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ABSTRACT  

Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with 
nucleic acids and proteins. Annotation of these interactions is supported by computational predictors but to date 
only one tool that predicts interactions with nucleic acids was released and recent assessments demonstrate 
that current predictors offer modest levels of accuracy. We develop DeepDISOBind, an innovative deep multi-
task architecture that accurately predicts DNA, RNA and protein binding IDRs from protein sequences. 
DeepDISOBind relies on an information-rich sequence profile that is processed by an innovative multi-task deep 
neural network where subsequent layers are gradually specialized to predict interactions with specific partner 
types. The common input layer links to a layer that differentiates protein and nucleic acids binding, which further 
links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-task 
design provides statistically significant gains in predictive quality across the three partner types when compared 
to a single-task design and a representative selection of the existing methods that cover both disorder- and 
structure-trained tools. Analysis of the predictions on the human proteome reveals that DeepDISOBind predic-
tions can be encoded into protein-level propensities that accurately predict DNA and RNA binding proteins and 
protein hubs. DeepDISOBind’s is available at https://www.csuligroup.com/DeepDISOBind/ 
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1 INTRODUCTION 

Intrinsically disordered regions (IDRs) lack stable tertiary structures and form dynamic conformational ensem-
bles under physiological conditions [1, 2]. Recent bioinformatics studies reveal that disorder is highly abundant 
in nature [3], with about 20% of residues in eukaryotic proteins estimated to be disordered [4]. Proteins with 
IDRs are involved in a variety of cellular functions [5, 6]. Many IDRs interact with partner molecules including 



DNA, RNA and proteins [7-13]. More specifically, the version 8.1 of the DisProt database [14], the primary re-
pository of the intrinsic disorder, includes 1,652 interacting IDRs, which constitute 42% of the IDRs annotated in 
this resource. Close to 90% (1,473 out of 1,652) of the interacting IDRs bind to proteins and nucleic acids. How-
ever, DisProt altogether covers only about 1700 proteins, while millions of protein sequences await annotation of 
the interacting IDRs.  

Computational predictors of interacting IDRs assist with closing this huge and growing annotation gap [15]. 
Based on an extensive literature search [15-19] we identified 22 predictors of the interacting IDRs. Nearly all of 
them (19 out of 22) predict a subfamily of the protein-binding IDRs called molecular recognition features 
(MoRFs) [20]. MoRFs are short IDRs that undergo folding upon interaction with protein partners. Some of popu-
lar MoRF predictors include MoRFpred  [21, 22], fMoRFpred [20], DISOPRED3 [23], MoRFCHiBi [24], MoRF-
CHiBiLight [25], OPAL+ (2018) [26] and SPOT-MoRF [27]. The other three methods, ANCHOR [28], Dis-
oRDPbind [29, 30], and ANCHOR2 [31] predict a broad family of the protein-binding IDRs that encompasses 
MoRFs. Moreover, DisoRDPbind is the only current tool that predicts IDRs that interact with DNA and RNA. 
These tools are frequently used to guide experimental studies and reveal novel functional insights. Just as an 
example, DisoRDPbind was recently used to study the SARS-CoV-2 proteome [32], decipher functions of genes 
from animal pathogens [33], and investigate specific proteins, such as CS-like zinc finger (FLZ) [34], spindle-
defective protein 2 (SPD-2) [35], Mixed Lineage Leukemia 4 (MLL4) [36], and heat shock factor 1 (Hsf1) [37], 
some of which are associated with cancers and neurodegenerative diseases. The importance of these predic-
tors is further underscored by the fact that CAID (Critical Assessment of protein Intrinsic Disorder) experiment, 
which is an equivalent of CASP (Critical Assessment of protein Structure Prediction) but for the disordered pro-
teins, included assessment of methods that predict interacting (in a partner-agnostic way) IDRs [38]. The top 
performing tools in the recent CAID were ANCHOR2, DisoRDPbind and MoRFCHiBiLight, but the organizers 
also noted that “substantial room for improvement remains” [38], suggesting the need to develop more accurate 
predictors of the interacting IDRs. 

The methods that offer the most relevant and accurate predictions of the interacting IDRs, ANCHOR2 and Dis-
oRDPbind, rely on relatively simple predictive models. DisoRDPbind utilizes logistic regression while ANCHOR2 
uses biophysics-based scoring functions. Moreover, DisoRDPbind that predicts interactions with proteins, DNA 
and RNA applies three independent/concurrent regressors. This way, it misses the opportunity to model rela-
tions between the three types of interactions. For instance, residues that bind nucleic acids and proteins have 
higher relative solvent accessibility compared to the non-binding residues while the nucleic acids binding resi-
dues are often positively charged and more evolutionarily conserved than the protein binding residues [39]. The 
fact that DisoRDPbind is the only tool that predicts nucleic acid binding IDRs combined with modest accuracy of 
the current predictors of interacting IDRs motivate development of more accurate solutions.  

Furthermore, we note that some protein and nucleic interacting residues are located in the structured protein 
regions. Numerous methods target prediction of the structured interacting regions and they rely on the training 
data extracted from Protein Data Bank [39-45]. Recently published structure-trained tools include SPRINT [46], 
SSWRF [47], EL-SMURF [48] and SCRIBER [49] that predict protein-binding residues; RNABindRPlus [50] and 
FastRNABindR [51] that predict RNA-binding residues; TargetDNA [52] and DNAPred [53] that predict DNA-
binding residues; DRNApred [54], NCBRPred [55] and BindN+ [56] that predict interactions with RNA and with 
DNA; and ProNA2020 [57] and MTDsites [58] that identify protein, DNA and RNA interacting regions. Interest-
ingly, recent study reveals that the structure-trained predictors of protein binding regions perform poorly when 
used to predict protein-binding IDRs [59]. We further investigate this finding by evaluating results produced by 
several recent and well-performing structure-trained predictors of the protein, DNA and RNA interacting residues 
on the corresponding disordered binding regions.  

We introduce DeepDISOBind, a custom-designed multi-task deep neural network that accurately predicts DNA, 
RNA and protein-binding IDRs. Multi-task learning aims to improve predictive performance by using shared rep-
resentations (i.e., common parts of the model) to predict related learning tasks (i.e., binding to different partners) 
[60, 61]. Recently, the multi-task models were shown to improve predictive quality for bioinformatics problems 
including prediction of cleavage sites [62] and inter-residue distances [63], when compared to the single-task 
models. We devise the multi-task architecture where subsequent layers progressively specialize to predict inter-
actions with different partner types. We empirically compare this topology against a single-task implementation 
and a representative selection of the existing predictors. We compare DeepDISOBind against representative 
methods that predicts protein and nucleic acid binding IDRs as well as the structure-trained methods. We also 
assess the DeepDISOBind’s predictions on the human proteome and release our tool as a convenient web-
server.  



