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Abstract

Experimental annotations of intrinsic disorder are available for 0.1% of 147,000,000 of currently
sequenced proteins. Over 60 sequence-based disorder predictors were developed to help bridge this
gap. Current benchmarks of these methods assess predictive performance on datasets of proteins,
however predictions are often interpreted for individual proteins. We demonstrate that the protein-
level predictive performance varies substantially from the dataset-level benchmarks. Thus, we
perform first-of-its-kind protein-level assessment for 13 popular disorder predictors using 6,200
disorder-annotated proteins. We show that the protein-level distributions are substantially skewed
toward high predictive quality while having long tails of poor predictions. Consequently, between
57% and 75% proteins secure higher predictive performance than the currently used dataset-level
assessment suggests, but as many as 30% of proteins that are located in the long tails suffer low
predictive performance. These proteins typically have relatively high amounts of disorder, in
contrast to the mostly structured proteins that are predicted accurately by all 13 methods.
Interestingly, each predictor provides the most accurate results for some number of proteins while
the best-performing at the dataset-level method is in fact the best for only about 30% of proteins.
Moreover, the majority of proteins are predicted more accurately than the dataset-level
performance of the most accurate tool by at least four disorder predictors. While these results
suggests that disorder predictors outperform their current benchmark performance for the majority
of proteins and that they complement each other, novel tools that accurately identify the hard-to-
predict proteins and that make accurate predictions for these proteins are needed.
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1 Introduction

Intrinsically disordered regions form ensembles of conformations and they lack a stable tertiary
structure in isolation [1-4]. Several large-scale computational studies estimate that about 19% of
residues in eukaryotic proteins are disordered [5], and that depending on the specific eukaryotic
organism between 30% and 50% of proteins (44% in human [6]) have at least one long disordered
region with 30 or more consecutive amino acids [5, 7-9]. Intrinsic disorder is also a driving
contributor to the dark proteome [10-12]. Disordered regions perform their functions while
remaining disordered or via disorder-to-order transitions that occur upon binding to their
physiological partner(s) [13-16]. Interaction with partner molecules is a common function of
intrinsically disordered regions; they have been found to interact with DNA, RNA, other proteins, and
small molecules [16]. Proteins with disordered regions are crucial for a wide range of cellular roles,
including molecular assembly and recognition, signal transduction, cell cycle and cell death
regulation, transcription, translation, and viral cycle [13, 15-37]. Due to their central role in cellular
regulation, these proteins are associated with several human diseases [35, 38-40] and attract
interest as potent drug targets [41-45]. Mechanistic descriptions of intrinsically disordered protein
function are challenging since function arises from structural ensembles, rather than stable three-
dimensional structure, but computational studies of the dynamics and structural ensembles of
intrinsically disordered proteins shown promise in explaining functional mechanisms of these
proteins [46-48].

Experimentally annotated disordered regions can be obtained from several databases: DisProt [49],
MobiDB [50], IDEAL [51], and Protein Data Bank (PDB) [52-54], where they correspond to the regions
with missing coordinates in crystal structures and the highly structurally varied regions in the NMR
structures. However, these annotations cover only a very small fraction of proteins sequences in
nature. DisProt and IDEAL covers only 803 [49] and 913 proteins [51], respectively, while a recent
study estimates that about 26 thousand proteins with the disordered regions can be obtained from
PDB [55]. The combined collection of these datasets constitutes only about 0.02% of the 147.4
million of unique proteins from the UniProt resource [56] (as of April 2019). This huge and growing
annotation gap motivates the development of computational methods that accurately predict
disorder in protein sequences. These methods rely on the fact that the amino acid composition and
conservation of disordered regions are different from the structured regions [57-61].

Over 60 disorder predictors were developed over the last four decades [62-68]. They are divided into
three broad categories [63-65, 67]: 1) ab-initio models; 2) methods with predictive models that were
produced using machine learning algorithms; and 3) meta-predictors. The predictive models in the
first category are derived from biophysical principles that are known to differentiate between the
intrinsically disordered and ordered regions. Representative methods in this group are NORSP [69],
GlobPlot [70] and IUPred [71-73]. The computational tools in the second category utilize predictive
models that are produced by machine learning algorithms to maximize predictive performance on
disorder-annotated training datasets. This category has a large collection of methods with several
illustrative examples that include RONN [74], DisEMBL [75], DISpro [76, 77], DISOPRED [78, 79],
VSL2B [80, 81], SPINE-D [82], DeepCNF-D [83], SPOT-Disorder [84], PrDOS [85], and SPOT-Disorder-
Single [86]. The meta-predictors combine outputs produced by several disorder predictors with the
underlying goal to improve predictive performance when compared to the results produced by their
input single predictors [87, 88]. Example meta-predictors include MD [89], MetaDisorder [90],
disCoP [88], DisMeta [91], PONDR-FIT [92], CSpritz [93], MFDp [94-96], ESpritz [97], metaPrDOS [98],
MFDp2 [99], DISOPRED3 [100], and MobiDB-lite [101]. We note that pre-computed disorder
predictions can be conveniently obtained from two databases: MobiDB [50] and D2P? [102].



