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Abstract 

Computational prediction of nucleic acid binding residues in protein sequences is an active field 
of research, with over 80 methods that were released in the last two decades. We identify and 
discuss 87 sequence-based predictors that include dozens of recently published methods that 
are surveyed for the first time. We overview historical progress and examine multiple practical 
issues that include availability and impact of predictors, key features of their predictive models, 
and important aspects related to their training and assessment. We observe that the last 
decade has brought increased use of deep neural networks and protein language models, which 
contributed to substantial gains in the predictive performance. We also highlight advancements 
in vital and challenging issues that include cross-predictions between DNA and RNA-binding 
residues and targeting the two distinct sources of binding annotations, structure-based vs. 
intrinsic disorder-based. The methods trained on the structure-annotated interactions tend to 
perform poorly on the disorder-annotated binding and vice versa, with only a few methods that 
target and perform well across both annotation types. The cross predictions are a significant 
problem, with some predictors of DNA-binding or RNA-binding residues indiscriminately 
predicting interactions with both nucleic acid types. Moreover, we show that methods with 
web servers are cited substantially more than tools without implementation or with no longer 
working implementations, motivating the development and long-term maintenance of the web 
servers. We close by discussing future research directions that aim to drive further progress in 
this area. 

Keywords: protein-DNA interaction; protein-RNA interaction; nucleic acid binding; DNA-binding 
residue; RNA-binding residue; intrinsic disorder; sequence-based prediction; machine learning; 
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Introduction 

Interactions between biomolecules are major drivers of cellular processes. In particular, 
protein-nucleic acids interactions play crucial roles in a number of key cellular functions 
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including DNA replication, transcription, translation, and gene regulation [1-5]. Moreover, their 
mis-regulation is associated with several human diseases [6-8], providing further motivation to 
study these interactions. Several experimental techniques, such as pull-down assays, chromatin 
immunoprecipitation and CRISPR-Cas based approaches are used to study the protein-nucleic 
acids interactions [3, 9]. Additionally, atomic-level details that include information about the 
interacting residues and nucleotides can be obtained from experimentally solved structures of 
protein-nucleic acids complexes [10, 11]. However, obtaining structures of these complexes is 
relatively cost-intensive and challenging, especially when considering that nearly 250 million 
protein sequences are available as of September of 2024, with 90 million that were collected 
over the last five years [12]. To this point, computational methods that predict protein-nucleic 
acids interactions from sequences can be beneficial in bridging this large and growing function 
annotation gap. These computational tools are typically trained/generated from the limited 
amounts of the experimentally annotated data. The trained models can be used to produce 
predictions in a high-throughput manner for a large number of uncharacterized proteins, if 
their predictive performance is sufficiently good. The functional importance of protein-nucleic 
acids interactions combined with the availability of a sufficient amount of the corresponding 
experimental data for the model training and testing has motivated the development of several 
dozens of computational predictors of nucleic acid binding residues in proteins.  

These predictors can be divided into two groups, those that use the protein structure vs. 
protein sequence as the input. The structure-based methods exploit the structural features, 
such as secondary structure, solvent accessibility, characteristics of spatial neighborhoods in 
the structure and shape complementarity, to derive predictive models [13-20]. Some of the 
popular and recent structure-based methods include (chronologically) aaRNA [17], NucleicNet 
[18], Graphbind [19], Geobind [20] and PNAbind [21]. With the availability of a large number of 
structures predicted with  AlphaFold2 [22], some of the recent methods, such as EquipNAS [23], 
GraphSite [24]and GraphNABP [25], utilize putative structures to train their models. In this 
survey, we focus the sequence-based predictors that use only the protein sequences as inputs 
to predict the DNA-binding residues (DBRs) and the RNA-binding residues (RBRs). Since the 
release of the first sequence-based predictors in 2004 [26, 27], many more methods were 
published [28-34]. We identified over two dozen sequence-based predictors that were released 
in the last five years, demonstrating that this is an active field of research. Availability of a large 
number of methods prompted the release of several surveys that we summarize in Table 1. 
These reviews typically enumerate the available predictors, list the corresponding references, 
summarize their predictive models, and provide guidance on how to select an appropriate 
method from a pool of multiple choices. They usually cover dozens of methods that include 
tools that predict DBRs [29, 31, 35, 36], RBRs [28, 34, 37-39] and both DBRs and RBRs [30, 33, 
40, 41]. 

Most of the surveyed predictors are trained on training datasets using machine learning 
algorithms. Based on the source of the binding annotations in the training datasets, they are 
divided into two categories. The first includes data derived from the structures of protein-
nucleic acids complexes, which we refer to as structure-annotated training data. The second 
category involves binding interfaces that are positioned in intrinsically disordered regions 
(IDRs), resulting in the disorder-annotated training data. IDRs lack stable structure under 



physiological conditions [42-45]. Protein sequences may have one or multiple IDRs, which in 
some cases may cover an entire sequence 

Several studies show that IDRs are functionally important and abundant in the nucleic acid 
binding proteins [46-51]. Importantly, protein-nucleic acids interactions in IDRs differ in 
multiple ways from the interacting structured regions. The former typically have polymorphic 
conformations that are induced by interacting with different ligands [52, 53]. Moreover, they 
are enriched in disorder promoting amino acids and form larger interfaces upon binding with 
partner molecules when compared with the interfaces in the structured regions [54-56]. These 
differences may impact ability of the corresponding methods to make accurate predictions, 
especially when they are applied to make predictions in IDRs while the underlying model was 
trained on the structure-annotated dataset, and vice versa. With that in mind, Table 1 reveals 
that virtually all past surveys focus on the methods that were trained on the structure-
annotated proteins [28, 29, 31, 33-39, 41], with just two articles that consider tools that were 
trained from the disorder-annotated proteins [30, 40]. Moreover, one of these two articles 
covers just two predictors trained from the disorder-annotated data and discusses methods 
that targets interactions with other ligands, such as proteins and lipids [40], and the other 
mentions one disorder-trained predictor without discussing this aspect of the model training 
[30]. 