2 METHODS 

2.1 Datasets  

We source the data for training and comparative assessment of our predictive model from DisProt [14]. DisProt 
annotates proteins with the experimentally validated IDRs, including IDRs that interact with proteins, DNA and 
RNA. We manually checked IDRs that were annotated in DisProt as nucleic acids, DNA and RNA binding using 
the underlying publication data listed in DisProt in order to classify them as DNA and/or RNA binding. This anno-
tation work follows from parsing DisProt for a recent comparative survey [64]. We divide these proteins into 
three subsets that constitute training, validation and test datasets. We ensure that sequences in each dataset 
share low (<30%) similarity with the other datasets. We use training and validation datasets to design and opti-
mize the predictive model and the set-aside (during design and optimization) test dataset to comparatively as-
sess this model against other solutions. Using protocol from [64], we cluster the original set of proteins with CD-
HIT [65] at 30% sequence similarity and we place the entire protein clusters into training, validation and test da-
tasets. The test and combined training/validation datasets share similar size while the training dataset is set to 
be twice the size of the validation dataset. This procedure adheres to commonly used practice in this field [64] 
and ensures proper level of separation between the training/validation and test datasets (<30% sequence simi-
larity). Detailed statistics, which cover distribution of RNA/DNA/protein binding residues in the three datasets, 
are shown in Table 1. The datasets, including annotations of the DNA, RNA and protein interacting IDRs, are 
freely available at https://www.csuligroup.com/DeepDISOBind/. We note that these datasets are larger than the 
datasets used to train and test DisoRDPbind [29] and on par with the size of datasets utilized in CAID [38]. 

 

Table 1.  Summary of datasets. 

Dataset Number of proteins 
Number of disordered residues Number of all 

residues Protein-binding DNA-binding RNA-binding All disordered 

Training 238 15,341 (14.5%) 2,913 (2.7%) 1,437 (1.4%) 27,304 (25.9%) 105,601 

Validation 118 6,464 (14.7%) 1,284 (2.9%) 608 (1.4%) 11,716 (26.8%) 43,776 

Test 394 17,540 (8.4%) 2,377 (1.1%) 1,518 (0.7%) 46,041 (22.2%) 207,743 

 

2.2 Evaluation criteria 

DeepDISOBind and other related tools produce putative propensities for the disordered DNA, RNA and protein 
binding interactions for each residue in the input protein sequences. These real-valued propensities are accom-
panied by binary predictions, i.e., residues are classified as either DNA/RNA/protein-interacting or non-
DNA/RNA/protein-interacting. The binary predictions are derived from the propensities by thresholding, i.e., resi-
dues with propensities > threshold are assumed to interact while the remaining residues are assumed not to in-
teract. Following related works [29, 59], we calibrate the thresholds for all considered predictors such that their 
binary predictions produce to the same specificity = 0.8. Specificity is the rate of predictions of the interacting 
residues among the native non-interacting residues. We select 0.8 since it approximates the combined rate of 
the interacting residues across the three partner types. This calibration facilitates direct comparison of the binary 
predictions across different methods. Moreover, Table 1 reveals that the rates of the DNA and RNA interacting 
residues are much smaller than the rates of the protein interacting residues. Thus, we further calibrate the eval-
uation between the three partner types by randomly undersampling the non-binding residues when evaluating 
performance for the RNA and DNA interactions, so that their rate is the same as for the protein interactions. We 
assess the binary predictions with two popular metrics: F1 = (2*TP)/(2*TP+FN+FP) and sensitivity = 
TP/(TP+FN), where TP is the number of correctly predicted protein/RNA/DNA interacting residues, TN is the 
number of correctly identified non-protein/RNA/DNA-interacting residues, FN is the number of pro-
tein/RNA/DNA-interacting residues incorrectly predicted as non-interacting, and FP is the number of the non-
interacting residues incorrectly predicted as protein/RNA/DNA-interacting. We assess the predicted propensities 
with a commonly used AUC (area under the receiver operating characteristics (ROC) curve) that plots sensitivity 
against FPR = FP/ (FP+TN). Higher values of the three metrics (F1, sensitivity and AUC) indicate better predic-
tive quality. In addition, since some residues interact with more than one partner, we evaluate predictors that 



provide protein-, DNA-, and RNA-binding predictions with the macro-average and micro-average metrics that 
are used in related multi-label predictions studies [66-68]:   
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where TPavg is the average number of correctly identified protein-, DNA-, and RNA-interacting residues, FNavg is 
the average number of protein/RNA/DNA-interacting residues incorrectly predicted as non-interacting, FPavg is 
the average number of the non-interacting residues incorrectly identified as protein/DNA/RNA-interacting, TPi is 
the number of correctly predicted protein, DNA or RNA binding residues, FNi is the number of protein/RNA/DNA-
interacting residues incorrectly predicted as non-interacting, and FPi is the number of incorrectly identified as 
protein/DNA/RNA interactions, and i represents RNA, DNA and protein interaction labels. 

 

Figure 1.  The multi-task topology of the DeepDISOBind predictor. 

2.3 The DeepDIOSBind predictor 

DeepDISOBind is a multi-task deep neural network that concomitantly predicts IDRs that interact with proteins, 
DNA and RNA (Figure 1). We use a custom-defined sequence profile that is extracted directly from the protein 
sequence as the input. Subsequent layers of the DeepDISOBind’s network progressively specialize to predict 
interactions with different partner types. Correspondingly, the network is composed of five major elements (Fig. 
1): the common layer, the nucleic acid binding layer, the protein binding layer, the DNA binding layer, and the 
RNA binding layer. Following, we provide a more detailed description of the sequence profile and network topol-
ogy. 

