/absence of certain side-effect term with a bit value of 1/0. The profile similarity is computed using the 

weighted Tanimoto coefficient between the side-effect profiles of a given pair of drugs. Each side-effect term has 

its own weight. The weight is derived based on an abundance of the corresponding term in a large collection of 

drugs (all drugs included in the internal database) and a correlation of this term with the other terms. Higher weights 

are associated with terms that are less frequent (specific to a small number of drugs) and that are dissimilar to other 

terms (they are infrequently used together with other terms for the same drugs). Consequently, higher value of DPS 



means that a given pair of drugs share a high fraction of side-effect terms with high values of weights. This approach 

to quantify DPS is arguably more accurate than the approaches taken by some other methods that use a simpler 

definition of weights [130] or unweighted Tanimoto coefficients [125]. 

 

We use sequence alignment to estimate PSS. This is the most popular approach that was adopted by 18 predictors 

[107, 113, 116, 117, 119-121, 124, 126, 128-134, 136, 137]. First, we run BLAST [157, 158] with default parameters 

to perform sequence alignment between a sequence of a protein target of the input drug provided by user and each 

protein target in the database of known DPIs. BLAST finds the closest protein from the database based on a distance 

defined as the fraction of identical and similar residues in the pairwise alignment. Therefore, proteins from the 

database that have high value of sequence similarity are arguably likely to also interact with the input drug by the 

virtue of being similar to the known target of this drug. 

 

We create the four ensemble models using a linear combination of multiple types of similarities. This approach is 

in line with a number of published ensemble methods [114, 124-126, 137]. We consider the 3S model that combines 

the three types of similarities and three 2S ensembles that combine each pair of the three similarities, which we 

denote as DSS+DPS, DSS+PSS, and DPS+PSS. Some of the past methods combine similarities using more 

sophisticates approaches, such as machine learning models and drug-protein networks. A typical machine learning-

based predictor uses an algorithm such as SVM to combine multiple kernel functions/matrices derived from two or 

three similarities [128]. However, SVM requires computationally costly parameterization and this is a black-box 

method, which means that the model is so complex that is impossible to understand how predictions are performed. 

Network-based predictors rely on a linear combination of similarities to quantify weights associated with edges in 

the network [124]. These predictors require knowledge of drug-drug or drug-target connections (network edges) for 

an input drug. Consequently, they cannot be utilized to predict DPIs for drugs that are not already integrated in the 

network [79]. We opt to use the linear combination of similarities which is computationally efficient, white-box 

(linear function explicitly defines how similarities are combined), and works with novel drugs. We also compare 

this linear model with three other diverse and popular machine learning models including Naïve Bayes, C4.5 

decision tree and RBF network.  

Prediction of drug-protein interactions 

To perform the prediction, we screen the query drug against all candidate proteins from the internal database of 

known DPIs to evaluate how likely they may interact with this drug. Given the three types of similarities, the input 

information for the query drug may include drug structure, drug profile and/or protein sequences of its known targets. 

The procedure to perform predictions depends on which inputs are available. If the drug structure is available then 

for every candidate protein in the database we compute DSS between the query drug and every single drug that is 

known to bind to that candidate protein (excluding the query structure itself if the candidate protein is already known 

as a binding partner of this drug). The maximal value among these DSS values is used as the propensity of DPI 

between the query drug and the candidate protein. A higher propensity indicates that the candidate protein is more 

likely to bind to the query drug because this protein is known to be a target of a drug which is structurally similar 

to the query drug. This is consistent with an observation that similar drug structures share the same protein target 

[79, 87-89]. A similar procedure is used when the drug profile is available. The propensity of DPI for the input drug 

and a given candidate protein is computed as the maximal DPS between this drug and all drugs that are known to 

bind to this candidate protein in the database of known DPIs. Such prediction relies on the assertion that drugs with 

similar side-effect profiles likely target the same protein [114]. If the protein targets of the input drug are known 



and their sequences are available then we compute pairwise PSS between each candidate protein and all known 

targets of this drug (excluding the candidate protein itself if this protein is already known to interact with the query 

drug in the database). The maximal PSS among all known targets is used as the propensity of DPI for the query 

drug and the candidate protein. The sequence similarity-based prediction is motivated by an observation that similar 

proteins tend to interact with the same drug [79, 87-89]. If multiple inputs are available then they are combined 

together. We assess whether such ensembles of two or three similarities would provide improved quality of 

predictions when compared to using these similarities individually. 

Benchmark database of drug-protein interactions 

The DPI predictors rely on the internal database that contains native DPIs. We develop a novel benchmark database 

that we use as the internal database to evaluate these predictors. The benchmark database integrate three resources: 

Drug2Gene [159], Therapeutic Target Database (TTD) [39-44], and IUPHAR/BPS Guide to Pharmacology database 

(GtP) [160-165]. Our database is primarily derived from Drug2Gene that integrates 19 source databases. These 

sources include four databases, PDSP Ki [24], TTD [39-44], DrugBank [52-56], and ChEMBL [66-69], which are 

used in the 35 considered predictors to derive their internal databases. However, we also include 15 other sources: 

CGDCP [166], ChEBI [167], CTD [168], HGNC [169], GtP [160-165], Ligand Expo [170], MICAD [171], NCBI 

Gene [172], Pathway Commons DB [173], PDBsum [174], PharmGKB [175], Pubchem Bioassay [176], PubChem 

Compound [177], PubChem Substance [177], and UniProt [178]. Considering that the 35 predictors adopt no more 

than six source databases, Drug2Gene provides us with a more complete information about DPIs. Another survey 

also highlights Drug2Gene as the most comprehensive DPI database [179]. In particular, use of Drug2Gene helps 

us to acquire high density of DPIs in the benchmark database. However, Drug2Gene (version 5) incorporates older 

versions of the TTD database (release 2011) and GtP database (release 2012) when compared its other sources. 

Thus, we combined Drug2Gene with newer versions of TTD (release 2015) and GtP (release 2015). These three 

resources altogether cover 10,515 compounds, 16,880 proteins, and 161,736 interactions. The density of DPIs for 

this database is 15 DPIs/drug, before removal of duplicates across these sources (see first row in Supplementary 

Table S3). 

 

The seven predictors that we assess rely on quantification of the three types of similarities. Thus, drug structures, 

drug profiles, and protein sequences are required for every drug/protein entry in the benchmark database. Drug 

structures were collected from PubChem [177] by querying their compound identifiers (CIDs) that are available in 

three sources databases. Drug profiles were obtained from SIDER 2 [146, 147], a database of drug side-effects for 

marketed drugs, by matching PubChem CIDs. Protein sequences were retrieved from UniProt [178] using their 

UniProt accession numbers (UniProt IDs) which are available in TTD and GtP, and with the Entrez Gene [172] 

identifiers which are available in Drug2Gene. Consequently, drugs and proteins are respectively indexed by 

PubChem CIDs and UniProt IDs along with drug structures from PubChem, drug profiles from SIDER, and protein 

sequences from UniProt in the benchmark database. We found redundant drug/protein entries because older versions 

of TTD and GtP have already been imported into Drug2Gene. We removed the duplicate drugs and proteins by 

comparing PubChem CID and UniProt ID, respectively. SIDER 2 provides side-effects for 996 drugs, which limits 

the number of drugs in our benchmark database. After collecting information for computing similarities and 

cleaning the duplicates, the resulting benchmark database contains 965 drugs, 7,565 proteins, 93,015 interactions, 

and 96 DPIs/drug (see second row in Supplementary Table S3). Like most of studies in this area [102, 105-109, 113, 

114, 116, 117, 119-124, 126-130, 133-137], we focus on the human protein targets. Thus, we eliminated non-human 

proteins based on their taxonomic identifiers from UniProt. Consequently, 563 drugs, 1,537 proteins, 35,352 



interactions, and 63 DPIs/drug are left in the benchmark database (see third row in Supplementary Table S3). Next, 

to ensure that sufficient amount of information about drug structure and protein sequence similarities is available to 

perform empirical assessment (particularly at the drug level) and sensitivity analysis, we removed small compounds 

that have fewer than 10 atoms and drugs that have fewer than five known protein targets, respectively. The final 

version of the benchmark database is composed of 449 drugs, 1469 proteins, 34456 interactions, and includes 76 

DPIs/drug. When compared to the internal databases of the considered 35 predictors, this benchmark database is 

among the top 11% with respect to the number of DPIs (Supplementary Table S2). Moreover, an arguably key 

indicator of a high-quality benchmark DPI database is the density of DPIs. High density of interactions facilitates 

reliable estimates for per-drug assessment of predictive performance. The benchmark database has the highest 

density of DPIs at 76 DPIs/drug (Supplementary Table S2). This is a direct result of merging the largest number of 

sources of the DPI data. 