Another important aspect is cross-prediction between DBRs and RBRs. Research show that 
some of the current methods heavily cross-predict (mis-predict) DBRs as RBRs and vice versa 
[33, 41]. This issue was sporadically discussed in some of the surveys [28, 33, 34, 41]. The first 
independent survey covering the cross-prediction was authored by Zhao et. al. [28] (Table 1), 
while the first prediction tool that assessed the cross-predictions was SPOT-Seq [57]. However, 
the cross-prediction analysis in both studies was limited only to the predictors of the RNA-
binding proteins, which produce protein-level results that do not include prediction of RBRs. 
The most recent assessment, conducted in 2020, performed a residue-level analysis on the 
cross-prediction but it covered only predictors of RBRs [34]. We find that since the study by Yan 
et. al. [33], none of the surveys in the last eight years discussed the cross-prediction across 
predictors of DBRs and RBRs. 



Table 1. Summary of surveys that discuss sequence-based predictors of the nucleic acid binding residues. The 
articles are sorted chronologically with the most recent study at the top of the table. The ‘Type of methods 
covered’ column identifies whether a given survey covers “Str“ methods that were trained on the structure-
annotated proteins and/or “Dis“ methods that were trained on the disorder-annotated proteins. Bold font 
identifies data for this review. 

Reference 
(Year published) 

Target of 
assessment 

Type of 
methods 
covered 

No. of sequence-
based predictors of 

DBRs/RBRs covered 

No. of methods that were 
published after 2018 (year of 

the most recent method) 

Types of training 
datasets 

discussed 

Cross-
prediction 
discussed 

This study (NA) DNA & RNA Str+Dis 87 34 (2024) yes yes 

[40] (2023) DNA & RNA Dis 3 2 (2022) yes no 

[30] (2022) DNA & RNA Str+Dis 13 3 (2021) no no 

[34] (2020) RNA Str 28 2 (2019) no yes 

[31] (2019) DNA Str 8 0 no no 

[33] (2016) DNA & RNA Str 30 0 no yes 

[37] (2016) RNA Str 12 0 no no 

[41] (2015) DNA & RNA Str 24 0 no yes 

[29] (2015) DNA Str 7 0 no no 

[38] (2015) RNA Str 19 0 no no 

[35] (2013) DNA Str 13 0 no no 

[36] (2013) DNA Str 11 0 no no 

[28] (2013) RNA Str 10 0 no yes 

[39] (2012) RNA Str 13 0 no no 

 

We provide a thorough and practical overview of this active field of research, substantially 
improving over the past surveys that are listed in Table 1. We cover the largest number of 
sequence-based nucleic acid binding residue predictors, which include over two dozen new 
methods that were published in the last five years and which were not included in the previous 
review articles (Table 1). We examine how the underlying predictive models changed over time, 
investigate their availability and impact, and provide an expanded discussion of cross-
predictions for the predictors of both DBRs and RBRs. Moreover, we categorize predictors on 
whether they are trained on the structure-annotated vs. disorder-annotated proteins and 
discuss the corresponding implications. Altogether, we comprehensively review the 20-year 
long journey of the development of predictors of DBRs and RBRs. 

Materials and methods 

Selection of methods 

We performed an extensive literature search to obtain the list of sequence-based predictors of 
nucleic acid binding residues. We considered three main sources: i) the past surveys that 
covered sequence-based nucleic acid binding residue predictors [28-31, 33-39, 41]; ii) studies 
that cite these surveys; and iii) a manual search in PubMed using the following search 
keywords: ((Nucleic acid binding residue) OR (RNA binding residue) OR (DNA binding residue) 
OR (nucleotide binding residue)) AND ((prediction) OR (identification)), ((Nucleic acid binding 
site) OR (RNA binding site) OR (DNA binding site) OR (nucleotide binding site)) AND ((prediction) 
OR (identification)). We further filtered and selected only those methods which are published in 
peer-reviewed Q1 journals. Using the above protocol, we identified 87 sequence-based nucleic 
acid-binding residue prediction methods, which more than doubles the number of such 
methods covered in each of the previous surveys (Table 1). 



Predictive performance assessment 

Predictive performance is an important aspect of surveying tools in this area. While every 
published method was evaluated and compared against a selection of other predictors, the list 
of the other methods is typically rather short. Summarizing results from across multiple sources 
is challenging since several factors must be considered to ensure that results of different 
methods can be directly compared. Specifically, the corresponding assessments must be 
performed on the same benchmark dataset, with same type of annotations of binding residues, 
and at least one common metric of predictive performance. Additionally, these studies often 
covered overlapping methods, making it difficult to boost coverage, particularly for more 
recently published tools. We considered these factors and were able to collect, report and 
discuss the predictive performance of 20 methods, with 13 of them published within the last 
five years.  

We discuss the assessments of the DBR and the RBR predictors separately. The DNA-binding 
test dataset that we used to assess the DBR predictors was first reported by Patiyal et. al. [58], 
and subsequently used in two recent studies [59, 60]. This dataset combines the DNA-binding 
datasets that were developed to assess two earlier predictors, hybridNAP [32] and ProNA2020 
[61]. This test dataset contains 46 DNA-binding proteins with 965 DBRs and 9911 non-DBRs. The 
RNA-binding test dataset that we used to assess the RBR predictors was compiled to evaluate 
the Pprint2 method [62], and was also recently used in the article that introduces MucLiPred 
[60]. Similar to the DNA-binding dataset, it combines the datasets sourced from refs. [32] 
(hybridNAP) and [61] (ProNA2020). This test dataset contains 161 RNA-binding proteins with 
6966 RBRs and 44349 non-RBRs. The annotations of binding residues for the test proteins 
sourced from the hybridNAP article were obtained from the BioLip database [63, 64], which in 
turn was derived from PDB [65, 66]. The binding residue annotations for the test proteins from 
the ProNA2020 article were collected from the Protein-DNA Interface database [67] and the 
Protein-RNA Interface database [68], both of which also rely on the PDB-derived data. 