The predictive quality of disorder predictors was comparatively assessed in several studies [55, 103-
112]. These studies compare predictive performance for selected sets of disorder predictors on
various benchmark datasets that range in size from about a hundred to over 20 thousand proteins.
Six assessments on smaller-sized datasets with about 100 proteins were included as part of the
Critical Assessment of protein Structure Prediction (CASP) experiments between 2002 (CASP5) and
2012 (CASP10) [104-109]. Three more recent assessments include one that relies on the small
dataset from the CASP10 experiment [112], another that uses a slightly larger set of 250 proteins
collected from the DisProt resource [110], and the third that utilizes close to 500 proteins collected
from PDB and DisProt [103]. One of the largest evaluations covers 13 predictors that were assessed
on a large benchmark dataset of over 25 thousand proteins [55]. Moreover, a collection of 13
disorder predictors was assessed on a dataset of about 350 membrane proteins [111]. A recently
published survey comprehensively summarizes results of multiple past assessments, but without
collecting new results [67].
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Figure 1. Comparison of the benchmark (dataset-level) and protein-level predictive performance measured
with AUC for three disorder predictors (GlobPlot, IUPred, and VSL2B) and five color-coded proteins: non-toxic
nonhemagglutinin type D (green marker; UniProt Q9LBR2), guanylate kinase (red marker; UniProt Q2GLF7),
alkaline phosphatase (violet marker; UniProt A1YYW?7), hydroxymethyltransferase (orange marker; UniProt
POA5Q8), and phytoene desaturase (blue marker; UniProt P21685). The benchmark AUC values are shown on
the x-axis while the protein-level AUC values are color-coded, shown on the y-axis, and their values are given
next to the corresponding markers. The black isometric AUC line shows equivalent dataset-level and protein-
level values.

The results of the abovementioned comparative studies, which are comprehensively surveyed in
[67], can be used to rank and compare dataset-level predictive performance of various disorder
predictors. However, the past assessments fall short of addressing evaluation at a single protein
level. This is an important shortcoming since the disorder predictors are used arguably more often to
characterize intrinsic disorder for individual proteins than for datasets of hundreds of proteins. For
instance, our MFDp predictor [94-96, 99] was recently used to predict disordered regions for the
flagellar capping protein [113], Cia2 [114], SpSM30B [115], AP24 [116], and BRCA1 [117], to name
just a few examples. Figure 1 illustrates some of the differences underlying the benchmark dataset-
level vs. protein-level assessments. It compares the protein-level vs. the dataset-level performance
for five proteins and three methods that were assessed as part of the recent large-scale evaluation
[55]. The three predictors include one of the least accurate methods, GlobPlot, modestly accurate
IUPred, and the most accurate VSL2B (based on their benchmark dataset-level performance). The



predictive performance is quantified with the popular area under the ROC curve (AUC) measure [67],
which ranges between 0.5 (equivalent to random predictions) and 1 (always correct predictions).
The dataset-level AUCs for GlobPlot, IUPred and VSL2B that were estimated in [55] equal 0.631,
0.726 and 0.821, respectively. These results suggest that the three tools perform at substantially
different levels of predictive quality. The results for a couple of proteins, such as guanylate kinase
(red marker in Figure 1; UniProt Q2GLF7) and phytoene desaturase (blue marker; UniProt P21685)
are in relatively close agreement with the datasets-level AUCs. However, results for some other
proteins could be very different from the dataset-level estimates. For instance, predictions
generated by GloPlot for nonhemagglutinin type D (green marker in Figure 1; UniProt Q9LBR2) are
substantially better than the corresponding dataset-level performance and much better than the
results from the two other predictors, which also contradicts the ranking based on the datasets-level
AUC. Similarly, by far the most accurate predictions for hydroxymethyltransferase (orange marker in
Figure 1; UniProt POA5QS8) are produced by IUPred, while the dataset-level assessment in [55] shows
that VSL2B outperforms IUPred. Moreover, GlobPlot’s results for this proteins are again much better
than the same benchmark suggests. On the other hand, GlobPlot’s and IUPred’s predictions for
alkaline phosphatase (violet marker; UniProt A1YYW?7) have poor quality, much lower than the
dataset-level benchmark suggests, while the predictions from VSL2B substantially outperforms its
dataset-level AUC.

The above analysis demonstrates that the protein-level performance may vary widely from the
dataset-level results that were produced by the prior assessments. While past studies have focused
on comparing the overall predictive performance of various disorder predictors based on the
dataset-level assessments [55, 103-112], we investigate the protein-level predictive performance to
provide practical insights. Our study tests a set of 13 diverse disorder predictors on a large dataset of
6271 proteins. Our aims are to quantify the spread of the protein-level performance for different
methods, compare their protein-level predictive quality, measure divergence of these predictions
from the dataset-level assessment, investigate characteristics of hard vs. easy to predict proteins,
and study differences and similarities between protein-level results of different disorder predictors.

2 Materials and Methods

2.1 Benchmark dataset

The evaluation relies on a large benchmark dataset with native annotation of disorder that was
originally published in [55]. The original dataset includes 25,717 proteins that were extracted from
the MobiDB resource [50]. We improved this dataset by removing sequences with
unknown/undetermined amino acid (AA) types, which is needed to secure disorder predictions, and
by reducing within-dataset redundancy. We use BLASTCLUST [118] to reduce pairwise sequence
similarity to 25% in order to minimize the redundancy. The resulting dataset has 6,271 protein
sequences that share < 25% similarity and that include 105,709 disordered and 1,672,907 structured
residues. This dataset was recently used in [119, 120] and is available at
http://biomine.cs.vcu.edu/servers/QUARTER/. Analysis in [120] shows that the predictive
performance of the disorder predictors on the original dataset of 25,717 proteins that was assessed
in [55] is similar and consistent when compared with the evaluation based on the improved
benchmark dataset with 6,271 proteins.