 

The source DPI databases include annotations of native interacting drug-protein pairs but they lack the annotations 

of non-interacting pairs. In the past, these databases were used to assess predictors of DPIs in several ways. A few 

early studies assessed predictive performance using only the native interacting pairs [114, 127]. These assessments 

are incomplete since they measured only the rate of correctly predicted native DPIs while they did not evaluate the 

predictive performance for the non-interacting pairs, i.e., they did not evaluate the number of false positives. More 

recent works have assessed predictions using both interacting and non-interacting drug-protein pairs. Most of these 

studies assume that the drug-protein pairs that are not annotated as interacting are non-interacting. This assumption 

may result in mislabeling some of the native interacting pairs as non-interacting; in particular, those that were not 

yet discovered. This commonly applied approach to annotate the non-interacting pairs relies on an assertion that the 

number of such mislabeled pairs is much smaller than the number of correctly assumed non-interacting pairs. We 

are the first to study this assumption empirically. We annotate weak binders among the native drug-protein binding 

pairs and we compare similarity between the assumed non-interacting drug-protein pairs and the similarity among 

the weakly binding pairs. We hypothesize that the assumed non-interacting drug-protein pairs can be used to 

represent the native non-interacting pairs if the difference between similarity of the non-interacting drug-protein 

pairs and similarity among the native interacting pairs is significantly higher than the difference between similarity 

of weak interactors and the similarity of the native interacting pairs. 

 

We map the drug-protein pairs from the benchmark database into the PDSP Ki database that provides binding 

affinities [24]. A high binding affinity (affinity constant Ki < 10 µM) is typically considered to indicate an interacting 

drug-protein pair [114, 180]. Consequently, we divide the mapped drug-protein pairs into three subsets: the native 

interacting pairs with Ki < 10 µM, weak native interacting pairs with Ki > 10 µM, and the non-interacting pairs that 

include all pairs that are not annotated as DPIs. We compute DSS, DPS, and PSS for the drug-protein pairs in each 

subset. Supplementary Figure S1 compares distributions of the values of three similarities for the native interacting 

pairs, weak native interacting pairs (borderline pairs), and non-interacting pairs. The distributions are represented 

by the 5th, 20th, 50th (median), 80th, and 95th percentiles. The results are consistent across the three similarities. The 

similarity values for the non-interacting drug-protein pairs are significantly lower when compared to the similarities 

for the weak native interactors (p-value < 0.01). They are also significantly lower when compared to the similarities 

for the native interacting pairs (p-value < 0.01). In other words, Supplementary Figure S1 reveals that only a small 

portion of the non-interacting pairs has DSS, DPS and PSS values that are comparable to the DSS, DPS and PSS 

values of the native DPIs, respectively. We also observe that the distributions for DPS and PSS for the weak native 

interactors are similar to the distributions for the native interactors (p-value = 0.11 and 0.65, respectively). While 



the difference between weak native interactors and native interactors for DSS is significant, the median DSS are 

0.65, 0.41, and 0.28 for the native interacting pairs, weak native interacting pairs and non-interacting pairs, 

respectively. Over 95% / 80% of the native interacting pairs have higher DSS values than at least 50% / 80% of the 

non-interacting pairs. In agreement with previous studies, these results suggest that the assumed non-interacting 

pairs can be used to represent non-interacting pairs since their similarity is significantly lower than the similarity of 

the weak native interactors and the native interactors, while the differences between the latter two sets of drug-

protein pairs are substantially smaller. We also observe that the number of non-interacting pairs that have relatively 

high PSS is greater than those that have relatively high DSS and PSS. This implies that predictions using PSS might 

be less accurate than the predictions with DSS or DPS. 

Assessment of predictive performance 

Using the benchmark database, we empirically test predictions for each of the 449 drugs by comparing the putative 

targets generated by a given method with the known native interactors for this drug. When testing predictions for a 

given drug, we remove information about its known targets from the database. We analyze the results across all 

drugs and separately for each drug. Like virtually all considered in this review methods we use the receiver operating 

characteristic (ROC) curve and the area under the ROC curve (AUC) to assess quality of DPI predictions [102, 103, 

105-109, 112, 113, 115-126, 128-138]. ROC curve is a plot of True Positive Rates (TPRs) against False Positive 

Rates (FPRs): 

TPR = TP / (TP + FN), 

FPR = FP / (FP + TN), 

where the TP (True Positive) and the TN (True Negative) are the numbers of native interacting pairs and a native 

non-interacting pairs that are predicted correctly, respectively; the FN (False Negative) is the number of native 

interacting pairs predicted as non-interacting; and the FP (False Positive) corresponds to the number of native non-

interacting pairs predicted as interacting. The predicted propensities are transformed into binary predictions 

(positive vs. negative) using threshold values, which are next used to compute the TPR and FPR. Drug-protein pairs 

with propensity above the threshold are assumed to bind (positive), otherwise they are assumed to be non-binding 

(negative). The thresholds are set to be equal to all unique values of the predicted propensities of DPIs in order to 

derive the most accurate ROC curve. Higher AUC values denote better predictive performance, i.e., they correspond 

to predictions that offer higher TPRs (more correct predictions of DPIs) for lower FPRs (fewer incorrect predictions 

of non-interactions as DPIs). 

 

The fraction of the native interacting drug-protein pairs among all drug-protein pairs in the benchmark database is 

at about 4%. Thus, for example, if FPR = 8% then the number of predicted putative DPIs is about twice the number 

of actual native interacting pairs. This corresponds to a substantial over-prediction of putative DPIs. Moreover, the 

AUC values are determined primarily by the part of the curve where FPR is high, focusing on the over-prediction, 

i.e., area under the curve for the low FPR values is much smaller than for high FPR values. Thus, motivated by 

recent works [181-185] we focus the lower part of ROC with FPR less than 4% (ROClow) where the number of 

incorrectly predicted DPIs is not larger than the number of native DPIs. Accordingly, we calculate the corresponding 

area under ROClow curve (AUClow). Moreover, to ease interpretation of this index, we report RatioAUClow = AUClow 

/ AUClow-random, where AUClow-random is AUClow for a random predictor. A random predictor generates TPRs that are 

equal to FPRs, resulting in a diagonal line in the TPR-FPR space. RatioAUClow measures to what degree a given 

predictor is better than a random predictor. RatioAUClow > 1 means the method is better than random. 