The 20 predictors of RBRs and DBRs output numeric propensity scores for the corresponding 
type of binding for each amino acid in the input protein sequence. These propensities are used 
to generate binary state predictions (binding vs. non-binding) using a threshold, where residues 
with propensities > threshold are assumed to bind, and the remaining residues are assumed not 
to bind. Based on their frequent use in the source evaluation articles [32, 58-62] and related 
comparative surveys [34, 38, 41, 69-73], we used the area under the receiver operating 
characteristic curve (AUC) to evaluate the predicted propensity scores and the Matthews 
Correlation Coefficient (MCC) to evaluate the predictions of binary states: 

MCC = (TN*TP-FN*FP)/√[(TP+FP)(TP+FN)(TN+FP)(TN+FN)] 
where TP, TN, FN and FP are the numbers of true positives (correctly predicted binding 
residues), true negatives (correctly predicted non-binding residues), false negatives (binding 
residues incorrectly predicted as non-binding), and false positives (non-binding residues 
incorrectly predicted as binding), respectively. MCC values range between -1 and 1, where 0 
denotes predictions at random levels and a higher positive score indicates stronger correlation 
between predictions and the native annotations of binding. The AUC is the area under the 



curve defined by the true positive rates (TPR) vs false positive rates (FPR) computed over the 
thresholds equal to all unique predicted propensities: 

TPR = TP/(TP+FN) 
FPR = FP/(FP+TN) 

While AUC theoretically ranges from 0 to 1, the AUC of a random predictor is around 0.5 and 
higher values that are above 0.5 suggest stronger predictive performance. We collected the 
AUC and MCC scores for the predictors of DBRs from refs. [58-60, 74, 75] and for the predictors 
of RBRs from refs. [60, 62]. 

Results  

We summarized details concerning the comprehensive list of the 87 predictors, such as their 
name, prediction target (DBRs, RBRs, or both), type of predictive models and training datasets, 
outputs and consideration given to cross-predictions, in Table 2. We covered 36 predictors of 
DBRs, 29 predictors of RBRs, and 22 predictors that target both DBRs and RBRs. Some methods 
are designed for specific types of nucleic acids and proteins. Specifically, SDCpred [76] predicts 
residues that interact with the mono- and dinucleotide-specific DNAs; SRCpred [77] targets 
predictions of the dinucleotide-specific RNA binding; DNAgenie [78] predicts A-DNA, B-DNA and 
single-stranded DNA binding residues; and TSNAPred [79] predicts residues that interact with 
the A-DNA, B-DNA, single stranded DNA, mRNA, tRNA, and rRNA. Moreover, EPDRNA [80] 
generates predictions of nucleic acid binding residues in proteins associated with human 
diseases including cancer and cardiovascular and neurodegenerative diseases.  

We analyzed the 87 methods from multiple complementary perspectives including a historical 
overview, their availability and impact, predictive performance, the consideration of the 
structure-based vs. disorder-based annotations of binding in their training datasets, and cross-
predictions between DBRs and RBRs. 



Table 2. Sequence-based predictors of DBRs and RBRs. The methods are arranged in the chronological order. The ‘Target’ column shows types of predicted binding 
residues: DNA-binding (D), RNA-binding (R), and DNA- and RNA-binding (DR). The ‘Predictive architecture’ column covers neural networks (NN), support vector 
machine (SVM), naïve Bayes (NB), logistic regression (LR), random forest (RF), template-based prediction (TB), decision tree (DT), linear regression (LR), long short-
term memory (LSTM) NN; deep-learning models are marked with [D]; we also name the protein language model that a given method uses, if any, inside the round 
brackets. The ‘training dataset’ column differentiates between methods trained from the structure-annotated interactions (S), disorder-annotated interactions (D), 
and both types of annotations (S+D). The ‘Output’ column includes propensity scores (P), binary state (B), and both (B+P). The ‘Cross-prediction’ column shows 
whether the cross prediction was not mentioned (NM), discussed but not considered (Dis), or corrected/considered (Corr) when designing a given method. 

Ref 
Year 

published 
Name 

Target  
(D, R, DR) 

Predictive architecture  
(PLM types used for feature extraction) 

Training 
dataset 

 (S, D, S+D) 

Output  
(B, P, B+P) 

Cross-
prediction  

(NM/Dis/Corr) 

[26] 2004 DBS-pred D NN S P NM 
[27] 2004 Jeong et al R NN S B NM 
[81] 2005 DBS-PSSM D NN S B+P NM 
[82] 2006 BindN DR SVM S B+P NM 
[83] 2006 DNABindR D NB S P NM 
[84] 2006 Jeong et al R NN S B NM 

[85, 86] 2006 DP-Bind D LR, SVM S B+P NM 
[87] 2007 DISIS D NN, SVM S B NM 
[88] 2007 Ho et al D SVM S B NM 

[89, 90] 2006 RNABindR R NB S B NM 
[91] 2008 Pprint R SVM S B+P NM 
[92] 2008 PRINTR R SVM S B NM 
[93] 2008 RISP R SVM S B+P NM 
[94] 2008 RNAProB R SVM S B NM 
[95] 2009 BindN-RF D RF S B+P NM 
[96] 2009 DBD-Threader D TB S B+P NM 
[97] 2009 DBindR D RF S B+P NM 
[98] 2009 ProteDNA D SVM S B NM 
[76] 2009 SDCpred D NN S P NM 