Sequence profile. Inspired by other recent models in this area [23, 27, 29, 69], the input protein sequence is first 
converted into a multi-dimensional profile. The profile covers the sequence itself together with relevant se-
quence-derived structural and functional properties that include relative amino acid propensities (RAAP) for lig-
and binding and predicted secondary structure and disorder. We use the one-hot encoding to represent the se-
quence. More specifically, each amino acid in the input sequence is represented by the 20-dimensional vector 



where the position of the corresponding amino acid type is set to 1 while the other positions are set to 0. Moreo-
ver, we compute the maximum, minimum, and average of the sequence embedding vectors that are defined in 
[70]. Inspired by recent studies that introduce novel predictors of the protein binding residues from structured/or-
dered proteins [49, 71], we use RAAP for ligand binding. These scores are derived empirically from binding data 
and quantify propensities of each amino acid type to bind a specific type of ligand. We use the five RAAP scales 
for the protein and nucleic acid binding that were introduced in Table 3 in ref. [39]. Finally, we use popular and 
fast predictors of the secondary structure, the single-sequence version of PSIPRED [72], and of the intrinsic dis-
order, SPOT-Disorder Single [73]. PSIPRED generates the 3-state secondary structures (helix, strand and coil), 
which we represent with the one-hot encoding. SPOT-Disorder Single produces real-valued propensities and 
binary predictions of disorder. Altogether, the profile includes 33 dimensions: 20 for one-hot encoding of se-
quence + 3 sequence embedding values + 5 RAAP values + 3 secondary structure predictions + 2 disorder pre-
dictions. Similar to the other solutions in this area [27, 29, 69, 73-75], we use sliding windows to predict the in-
teraction propensity for the residues in the middle of the window. We pad the windows at the sequence termini 
with zeros. 

Architecture of the DeepDISOBind network. The underlying idea is to initially model a generic set of interacting 
residues and progressively specialize the network to more specific interacting partners. To this end, the partner-
agnostic common layer (yellow block in Fig. 1) links to layers that discriminate protein and nucleic acids binding 
(blue and green blocks in Fig. 1), while the latter layer further connects to layers that distinguish between DNA 
and RNA interactions. 

The first, common layer consists of convolutional neural network (CNN) and feed-forward neural network (FNN) 
modules. The CNN module is composed of four different kernels that differ in size (k = 1, 3, 5 and 7). The varia-
ble kernel size designs were shown to be effective to reproduce the sequential nature of the protein sequences 
by accommodating for varying sizes of the residue neighborhoods, leading to improvements in predictive perfor-
mance when compared to more traditional network architectures [70, 76-78]. We use 8 channels for each kernel 
that are followed by ReLU activation units and a 1D max-pooling layer. We utilize the 1D max-pooling layer to 
reduce the dimension of the latent feature spaces before they are passed to the subsequent layers. Since the 
CNN module focuses specifically on local information (in a small sequence neighborhood around the predicted 
residue), we supplement it with the FNN module that extracts information from a larger window. This module 
uses a layer of n = 32 ReLU activation units that work in parallel to the CNN module. The outputs of the CNN 
and FNN modules are combined and fed into the subsequent FNN layers that aim to specialize the latent fea-
ture space produced in the common layer to specific types of interactions. We use four of these layers. First, the 
common layer is linked to the protein binding and the nucleic acid binding layers. Next, the nucleic acid binding 
layer is linked to the DNA-binding and RNA-binding layers. We fix the sizes of the protein, DNA and RNA layers 
to n = 32 units, and we add additional sub-layers (smaller by a factor of 2) into the DNA and RNA layers. Conse-
quently, RNA and DNA elements consist of two fully connected sub-layers, n = 32 and n/2 = 16 units. The latter 
is motivated by the fact that DNA and RNA interactions are harder to differentiate compared to the nucleic acids 
and protein interactions [39]. Finally, the output layer that generates putative propensities for disordered RNA, 
DNA and protein interactions consists of 3 neurons implemented with the sigmoid transfer function. 

Learning of the multi-task network requires a more specialized strategy compared to classical single-task net-
works. This is because some of the tasks (interactions) could be easier to optimize compared to the other tasks. 
This can be solved by relative weighting between tasks. We use a recently proposed tuning that relies on esti-
mating uncertainty of each task [79]. Under this approach, if the performance of two tasks improves and the re-
duction of the other task gets worse by no more than ε (we set ε to a small value of 0.1), then we continue train-
ing the model. Otherwise, we stop the training process. Moreover, we adopt early stopping approach to avoid 
overfitting the training dataset. 

We empirically investigate the impact of the selection of the hyperparameter n (size of the FNN modules in the 
common, protein, nucleic acids, DNA and RNA layers) on the predictive performance. We consider networks 
with n = 16 (small size), n = 32 (medium), n = 64 (large) and n = 256 (very large). We summarize the corre-
sponding topologies in Supplementary Table S1. We also empirically compare learning of the complete net-
works with the dropout learning [80] across the different network sizes. We set the dropout rate to 0.2. The drop-
out is meant to prevent overfitting, which would be apparent if the dropout-based learned networks would pro-
vide superior results. We compare the results on the validation dataset across different network sizes and when 
learning with and without the dropout on the training dataset in Supplementary Table S2. The average (across 
the three interaction types and three training runs) AUC ranges between 0.759 (small network with dropout) and 
0.791 (medium network without dropout). Similarly, the average F1 varies between 0.238 (small network with 
dropout) and 0.271 (medium network without dropout). We observe that the averaged AUC and F1 scores are 



highly correlated (Pearson correlation of 0.95), which means that the considered networks produce high-quality 
propensities that are used to generate similarly accurate binary predictions. The medium size networks produce 
slightly better results than the small and large networks. Further increasing the size to the very large does not 
improve over the large-size networks. This means that the medium size networks are sufficiently large for this 
prediction. Lastly, we find that use of dropout does not lead to improvements. This together with the observation 
that modest-sized network produces the best results and outperforms the very large network suggest that our 
design does not overfit the training dataset. Consequently, we implement DeepDISOBind based on the medium 
network size (n = 32) and using training without dropout.  

We also compare the above architecture that combines CNN and FNN modules with a design that relies on the 
graph neural network (GNN). GNNs were recently used in related projects that target prediction of protein-pro-
tein interactions at the protein level [81] and protein-protein interactions at the residue level from protein struc-
ture [82]. The corresponding underlying graphs represents the protein-protein interaction networks and the spa-
tial arrangement of amino acids in the protein structures. We use the graph to represent our input protein se-
quence, and more specifically the sequential nature of connection between the residues in the input sliding win-
dow. The architecture of the GNN model draws from the best-performing medium size CNN/FNN network (i.e., 
DeepDISOBind) where we replace the CNN-based common layer with two graph convolutional layers, where 
nodes correspond to amino acids linked by peptide bonds, and we retain the other layers. Table S2 compares 
the results produced by this GNN model with the DeepDISOBind. The average AUC and F1 of the GNN-based 
design are modestly lower than the results produced by the CNN-based DeepDISOBind; AUC of 0.756 vs. 
0.791 and F1 of 0.234 vs. 0.271. This could be explained by the fact that the underlying graph is rather simple 
as it can only represent corrections between residues in the protein sequence, compared to the CNN architec-
ture that models these sequential relations more effectively. The more successful application of GNNs for the 
above-mentioned prediction of protein-protein interaction networks and protein-protein interactions from protein 
structure stems from a more informative structure of the corresponding graphs.  