2.2 Selection of the disorder predictors

We cover a set of 13 popular, publically available and diverse disorder predictors. Ten predictors
were selected from among the 13 methods that were included in the recent large-scale assessment
[55]. They include three versions of ESpritz that predict intrinsic disorder annotated from X-ray



structures (ESpritz-Xray), NMR structures (ESpritz-NMR) and using DisProt database (ESpritz-DisProt)
[97]; two versions of IUPred that are optimized to predict short (IUPred-short) and long (IUPred-
long) disordered regions [71-73]; two versions of DisEMBL that were designed based on X-ray
structures (DisEMBL-465) and propensity for loop conformations (DisEMBL-HL) [75]; GlobPlot [70];
RONN [74]; and VSL2B [80]. We excluded three methods that were originally covered in [55]: SEG
[121], Pfilt [122] and FoldIndex [123]. These are older predictors that have secured the lowest
dataset-level predictive quality in that assessment. We expanded the list of methods covered in [55]
by adding three high-quality predictors: the top performing method from CASP10, DISOPRED3 [100],
and two recently published deep learning-based methods: SPOT-Disorder [84] and DeepCNF-D [83].
We used the computationally tractable version of DeepCNF-D, DeepCNF-D(ami_only), which relies
on the sequence only-derived inputs. Table 1 provides websites where these 13 selected methods
can be found and summarizes key characteristics of these predictors including the year of
publication, type of the predictive model that they apply, and their citation data. These tools were
published between 2002 and 2016 and most use neural network-based predictive models. They are
well-cited, with the annual number of citations ranging between 5 and 50. The selected predictors
uniformly cover the three categories of methods including ab-initio tools (IlUPred-short, IUPred-long
and GlobPlot), machine learning-based predictors (RONN, DisEMBL-HL, DisEMBL-465, VSL2B,
DeepCNF-D and SPOT-Disorder) and meta-predictors (DISOPRED3, ESpritz-Xray, ESpritz-NMR and
ESpritz-DisProt). They were designed to address prediction of all major types of disorder annotations
including annotations that rely on X-ray crystal structures, NMR structures and a variety of other
experimental methods that are covered in the DisProt resource.

2.3 Assessment of predictive performance

Computational disorder predictors output putative propensity for intrinsic disorder and binary
disorder prediction for every amino acid in the input protein sequence. This propensity is usually
expressed as a numeric score where a low value denotes high propensity for a structured
conformation and a high value denotes propensity for the disordered state. The binary prediction
categorizes each amino acid as either structured or disordered. This prediction is typically generated
from the propensity scores, i.e., residues with scores > predictor-specific threshold are categorized
as disordered and the remaining amino acids are categorized as structured.

We assess predictive quality for both types of outputs. The one measure that was used across all
recent dataset-level assessments to quantify the predictive quality for the putative propensities is
the AUC [55, 67, 103, 104, 110-112]. Calculation of AUC requires presence of both disordered and
structured residues; they are needed to compute the true positive and false positive rates that make
up the ROC curve. Consequently, we compute the protein-level AUCs for 1677 proteins from our
dataset that have sufficient number of both structured and disordered residues (min. 20 residues of
each type); this ensures that the protein-level AUCs can be estimated with high precision. The binary
predictions are assessed with several measures that include accuracy, F1, sensitivity, specificity =1 —
false positive rate (FPR), and Matthews’s correlation coefficient (MCC) [55, 67, 103, 104, 110-112].
The protein-level calculations of F1, sensitivity, specificity and MCC require presence of both
disordered and structured residues in a given protein chain. The only two measures that be applied
to all proteins, irrespective of the amount of their native disorder content, are accuracy (i.e., rate of
correct predictions) and FPR (i.e., rate of incorrectly predicted disordered residues). Thus, we use
accuracy and FPR to assess the protein-level binary predictions of intrinsic disorder.



Table 1. Summary of the 13 predictors that used on this comparative review. The number of citations was collected from the Google Scholar as of June 19th, 2019. The
methods are sorted by the ascending order of year when they were published.

Year Number | Annual
Predictor . Ref. Model Type of number of (Website
Published . e
Citations | citations

ESpritz-DisProt o . http://protein.bio.unipd.it/espritz/

Bi- I I
ESpritz_NMR 5002 [97] i-directional recursive neura 388 98

- network
ESpritz-Xray
disEMBL-465 Ensemble of feed-forward neural
2003 75 802 50.1 http://dis.embl.d

disEMBL-HL [75] networks p://dis.embl.de/
GlobPlot 2003 [70] Derivative based curve optimization 657 41.1 http://globplot.embl.de/
JRONN 2005 (747  |Radial basis functional neural 454 324 |http://www.strubi.ox.ac.uk/RONN

network
VSL2B 2006 [80] Support vector machine 395 30.4  |http://www.dabi.temple.edu/disprot/predictor.php
IUPred long Scoring function derived using
IUPred short 2009 [71-73] optlrr.nzed energy minimization 311 31.1  |https://iupred2a.elte.hu/

algorithm

Ensemble of neural network, support
DISOPRED3 2015 [100] |vector machine and nearest 165 41.3 http://bioinf.cs.ucl.ac.uk/psipred/