Empirical analysis of predictive performance 

We perform evaluation of the predictive quality of the three 1S predictors as well as their 2S and 3S ensembles. We 

assess predictive performance for each drug by removing it from the benchmark database, predicting its interactions 

with each proteins target in that database, and evaluating these predictions against the removed native interactions 

of this drug. We aggregate these results over all the drugs and 659,581 drug-protein pairs. A query drug might be 

dissimilar to the drugs in the benchmark database in terms of its structure and side-effect profile. To simulate a 

practical scenario, we limit the similarity between the query drug and the drugs in database. Specifically, given a 

query drug, we not only remove this drug but we also remove the drugs with above median DSS and DPS from the 

benchmark database when performing the evaluations. Use of the median represents an average case. Note that the 

protein sequences are easy to collect and all of them are available for every prediction. The complete set of 

sequences for human proteins can be obtained from UniProt. Thus, the predictions for a given query drug are 

generated based on the drugs with the below-median DSS and DPS, and the complete set of protein sequences. 

Assessment of predictive performance at the drug-protein interaction level 

Figure 1 shows the ROCs and ROCslow that measure the predictive quality at the interaction level over all drug-

protein pairs in the benchmark database for the three 1S, three 2S, and one 3S predictors. The 3S model has the 

highest AUC, AUClow and RatioAUClow values, which are given in the legend for Figure 1. The 1S models register a 

modest drop in predictive quality when compared to the 2S models. Specifically, the relative difference in AUC (in 

AUClow) between 3S and the best 2S model equals [0.926–0.913]/0.913 = 1.4% ([0.0285–0.0274]/0.0274 = 4.0%) 

(Figure 1A). The corresponding relative difference when comparing 3S and 1S models are at least [0.926-

0.883]/0.883 = 4.9% for AUC and [0.0285-0.0231]/0.0231 = 23.4% for AUClow. These results consistently 

demonstrate that the use of ensembles results in improvement in predictive quality. Moreover, our results show that 

adoption of the 3S, the three 2S, and DSS and DPS models provides high-quality predictions. The only relatively 

low results for PSS could be perhaps explained by the larger overlap of similarities between the native DPIs and 

non-DPIs observed in Supplementary Figure S1. Although DSS provides more accurate predictions in terms of 

AUC when compared to DPS and PSS, the ensemble of DPS+PSS outperforms the two 2S predictors that rely on 

DSS. Combing DPS and PSS provides the largest improvement over these similarities used individually. 

Specifically, the relative difference in AUC (in AUClow) is 4.8% (13.7%) and 20.4% (130%) when comparing 

DPS+PSS with DPS and PSS, respectively. The corresponding improvements for the other two 2S models are more 

modest. DSS+PSS provides a relative increase in AUC (in AUClow) when compared to DSS and PSS by 2.6% (9.5%) 

and 19.5% (143%), respectively. Similarly, the value of AUC (AUClow) for DSS+DPS is better by 1.9% (18.6%) 

and 3.3% (29.9%) than the values for DSS and DPS, respectively. One possible explanation for these differences is 

that each of the three similarities offers good predictive performance while DPS and PSS are lack any correlation 

(Spearman correlation coefficient (SCC) = 0.05), DSS and PSS are weakly correlated (SCC = 0.14), and DSS and 

DPS are modestly correlated (SCC = 0.30). Therefore, PSS and DPS complement each other the most which results 

in the largest improvement in the quality of predictions. 

 

When FPR is greater than 0.05, the number of native non-DPIs that are incorrectly predicted as DPIs is larger than 

the total number of native DPIs. In other words, we over-predict DPIs. Therefore, we utilize AUClow that considers 

the ROC curve for FPR < 0.05. The advantages of using multiple similarities, i.e., 3S vs 2S and 2S vs 1S, are 

maintained for AUClow (Figure 1B). The RatioAUClow reveals that 3S model is about 23 times more accurate than 

random predictions while 2S and 1S models are up to 22 and 19 times more accurate when compared to the random 



predictions. In particular, 3S predictor identifies 70% and the best 2S model finds 67% of native DPIs while they 

incorrectly recognize 5% of non-DPIs as DPIs (FPR = 0.05). Almost all predictors successfully detect over 63% of 

native DPIs (TPR > 0.6) at 5% level of FPR, except PSS which finds 33% of native DPIs. Similar to the evaluations 

based on the overall AUC, predictor based on DSS is the most accurate 1S model in terms of AUClow. Therefore, 

DSS drives the predictive quality of the ensembles. Moreover, PSS has the lowest performance of the three 

similarities, which is still eight times better than the random predictions. Moreover, PSS is helpful for the ensemble 

models given its lack of correlation with the other two similarities. The AUClow for the 2S ensembles that include 

PSS register relative improvement by 9.5% and 13.7% when contrasted with DSS and DPS, respectively. 

 

We also evaluate statistical significance of the differences in predictive quality between the 3S model, the three 2S 

models, and the three 1S models. To do that, we evaluate the differences over a diverse collection of 100 datasets 

drawn from the benchmark database. Each dataset includes 10% of randomly selected (without replacement) drugs 

from the benchmark database. Therefore, overlap between these datasets is minimal resulting in a large and diverse 

sampling of subsets of the benchmark datasets. We measure the AUC, AUClow, and RatioAUClow for each dataset. The 

corresponding averages and standard deviations quantified over the 100 datasets are given in Table 2. These 

averages are consistent with the results on the entire benchmark database that we give in Figure 1A. The p-values 

that measure significance of differences between all pairs of the considered seven methods are below 0.01, which 

mean that the differences in the predictive quality are statistically significant. This reveals that the benefits brought 

by the use of multiple similarities and the higher predictive performance of DSS compared to other 1S models are 

consistent over a diverse sampling of datasets. Overall, we show that 3S is the most accurate and significantly more 

accurate than the 2S predictors, while the 2S predictors are significantly better than the 1S models. DSS is 

significantly more accurate when compared to DPS and PSS. These observations provide useful hints for future 

users and designers of the DPI predictors. 

 

We study relationship between the predictive performance and similarity values by comparing predictions between 

the 3S and 1S models to understand how the predictive performance benefits from combining multiple similarities. 

We divide values of DSS, DPS, and PSS into 20 equally sized intervals and utilize these intervals to partition the 

benchmark database into subsets in which the drug-protein pairs have comparable similarity values. Figure 2 

deconstructs the 3S model into two dimensional plots of two similarities, each divided into 20 intervals for the total 

of 400 data points. This figure compares the predictive quality of the 3S model (shown inside of the first quadrant) 

with the three 1S models (left most vertical set of points and bottom most horizontal set of points, which are outside 

of the quadrant). The predictive quality is measured with accuracy defined as a fraction of correctly identified DPIs 

and non-DPIs to total number of drug-protein pairs in a given data point; we denote that by the bubble size in Figure 

2. We could not use AUC because some of these data points may not have either native DPIs or native non-DPIs. 

We use colors to denote relative enrichment of native DPIs and non-DPIs for each data point where dark red denotes 

enrichment in non-DPIs and dark green is for enrichment in DPIs. The enrichment is defined as the difference 

between the fractions of DPIs and non-DPIs, which are computed by dividing the number of native DPIs (non-DPIs) 

in a given data point by the total number of DPIs (non-DPIs) in the benchmark database. For instance, a light red 

point for DSS ∈	[0.25, 0.3] and PSS ∈ [0, 0.05] in Figure 2B shows that a modest majority of drug-protein pairs 

with these values of the two similarities are non-DPIs (which is denoted by the light red color) and accuracy of the 

3S model for this data point is 100% (which is denoted by the large size of the bubble). 

 

Figure 2A shows that the predictive accuracy for 3S model is separated into two distinct regions. The first region 



includes red data points for DSS ∈	[0.05, 0.45] and DPS ∈ [0, 0.15]. This region is enriched in native non-DPIs (red 

color) and has high predictive accuracy (large bubble). The second region includes green data points for DSS ∈	
[0.45, 1] and DPS ∈ [0.1, 0.3]. This region is enriched in native DPIs (green color) and has lower predictive accuracy 

(smaller bubble) when compared to the red region. As expected, the colors reveal that the native non-DPIs are 

concentrated in the drug-protein pairs with low values of DSS and DPS while the native DPIs are more enriched in 

the drug-protein pairs with high similarities. This demonstrates that similarities could be used to discriminate DPIs 

from non-DPIs. The bubble sizes reveal that it is easier to provide high predictive performance for non-DPIs because 

they contain many drug-protein pairs and most of them include drugs which are very dissimilar to drugs which are 

known to bind the same protein. Such dissimilar drugs are easy to be correctly predicted as the non-interacting pairs. 