 



Table 2. Ablation analysis for the DeepDISOBind predictor on the test dataset. We compare the complete DeepDISOBind model against 10 versions 
where we remove specific parts of the sequence profile (v1 to v7) and where we implement the model as the combination of three single-task networks 
(versions v8, v9 and v10). Supplementary Tables S3 and S4 define further details. The profile includes amino acid sequence (AAS), relative amino acid 
propensity for binding (RAAP), putative secondary structure (PSS), and putative intrinsic disorder (PID). Sensitivity and F1 are calibrated to the same 
specificity = 0.8. The last set of columns shown in bold font shows the average values over the three types of the partner molecules.  

Ablation  
design 

Model 
Protein interactions RNA interactions DNA interactions Average 

AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1 

 
Exclusion  
of inputs 
from the 
profile 

DeepDISOBind 0.77 0.60 0.31 0.75 0.61 0.32 0.74 0.47 0.26 0.75 0.56 0.30 
v1 (excludes AAS) 0.75 0.55 0.29 0.74 0.52 0.28 0.70 0.44 0.24 0.73 0.50 0.27 
v2 (excludes PID) 0.74 0.53 0.28 0.69 0.43 0.24 0.72 0.46 0.25 0.72 0.47 0.26 
v3 (excludes RAAP) 0.77 0.55 0.29 0.67 0.46 0.25 0.73 0.40 0.22 0.72 0.47 0.25 
v4 (excludes AAS and RAAP) 0.76 0.56 0.30 0.68 0.40 0.22 0.70 0.46 0.25 0.71 0.47 0.26 
v5 (excludes PSS and PID) 0.72 0.53 0.28 0.68 0.45 0.25 0.70 0.42 0.23 0.70 0.47 0.25 
v6 (excludes RAAP, PSS and PID)  0.71 0.45 0.25 0.67 0.38 0.21 0.72 0.43 0.24 0.70 0.42 0.23 
v7 (excludes AAS, PSS and PID) 0.69 0.47 0.25 0.72 0.51 0.28 0.68 0.48 0.26 0.70 0.49 0.26 

Single-task 
prediction 

v8 (single-task prediction of protein-binding) 0.75 0.51 0.27 N/A N/A N/A N/A N/A N/A 
0.72 0.46 0.25 v9 (single-task prediction of RNA-binding) N/A N/A N/A 0.72 0.44 0.24 N/A N/A N/A 

v10 (single-task prediction of DNA-binding) N/A N/A N/A N/A N/A N/A 0.70 0.44 0.24 
 

Table 3.  Comparative assessment on the test dataset. The binary predictions use thresholds that equalize specificity to 0.8 across the methods to allow 
for direct comparisons (details in Section 2.2). + means that DeepDISOBind is statistically significantly better (p-value<0.05). = means that the difference 
between DeepDISOBind and another predictor is not significant (p-value≥0.05). The best results for each column are shown in bold font.  

Predictive  
target 

Method 
Protein binding RNA binding DNA binding 

Multi-label macro av-
erage 

Multi-label micro 
average 

AUC Sensitivity F1 AUC Sensitivity F1 AUC Sensitivity F1 Sensitivity F1 Sensitivity F1 

Protein, DNA and RNA 
binding residues 

DeepDISOBind 0.771 0.595 0.313 0.746 0.611 0.320 0.736 0.472 0.255 0.559 0.297 0.580 0.305 
Single-task predictor  
(combination of v8, v9, v10) 

0.746+ 0.516+ 0.277+ 0.725+ 0.446+ 0.243+ 0.697+ 0.443+ 0.242+ 0.468+ 0.254+ 0.503+ 0.271+ 

DisoRDPbind 0.727+ 0.456+ 0.249+ 0.594+ 0.364+ 0.202+ 0.671+ 0.452+ 0.246+ 0.426+ 0.234+ 0.457+ 0.248+ 
MTDsites 0.576+ 0.304+ 0.173+ 0.677+ 0.479+ 0.258+ 0.675+ 0.253+ 0.242+ 0.406+ 0.225+ 0.322+ 0.182+ 
ProNA2020 0.398+ 0.205+ 0.120+ 0.468+ 0.193+ 0.08+ 0.551+ 0.441+ 0.187+ 0.215+ 0.132+ 0.204+ 0.120+ 

Protein binding  
residues 

ANCHOR2 0.719+ 0.501+ 0.270+           
MoRFChibiLight 0.735+ 0.502+ 0.271+           
SCRIBER 0.684+ 0.423+ 0.232+           

DNA and RNA  
binding residues 

BindN+    0.685+ 0.473+ 0.257+ 0.615+ 0.331+ 0.187+     
NCBRPred    0.662+ 0.455+ 0.243+ 0.617+ 0.367+ 0.205+     

DNA binding residues TargetDNA       0.580+ 0.274+ 0.157+     
RNA binding residues RNABindRPlus    0.576+ 0.336+ 0.186+        

 



3 RESULTS 

3.1 Ablation analysis of the network design 

DeepDISOBind relies on two major elements: the multi-element sequence profile and the multi-task architecture. 
We investigate the relation between the specific formulation of these elements and the resulting predictive per-
formance. We run ablation analysis where we measure predictive performance when removing certain parts of 
the profile and when we implement the topology as the collection of three single-task networks. The correspond-
ing 10 versions of the predictive model are defined in Supplementary Tables S3 (modifications of the sequence 
profile) and S4 (modifications of the topology).  

We summarize the results of the ablation analysis on the test dataset in Table 2. The top portion of the Table 
2 focuses on the sequence profile and reveals that all major parts of this profile that we employ provide useful 
information for the predictive model. More specifically, removal of the sequence, putative disorder or binding 
propensities (versions v1, v2 and v3) leads to a substantial drop in predictive performance from 0.75 to be-
tween 0.72 and 0.73 in the average AUC and from 0.56 to between 0.47 and 0.50 in the average sensitivity; 
we average over the three partner types. Removal of two or more parts of the profile (versions v4, v5, v6 and 
v7) further deteriorates the performance, with the average AUC dropping to between 0.70 and 0.71. Interest-
ingly, the v7 model that relies solely on the amino acid level propensities for binding (5-dimensional RAAP in-
put) is comparable to the v6 model that uses the protein sequence (23-dimensional AAS input), where both 
models secure the average AUC of 0.7. This shows that the RAAP scores provide a high-quality reduced rep-
resentation of the sequence for the purpose of the prediction of the protein and nucleic acids interactions. 
Supplementary Figure S1A provides the corresponding ROC curves. The curves demonstrate that DeepDISO-
Bind offers particularly strong improvements over the models that exclude certain types of inputs for the low 
values of FPR (false positive rate) < 0.3 (in Supplementary Figure S1B). The increase in the sensitivity at the 
same FPR can be as high as 7% when compared to the best input-reduced version. We argue that predictions 
with the low FPRs are more practical than the predictions with higher FPRs, given our imbalanced dataset 
where only about 20% of residues are interacting. In other words, FPRs of over 0.3 would correspond to sub-
stantial overprediction of interactions. Altogether, these results indicate that all elements of the sequence pro-
file contribute to the quality of predictions produced by the DeepDISOBind model.   