neighbor models
DeepCNF 2015 [83] Deep convolutional neural network 20 5.0 https://ttic.uchicago.edu/~wangsheng/software.html
SPOT-DISORDER 2016 [84] Deep bidirectional neural network 39 13.0 |http://sparks-lab.org/server/SPOT-disorder/
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Figure 2. Comparison of the protein-level predictive performance between the 13 disorder predictors. Panel A summarizes comparison of the AUC values (on green
background) and accuracies (on blue background). Panel B considers the false positive rates (on red background). Statistical significance of the differences between all pairs
of methods was assessed with the t-test for normal measures and otherwise with the Wilcoxon rank-sum test. Normality was tested with the Anderson-Darling test at 0.05
significance. We assume that the difference in predictive performance for a given pair of predictors is significant if the corresponding p-value < 0.01. Arrows point to the
methods that secure significantly better predictive performance (p-value < 0.01). The p-values are shown for the pairs of methods that are not significantly different.
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Figure 3. Distributions of the protein-level predictive quality measured with accuracy (panel A), AUC (panel B) and false positive rate (panel C) for the 13 disorder

predictors. Box plots show the second quartile (in red), median (between red and green boxes), and third quartile (in green) for the distribution of the protein-level values.
The whiskers denote the corresponding 10" and 90" percentiles. The black horizontal lines show the benchmark dataset-level performance. The predictors are sorted by
their median values of the predictive performance.



Table 2. Dataset- and protein-level predictive quality for the 13 considered disorder predictors. The dataset-level accuracy and AUC are compared against the previously
published results. We note that false positive rates are typically not reported in the past studies. Protein-level results are summarized with the median value. The methods
are sorted by their dataset-level AUC on our benchmark dataset.

Accuracy (binary predictions) AUC (putative propensities) FPR (binary predictions)
Disorder predictor |Protein-level |Dataset- Previously Difference |Protein-level |Dataset- Previously Difference |Protein-level| Dataset-
. reported . reported .

median level dataset-level dataset-level| median level dataset-level dataset-level| median level
GlobPlot 0.876 0.855 0.847 0.8% 0.662 0.626 0.631 0.5% 0.090 0.111
disEMBL-HL 0.715 0.713 0.721 0.8% 0.780 0.725 0.727 0.2% 0.282 0.277
IUPred-long 0.945 0.922 0.921 0.1% 0.798 0.732 0.726 0.6% 0.012 0.040
JRONN 0.848 0.847 0.839 0.8% 0.824 0.772 0.759 1.3% 0.132 0.131
ESpritz-NMR 0.931 0.905 0.903 0.2% 0.879 0.776 0.770 0.6% 0.041 0.068
IUPred-short 0.934 0.921 0.924 0.3% 0.852 0.778 0.778 0.0% 0.043 0.051
disEMBL-465 0.931 0.921 0.925 0.4% 0.835 0.780 0.787 0.7% 0.047 0.049
ESpritz-Xray 0.904 0.849 0.840 0.9% 0.904 0.796 0.778 1.8% 0.071 0.136
VSL2B 0.832 0.816 0.805 1.1% 0.874 0.810 0.821 1.1% 0.161 0.177
ESpritz-DisProt 0.959 0.917 0.934 1.7% 0.861 0.816 0.791 2.5% 0.000 0.034
DeepCNF 0.952 0.936 0.944 0.8% 0.926 0.871 0.898 2.7% 0.027 0.033
DISOPRED3 0.977 0.957 0.955 0.2% 0.969 0.899 0.897 0.2% 0.004 0.016
SPOT-Disorder 0.971 0.956 0.950 0.6% 0.969 0.904 0.891 1.3% 0.011 0.018




3 Predictive performance of disorder predictions

3.1 Dataset-level performance

Table 2 compares the dataset-level results on our benchmark dataset against the previously
published results. The prior results for DISOPRED3 are taken from CASP10 [104], for SPOT-Disorder
from [84], for DeepCNF from [83], and for the other 10 methods from [55]. The two “Difference”
columns show the magnitude of the differences between the previously reported results and the
assessment on our dataset for the accuracy and AUC measures. The average differences (across the
13 predictors) in accuracy and AUC are 0.67% and 1.04%, respectively. This demonstrates that our
dataset closely reflects the current state of the per-dataset assessments. Our results are also in
agreement with [67, 83, 84], showing that DeepCNF, SPOT-Disorder and DISOPRED3 outperform the
other disorder predictors. We conclude that these results validate reliability of our subsequent per-
protein analysis which is performed in the context of the dataset-level results.

3.2 Protein-level performance

Figure 2 compares the protein-level predictive performance between the 13 disorder predictors. We
assess statistical significance of the differences in predictive performance between all pairs of
methods. We assume that the differences are significant if the corresponding p-value < 0.01. This
comparison reveals that most of the differences are significant, which suggests that improvements
between methods are largely consistent across different proteins. When using AUC for the
assessments, the top performing SPOT-Disorder (see Table 2) is similar to DISOPRED3 and
significantly outperforms the other 11 methods. DISOPRED3 has the highest accuracy (Table 2) and it
significantly improves over the other 12 predictors based on this measure. Finally, ESpritz-DisProt
that has the lowest median protein-level FPR (Table 2) provides predictions with significantly lower
FPR values when contrasted with each of the 12 other predictors. The main reason why this method
secures such low FPR is that it under-predicts the amount of disorder. This was shown in [119]
where ESpritz-DisProt predicts 2.6% disorder content in a large dataset with 5% native disorder
content, while the other 9 methods considered in that article predict between 6% (IUpred-long) and
29% (DisEMBL-HL) disorder content.