On the other hand, the predictions are less accurate for the green bubbles. This is because they cover drug-protein 

pairs for which drug structures are similar to the drugs that interact with the same proteins. Moreover, some of the 

pairs in these bubbles are still non-DPIs and they are difficult to differentiate from the native DPIs. Most importantly, 

Figure 2A explains why 3S model is better than the corresponding two 1S models that rely on DSS and DPS. DSS 

values can be used to reliably separate non-DPIs (dark red bubbles in the bottom horizontal line where DSS <0.4) 

from DPIs (dark green bubbles where DSS > 0.5). However, drug-protein pairs for DSS between 0.4 and 0.5 cannot 

be easily separated. The separation of these drug-protein pairs into DPIs and non-DPIs can be improved by adding 

the values of DPS. Specifically, drug-protein pairs with DSS ∈	[0.4, 0.5] and DPS ∈	[0, 0.1] are mostly non-DPIs 

(red bubbles) while the drug-protein pairs with DSS ∈	[0.4, 0.5] and DPS > 0.1 are mostly DPIs (green bubbles). 

Moreover, the bubble sizes also suggest that the accuracy of the 3S model is better than DSS model. The bubble for 

DSS ∈	[0.45, 0. 5] has moderate accuracy = 78%. The corresponding column for the 3S model at DSS ∈	[0.45, 0.5] 

has includes much larger bubbles that correspond to higher accuracies. The accuracy for the 3S model is high 

(between 89% and 98%) when DPS < 0.2 and DSS ∈	[0.45, 0.5]. On average, accuracy of the 3S model for DSS ∈	
[0.45, 0.5] equals 84% when compared to 78% when DSS is employed alone. Similar observations can be made for 

Figure 2B. Overall, the 3S model improves over the 1S models in the interface between the red and green regions. 

 

We compare the 3S model that uses linear function (regression) to combine the three similarity types with three 

other machine learning models: Naïve Bayes, C4.5 decision tree and RBF network. The results are summarized in 

Table 3. We find that there is no clear winner. The two methods which offer favorable predictive performance that 

is balanced between AUC and AUClow measures are Naïve Bayes and regression. While the Naïve Bayes-based 

ensemble provides a slightly better AUC score, the regression-based ensemble offers a modestly higher AUClow and 

RatioAUClow. We argue that given the imbalanced nature of our dataset (native interacting DPIs constitute about 4% 

of the dataset) the regression is slightly more suitable for these predictions. The other two ensemble models that 

rely on the decision tree and the RBF network offer substantially lower AUC values. However, we observe that the 

decision tree-based ensemble outperforms Naïve Bayes and regression-derived ensembles when focusing solely on 

the AUClow, as the trade-off for the substantially reduced AUC. 

Assessment of predictive performance at drug level 

All previous studies evaluate predictive performance at the interaction level, which measures accuracy of the DPI 

predictions over drug-protein pairs that span across multiple drugs. Considering the fact that different drugs may 

share different levels of similarity to the benchmark database, it would be useful to evaluate these drugs individually. 

We provide first-of-its-kind assessment of predictive performance for DPI predictions at the drug level. The drug-

level assessment provides further insight into complementarity and differences between various 1S, 2S, and 3S 

predictors. We measure the AUC over the DPI predictions for each individual drug (AUCdrug), which evaluates the 



quality of associations that are predicted between a given drug and all of the 1469 druggable proteins. We ensure 

that each drug in the benchmark database has at least five protein targets, which allows us to provide relatively 

robust estimates of the AUCdrug values. 

 

The upper half of Figure 3 shows the AUCdrug for the three 1S predictors over each of the 449 drugs. The drugs are 

sorted by the corresponding AUCdrug values of DSS, which is the most accurate 1S model when measured at the 

interaction level (Figure 1). We divide the drugs into three groups. The first group of 150 drugs has AUCdrug for 

DSS > 0.96. The AUCdrug for DPS and PSS is virtually always lower than AUCdrug for DSS for this group. The 

second group of 195 drugs has AUCdrug for DSS between 0.96 and 0.86. The values of AUCdrug for PSS are almost 

always lower than DSS while AUCdrug for DPS and DSS are similar for these 195 drugs. The third group of the 

remaining 104 drugs has AUCdrug values for DSS that are on average lower than DPS and PSS. Although DSS and 

DPS are much better than PSS for the first two drug groups, the AUCdrug for PSS (0.752) for the third group of drugs 

is on average higher than the AUCdrug for DSS and DPS (0.674 and 0.709). This reveals that although overall PSS 

provides lower predictive performance, it outperforms the other two measures of similarity for 60/449 = 13% of 

drugs. 

 

Table 4 provides additional insights into the three drug groups. It summarizes differences in the DSS and DPS 

values between drugs in the same vs. other drug groups. These results reveal that the drugs in the first and second 

groups are similar to each other within the groups, both in terms of their structure (DSS = 0.66) and profile (DPS = 

0.21 and 0.20), when compared with the drugs in the third group which are substantially more diverse (DSS = 0.56 

and DPS = 0.16). The similarities between groups 1 and 2 are also relatively high (DSS ≥ 0.63 and DPS ≥ 0.20) 

when contrasted with the similarities between group 3 and the other two groups (DSS between 0.55 and 0.60; DPS 

between 0.15 and 0.18). Altogether, these results suggest that stronger predictive performance for the drugs in the 

first and second groups likely stems from the high levels of similarities between these drugs, while the drugs in the 

third group suffer lower predictive performance due to larger diversity of their structures and profiles. 

 

The interaction-level AUC of DSS across the 449 drugs is 0.883 (Figure 1). DSS achieves AUCdrug > 0.883 for 

324/449 = 72% of drugs. Moreover, AUCdrug for either DPS or PSS > AUCdrug for DSS for 100 out of the 125 drugs 

for which AUCdrug for DSS < 0.883. These drugs should be of particular focus for the designers of future DPI 

predictors since they should be predicted with the help of the DPS and PSS rather than the most accurate at the 

interaction level DSS. This reflects trade-offs between the three measures of similarity and motivates the 

development of predictors that use consensus of multiple similarities. 

 

We also compare the drug-level performance for the three 2S and the one 3S predictor with the most accurate 1S 

predictor, DSS. The lower half of Figure 3 shows the difference in AUCdrug between DSS and each of the four 

ensemble predictors. Overall, the ensemble models are more accurate than DSS for most of the drugs (green bars 

in Figure 3). Specifically, DSS is outperformed by DSS+DPS, DSS+PSS, DPS+PSS, and 3S model for 370, 222, 

244, and 349 drugs, respectively. We measure relative difference in AUCdrug, which is defined as the absolute 

difference in AUCdrug divided by the AUCdrug for DSS. The average relative differences in AUCdrug over the 449 

drugs between DSS and the four ensembles are 2% (when compared to DSS+DPS), 5% (DSS+PSS), 7% 

(DPS+PSS), and 8% (3S). Thus, as expected based on the interaction-level results, the 3S model is also the most 

accurate predictor at the drug level. The drug-level results for the 2S models are also consistent with the evaluations 

at the interaction level. DPS+PSS is the most accurate 2S predictor that secures 7% improvement over the DSS 



model. In particular, it benefits from PSS for the drugs in the third drug group. AUCdrug for DSS and DPS are 

correlated for the third drug group (SCC = 0.58). On the other hand, AUCdrug for PSS is not correlated with either 

DSS or DPS (SCC = 0.07 and 0.05) and it secures relatively high AUCdrug values. This implies that PSS is a strong 

predictive input that compliments the other two similarities, which explains why the ensemble predictors outperform 

DSS for the third group of drugs. 