We also study benefits of the application of the multi-task architecture by comparing it with the implementation 
that combines three single-task networks that use corresponding subsets of the layers from the original net-
work and the same complete sequence profile (Supplementary Table S4). We summarize these results in the 
bottom section of Table 2 (versions v8, v9 and v10). Each of the three single-task models underperforms 
when compared with DeepDISOBind. More specifically, the AUC for the prediction of the disordered protein 
interactions drops from 0.77 (DeepDISOBind) to 0.75 (single-task deep network), for the RNA interactions 
drops from 0.75 to 0.72 and for the DNA interactions decreases from 0.74 to 0.70. Moreover, average (over 
the three types of interactions) F1 and sensitivity (measured as the same specificity = 0.8) are reduced from 
0.30 and 0.56 to 0.25 and 0.46, respectively, when comparing the multi-task and the single-task networks. 
This suggests that the use of the multi-task design leads to substantial improvements in the predictive perfor-
mance across the three types of the interactions. This conclusion is in agreement with literature that similarly 
demonstrates that the multi-task learning improves over the single-task learning in a generic machine learning 
setting [61, 83], as well as when applied to bioinformatics problems [62, 63, 84]. We note that the multi-task 
learning was not previously used for the prediction of the disordered protein-protein and protein-nucleic acids 
interactions.

3.2 Comparative assessment of predictive performance between DeepDISOBind and related 
methods 

We compare results produced by DeepDISOBind with other relevant and representative methods that predict 
protein, DNA and RNA interactions from protein sequences. These methods include the only other tool that 
predicts disordered protein, DNA and RNA interactions, DisoRDPbind [29], and two popular and accurate pre-
dictors of the disordered protein interactions, ANCHOR2 [31] and MoRFCHiBiLight [25]. These methods se-
cured the top three spots in the assessment of the prediction of interacting IDRs in the recent CAID experiment 
[38]. We also include a comprehensive selection of the structure-trained predictors including SCRIBER [49], 
which predicts protein-binding residues and which was recently shown to outperform other structure-trained 



predictors of protein interacting residues [59]; RNABindRPlus [50] that was ranked as the best tool in the re-
cent assessment of the structure-trained predictors of the RNA interactions [45]; TargetDNA [52], one of the 
most accurate and popular predictors of the DNA interactions in the structured regions [85]; two representative 
structure-trained methods that predict DNA and RNA binding regions, popular BindN+ [56] that was shown to 
provide strong predictive performance in comparative surveys [39, 43] and one of the most recent methods, 
NCBRPred [55]; and two structure-trained methods which target prediction of protein, DNA and RNA interac-
tions, ProNA2020 that was released in 2020 [57] and MTDsites that was published in 2021 [58]. The latter two 
methods offer the same scope of predictions as DeepDISOBind and DisoRDPbind, but they address predic-
tions for structured rather than disordered regions. We use the author-provided webservers or implementations 
to make the predictions for these ten tools: DisoRDPbind, ANCHOR2, MoRFCHiBiLight, SCRIBER, RNABin-
dRPlus, TargetDNA, BindN+, NCBRPred, ProNA2020 and MTDsites. 

We compare results produced by DeepDISOBind with the ten representative tools and our implementation that 
is based on the single-task networks on the test dataset in Table 3. We empirically assess whether DeepDISO-
Bind offers statistically significant improvements over the other solutions that are robust across different da-
tasets. We bootstrap 50% of the test proteins 50 times, and compare the corresponding results with the t-test 
(for normal measurements) or with the Wilcoxon test (otherwise). We test normality with the Kolmogorov-
Smirnov test at the p-value of 0.05. Similar tests were done in related comparative studies [45, 64, 86]. Table 3 
reveals that DeepDISOBind consistently secures the best predictive performance across the three binding 
partner types and the three metrics of performance. Moreover, the improvements in AUC, sensitivity and F1 
are statistically significant compared to each of the ten other methods for the predictions of protein, DNA and 
RNA interactions (p-value < 0.05). 

The average AUC, sensitivity and F1 (computed over the three interactions) for DeepDISOBind are 0.75, 0.56 
and 0.30, compared the other three tools that provide the same scope of predictions that covers protein, DNA 
and RNA interactions: DisoRDPbind (0.66, 0.42 and 0.23), ProNA2020 (0.47, 0.28 and 0.13) and MTDsites 
(0.64, 0.35 and 0.22). The corresponding ROC curves for these four predictors are separated by a relatively 
wide margin (Supplementary Figure S2). We also assess multi-label predictions for these four methods using 
the macro-average and micro-average metrics (Table 3). Consistent with the single-label assessment, 
DeepDISOBind outperforms the other three predictors by securing macro F1 of 0.30, macro sensitivity of 0.56, 
micro F1 of 0.30 and micro sensitivity of 0.58. These results are statistically better than the results of the three 
other methods (p-value < 0.05), with the second-best DisoRDPbind that obtains macro F1 of 0.23, macro sen-
sitivity of 0.43, micro F1 of 0.25 and micro sensitivity of 0.46. The predictive performance of MTDsites and 
ProNA2020 is worse than DeepDISOBind and DisoRDPbind since the two former methods are trained using 
structured proteins. The lower predictive quality of these tools for the prediction of interactions in the IDR is in 
agreement with similar observations in a recent comparative survey of the disorder-trained and structure-
trained predictors of protein binding residues [59].  

For the disordered protein interactions prediction, the sensitivity of DeepDISOBind is better by (0.595-
0.456)/0.456 = 30.5%, 190.2%, 95.7%, 40.5%, 18.8%, and 18.5% when compared with DisoRDPbind, 
ProNA2020, MTDsites, SCRIBER, ANCHOR2, and MoRFChibiLight, respectively. This means that Dis-
oRDPbind correctly identifies at least 18.5 % more interacting residues at the same false positive rate, i.e., we 
fix specificity at 0.8 for all methods, which corresponds to 0.2 false positive rate. Similarly, for the RNA interac-
tions, DeepDISOBind’s sensitivity is better by 67.9%, 216.5%, 27.5%, 34.3%, 29.2% and 81.8% when con-
trasted with DisoRDPbind, ProNA2020, MTDsites, NCBRPred, BindN+ and RNABindRPlus, respectively. The 
improvements in the sensitivity for the DNA interaction predictions are at 4.4%, 7.0%, 86.5%, 28.6%, 42.6% 
and 72.3% when compared against DisoRDPbind, ProNA2020, MTDsites, NCBRPred, BindN+ and Tar-
getDNA, respectively. Similar observations are true when using the F1 and AUC metrics. 