[99, 100] 2009  PiRaNhA R SVM S B+P NM 
[101] 2010 BindN+ DR SVM S B+P NM 
[102] 2010 NAPS DR DT S B+P Dis 
[103] 2010 PRNA R RF S B+P NM 
[104] 2010 ProteRNA R SVM S B NM 
[105] 2010 RBRpred R SVM S B NM 
[106] 2010 RNA R LR S B NM 
[107] 2011 MetaDBSite D NB, NN, LR, RF, SVM S B NM 
[108] 2011 PRBR R RF S B+P NM 
[77] 2011 SRCpred R NN S P NM 

[109] 2011 Choi and Han R SVM S B NM 
[110] 2011 Wang et al R SVM S B NM 
[57] 2011 SPOT-Seq R TB S B NM 

[111] 2012 DNABR D RF S B+P NM 
[112] 2012 meta2 R SVM S P NM 
[113] 2013 TargetS D SVM S P NM 
[114] 2014 Pan et al R RF S B NM 
[115] 2014 SPOT-Seq-DNA D TB S B NM 



[116] 2014 SPOT-Seq-RNA R TB S B NM 
[117] 2014 RNABindRplus R SVM, LR S B+P NM 
[17] 2014 aaRNA R NN S B+P NM 

[118] 2015 RBRIdent R RF S B+P NM 
[119] 2015 SNBRFinder DR SVM, TB S B+P NM 

[120, 121] 2015 DisoRDPbind DR LR D B+P NM 
[122] 2015 RBScore-SVM R SVM S B NM 
[123] 2016 Dang et al D RF S P NM 
[124] 2016 DQPred-DBR D SVM S B+P NM 
[125] 2016 FastRNABindR R RF, SVM S P NM 
[126] 2016 TargetDNA D SVM S B+P NM 
[127] 2017 DRNApred DR LR S B+P Corr 
[128] 2017 PRODNA D Sparse Representation S P NM 
[129] 2017 EL_PSSM-RT D RF, SVM S B NM 
[130] 2018 PDRLGB D Light Gradient Boosted DT S B NM 
[131] 2018 funDNApred D Fuzzy Cognitive Map S P NM 
[132] 2019 DNAPred  D SVM S B+P NM 
[32] 2019 hybridNAP DR LR S B+P NM 

[133] 2019 NucBind DR SVM, TB S B+P Dis 
[134] 2019 PSPrint-seq R RF S B NM 
[135] 2019 iProDNA-CapsNet D [D] Convolutional NN, Feed forward NN S B+P NM 
[61] 2020 ProNA2020 DR NN, SVM (ProtVec) S B+P NM 

[136] 2020 EL_LSTM D [D] LSTM NN S B NM 
[137] 2021 SPDH D SVM S P NM 
[78] 2021 DNAgenie D LR, k-nearest neighbor, NB, RF, SVM S B+P Corr 

[138] 2021 NCBRPred DR [D] Recurrent NN S B+P Corr 
[139] 2021 bindEmbed21 DR [D] Convolutional NN (ProtT5) S B+P NM 
[140] 2022 MTDsite DR [D] Bidirectional-LSTM NN S B Dis 
[141] 2022 DeepDISOBind DR [D] Convolutional NN D B+P Corr 
[142] 2022 PredDBR D [D] Convolutional NN, NN S B NM 
[58] 2022 DBPred D [D] Convolutional NN S B NM 
[79] 2022 TSNAPred DR [D] CapsNet, Light Gradient Boosted DT, NN S B+P Dis 

[143] 2022 iDRNA-ITF DR [D] NN, Bidirectional gated recurrent NN (CAN-NER) S B+P Corr 
[62] 2023 Pprint2 R [D] Convolutional NN S B NM 

[144] 2023 Guan et al D [D] Transformer, Convolutional NN S P NM 
[145] 2023 proRBR R RF S B+P NM 
[146] 2023 HybridRNAbind R [D] Convolutional NN, Recurrent NN, RF S+D B+P Corr 
[147] 2023 GLMSite DR [D] Graph NN (ProtTrans and ESMFold) S B+P NM 
[59] 2024 CLAPE-DB D [D] Convolutional NN (ProtBERT) S B+P NM 

[148] 2024 HybridDBRpred D [D] Transformer, NN S+D B+P Corr 
[80] 2024 EPDRNA DR RF, k-nearest neighbor, LR, XGBoost S B+P NM 

[149] 2024 DRBpred DR Light Gradient Boosted DT S B+P NM 
[60] 2024 MucLiPred DR [D] NN (BERT) S B+P NM 

[150] 2024 ULDNA D [D] LSTM NN (ESM2 and ProtTrans) S B+P NM 
[151] 2024 SOFB DR [D] Convolutional NN, Bidirectional-LSTM NN (NA Bert, ProtT5) S B NM 
[152] 2024 GPSFun DR [D] Graph NN (ProtT5-XL-U50) S B+P NM 
[153] 2024 GPSite DR [D] Graph NN (ProtTrans and ESMFold) S B+P NM 
[75] 2024 PDNApred D [D] Convolutional NN, Bidirectional Gated Recurrent Unit NN 

(ESM2 and ProtT5) 
S B+P NM 

[74] 2024 DIRP D [D] Convolutional NN (ESM2 and ProtTrans) S B+P NM 
[154] 2024 DeepDBS D [D] LSTM NN, RF S B+P NM    



Historical overview 

Figure 1 illustrates the timeline of the release of the 87 predictors, where we highlighted eight 
major milestones. The first methods that predict exclusively DBRs (DBS-Pred) or RBRs (predictor 
by Jeong et. al.) were published in 2004 [26, 27]. Since then, at least one method was released 
each year. DBS-pred [26] is the first predictor of DBRs that was released as a web server. This 
contribution introduced a simple predictive architecture in the form of a shallow feed forward 
neural network and defined how to collect datasets with annotations of DBRs, which were used 
to train and test this predictive model. At the same time, Jeong et. al. published two methods, 
one in 2004 [27] and another in 2006 [84], but neither predictor was released for public use (no 
code and no web server). RNABindR that was published in 2007 [89] is the first predictor of 
RBRs that is available as a web server.  