Distributions of the protein-level predictive performance for the 13 disorder predictors are shown in
the Supplementary Figure S1. The distributions for all predictors for accuracy and AUC are left-
skewed with long tails. The corresponding distributions of the FPR values are right-skewed with
similarly long tails; this is because larger values of FPR indicate lower predictive quality. These
distributions demonstrate that while majority of the proteins are predicted with above average
predictive performance, minority of proteins that are located in the long tails are predicted with
relatively low performance. The distributions are summarized and compared to the dataset-level
results in Figure 3A for accuracy, Figure 3B for AUC, and Figure 3C for FPR. The box plots show the
first quartile (in red), second quartile (median; where red and green meet), and third quartile (in
green), with whiskers that denote the 10™ and 90™" percentiles. The long tails are represented by the
long bottom whiskers for accuracy and AUC (long top whiskers for FPR) when compared to the
corresponding top whiskers (bottom whiskers for FPR). The dataset-level values are denoted by the
black horizontal lines. Figure 3 reveals that majority of the proteins secure higher levels of predictive
performance than their corresponding dataset-level assessment suggests. In other words, protein-
level medians for accuracy and AUC are consistently higher or at worst similar to the dataset-level
values, while the protein-level medians for FPR are consistently lower or at worst similar when
compared to the dataset-level values. These values can be directly compared in Table 2. We
emphasize that this trend is consistent across all disorder predictors and the three measures of
predictive performance.
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Figure 4. Analysis of the easy and hard to predict proteins for the 13 disorder predictors. The easy proteins are
predicted with higher than expected accuracy or AUC, i.e., their protein-level accuracy (AUC) > dataset-level
accuracy (AUC). The hard proteins are predicted with relatively low accuracy or AUC, i.e., their protein-levels
accuracy (AUC) < (dataset-level accuracy (AUC) — average margin of difference between disorder predictors).
Bars represent the fraction of the easy proteins (green bars) and the hard proteins (red bars) when predictive
performance is quantified with AUC (dark shade) and accuracy (light shade). Predictors are sorted by fraction
of the easy proteins quantified with AUC (dark green bars).

Green bars in Figure 4 quantify the number of “easy”-to-predict proteins, defined as proteins for
which the protein-level predictive quality is higher than the corresponding expected value, i.e., the
dataset-level performance. When considering AUC, between 57% of proteins (for GlobPlot) and 75%
of proteins (for DISOPRED3) secure predictive performance that is higher than the expected value.
Similarly, between 50% (for JRONN) and 69% (for DISOPRED3) of proteins have better than expected
accuracy. This means that the users should expect that the predictive quality of binary predictions
and propensities is better than the current dataset-level benchmarks estimate for majority of the
proteins, irrespective of the predictor that they apply.

However, the above good news come at a cost. The distributions have long tails (Figure 3), which
means that the predictive performance drops to low levels for some number of proteins. Red bars in
Figure 4 quantify the abundance of these “hard”-to-predict proteins. We define the hard proteins as
those for which the protein-level predictive performance is lower than the corresponding dataset-
level performance minus an average margin of difference between the considered 13 predictors. In
other words, these proteins are predicted with accuracy/AUC that is lower than the expected
(dataset-level) value by as much as the average difference to the dataset-level performance of the
next worse predictor. The value of the margin (average difference in the dataset-level performance
between all pairs of the considered 13 predictors) equals 0.067 and 0.071 for accuracy and AUC,
respectively. Figure 4 shows that between 14% of proteins (for SPOT-Disorder) and 32% of proteins
(for ESpritz-DisProt) are hard-to-predict with respect to their AUCs. Similarly, our analysis reveals
that between 9% (for DISOPRED3) and 30% (for disEMBL-HL) of proteins have low accuracy. This
means that the users should expect low quality protein-level predictions for anywhere between 10%
(for accurate predictors like DISOPRED3 and SPOT-Disorder) and 30% (for less accurate predictors
like JRONN and disEMBL-HL) of proteins that they submit.



Supplementary Figure S2 provides a more detailed analysis of the differences between the protein-
level and the dataset-level performance for each of the 13 disorder predictors. It shows that
accuracy for half of the proteins differs from their expected (dataset-level) value by over 0.03 for the
best performing SPOT-Disorder and DISOPRED3. This difference becomes as high as over 0.10 for
ESpritz-Xray. Similarly, AUC for half of the proteins differs from the dataset-level value by more than
0.09 for the best performing SPOT-Disorder and DISOPRED3, and by as much as over 0.18 for IUPred-
long. The average (across the 13 predictors) difference from the expected value for half of the
proteins exceed 0.06 in accuracy and 0.13 in AUC, which is comparable or higher than the average
margin of difference in the dataset-level performance between the disorder predictors. Overall, we
conclude that the dataset-level assessment does not provide a reliable estimate of the expected
protein-level performance.

3.3 Hard to predict proteins have high levels of intrinsic disorder

Several studies have observed that disorder predictors, and especially the more accurate methods,
provide substantially weaker predictive performance for dataset of proteins that have long
disordered regions [55, 84, 104, 105]. This does not imply a relation between the chain length and
predictive performance but rather that proteins with long disordered regions (that have large
amount of disordered residues) are harder to predict accurately. We tested this assertion by
comparing the Pearson correlation coefficients (PCCs) between the sequence length and accuracy vs.
PCCs between the native disorder content (% of disordered residues) and accuracy. The former PCCs
computed over the 13 disorder predictors are low and range between 0 and 0.37, with the average
of 0.12. In contrast, the PCCs between disorder content and accuracy are relatively high and vary
between -0.14 and -0.75, with the average of -0.42. The negative sign implies that, as expected,

proteins with more disorder are more difficult to predict with high accuracy.