 

Our novel drug-level assessment of predictive performance shows that no single similarity could provide accurate 

DPI predictions across all drugs. DSS is the most accurate 1S model and the primary driver of the ensemble-based 

predictors for the first two group of drugs. For 23% of drugs (the third drug group) for which DSS does not provide 

higher predictive quality, the use of the other two similarities substantially increases the predictive performance. 

The 1S models are strongly dependent on the assumption that similar drugs share the same targets and similar 

proteins tend to interact with the same drug. The complementarity between PSS and DSS/DPS allows us to 

accurately cover a wider range of drugs for which only some of these similarities work individually. 

Sensitivity of predictive performance to characteristics of predictors 

The predictive performance can be influenced by two factors: 1) intrinsic characteristics of the similarity-based 

predictors of DPIs, which are defined based on similarity of the query drug or its known targets to the benchmark 

database; and 2) extrinsic characteristics that are defined solely based on properties of the query drug and its known 

targets. For instance, if the query drug is similar to many of the drugs from the benchmark database then we 

anticipate it might be more likely to accurately find its protein targets when compared to a drug that is dissimilar to 

the drugs in the database. Also, a query drug that has a large number of known targets might be easier to predict, 

irrespective of the predictive system used. This is because its targets can be exploited to find more potential new 

targets from the database when compared to a query drug with no or few known targets. Some prior works have 

analyzed sensitivity of predictive performance to the intrinsic and extrinsic factors. For instance, two articles that 

use 2S model (DSS and PSS) for the prediction of DPIs have assessed impact of the number of binding drugs per 

target (extrinsic characteristic) and the DSS values (intrinsic characteristic) on the predictive quality [186, 187]. We 

provide a more comprehensive assessment of the sensitivity of predictive quality to a set of practical intrinsic and 

extrinsic characteristics of predictors. We evaluate 1S, 2S and 3S predictors and we cover a wide range of extrinsic 

characteristics for each of the three types of similarities. 

Sensitivity to intrinsic characteristics 

Similarity-based DPI predictors rely on finding drugs that are similar to a query drug and proteins that are similar 

to the known targets of the query drug. The quality of DPI predictions depends on the values of the similarities 

between query drug/protein and the benchmark database, which in turn are dependent on the size and coverage of 

the database. In principle, the benchmark database is incomplete as it only covers the currently known drug 

structures, drug profiles, and druggable human sequences. In a typical practical scenario, a query drug might be 

dissimilar to all the drugs in the benchmark database. This reduces the chance that a DSS- or DPS-based predictor 

successfully identifies potential DPIs for the query drug, even if the query drug actually shares targets with the 

drugs in the benchmark database. We simulate such scenarios by excluding drugs (proteins) that share certain levels 

of similarity to the query drug (target) from the benchmark database when making predictions for the query drug 

(target). We partition the drugs and proteins from the benchmark databases into clusters using average-linkage 

hierarchical clustering [188]. As a result, the average similarity of drugs or proteins between any two clusters is 



lower than a predefined similarity threshold used for the clustering. In other words, the drugs (proteins) from one 

cluster are dissimilar to drugs (proteins) from another cluster. Subsequently, given a query drug (protein), we 

exclude the drugs (proteins) that belong to its cluster and use the only remaining drugs (proteins) to compute 

DSS/DPS/PSS for prediction. Thus, the predictions are based on drugs and proteins that are dissimilar to the inputs. 

Specifically, we use the 80th, 50th (median), and 20th percentile of similarity values over all the drug-protein pairs in 

the benchmark database as the clustering thresholds. We also consider a scenario where all drugs and proteins are 

utilized for the predictions except for the query drug or protein itself. This scenario is equivalent to the clustering 

using the 100th (maximal) percentile of similarity values. Additionally, random predictions that correspond to the 

0th percentile are also considered. We use these five scenarios to study the sensitivity of the predictive performance 

to the similarities between the query drug (protein) and the benchmark database. The predictive performance is 

quantified with the interaction-level AUCs. 

 

Supplementary Figure S2 shows the ROC curves for the five scenarios and the three 1S, three 2S, and one 3S model. 

Figure 4 summarizes the corresponding AUC values. In general, all but one model are not sensitive to the three 

intrinsic characteristics. The range of AUC values between 100th and 20th percentiles of similarities for the 3S, the 

three 2S, DSS, and DPS models is narrow. This means that predictive quality drops by only between 0.04 

(DSS+DPS and DSS) and 0.07 (DSS+PSS and DPS+PSS) with the decrease in similarities by 80%. Consequently, 

the six models offer high predictive quality even when dealing with the input drugs that have low similarity to the 

benchmark database. The one exception is the PSS model for which the predictive performance is sensitive to the 

degree of similarity to the targets in the database. Its AUC value substantially drops from 0.76 (100th percentile; 

clustering threshold for PSS = 0.4 which corresponds to 40% pairwise sequence similarity) to 0.56 (50th percentile; 

threshold = 19% pairwise sequence similarity). The results for the 20th percentile of PSS (threshold = 10% pairwise 

sequence similarity) are equivalent to random predictions. This is consistent with previous studies which unveiled 

that protein sequences with identity < 0.25 are likely to have different functions and structures [189, 190]. This is 

also related to our observations in the Supplementary Figure S1 where the distributions of the PSS values overlap 

between interacting and non-interacting drug-protein pairs, in particular when compared to DSS and DPS.  

 

This analysis also confirms that use of a larger set of similarities in general results in an improved predictive 

performance. In particular, for the 100th percentile scenario, the AUC of the best 1S model is 0.91, the best 2S model 

is 0.93, and the 3S model is 0.94. Because the adoption of low PSS similarities results in lower predictive 

performance, combining it with DSS or DPS into a 2S model does not enhance predictive performance (compare 

DSS+PSS vs DSS, and DPS+PSS vs DPS plots in Figure 4). 

 

The results of analysis of sensitivity to the intrinsic characteristics of predictors reveal that the predictive 

performance is not sensitive to the values of DSS and DPS, while it is sensitive to the values of PSS. Moreover, 

combining PSS with DSS and/or DPS makes the predictors robust to the low values of PSS. We conclude that use 

of PSS only model is risky when the known targets of query drug are dissimilar to the targets in the benchmark 

database. 

Sensitivity to extrinsic characteristics 

Predictive performance could also be sensitive to extrinsic characteristics that describe known a priori input drug 

structure, drug profile, and protein target. We investigate a wide range of extrinsic characteristics for each of the 

three types of similarities. They include surface area, charge, shape, weight, size, lipophilicity, number of similar 



drugs, number of similar drugs sharing targets, and similarity to the most similar drugs which are computed from 

the drug structure. We also considered three markers of drug profiles: number of side-effects, similarity of the profile 

to the most similar profile, and number of similar profiles. Finally, we investigated three markers of the input drug 

targets: number of known targets, number of known targets that interact with similar drugs, and known targets that 

interact with the most similar drug. We discuss one “best” marker for each type of similarity, which we selected 

based on the fact that it significantly affects the predictive performance and is easy to quantify. These markers 

include the number of similar drug structures that share targets with the input drug, the number of side-effects, and 

the number of known targets.  