 
Figure 1. Timeline of the release of the 87 sequence-based nucleic acid binding residue predictors. The color-coded 
bars represent methods that target prediction of DBRs (blue), RBRs (orange) and both DBRs and RBRs (green). The 
major milestones are shown at the bottom in the blue-bordered boxes. 

As another milestone (Figure 1), BindN that was published in 2006 [82] is the first method that 
predicts both DBRs and RBRs. Except for this aspect, BindN arguably did not contribute to 
moving other aspects of this field forward as it utilizes a relatively simple design, which consists 
of a classical support vector machine (SVM) model that uses just three biochemical features of 
amino acids as the input (pKa, hydrophobicity, and molecular mass). This simplicity motivated 
the subsequent release of an improved BindN+ version in 2010 [101], which was designed to 
utilize more sophisticated inputs that rely on evolutionary information. By 2009, 20 methods 
were released and yet the issue of the cross-predictions between DBRs and RBRs did not 
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surface. Authors of NAPS [102], a tool that predicts DBRs and RBRs, were the first to briefly 
discuss this concern but they did not address it in their design. It took several more years until 
2016 when the cross-prediction was quantified and compared across predictors in the 
comparative study by Yan et. al. [33]. This study motivated the development and release in 
2017 of DRNApred [127], which was designed to accurately predict and discriminate between 
DBRs and RBRs (i.e., minimize the cross-predictions). The main innovation that was introduced 
in DRNApred is a two-layered architecture, where predictions of DBRs and RBRs produced by 
the first layer are input together into the second predictive layer that refines them to minimize 
cross-predictions. Importantly, until 2015 all the methods were developed using the structure-
annotated training data. As a major milestone (Figure 1), DisoRDPbind that was published in 
2015 [120], is the first tool that was designed using the disorder-annotated training and test 
datasets, extending the DBR/RBR annotation protocols that were introduced in mid 2000s.  

The predictive architectures of the methods, see Table 2, are predominantly based on machine 
learning (ML) algorithms, with a just few exceptions where template-based approaches are 
used [57, 96, 115, 116]. For example, SNBRFinder [119] and NucBind [133] utilize a template-
based approach to predict protein structure from the input sequence, which is followed by the 
application of ML-generated models, particularly SVM, that identify putative DBRs and RBRs 
from the predicted structures. Significant majority of the predictors of DBRs and RBRs rely on 
shallow ML algorithms. Many different shallow ML algorithms were tried including the most 
widely used SVM, which was applied by itself in 19 predictors [82, 88, 91-94, 98, 99, 101, 104, 
105, 109, 110, 113, 122, 124, 126, 132, 137] and in combination with some other algorithms in 
additional 9 predictors [61, 78, 85, 87, 107, 117, 119, 129, 133]. The next two popular shallow 
ML algorithms are random forest, which was applied in 14 methods [78, 80, 95, 103, 108, 111, 
114, 118, 123, 125, 129, 145, 146, 155], and shallow neural network (NN) that were used in 10 
methods [17, 26, 27, 61, 76, 77, 81, 84, 87, 107]. Some of the other shallow ML algorithms 
include logistic regression [78, 80, 85, 107, 117, 120, 121, 127], Naïve Bayes [78, 83, 89, 107], 
linear regression [32, 106] and decision trees [61, 102, 130, 149]. Interestingly, we observed a 
substantial increase in the use of deep neural networks (DNNs) over the last five years, where 
24 of the 34 predictors rely on the DNN models. Released in 2019, iProDNA-CapsNet [135] is 
the first method that applied the DNN model, marking another major milestone (Figure 1). The 
main innovation behind this predictor was the formulation and training of the predictive model 
that involves two two-dimensional convolutional layers connected to a fully connected feed 
forward layer. However, iProDNA-CapsNet relies on rather generic inputs, in the form of 
evolutionary information that was previously utilized to design several past predictors. Analysis 
of Table 2 reveals that the convolutional NNs are the most widely used architecture of DNNs 
among the predictors of RBRs and DBRs [58, 59, 62, 74, 75, 135, 139, 141, 142, 144, 146, 151], 
although several other architectures that include unidirectional and bidirectional recurrent 
networks, transformers, and graph networks were also used. In addition to the development of 
the DNN models, we identified a recent trend of using pre-trained protein language models 
(PLMs) as feature/input extraction tools [59-61, 74, 75, 139, 147, 150-153]. Simply put, PLMs 
process an input protein sequence in a way similar to processing a sentence in human language, 
where functional motifs and domains of the protein act as words in the sentence [156], 
producing a vector of numerical features for each amino acid. PLMs have been used to solve 



several bioinformatics problems and literature shows that their use tends to lead to 
improvements in the predictive performance of models [157, 158]. In the context of the 
prediction of nucleic acid binding residues, the ProNA2020 method in 2020 [61] was the first to 
use PLM called ProtVec [159] for the feature/input extraction, denoting another milestone 
(Figure 1). Henceforth, eleven other predictors including bindEmbed21 (PLM: ProtTrans-ProtT5 
[160]) [139], iDRNA-ITF (PLM: CAN-NER [161]) [143], CLAPE-DB (PLM: ProtTrans-ProtBERT [160]) 
[59], MucLiPred (PLM: ProtTrans-ProtBERT [160]) [60], GLMSite (PLM: ProtTrans [160], 
ESMFold[162]) [147], ULDNA (PLM: ESM2 [162], ESM-MSA [163] and ProtTrans [160])[150], 
SOFB (PLM: ProtTrans-ProtT5 [160]) [151], GPSFun (PLM: ProtTrans- ProtT5-XL-U50 [160]) 
[152], GPSite (PLM: ProtTrans [160], ESMFold [162]) [153], PDNApred (PLM: ProtTrans-ProtT5 
[160] and ESM2 [162]) [75] and DIRP (PLM: ProtTrans [160] and ESM2 [162]) [74] use PLMs for 
the feature extraction. The latest milestone was the development and release of 
HybridRNAbind in 2023 [146], which is the first tool that was trained using both structure- and 
disorder-annotated training data, bridging the two annotations types. Additionally, this RBR 
predictor also minimizes cross-prediction between RBRs and DBRs [146]. Soon after, 
HybridDBRpred, which targets prediction of DBRs and similarly combines the structure- and 
disorder-annotated training data, was published [148].   