0.70 +
0.65 +

0.60 +
0.55 +
0.50 +
045 +
0.40 +
- 0.35 +
0.30 +
0.25 +
2 020 +
0.15 +
0.10 +
005 + T
0.00 } } t |
Easy Hard Easy Hard
proteins  proteins  proteins  proteins
-] (high (low (high AUC) (low AUC)

[0-0.1] (0.1-0.2] (O 2-0. 3] (0.3-0. 5] (0.5-0. 7] (0.7-1] accuracy) accuracy)
A Native disorder content Protein sets

1.0 — ‘ BmAUC © accuracy

0.9

o o o
» 4
disorder content

AUC and accuracy
o
&

I
>

o
w

o
)

Figure 5. Relation between the protein-level predictive performance and the native disorder content. Panel A
shows medians of the average (over the 13 predictors) accuracy and AUC for proteins grouped by their native
disorder content, defined as the fraction of disordered residues in the sequence. The whiskers give the 10"
and 90t percentiles of these averages. Panel B gives the distribution of the disorder content for the easy and
hard proteins that are in common across the 13 predictors. The box plots show the second quartile, median
(black horizontal line), and third quartile for the distribution of the protein-level disorder content values. The
whiskers denote the corresponding 10™" and 90™" percentiles.

The above observation prompted a more detailed analysis of the relation between the native
disorder content and the protein-level predictive performance, see Figure 5A. The figure show the
relation between the average predictive performance (over the 13 methods) and the native disorder
content that is binned into six ranges. While the predictive performance measured with both



accuracy and AUC remains relatively high for the structured and modestly disordered proteins
(disorder content < 0.5), Figure 5A demonstrates that it substantially drops for the mostly disordered
proteins and in particular for the proteins with the native disorder content > 0.7. The median values
of the average protein-level accuracy and AUC equal only 0.387 and 0.642, respectively, for the
latter set of proteins. The whiskers, which denote the 10" and 90*" percentiles reveal that many
proteins with over 0.7 disorder content secure near random levels of accuracy and AUC. Figure 5B
flipsides the analysis. It shows the distribution of the disorder content for the hard vs. easy protein
sets that were defined in Section 3.2. The easy proteins that secure above-expected predictive
performance (green box plots) have low amounts of disorder while the hard proteins that obtain
substantially below expected predictive performance (red box plots) have relatively much higher
disorder content. The differences in the disorder levels between the results based on accuracy (left
side of Figure 5A) and based on AUC (right side of Figure 5B) stem from the fact that AUC can be
calculated only for the proteins that have large enough number of disordered residues (see Section
2.3), thus excluding proteins with little or no disorder.

We further test robustness of the above analysis. Some of the long disordered regions that are
defined based on the crystal structures may include stable substructures, which could affect results
for proteins with the large disorder amount. We find such potentially unreliably annotated
disordered regions and repeat our analysis after excluding the corresponding proteins from our
dataset. We use a three-step process to identify these problematic disorder annotations among the
long disorder regions (n = 30) collected from proteins with disorder content > 0.5 (Figure 5A shows
that these proteins are relatively poorly predicted). First, we download protein sequences (= 30
residues long) for crystal structures in PDB and mask residues with missing electron densities (i.e.,
disordered regions) in these sequences, consequently generating the set of structured sequences.
Second, we use BLAST to align the long disordered regions against the masked PDB chain sequences.
Third, we remove the proteins that have the long disordered regions which are similar to the
structured sequences, i.e., disordered regions which have E-value < 0.01 and identity > 30% based
on the alignment against at least one structured sequence. Next, we repeat the analysis of the
relation between the content of the native disorder and the protein-level performance using the
dataset that excludes the corresponding 15 proteins that harbour 22 potentially problematic long
disordered regions that share similarity to the structured sequences. Supplementary Figure S3A that
uses this smaller dataset reveals that proteins with large disorder content, both > 0.7 and between
0.5 and 0.7, are predicted with substantially lower levels of accuracy and AUC. Similarly,
Supplementary Figure S3B shows that the hard proteins have much more disorder than the easy
proteins. These results are in agreement with the results on the complete datasets (Figures 5A and
5B), confirming robustness of our analysis. Altogether, our analysis reveals that current disorder
predictors struggle to provide accurate predictions for the mostly disordered proteins.

3.4 Complementarity of disorder predictors at the protein level

We quantify the complementarity with the Pearson correlation coefficients computed between
protein-level accuracies and AUCs for each pair of the 13 considered disorder predictors. Figure 6A
summarizes results when the performance is measured with accuracy. Protein-level accuracy of
every predictor has at least modest levels of correlation (PCC > 0.3) with at least six other predictors
(green and yellow cells in Figure 6A). Accuracies of six methods (disEMBL-HL, ESpritz-DisProt, ESpritz-
Xray, ESpritz-NMR, GlobPlot and DISOPRED3) lack high correlations (PCC > 0.66) with any other
predictors. Overall, only 17% pairs of different methods show lack of correlation (PCC < 0.3) between
their protein-level accuracies, while 71% shows modest correlation (0.3 > PCC > 0.66), and 12% has
high correlations (PCC > 0.66). We found three clusters of predictors for which the protein-level
accuracies are highly correlated (green cells in Figure 6A): 1) VSL2B and JRONN; 2) IUPred-long,
IUPred-short, disEMBL-465 and DeepCNF; and 3) disEMBL-465, DeepCNF and SPOT-Disorder. The
complementarity of the protein-level AUCs is summarized in Figure 6B. We observe similar trends