 

We study sensitivity of predictive quality to these extrinsic markers by partitioning the considered drugs into two 

groups for which we observe large differences in predictive performance. For the best DSS marker, we compare 

177 drugs that share targets with < 50 similar drugs (which corresponds to the median level of DSS) vs the remaining 

drugs that share targets with a larger number of similar drugs. Similarly, for the best DPS characteristic, we contrast 

55 drugs that have relatively small side-effects profile (<40) vs the remaining drugs that have a larger profile. Finally, 

for the best PSS marker, we compare 128 drugs with < 20 native targets vs the remaining more promiscuous drugs. 

Figure 5 compares distributions of AUCdrug values between these groups of drugs when considering the 

corresponding 1S models and the 3S model. 

 

Figure 5 shows that the AUCdrug for DSS varies substantially between 0.38 and 0.96 with a median = 0.85 for the 

drugs that share targets with fewer similar drugs. For the remaining drugs that share targets with the larger number 

of similar drugs, the AUCdrug for DSS is always > 0.86 with a median = 0.96. These drugs have lower variation and 

significantly higher values for AUCdrug (p-value < 0.05) when compared to the drug that share targets with fewer 

similar drugs. Similarly, the 3S model also has significantly higher AUCdrug values with narrower spread for the 

drugs with larger number of similar drugs sharing targets. These observations reveal that the predictive quality is 

significantly higher when working with drugs that share targets with a larger number of similar drugs in the 

benchmark database. Based on the assertion that similar drugs tend to target the same proteins, that makes it easier 

to accurately identify targets for such drugs when using DSS. In contrast, the drugs that share targets with a low 

number of similar drugs are harder to accurately predict. 

 

The AUCdrug for DPS is lower for the drugs that have a smaller profile (median AUCdrug = 0.92) than for the drugs 

that have larger profile (median AUCdrug = 0.94), but this difference is not statistically significant (p-value = 0.17). 

The corresponding difference for the 3S model is slightly larger and statistically significant (p-value < 0.05): median 

AUCdrug = 0.93 vs 0.96, respectively. Interestingly, while the difference is not significant when DPS is used 

individually, use of larger profiles is expected to provide significantly higher predictive performance when DPS is 

combined with PSS and DSS. Since DPS and PSS are not correlated (SCC = 0.05) while DPS and DSS are modestly 

correlated (SCC = 0.30), this suggests that relationship between DPS and DSS is exploited by the ensemble model 

to further benefit from the increased profile size. 

 

The differences in AUCdrug between the less vs more promiscuous drugs are significant for the PSS and 3S models 

(p-value < 0.05). The median AUCdrug for the 3S model is 0.91 for the less promiscuous drugs while it equals 0.96 

for the more promiscuous drugs. Similarly, for the 1S model that relies on PSS the median AUCdrug = 0.75 vs 0.77. 

This trend could be explained by an observation that the drugs which interact with many targets are more likely to 

have targets that are highly similar to the proteins in the benchmark database. This is supported by the assertion that 



similar proteins tend to interact with the same drugs. 

 

The results of the analysis of sensitivity to the extrinsic characteristics reveal that the predictive performance is 

sensitive to several easy to estimate characteristics of the input drug structures, drug profiles, and drug targets. As 

expected, we find that it is more likely to secure higher predictive quality when a more comprehensive information 

is available for the input drugs, such as a larger number of similar drugs sharing targets, a larger drug profile, and a 

higher number of known targets. 

CONNECTOR webserver 

CONNECTOR (prediCtOr of compouNd-proteiN intEraCTiOn based on ensemble of similaRities) is a webserver 

that implements the seven predictors that we evaluate in this review. The webserver and the benchmark database 

are freely available at http://biomine.cs.vcu.edu/servers/CONNECTOR/. 

 

CONNECTOR facilitates prediction for any combination of the three inputs including any individual input (drug 

structure, drug profile, and protein sequence), any pair of inputs, and all three inputs. CONNECTOR uses the 

benchmark dataset as its internal database. The computations are performed on the server side and thus the end user 

only needs to access the webserver page via any major web browser and provide the inputs. The prediction is 

performed in three steps: 1) provide any combination of the three inputs including drug structure in the SMILES 

format, comma separated list of side effects (drug profile), and/or protein sequences in the FASTA format; 2) provide 

email address where a unique link to the results will be sent once the predictions are ready; and 3) click “Run 

CONNECTOR”. Each submitted job is entered into a FIFO queue of jobs on the server. User is notified via the 

browser window about the current placement in the queue and when the job reaches the front of the queue. The 

results are displayed in the browser window and the unique link to the page with the results is sent to the user-

identified email address. We provide four views of the results: 

 All DPIs, which shows all putative drug-protein pairs that include query drug and target(s) and similar 

compounds and proteins. 

 DPIs that include the query drug structure, which cover interactions between the query drug structure and its 

putative protein targets (if drug structure was provided as one of the inputs) 

 DPIs that include the query drug profile, which include interactions between the query drug represented by its 

profile and its putative protein targets (if drug profile was provided as one of the inputs) 

 DPIs that include the query protein sequence, which gives interactions between the query target sequence and 

the drugs that are predicted to interact with this target (if target sequence was provided as one of the inputs) 

Each putative interaction is coupled with the corresponding value of similarity. Drugs are linked to their entries in 

the PubChem databases and target sequences are linked to their UniProt entries. We also provide a text-based version 

of the results for download. We will store the page with the results for at least three months. 

Summary and conclusions 

Computational prediction of DPIs is critical to facilitate pharmacological research and promote our understanding 

of therapeutic mechanisms and side-effects of drugs. We survey 35 high-impact similarity-based DPI predictors 

including eight recent methods that were published since 2016. We classify these methods according to the 



similarities they exploit. We summarize their source databases, provide details about their internal databases and 

predictive models, and perform first-of-its-kind empirical comparative analysis of predictive performance for a 

representative set of seven methods.  

 

We categorize these methods based on the type and number of similarities that they use. The predictors rely on three 

types of similarities: DSS, DPS, and PSS, which can be used either individually (1S models) or as ensembles (2S 

and 3S models). Most of these predictors utilize 2S and 3S ensembles, with twenty 2S and five 3S ensembles out 

of the 35 considered tools. Only two 2S ensembles include DPS, likely because collection of these data and 

calculation of this similarity is challenging [114, 125]. We find that most DPI predictors are highly cited and were 

published in high impact venues. We show that the three pioneering methods [112-114] that were published in 2007 

and 2008 already received over 2200 citations, which is more than all the subsequent methods combined together. 

However, majority of the 35 considered predictors also received high citation counts that exceed the impact factors 

of the journals where they were published. One of the key defining factors of the similarity-based methods is the 

size and scope of their internal databases. While some internal databases have a large number of drugs or targets, 

we found that in general they provide a relatively sparse mapping of their interactions. The density of DPIs in these 

databases varies between 1 and 10. 

 

We have developed a novel benchmark database that includes drugs characterized by high density of interactions 

and we use it to evaluate a representative set of 1S, 2S, and 3S predictors. This database integrates data coming 

from three resources (19 source databases) and includes 449 drugs, 1469 druggable human proteins, and 34456 

native DPIs, resulting in high density of native DPIs per drug that equals 76. We observe that most of the surveyed 

methods have evaluated predictive performance on both DPIs and non-DPIs, which allowed for computation of 

TPR, FPR, and the resulting AUC values. However, these methods accessed predictive performance only at the 

interaction level that spans multiple drugs which may differ in structure, profile, and the number and type of protein 

partners that they bind to. We are the first to perform both interaction- and drug-level assessment and to 

comprehensively and side-by-side compare all 1S, 2S, and 3S models.  