 

Figure 2.  Comparison of the predictive performance on the test dataset between DeepDISOBind, MTDsites, 
ProNA2020, the single-task network (combination of the v8, v9 and v10 networks), the Combine_best approach 
which uses the best method for each interaction type selected across the six predictors (i.e., MoRFChibiLight for 
the protein interactions, BindN+ for the RNA interactions, and MTDsites for the DNA interactions), and Dis-
oRDPbind. We quantify the predictive performance with the average (over the three interaction types) values of 
AUC (bars and vertical axis on the left), F1 and sensitivity (lines and vertical axis on the right).  

Figure 2 offers a more direct approach to compare DeepDISOBind with the state-of-the-art. We compare the 
average values of the AUC (bars), sensitivity (gray line) and F1 (black line) computed over the three interaction 
types. The comparison includes DeepDISOBind, the single-task network (combination of the v8, v9 and v10 
networks), the “combine best” approach which uses the best method (i.e., having highest AUC) for each inter-
action type selected across the ten predictors (i.e., MoRFChibiLight for the protein interactions, BindN+ for the 
RNA interactions, and MTDsites for the DNA interactions), DisoRDPbind which is the only other disorder-
trained predictor with the same scope as DeepDISOBind, and MTDsites and ProNA2020 which are the two 
recently published structure-trained methods that predict protein, DNA and RNA interacting residues. Firstly, 
we note a substantial and statistically significant (see Table 3) improvement when contrasting the multi-task 
(DeepDISOBind) vs. single-task solutions across the three metrics (p-value < 0.05). Secondly, DeepDISOBind 
improves against the combination of the best current methods by a large and statistically significant margin 
(0.75 vs. 0.70 in AUC, 0.56 vs. 0.41 in sensitivity, and 0.30 vs. 0.26 in F1). Thirdly, DeepDISOBind and the sin-
gle-task networks outperform DisoRDPbind, primarily because the latter relies on simpler logistic regression 
models that are applied utilizing the single-task architecture. Lastly, DeepDISOBind improves over ProNA2020 
and MTDsites because the latter two are trained on the structured proteins.  

Finally, we investigate impact of similarity between the test proteins and the proteins that were used to train 
PSIPRED and SPOT-Disorder-Single methods, which we utilize to derive inputs for DeepDISOBind (Figure 1). 
We collect and combine the training datasets of these two predictors. Next, we align each test protein to every 
training protein with BLASTp [87] to annotate regions in the test proteins that share similarity>30%. Finally, we 
retest the predictive performance of DeepDISOBind and the other predictors of protein, DNA and RNA binding 
residues on the test proteins when excluding the similar regions. We summarize these results in Supplemen-
tary Table S5. DeepDISOBind secures results that are on average very similar to the results on the complete 
test dataset, with the average AUC (over the protein, DNA and RNA predictions) of 0.752 vs. 0.751 and the 
average F1 of 0.295 vs. 0.296. Moreover, DeepDISOBind’s predictions consistently maintain statistically signif-
icant advantage over the results of the other ten predictors (p-value<0.05). Altogether, the results on the com-
plete test dataset and the sequence regions that share low similarity to the training data of PSIPRED and 
SPOT-Disorder-Single are similar. This could be explained by the fact that we use the single-sequence version 
of PSIPRED and the inherently single-sequence SPOT-Disorder-Single. Both methods do not use sequence 
alignment, thus minimizing the likelihood of over-fitting training datasets [72, 73]. To sum up, the empirical 
analysis demonstrates that DeepDISOBind provides accurate predictions of the disordered protein, DNA and 
RNA-interactions. 



 

Figure 3.  Comparison of the ratios of the average sensitivity (over the three interaction types) to the average 
cross-prediction and over-prediction rates on the test dataset. Larger ratios indicate higher quality predictions. 
The predictions rely on thresholds that equalize the number of the predicted binding residues with the number 
of native binding residues for each predictor. Predictors are grouped by the scope of their predictions, as de-
scribed on the x-axis, where DeepDISOBind’s predictions are limited to the predictions of the other methods in 
the same group.    

3.3 Assessment of cross-predictions and over-predictions 

The binding residues share certain characteristics, such as high levels of evolutionary conservation and high 
solvent accessibility, irrespective of the type of their binding partners. This may lead to a substantial amount of 
cross-predictions, measured as the fraction of residues that bind a given partner type that are predicted to in-
teract with another ligand type, e.g., protein binding residues predicted as DNA or RNA binding residues. Re-
cent studies have found that majority of methods that predict interacting residues for the structured regions 
generate substantial amounts of cross-predictions, which in some cases are as high as their sensitivity that 
quantifies the rate of correct predictions [42, 43, 59, 88]. Correspondingly, we assess the cross predictions and 
over-predictions (fraction of non-binding residues predicted to interact with a given partner type) for DeepDIS-
OBind and the other ten considered here predictors. Figure 3 quantifies the average (over the different partner 
types) ratios of sensitivity (rate of correct predictions) to the cross-prediction and over-prediction rates (rates of 
incorrect predictions) on the test dataset; ratios > 1 denote methods for which the rate of the correct predic-
tions is higher than the rate of over- or cross-predictions. We normalize rate of predictions of binding residues 
across predictors to allow for side-by-side comparisons of the ratios across methods, i.e., we equalize the 
number of the predicted protein/DNA/RNA binding residues to the number of the native protein/DNA/RNA bind-
ing residues. We provide the complete set of results including cross-prediction rates, over-prediction rates and 
sensitivity values for each partner type (protein, DNA and RNA) in Supplementary Table S6. We compare 
DeepDISOBind to the other methods using the same set of predictions, e.g., we compare DeepDISOBind’s 
predictions of proteins binding residues to the SCRIBER’s, ANCHOR2’s and MoRFChibiLight’s results that 
also predict only the protein binding residues. The ratios to the over-predictions are relatively high across all 
methods, ranging between 1.89 for TargetDNA and 11.94 for DeepDISOBind’s prediction of the RNA binding 
residues (gray bars in Fig. 3). This means that relatively few non-binding residues are predicted to bind. We 
also observe that DeepDISOBind generates the highest/best ratios to the cross-predictions across all scenar-
ios, except when compared for the RNA binding prediction with RNABindRPlus where both methods achieve 



good results, 1.73 and 1.91 (black bars in Figure 3). Moreover, the DeepDISOBind’s ratios are always > 1, 
which means that that its rates of correct prediction of binding residues outperform the rates of the cross-pre-
dictions. We observe that relatively few protein binding residues are incorrectly predicted as RNA binding (7%) 
or DNA binding (11%), compared to the corresponding average sensitivity (26%). Overall, when making predic-
tions of the protein, DNA and RNA binding, the DeepDISOBind’s ratio to cross-predictions equals 1.41. This 
means that its average rate of correct predictions is 40% higher than the rate of the cross-predictions, which is 
substantially better than the 0.98, 0.46, and 0.90 ratios secured by DisoRDPbind, ProNA2020, and MTDsites. 