when compared to the accuracy. AUCs for every disorder predictor have modest or high correlation
with at least four other methods. AUCs for only 23% pairs of different methods lack correlation (PCC
< 0.3), compared to 56% and 21% that have modest (0.3 > PCC > 0.66) and high correlations (PCC >
0.66), respectively. There are also three clusters of highly correlated predictors: 1) ESpritz-Xray and
DeepCNF; 2) disEMBL-465, JRONN, VSL2B, IUPred-long, IUPred-short and disEMBL-HL; and 3) SPOT-
Disorder and DISOPRED3.
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Figure 6. Correlations between the protein-level predictive performance for each pair of the considered 13
disorder predictors. Panels A and B panels quantify the performance with accuracy and AUC, respectively. Both
correlation matrices are symmetric. The sorting of the predictors differs between the two panel and was
optimized to highlight clusters of highly correlated methods. Values of the Pearson correlation coefficient
(PCC) are color-coded where red denotes no correlation (PCC < 0.3), yellow denotes modest correlation (0.3 <
PCC < 0.66) and green corresponds to high correlation (PCC > 0.66).
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Figure 7. Contributions of the 13 disorder predictors to the highly accurate predictions. Panel A quantifies the
fraction of proteins for which a given method generates the highest predictive performance compared to all
other disorder predictors. Panel B show the fraction of proteins for which a given number of predictors offers



highly accurate predictions, i.e., predictive performance that is higher than the expected performance of the
best method (the dataset-level performance of the best method). The inner and outer rings show results when
using accuracy and AUC, respectively.

Our analysis points to several interesting observations. First, protein-level predictive performance is
at least modestly correlated for vast majority of pairs of methods. This suggests that there are no
clear winners or losers and that using multiple different methods should provide relatively good
results. Second, results for AUC and accuracy are in close agreement. The average absolute
difference between the corresponding PCCs is only 0.17, suggesting that similarity in the propensity
scores is associated with the similarity in binary predictions. In other words, different methods
assign the binary predictions from the propensity scores in similar way. Third, methods that are
placed in the abovementioned clusters will produce similar protein-level results and should not be
used together. Using methods that have weaker mutual correlations would provide a more diverse
set of results, therefore improving chances to secure a more accurate prediction.

Figure 7 further expands the analysis of the first finding. It summarizes contributions of different
disorder predictors to the production of highly accurate protein-level predictions. Figure 7A shows
the fraction of proteins for which a given disorder predictor generates the most accurate result, as
quantified with the accuracy (inner ring) and AUC (outer ring). The best performing at the dataset-
level DISOPRED3 and SPOT-Disorder provide the best protein-level results for only about half of the
proteins. Moreover, each of the 13 tools generates the most accurate protein-level predictions for
some proteins. This includes the worst dataset-level performers, GlobPlot and disEMBL-HL, which
provide the best accuracies for 0.9% and 0.5% of proteins, respectively, and the highest AUCs for
0.9% and 1.7%, respectively. Figure 7B breaks down the proteins for which a given number of
predictors offers highly accurate predictions, i.e., predictive quality that is higher than the expected
quality of the best method (the dataset-level performance of the best method). The figure reveals
that only less than 19% of proteins lack highly accurate predictions (dark red regions in Figure 7B).
Furthermore, over half of the proteins secure highly accurate predictions (measured with either
accuracy or AUC) by at least four disorder predictors, while 25% of proteins (when using accuracy)
and 39% of proteins (when using AUC) have such accurate predictions produced by the majority of
the 13 disorder predictors. The bottom line is that high-quality protein-level predictions can be often
obtained from several disorder predictors. This suggests that the end users should not limit
themselves to using only the most accurate (at the dataset-level) methods.

3.5 Case study

Our care study visualizes and compares outputs produced by several disorder predictors for the
same protein, hydroxymethyltransferase from Mycobacterium tuberculosis (Uniprot id: POWIL7). The
native annotations of disorder for this protein were obtained from its crystal structure (PDB ID:
10Y0). Figure 8 shows that this protein has short disordered regions at both termini and another
short disordered region in the middle of the chain (positions 161 to 174). Figure 8 visualizes results
generated by five disorder predictors that cover the entire spectrum of the predictive performance
including the two most accurate methods: DISOPRED3 and SPOT-Disorder, two modestly accurate
VSL2B and IUPred-long, and the least accurate methods, GlobPlot. The five predictors substantially
outperform their dataset-level AUCs for this protein: DISOPRED3 (AUC = 0.96 for this protein vs. 0.90
at the dataset-level), SPOT-Disorder (0.96 vs. 0.90), VSL2B (0.88 vs. 0.81), IUPred-long (0.93 vs. 0.73)
and GlobPlot (0.80 vs. 0.63). The five methods correctly predict the longest disordered region at the
N-terminus and they also correctly show that this protein is primarily structured. This is why their
predictive performance is so high. Only VSL2B and DISPORED3 were able to find the disordered
region at the other terminus, and only GlobPlot and IUPred-long found the disordered region in the
middle of the sequence. The GlobPlot’s success for the latter region comes at the expense of over-
predicting disorder in several other regions, which is why GlobPlot secures the lowest AUC among