The above historical overview (Figure 1) suggests that the timeline can be divided into two 
distinct decades, each defined by a number of unique characteristics. The first decade spans the 
period between 2004 and 2014, and the second decade includes years from 2014 onwards. The 
major focus during the first decade was on developing predictors that target either DBRs or 
RBRs, resulting in 16 DBR predictors, 17 RBR predictors and just three tools that predict both 
DBRs and RBRs. Moreover, these methods rely on relatively simple shallow ML algorithms and 
they were trained exclusively on the structure-annotated proteins. The second decade is a 
more dynamic period where five major milestones took place (Figure 1). Although many 
predictors of either DBRs or RBRs were still developed, 19 methods that target both types of 
binding residues were released in this period including 6 out of the 12 methods published in 
2024 (Table 1). Furthermore, we observed a big shift in the choice of predictive architectures 
that increasingly included deep ML models and modern PLMs for the feature/input extraction, 
with the underlying objective to improve predictive performance. The second decade also 
brought consideration to the cross-predictions between DBRs and RBRs and predicting both 
structure- and disorder-annotated interactions. The former likely stems from the increased 
focus on predicting both types of interactions, which inevitably brings the matter of evaluating 
whether these predictions overlap. Altogether, the second decade featured development of 
more sophisticated predictive models that attempted to address the challenging issues 
affecting quality (cross-predictions) and scope (disorder- and structure-annotated) of DBRs and 
RBRs predictions.  

Availability and impact 

An important aspect of computational predictors is their accessibility to users. Supplementary 
Table S1 provides details concerning the mode of availability (a web server (WS), a standalone 
code (SC), both or neither, as declared in the corresponding publication) and their current 
availability (whether or not the declared mode is currently available). We verified the 



availability of these implementations in November 2024 when we collected these data by 
checking the web links from the reference articles. This led to three outcomes: available (we list 
the corresponding links in Supplementary Table S1), not working (links in the original reference 
did not work as of November 2024), and never available (authors did not make their tools 
available in the original reference).  

The two modes of availability, WS and SC, differ in multiple aspects. Users can access WSs via a 
web browser and these predictions are computed on the server side, typically without installing 
any software on the user’s side. This makes a WS an arguably easier to use option, however, 
each prediction request is usually limited to a single protein or a small batch of proteins and the 
runtime might be affected by the ongoing server load. On the other hand, SC has to be 
downloaded and installed by the user and the computations are performed on the user’s 
hardware. SC can be challenging to install, requiring users to install one or more third-party 
applications and have specific hardware and/or software infrastructure. However, SC offers 
certain advantages when compared to WS, including ability to be embed into other 
bioinformatics pipelines and to generate predictions at a large scale. We found that 75 out of 
the 87 listed methods provided at least one mode of availability at the time of their publication 
(Supplementary Table S1). Out of these 75 methods, 56 (77%) were originally released as WSs, 
either solely or along with SC, making WSs the most common mode of availability.  

Though SC was provided for the first time in 2010 by the authors of PRNA [103], this option was 
rather uncommon until recently.  Out of the 28 methods that were published with SC, 21 were 
released in the last 5 years. Moreover, 9 of these 21 methods were originally published with 
both WS and SC, which arguably broadens the utility of the methods when compared to tools 
that offer one mode of availability. However, as of November 2024 only 35 out of the 75 
originally available methods have a working WS or SC; the links for the other 40 no longer work.  
Among the 35 currently available methods, 12 are only WS, 13 are only SC, and 10 are both WS 
and SC. The overall availability rate for the sequence-based predictors of RBRs and DBRs is at 
40% (35 out of 87), which is same as the 40% rate for the predictors of protein-binding residues 
[164] and lower than the recently reported 71% rate for the predictors of the disordered 
binding residues [40]. 

We also analyzed the impact or popularity of the sequence-based predictors of RBRs and DBRs 
based on their citations, which we collected from the Google Scholar in November 2024 
(Supplementary Table S1). While we collected the total number of citations for each method, 
we relied on the corresponding annual citation rates (i.e., total citations divided by the number 
of years since publication) which are more appropriate to compare between methods. We also 
excluded the methods which are published from 2023 onwards, since they are too new to 
reliably measure their citations.  

We found that methods that did not offer either mode of availability (i.e., were not made 
available) are cited substantially less (median annual citations = 3) compared to the tools which 
originally had at least one mode of availability (median annual citations = 8). These median 
annual citation counts are much larger for the methods that have currently working WS and/or 
SC (median annual citations = 13). Among these working tools, the tools with only working WS 
receive the most citations (median annual citations = 15), closely followed by the methods with 



both WS and SC (median annual citations = 14). Moreover, methods that are available solely as 
SC are comparatively less cited (median annual citations = 5). We hypothesize that the higher 
citations for the methods with working WSs are because this mode of availability is accessible 
to a much broader group of users, including those who have limited technical expertise and 
computational resources. On the other hand, methods that were not made available secure 
relatively poor citation numbers, which suggests that availability strongly affects the rate of use 
(citations). Moreover, we also observed that methods which were originally available but which 
currently do not work obtain much fewer citations when contrasted against tools with working 
WS and/or SC (median annual citations = 8). This implies that availability of methods should be 
maintained after their release, or otherwise their impact is much diminished.  