3.4 Assessment of predictions in the human proteome 

We assess DeepDISOBind’s predictions on the proteome scale. While the coverage of the residue/region-level 
annotations is limited at this scale, we can obtain a comprehensive set of experimental annotations at the pro-
tein level. We evaluate DeepDISOBind’s predictions of the disordered DNA and RNA binding proteins in one of 
the most-comprehensively annotated proteomes, the human proteome. To do that, we collect disordered hu-
man proteins that are annotated to interact with DNA and with RNA, as well as the human proteins that are un-
likely to interact with the nucleic acids. First, we collect the human proteome from UniProt version 2019_09 [89] 
and remove partial sequences that we identify based on the Sequence status term Fragment. This produces 
43,789 protein sequences. Second, we annotate the DNA interacting proteins by combining data from a com-
prehensive collection of relevant databases including 3D-footprint [90], CIS-BP [91], JASPAR [92], HumanTF2 
[93], SMiLE-seq [94], animalTFDB [95] and the gene ontology (GO) terms [96] in UniProt. We also annotate 
the RNA binding proteins based on the data from ATtRACT [97], RBPDB [98], and the GO terms in UniProt. 
We map proteins in these diverse resources into the human set based on the UniProt’s accession numbers. 
This results in 2,379 DNA-binding and 2,371 RNA-binding proteins, which is in line with related studies [99]. 
We identify the disordered subset of these proteins using the popular VSL2B predictor [100]. This method is 
different than the SPOT-Disorder-Single predictor used in DeepDISOBind and offers high-quality predictions of 
the disordered proteins [38, 64]. We annotate a given DNA/RNA binding protein as disordered if its putative 
disorder content > 0.2. Consequently, we identify 1,739 and 1,711 disordered DNA and RNA interacting pro-
teins, respectively. Third, we derive proteins that are unlikely to interact with the nucleic acids. We select the 
human proteins that share < 30% sequence similarity with the annotated DNA- and RNA-binding proteins, 
which we quantify with BLASTp [87, 101]. This results in the set of 24,435 proteins. Finally, we convert the res-
idue/regions-level propensities produced by DeepDISOBind into protein-level propensities of the disordered 
RNA and DNA interactions. Since typically only a small portion of the amino acids interact with the nucleic ac-
ids, we compute average of the highest 5% of the residue-level propensities produced by DeepDISOBind for a 
given protein to quantify the protein-level propensities. We emphasize that this approach does not validate cor-
rectness of the positions of the predicted binding residues in the protein sequence (which we assess in Sec-
tions 3.2 and 3.3) but rather the ability to quantify propensity for binding at the whole protein level. We assess 
these protein-level predictions of the DNA and RNA interacting proteins in the human proteome with the ROC 
curves and the corresponding AUC scores (Figure 4). DeepDISOBind secures AUC of 0.72 and 0.82 for the 
prediction of the human RNA and DNA interacting proteins, respectively, which is consistent with the results on 
the test dataset.  

Moreover, motivated by the discussion in Section 3.3, we evaluate the potential for cross-predictions of the 
protein-level scores. We group the considered human proteins into four sets: (1) proteins that bind DNA and do 
not bind RNA; (2) proteins that bind RNA and do not bind DNA; (3) proteins that bind both RNA and DNA; (4) 
proteins that do not bind neither DNA nor RNA. Next, we compare the protein-level scores for DNA and RNA 
interactions that we extract from DeepDISOBind’s predictions (i.e., average of the highest 5% of the residue-
level propensities) inside the sets 1, 2 and 3 to study the cross-prediction. We utilize the pairwise t-test (for nor-
mal measurements) or the Wilcoxon test (otherwise), where we test normality with the Kolmogorov-Smirnov 
test at the 0.05 p-value. The protein-level DNA binding propensities are higher than the protein-level RNA pro-
pensities within protein set 1 and the difference is statistically significant (p-value < 0.01). Similarly, the protein-
level RNA binding propensities are significantly higher than the corresponding DNA propensities for the set 2 
(p-value < 0.01). Interestingly, the protein-level RNA and DNA binding propensities are not significantly differ-
ent for the protein set 3 (p-value = 0.66). These results suggest that the predictions of DeepDISOBind that we 
aggregate at the protein-level successfully differentiate between DNA and RNA binding proteins. Finally, we 
further examine the accuracy of the prediction of the DNA and RNA binding proteins by comparing the protein-
level DNA binding propensities between sets 1 and 4, and the protein-level RNA binding propensities between 
sets 2 and 4. In both cases the protein-level propensities for DNA and RNA interactions are higher in the sets 1 



and 2, respectively, when compared with the set 4 and these differences are statistically significant (p-value < 
0.01). 

 

 

Figure 4. ROC curves for the DeepDISOBind’s prediction of the DNA interacting proteins (green line) and the 
RNA interacting proteins (orange line) in the human proteome. The blue ROC curve is for the scenario where 
DeepDISOBind classifies disordered human hub proteins (proteins that interact with many proteins) vs. human 
proteins that interact with a few protein partners. 

We also assess whether DeepDISOBind accurately predicts the disordered protein interactions. Since majority 
of human proteins interact with proteins and thus it would be virtually impossible to reliably identify non-protein-
binding proteins, we use DeepDISOBind’s predictions to differentiate between disordered hub proteins [102], 
which interact with many protein partners, and proteins that interact with relatively few proteins. This is moti-
vated by the finding that the human hub proteins are enriched in the intrinsic disorder [103, 104]. First, we col-
lected a comprehensive set of protein-protein interaction (PPI) annotations in the human proteome from the 
mentha resource, which combines data from several relevant source databases [105]. Second, we process the 
corresponding set of 17,598 protein-interacting proteins to extract the highly promiscuous hub proteins (25% of 
proteins with the highest PPI counts) and proteins that interact with a few protein partners (25% that interact 
with the smallest number of proteins). The same as for the assessment of the DNA/RNA interactions, we use 
VSL2B to identify a subset of the disordered hub proteins. Finally, we convert the residue/regions-level protein-
binding propensities produced by DeepDISOBind into the protein-level propensities of the disordered proteins 
interactions using the same approach as for the assessment of the nucleic acids binding proteins. Blue ROC 
curve in Figure 4 quantifies the predictive quality of DeepDISOBind applied to differentiate between the disor-
dered hubs and the proteins that interact with few proteins. DeepDISOBind obtains AUC of 0.76, which is simi-
lar to the results on the test dataset. Altogether, these results suggest that the outputs produced by DeepDIS-
OBind can be converted into protein-level scores that correctly predict disordered RNA, DNA and protein-inter-
acting proteins. The DeepDISOBind’s predictions for the human proteins are available at 
https://www.csuligroup.com/DeepDISOBind/. 