 

At the interaction level, we reveal that the use of ensembles results in improved predictive quality. Specifically, the 

3S model significantly outperforms the 1S and 2S models, while the 2S models are significantly more accurate than 

the 1S models. We empirically analyze reason for these improvements and we show that they stem from an improved 

handling of interactions characterized by modest levels of similarities. Among the three 1S models, DSS and DPS 

are more accurate than PSS. We find a modest level of correlation between DSS and DPS while correlations between 

PSS and DSS as well as PSS and DPS are low. The modest or low levels of correlations further explain why the 

ensembles benefit from the integration of multiple similarities and why the majority of current predictors are 

ensembles. We also compare four algorithms that can be used to develop the 3S ensembles. Among these algorithms, 

the linear regression offers the most balanced and slightly more accurate predictions, while decision trees should be 

used when focusing on the predictions with low false positive rates.  

 

At the drug level, we demonstrate that the predictive quality varies widely between drugs and these differences 

depend on the type of similarity used. We show that no single 1S model could provide accurate DPI predictions 

across all the drugs. Moreover, we demonstrate that ensembles improve over the 1S models. The average relative 

improvements in AUCdrug over the 449 drugs between the best 1S model, DSS, and the four ensembles are: 2% 

(compared to DSS+DPS), 5% (DSS+PSS), 7% (DPS+PSS), and 8% (3S). We divide drugs into three groups: group 



one includes 150 drugs with high AUCdrug for DSS; group two includes 195 drugs with moderate AUCdrug for DSS; 

and group three with 104 drugs for which AUCdrug for DSS is on average lower than DPS and PSS. We found that 

the use of 3S ensemble provides particularly large improvements by on average 29% in AUCdrug over the use of 

DSS for the 23% of drugs which constitute the third group. Our empirical analysis also reveals that although per-

interaction PSS provides the lowest predictive performance, it outperforms the other two 1S models for 13% of 

drugs when assessed at the drug level. These drugs should be of particular focus for the development of future DPI 

predictors because more accurate predictions could be obtained with the help of the DPS and PSS rather than with 

the overall most accurate at the interaction-level DSS that dominates the current methods. 

 

DPI prediction relies on accurate values of similarities between the query drug (its known target) and the drugs 

(proteins) in the benchmark database. The quality of these values is likely affected by the intrinsic characteristics 

of predictors, such as the similarity between inputs and the benchmark database. We provide comprehensive 

sensitivity analysis of predictive quality for each of the three similarities. We find that the predictive quality is not 

sensitive to the values of DSS and DPS, which means that the predictive performance of the methods that utilize 

DSS/DPS does not substantially change when the input drug structures or profiles are dissimilar to the structures 

and profiles in the internal database. In contrast, the predictive quality for PSS drops significantly when the input 

protein sequences are dissimilar to the sequences in the database. However, such sensitivity to low values of PSS is 

mitigated when using methods that combine PSS with other similarities. These observations demonstrate that the 

ensembles are not only accurate at the interaction and drug levels but they are also robust to low values of similarities. 

 

We also investigate sensitivity of predictive quality to extrinsic characteristics of the predictive models. These 

extrinsic characteristics are intrinsic to the inputs and include information extracted directly from drug structures, 

drug profiles, and drug targets. We find that the 3S model and the corresponding 1S models are more likely to 

provide accurate predictions when the input drugs share targets with a larger number of similar drugs in the 

benchmark database and when the input drugs are more promiscuous. The 3S model also benefits from scenarios 

when the input drugs have larger side-effect profiles. This suggest that a larger amount of available data (number 

of known targets and/or side-effects) leads to calculations of higher quality and higher values of similarities, which 

in turn results in higher predictive performance. 

Supplementary Data 

Supplementary data are available online at http://bib.oxfordjournals.org/. 

Key points 

 Drug structure, drug profile, and protein sequence similarity are the main types of similarity measures that 

are used for DPI prediction. 

 A benchmark database with high density of DPIs is developed. This database is particularly suitable for 

comparative empirical assessment of DPI predictors. 

 Ensembles of multiple similarities offer higher predictive quality than models that rely on single or fewer 

similarities. This result is consistent for evaluations at both interaction and drug level. 

 A novel drug-level assessment of predictive performance provides additional insights. It shows that 



different combination of similarities should be used for different drugs. 

 A comprehensive sensitivity analysis of predictive performance to the intrinsic and extrinsic characteristics 

of DPI predictors reveals sensitivity to lower values PSS and to several extrinsic properties of the input 

drug structures, profiles, and targets.  
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Figure 1. Comparison of predictive performance for the 1S, 2S, and 3S DPI predictors measured at the interaction 

level. Panel A shows ROC curves and panel B shows ROClow for which FPRs ≤ 0.05. Diagonal dotted line denotes 

the ROC curve for a random predictor for which TPR = FPR. Values of AUC, AUClow and RatioAUClow are shown in 

the legend for panel A. 
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Figure 2. Comparison of predictive performance between 3S and 1S models in the function of values of the three 
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similarities. The values of the three similarities are divided into 20 equally sized intervals. The comparison of the 

3S vs the three 1S models is divided into two panels that compare the 3S model vs. two sets of 1S models each. 

Panel A shows the comparison of 3S vs. DSS and DPS. Panel B shows the comparison of 3S vs. DSS and PSS. 

Accuracy for the 3S model is shown inside the first quadrant while 1S models are given as a horizontal line below 

x-axis and a vertical line to left from the y-axis. Each bubble represents the drug-protein pairs in a given interval. 

Bubble sizes denote accuracy, which is defined as the fraction of correctly identified DPIs and non-DPIs to total 

number of drug-protein pairs in that bubble. Color denotes enrichment in native DPIs/non-DPIs, which is defined 

as the difference between the fractions of native DPIs and non-DPIs. These are computed by dividing the number 

of DPIs (non-DPIs) in a given bubble by the total number of DPIs (non-DPIs) in the benchmark database. We 

discretize the enrichment into five levels: dark green (dark red) bubble denotes significant enrichment in DPIs (non-

DPIs) if the difference ≥1%; light green (light red) bubble indicates moderate enrichment in DPIs (non-DPIs) if the 

difference ≥0.5%; and white hollow bubble means no enrichment for which the difference <0.5%. White space in 

the figure denotes bubbles that we removed because they contain fewer than 100 drug-protein pairs; this is to ensure 

that statistics are robust. 

  



 

Figure 3. Comparison of predictive performance for the considered DPI predictors at the drug level. Black and gray 

lines at the top of the figure show the AUC measured per drug (AUCdrug) for each of the three 1S models. Drugs are 

sorted by their AUC produced by the most accurate DSS model. The four sets of bar charts at the bottom of the 

figure show the difference in drug-level AUC between each ensemble model and DSS. Green bar (red bar) means 

improvement (decline) in the AUCdrug values. 

 

 

 

 

Figure 4. Sensitivity of predictive performance to the intrinsic characteristics of predictors. The box-plots denotes 

the AUC values for the scenarios where drugs (proteins) similar to the query drug (protein) are excluded from 

predictions based on clustering using the 100th, 80th, 50th, and 20th percentile of the similarities. The bottom bar 

denotes random predictions that corresponds to the 0th percentile (AUC = 0.5).\ 
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Figure 5. Sensitivity of predictive quality to extrinsic characteristics of predictors. The boxplots denote the 5th, 

20th, 50th, 80th, and 95th percentiles of AUCdrug values for the 1S and 3S model over the corresponding two groups 

of drugs separated with help of a given marker that characterizes the input drug/targets. The asterisk indicates that 

the difference in the AUCdrug is significant (p-value < 0.05) between drug groups. We assess significance of 

differences between the corresponding two groups of drugs using the Wilcoxon rank sum test; we use the non-

parametric test since these data are not normal according to the Anderson-Darling test at 0.01 significance.  
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Table 1. Comparison of 35 similarity-based DPI predictors that were published in high impact venues. We group these 

predictors into three categories (separated by horizontal line): predictors using one similarity (1S), predictors combining two 

types of similarities (2S), and predictors integrating three type of similarities (3S). Methods are sorted chronologically within 

each group. We summarize approaches that are used to quantify similarities and to compute ensembles of similarities for each 

predictor. We also summarize their empirical evaluation with information about inclusion of assessment of predictive quality, 

assessment of benefits of use of ensembles, assessment at per DPI and per drug levels, and analysis of sensitivity of predictive 

performance to intrinsic characteristics (similarity of inputs to the database) and extrinsic characteristics (information about the 

inputs) of predictors. The check symbol √ means a given assessment is included for a given method (row) while a blank cell 

means it is not included.  