Lastly, we briefly comment on a few most impactful/cited methods. BindN [82], the first tool 
that predicts both DNA- and RNA-binding residues, has the highest total citations of 495 
(Supplementary Table S1). Since then, this tool has undergone two upgrades [95, 101], with the 
most recent version, BindN+ [101], released in 2010, which received over 200 citations to date. 
DBS-pred [26], predictor of DBRs, is the only other tool that has total citations at over 400. 
Among predictors of RBRs, Pprint [91] with an overall citations of 322 is the most cited. In fact, 
Pprint along with DP-Bind [85] (overall citations of 270) are the only two methods that have 
maintained their implementations for over 10 years, which likely contributed to their high 
citation counts. There are 21 methods which have been cited more than 100 times and 
hybridNAP [32], which was published in 2019, is the most recent method to collect such high 
number of citations.  

We also highlight a few recently published applications of these highly cited tools in biological 
contexts to further substantiate their impact. Multiple predictors including BindN [82], BindN+ 
[101] and metaDBsite [107] were used in tandem to characterize the DSrC protein from sulfur 
oxidizing bacterium A. vinosum [165]. Similarly, DRNApred [127], Pprint [91] and RNAbindPlus 
[117] were applied to study the GRP20 protein in the context of flower development [166], 
while Pprint and hybridNAP [32] were applied to investigate roles of the SIX1 protein in the iron 
metabolism associated with progression of endometrial cancer [167]. These predictors were 
also used individually, with an example of DRNApred [127] that was recently applied to 
characterize proteins encoded by a viral mycobacteriphage gene [168] and CRESS DNA viruses 
[169]. Methods that have low runtimes were used to analyze entire proteomes. For instance, 
DisoRDPbind [120] was used to investigate length variation of short tandem repeats in A. 
thaliana [170], abundance and function of intrinsic disorder in the polyomavirus [171], and 
functions of the RNA-binding proteins in human [172]. DisoRDPbind together with DRNAPred 
and Pprint were applied to analyze the COVID-19 proteome [173]. Moreover, these tools were 
used to generate predictions at the scale of multiple proteomes and these data are 
conveniently available to the users via specialized databases. For instance, GPSite’s predictions 
for the entire Swiss-Prot database are available in the GPSiteDB database [153], while 
DisoRDPbind’s predictions for 273 reference proteomes, which cover the popular and model 
organisms, can be conveniently obtained from the DescribePROT database [174, 175].  

To summarize, our analysis revealed a significant amount of interest in the area of the nucleic 
acid binding residue prediction (i.e., the corresponding predictors were collectively cited over 
6600 times and 21 of them were cited over 100 times), where methods with working WSs are 



the most cited/popular. These observations are in good agreement with a recent analysis for a 
broader collection of predictors of protein structure and function [176]. 

 

 
Figure 2. Relation between the publication year and predictive performance for the corresponding methods that 
was measured on the same benchmark dataset of 46 DNA-binding proteins that was introduced and applied in 
refs. [58-60, 74, 75] (top panel) and the same benchmark dataset of the 161 RNA-binding proteins that was used in 
refs. [60, 62] (bottom panel). Hollow markers denote methods that predict DBRs (top panel) or RBRs (bottom 
panel) while solid markers are for predictors of DRBs and RBRs (both panels). The primary/left y-axis quantifies the 
AUC values (blue markers) and the secondary/right y-axis gives the MCC values (green markers). The color-coded 
dashed lines are the moving averages of the corresponding metrics calculated over three consecutive methods 
based on the publication years. The numerical values of AUCs and MCCs are given in the Supplementary Tables S2 
(results for the top panel) and S3 (results for the bottom panel).  

Predictive performance  

We summarized predictive performance of the current predictors and analyzed how it evolved 
over time in Figure 2. We compared performance of 16 predictors of DBRs and 10 predictors of 
RBRs. We used the same test datasets and performance metric for each of the two collections 
of methods to ensure that results can be directly compared across the corresponding tools. We 
relied on popular and recently developed test datasets that were introduced in refs. [58, 62]. 
The dataset for the assessment of the DBR predictors includes 46 DNA-binding proteins and 
was used in refs. [58-60, 74, 75], while the other dataset covers 161 RNA-binding proteins and 
was used in refs. [60, 62]. Figure 2 reports AUC that evaluates quality of the putative propensity 
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scores and MCC that quantifies quality of the binary state predictions. Further details can be 
found in the Materials and Methods section. 

Figure 2 visualizes relations between predictive performance of the 20 predictors and their 
corresponding publication time. The performance of both DBR and RBR predictors varies widely 
between modest levels (AUC of about 0.6; MCC of about 0.2) and high levels (AUC > 0.80; MCC 
> 0.4), with an overall trend of improving with passing years. We computed moving average-
based trends by averaging AUC and MCC scores over a window of three chronologically 
consecutive methods (dashed lines in Figure 2). From these trends, we found that earlier 
methods secure similar and relatively modest performance with an average AUC below 0.7 and 
MCC below 0.2. The performance trends upwards starting around 2020, with the recent 
methods having AUC well above 0.8 and MCC of about 0.5. The best-performing predictors of 
DBRs are DIPR (2024) with AUC of 0.89 and MCC of 0.49 and PDNApred (2024) with AUC of 0.90 
and MCC of 0.49; Supplementary Table S2. The best predictors of RBRs are MucLiPred (2024) 
with AUC of 0.84 and MCC of 0.43 and Pprint2 (2023) which secures AUC of 0.82 and MCC of 
0.49; Supplementary Table S3. This demonstrates that the most accurate predictions of RBRs 
and DRBs are produced with similar levels of performance, with predictors of DBRs performing 
slightly better.  