3.5 Case study 

We illustrate DeepDISOBind’s predictions on one of the test proteins, the silent information regulator Sir3p 
from budding yeast (DisProt: DP00533; UniProt: P06701). Sir3p is involved in the initiation, propagation and 
compaction of the silenced chromatin [106, 107]. Sir3p has a long IDR (positions 216-549) that interacts with 
RAP1p [108], RAD7p [109] and Sir4p coiled-coil domain [110]. This DNA and protein interacting IDR is flanked 
by structured regions that extend to the termini. 

The case study aims to visualize the putative propensities and binary predictions produced by DeepDISOBind 
and the other methods that we cover in Section 3.2 and Table 3. This example is not intended to quantify or 



compare the predictive performance. Supplementary Figure S3A reveals that the disorder-trained predictors 
(ANCHOR2, MoRFCHiBiLight, DisoRDBbind and DeepDISOBind) correctly identify this IDR as interacting with 
proteins. MoRFCHiBiLight slightly overpredicts protein interacting regions in the structured domain at the N-
terminus. On the other hand, the structure-trained predictors of the protein-binding residues, such as 
SCRIBER, ProNA2020, and MTDsites, miss this binding region. This can be explained by the fact that they tar-
get prediction of protein binding in structured regions. Supplementary Figure S3B shows that while most meth-
ods (except for ProNA2020) correctly predict DNA interactions in this IDR, DisoRDPbind, TargetDNA, BindN+, 
MTDsites, and NCBRPred overpredict DNA interactions outside this region. TargetDNA, BindN+, MTDsites, 
and NCBRPred were designed to identify interactions in the structured regions and this is likely why they make 
more predictions at both structured termini. Moreover, predictions from DeepDISOBind, DisoRDPbind, 
ProNA2020, and RNABindRPlus suggests that this protein is unlikely to interact with RNA while BindN+, 
NCBRPred, and MTDsites predict multiple RNA binding regions (Supplementary Figure S3C). This can be 
again attributed to the fact that BindN+, NCBRPred, and MTDsites aim to predict RNA interactions in the struc-
tured regions. 

3.6 DeepDISOBind webserver 

DeepDISOBind is available as a user-friendly webserver at https://www.csuligroup.com/DeepDISOBind/. With 
the user’s convenience in mind, we make predictions on the server side and process up to 20 proteins in a sin-
gle request. The only required input are the FASTA-formatted protein sequences. Users can opt to provide an 
email address where we send links to the results when predictions are completed. Predictions take about 30 
seconds for an average-size sequence. The server outputs numeric propensities for the protein, RNA and DNA 
interactions and the three corresponding binary predictions for each residue in the input chain(s). We also pro-
vide putative propensities and binary annotations of disorder generated by SPOT-Disorder-Single. The results 
are available in three convenient formats: 1) parseable text file that can be downloaded from a request-specific 
URL; 2) color-coded (to ease identification of interacting residues) table in the browser window; and 3) an inter-
active graphical format in the browser window. We will store these predictions for at least one month. The 
graphical format allows users to select predictions of specific interactions, identify propensity scores, amino 
acid type and position on mouse hover, and zoom on a specific protein segment. Users should employ the pu-
tative propensities as a measure of confidence, i.e., residues predicted with higher values of propensity are 
more likely to interact with the corresponding partner. Moreover, the binary predictions can be used identify the 
putative protein, RNA and DNA binding residues when assuming low false positive rate at 0.2; we use the 
same calibration in Tables 2 and 3, and Supplementary Tables S5 and S6.  

Importantly, DeepDISOBind targets prediction of IDRs that interact with proteins, DNA and RNA and, by de-
sign, is not going to produce reliable predictions for the structured regions. Thus, predictions of the interacting 
residues for the structured regions, which can be identified with the help of the SPOT-Disorder-Single’s predic-
tions, should be pursued with the structure-trained methods. Recent surveys of the structure-trained predictors 
can be used to identify suitable methods [39-45]. 

4 DISCUSSION 

IDRs interact with a variety of partner molecules including nucleic acids and proteins. The availability of experi-
mental data for hundreds of interacting IDRs gave rise to the development of machine learning models that 
learn from these data to predict these interactions for the millions of unannotated protein chains. However, only 
one such tool is available for the prediction of disordered interactions with the nucleic acids and the recent 
CAID experiment concludes that new and more accurate predictors of the interacting regions are needed [38]. 
To this end, we develop DeepDISOBind, a novel multi-task deep learner that provides accurate predictions of 
the DNA, RNA and protein binding IDRs. We empirically demonstrate that our selection of the predictive inputs 
and the multi-task design of DeepDISOBind’s model contribute to its predictive performance. Side-by-side 
evaluation on an independent (low similarity) test dataset reveals that DeepDISOBind offers statistically signifi-
cant improvements over the single-task topology and a representative collection of 10 existing tools that cover 
both disorder-trained and structure-trained methods. These improvements are consistent across the three in-
teractions types. Evaluation on the human proteome shows that DeepDISOBind accurately identifies hubs and 
DNA- and RNA-binding proteins. We provide a convenient webserver at https://www.csuligroup.com/DeepDIS-
OBind/. This webserver allows for batch predictions, performs calculations on the server side, and provides 
results in multiple formats, including an interactive graphical visualization.  



KEY POINTS 

 CAID experiment shows that current predictors of disordered regions interacting with nucleic acids and 
proteins offer modest levels of predictive accuracy 

 DeepDISOBind uses an innovative deep multi-task architecture to accurately predict DNA, RNA and 
protein binding disordered regions from protein sequences 

 DeepDISOBind's predictions outperform results of current disorder- and structure-trained methods 
across the interactions with DNA, RNA and protein partners 

 DeepDISOBind accurately identifies protein hubs and DNA- and RNA-binding proteins in the human 
proteome 

 DeepDISOBind’s webserver is available at https://www.csuligroup.com/DeepDISOBind/ 
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