 

Type of 
predictor Predictor Year 

Similarities and their ensembles1 Predictive 
quality 

Benefit of 
ensemble 

 Sensitivity analysis 

DSS DPS PSS Ensemble2 per 
DPI

per 
drug

per 
DPI

per 
drug 

 
Intrinsic Extrinsic

1S 

SEA [112] 2007 SE N/A √ N/A N/A   

PRW & NB [127] 2013 TC N/A √ N/A N/A   

DrugMiner [102] 2016  ML N/A √ N/A N/A   

SDTNBI [135] 2016 TC N/A √ N/A N/A   

Peón et al. [104] 2017 TC N/A √ N/A N/A   
bSDTNBI [108] 2017 TC N/A √ N/A N/A   

2S 

KRM [113] 2008 SI AL C √    

Campillos et al. [114] 2008 TC TC S √ √    

COPICAT [115] 2009 KF KF C √    

BLM [116] 2009 SI AL C √ √    

Yabuuchi et al. [118] 2011 KF KF C √ √    

GIP [119] 2011 SI AL C √    

NBI [120] 2012 SI AL C √ √    

KBMF2K [121] 2012 SI AL C √    

Cao et al. [123] 2012 KF KF C √    

BLM-NII [124] 2012 SI AL S √    

Cheng et al. [125] 2013 TC TC S & C √ √    

DT-Hybrid [126] 2013 SI AL S √    

RWR [131] 2015 TC AL C √    

SLP & RLS [132] 2015 SI AL C √    

RLS-KF [133] 2016 SI AL C √    

NRLMF [134] 2016 SI AL C √    

DASPfind [136] 2016 SI AL C √    

DrugE-Rank [137] 2016 TC AL S √ √    

DBN [103] 2017 NN NN C √    

EnsemDT/KRR [138] 2017 KF KF C √    

PUDTI [105] 2017 KF KF C √    
DVM [106] 2017 KF KF C √    
iDTI-ESBoost [109] 2017 ML ML C √    

3S 

Yamanishi et al. [117] 2010 SI CO AL C √ √    

PKR [122] 2012 KF CO KF C √ √    

DINIES [128] 2014 SI CO AL S √ √    

Shi et al. [129] 2015 TC SS AL C √    

Liu et al. [130] 2015 TC TC AL S √    

DTINet [107] 2017 TC TC AL C √    
This review 2018 TC TC AL S √ √ √ √  √ √

 

1DSS: drug structure similarity; DPS: drug profile similarity; PSS: protein sequence similarity; SE: SEA algorithm that measures DSS [112]; 
SI: SIMCOMP tool that quantifies DSS [142, 143]; TC: Tanimoto coefficient or other similarity score which measures similarity between 
binary or numeric vectors [139]; KF: kernel function that measures similarity between feature vectors used by machine learning algorithms; 
NN: neural networks; CO: correlation; SS: semantic similarity of drug profiles represented by the ATC codes [129]; AL: sequence alignment 
using PSI-BLAST [144] or Smith-Waterman algorithms [145]; and ML: machine learning algorithm that measures similarity between feature 
vectors. 
2The ensembles are established based on either a simple summation (S) or a more complex (C) approach that involves operations such as 
maximum, multiplication, and geometric mean of multiple similarities. 



Table 2. Significance of differences in the predictive performance of DPI predictors measured at the interaction level. The 

distribution of AUC, AUClow, and RatioAUClow values quantified over 100 different datasets (randomly selected 10% of drugs 

from the benchmark database) are represented by average ± standard deviation. The italic and underlined fonts represent results 

of tests of significance of difference in AUC and in AUClow, respectively, for each pair of predictors. We quantify the 

corresponding p-values by running t-test (for measurement with normal distribution) or Wilcoxon signed-rank test (for non-

normal data) between each pair of predictors. We test the normality with the Anderson-Darling test at 0.01 significance. 

 

Method 
Predictive quality (average ± standard deviation) Statistical significance (p-value) of the differences between all pairs of predictors 

AUC AUClow RatioAUClow 3S DPS+PSS DSS+PSS DSS+DPS DSS DPS PSS 

3S 0.925±0.005 0.0284±0.0005 22.7±0.4 5.4E-26 4.0E-77 2.3E-46 3.7E-59 1.6E-54 8.5E-104 
DPS+PSS 0.912±0.004 0.0240±0.0005 19.2±0.4 1.0E-69 3.3E-10 1.9E-12 1.0E-30 5.5E-51 5.8E-105 
DSS+PSS 0.905±0.005 0.0252±0.0005 20.2±0.4 4.7E-64 3.9E-14 7.4E-07 4.1E-37 5.8E-34 4.8E-98 
DSS+DPS 0.899±0.006 0.0273±0.0007 21.9±0.6 1.3E-08 1.3E-30 1.7E-18 8.2E-45 8.4E-32 5.5E-81 
DSS 0.882±0.006 0.0230±0.0006 18.4±0.5 2.0E-56 3.0E-05 3.2E-22 5.2E-58  3.3E-08 5.1E-74 
DPS 0.869±0.008 0.0210±0.0007 16.8±0.6 2.9E-69 3.7E-34 7.9E-39 5.7E-78 8.2E-23 1.5E-66 
PSS 0.759±0.012 0.0100±0.0029 8.0±2.3 3.2E-92 9.2E-87 2.0E-88 2.1E-72 1.6E-65 1.2E-57 

 

 

Table 3. Significance of differences in the predictive performance between different implementations of the 3S model measured 

at the interaction level. The distribution of AUC, AUClow, and RatioAUClow values quantified over 100 different datasets 

(randomly selected 10% of drugs from the benchmark database) are represented by average ± standard deviation. The italic 

and underlined fonts represent results of tests of significance of difference in AUC and in AUClow, respectively, for each pair 

of predictors. We quantify the corresponding p-values by running t-test (for measurement with normal distribution) or Wilcoxon 

signed-rank test (for non-normal data) between each pair of predictors. We test the normality with the Anderson-Darling test at 

0.01 significance. 

 

Algorithm used to 
ensemble similarities 

Predictive quality (average ± standard deviation) 
Statistical significance (p-value) of the differences between all pairs 

of ensemble predictors 

AUC AUClow RatioAUClow Naïve Bayes Regression C4.5 RBF network 

Naïve Bayes 0.925±0.012 0.0274±0.0016 21.9±1.2 6.99E-22 6.29E-52 5.93E-53 

Regression 0.922±0.013 0.0282±0.0016 22.6±1.3 7.00E-37 4.01E-48 4.67E-50 

C4.5 0.895±0.017 0.0305±0.0017 24.4±1.4 2.39E-53 6.14E-45 
 

2.88E-01 

RBF network 0.894±0.013 0.0278±0.0018 22.2±1.4 2.42E-05 1.26E-04 5.19E-37 

 

 

Table 4. Analysis of DSS and DPS values for the three drug groups. 

 

Similarity type Assigned drug group
Average similarity to the nearest drug  

from group 
1 2 3 

DSS 

1 0.66 0.65 0.55 

2 0.63 0.66 0.57 

3 0.57 0.60 0.56 

DPS 

1 0.21 0.21 0.15 

2 0.20 0.20 0.16 

3 0.16 0.18 0.16 

	