the five computational tools. The very high AUC of SPOT-Disorder and DISOPRED3 are the result of
the fact that these methods predict high propensities for the disordered region at the N-terminus
while also predicting the lowest propensities for the structured regions. Moreover, outputs of these
two methods show spikes in their predicted propensities in the vicinity of the two other disordered
regions. While these spikes are not high enough to trigger generation of the binary disorder
prediction, they suggest that disorder is more likely in these regions than in the other parts of this
sequence. Overall, this case study shows how the disorder predictors can beat their dataset-level
predictive performance, which is a typical scenario that is revealed by our analysis.
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Figure 8. A case study that compares disorder predictions for the hydroxymethyltransferase protein from
Mycobacterium tuberculosis (Uniprot id: POWIL7) that were generated by five methods: VSL2B (dark green),
SPOT-DISORDER (magenta), DISOPRED3 (orange), GlobPlot (lime) and IUPred-long (grey). The putative
propensities are shown using the solid, color-coded lines. The corresponding binary predictions are given using
the color-coded horizontal bars at the bottom of the figure; thresholds that are used to convert the
propensities into the binary predictions are visualized with the dashed horizontal lines in the top part of the
figure. The red and blue horizontal bar denotes the native annotation of disordered and structured regions,
respectively, which were annotated using crystal structure (PDB ID: 10Y0).

4 Summary

Accurate prediction of intrinsic disorder for the millions of the currently unannotated protein
sequences is facilitated by the many predictors of disordered regions [63-65, 67]. Users who
navigate the selection of these predictive methods benefit from the many comparative assessments
that were released over the last decade [55, 103-106, 110-112]. However, these studies focus on the
dataset-level analysis of predictive quality while users often apply these tools to make predictions
for individual proteins. To this end, this article provides a detailed evaluation and analysis of the
protein-level results and extends the knowledge that we can glean from the current dataset-level
benchmarks.

Our first-of-its-kind large scale analysis of 13 representative disorder predictors shows that the
quality of the protein-level predictions is often very different from the dataset-level results. We
demonstrate that the protein-level predictive performance is in fact higher than the corresponding
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dataset-level assessments suggest for a substantial majority of the proteins, as many as over 70% of
proteins for the ESpritz-Xray, SPOT-Disorder and DISOPRED3 methods. This observation is consistent
for all 13 predictors and for both types of their outputs: putative propensities for disorder and binary
disorder predictions. However, this advantage comes at the cost of under-performing predictive
quality for between 10% and 30% of proteins, depending on the particular disorder predictor. These
proteins are predicted with accuracy/AUC that is substantially below the expected (dataset-level)
estimates.

Our analysis reveals a relationship between the accuracy of the protein-level predictions and the
native disorder content. We show that accurately predicted proteins, which secure above-expected
(better than dataset-level) predictive performance, typically have relatively low amounts of disorder.
On the other hand, the inaccurately predicted proteins for which predictive quality is substantially
below the expected/dataset-level value have high amounts of disorder. This finding parallels the
published observations that disorder predictors performs relatively poorly for proteins with long
disordered regions [55, 84, 104, 105]. Consequently, we recommend that the development of novel
predictors that target accurate prediction of the mostly disordered proteins should be pursued.

We investigate similarities of the protein-level predictive performance between different predictors.
We found several clusters of methods that produce highly correlated protein-level results. Our
recommendation is that users who want to benefit from application of multiple predictors should
apply predictors that come from different clusters. This would ensure more diversity in predictions
and would increase likelihood of securing a highly accurate prediction. This benefit is premised on
the availability of a tool capable of predicting correctness of disorder predictions. A relevant
computational tool that predicts quality assessment scores for the residue-level predictions of ten
popular disorder predictors is QUARTER [120]. However, further research is needed to assess
whether QUARTER’s scores can be used to identify accurate protein-level predictions. Furthermore,
we advocate for the development of new family of predictive tools capable of identifying hard-to-
predict proteins. These methods could be used to suggest disorder predictors that produce accurate
predictions for a given input protein chain.

Our statistical test show that the SPOT-Disorder and DISOPRED3 provide significantly higher protein-
level AUCs when compared with the other considered here predictors. Moreover, ESpritz-DisProt
provides predictions with the lowest protein-level FPRs but at the cost of substantially under-
predicting the amount of disorder. However, we also empirically demonstrate that the protein-level
predictive performance is at least modestly correlated for substantial majority of methods. This
result indicates that multiple predictors can provide relatively good results and that no single
method is universally superior. Detailed analysis shows that accurate protein-level predictions for a
given protein of interest are in fact usually produced by several disorder predictors, Moreover, the
predictor with the most accurate dataset-level results outperforms the other methods for only
about 30% of proteins. These findings support the need and feasibility of the development of the
new family of predictive tools and they suggest that the users should explore using multiple disorder
predictors, instead of simply using one (the most accurate) method.

Finally, recent research in this area focuses on the development of predictors of specific types of
functional disordered regions. Several methods that target prediction of disordered protein-binding
regions [73, 124-129], nucleic acids-binding regions [124, 130], linker regions [131], and
multifunctional regions [132] were released in recent years. While the currently low numbers of
these tools that address a specific region type prohibit comparative analysis of the protein-level
performance, we anticipate that such analysis will be needed in the near future.



Key Points

e Protein-level performance of disorder predictions varies widely and differs from the currently
used dataset-level benchmark results

e A large majority of proteins secure predictive performance that is higher than the dataset-level
result suggest

e Disorder predictors perform poorly for between 10% and 30% of proteins, and these proteins
typically have a substantial amount of intrinsic disorder

¢ No disorder predictor is universally superior and highly accurate disorder predictions can be
typically generated with multiple methods

¢ Novel computational tools that accurately identify the hard-to-predict proteins and that make
accurate predictions for these proteins are needed
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