We also analyzed relation between the AUC and MCC scores and found that these scores are 
inconsistent for some methods, i.e., they should roughly follow a linear relation while some 
results deviate from this trend (Supplementary Figure S1). MCC is a threshold-dependent 
measure that is derived from the predicted propensities for binding while AUC directly 
evaluates the propensities without the use of a threshold. The articles that presented these 
results used a “default” threshold of 0.5 to generate the binary predictions for the calculation 
of MCC. Setting the same threshold value fails to account for the differences in the ranges and 
distributions of the propensities produced by different methods, leading to MCC values that are 
computed at different rates of positive (binding) to negative (non-binding) predictions. This 
could be the reason for the observed inconsistencies. A better strategy is to apply thresholds 
that standardize the predictions of different methods to a consistent prediction rate (say 5% or 
10% FPR). However, the overall correlations between MCC and AUC metrics are high, with the 
Pearson’s correlation coefficient of 0.95 and 0.87 for the DBR and the RBR predictors, 
respectively.  

As we discuss in the Historical Overview section, recent methods often rely on the DL-based 
models when compared with older methods that primarily use shallow ML-based algorithms 
(Table 2). Correspondingly, we investigated whether the recent improvements in the predictive 
importance could be attributed to the use of the more sophisticated predictive models. We 
limited this analysis to the predictors that were published since 2019 when the first DL-based 
predictor was released. Using the corresponding results from Supplementary Tables S2 and S3, 
we found that the DL-based DBR predictors have substantially higher predictive performance 
than the shallow ML-based predictors that were published in the same period of time, with 
median AUC = 0.86 vs 0.72 and median MCC = 0.40 vs 0.18. Similar observations are true for the 
RBR predictors, where the DL-based methods secure median AUC = 0.80 vs 0.68 for the other 
group of predictors, and MCC = 0.31 vs 0.10, respectively. Recent studies in related areas 
including protein function prediction [177, 178] and intrinsic disorder prediction [179] similarly 



showed that DL-based predictive models substantially outperform the shallow ML-based 
models. Our analysis reveals that the same is true for the prediction of the nucleic acid binding 
residues.  

We also investigated whether similar patterns of differences can be observed when comparing 
recently released (since 2019) predictors that use PLMs for the feature/input extraction vs 
those that do not utilize PLMs. Based on the data in Supplementary Tables S2 and S3, we found 
that predictors of DBRs that use PLMs secure median AUC = 0.87 and median MCC = 0.42 vs 
median AUC = 0.72 and median MCC = 0.18 for the methods that do not use PLMs. For the 
predictors of RBRs, we similarly observed that the PLM-utilizing methods generate on average 
more accurate predictions than the other methods, with median AUC = 0.77 vs 0.72 and 
median MCC = 0.19 vs 0.14, respectively. These results suggest that the application of PLMs 
produces improvements in the predictive performance for the predictors that cover both types 
of binding residues. Our observation is also supported by an empirical analysis that 
demonstrated that the use of the ProtT5 PLM produces higher levels of accuracy than the use 
of the popular multiple sequence alignment-based inputs for equivalent models that predict 
DBRs and RBRs [139]. 

However, we note a limitation of our analysis. The predictive performance can be impacted by 
sequence similarity between the training and test proteins. In principle, predictors should be 
tested on the test proteins that share low similarity (typically < 30%) with the training proteins. 
Several of the recent predictors in the above analysis were tested under this low similarity 
regime [58-60, 62, 74, 75], including DBpred, MucLiPred, CLAPE-DB, Pprint2, PDNApred and 
DIRP. The training datasets of the other methods may share higher levels of similarity, and thus 
their reported predictive performance might be inflated. However, this does not affect our 
observations since the methods for which the performance was tested on the low similarity test 
proteins are the most accurate. Additionally, the two test datasets are structure-annotated, 
which means that this assessment does not reflect the performance on the disorder-annotated 
protein-nucleic acids interactions. We discuss this issue in a following section.   

Structure-annotated and disorder-annotated training datasets 

We divided the 87 predictors into two groups based on their training data: trained from the 
structure-annotated interactions (structure-trained) vs. trained from the disorder-annotated 
interactions (disorder-trained). The ‘Training dataset’ column in Table 2 shows the type of 
interaction annotations used for training each method, where ‘S’ represents structure-
annotated datasets and ‘D’ represents disorder-annotated datasets. The binding annotations 
for these two types of training datasets were obtained from two distinct sources. The structure-
annotated binding residues were collected from the structures of the protein-nucleic acids 
complexes which are extracted directly from the PDB database [65, 66] or indirectly from the 
PDB-derived BioLip database [63, 64]. These annotations rely on certain criteria, such as 
distance between interacting atoms and number of atoms interacting per residue, to identify 
binding vs. non-binding residues. On the other hand, the disorder-annotated interactions were 
derived from the DisProt database [180, 181], the largest repository of experimentally validated 
intrinsically disordered proteins. These annotations concern binding sequence regions rather 
than specific binding residues, as is the case for the structure-based annotations. In other 



words, disorder-annotated training datasets include disordered regions that are involved in 
binding, assuming (imprecisely) that all residues in the corresponding region are binding. The 
lack of the more precise annotation of the corresponding binding residues in the disordered 
regions is a result of an inherent difficulty in capturing these details without the structure. This 
limitation was discussed in the context of the recent community assessments of predictions of 
disordered binding regions [182, 183].  

Table 2 shows that large majority of methods, 83 out of 87, was developed using solely the 
structure-annotated training datasets. On the other hand, DisoRDPbind [120, 121] and 
DeepDISOBind [141] are the two methods that are exclusively trained on the disorder-
annotated data (Table 2). Both methods provide prediction of DBRs and RBRs alongside 
prediction of protein-binding residues. The rather low number of tools trained from the 
disorder-annotated interactions can be attributed to the fact that the corresponding data was 
released relatively recently, in early 2010s [184-186]. Interestingly, two recent studies reported 
that the structure-trained methods perform well on the structure-annotated proteins, whereas 
they secure poor to modest performance on the disorder-annotated proteins and vice versa 
[146, 148]. For example, when considering the predictors of RBRs [146], the structure-trained 
MTDsite performs the best on the structure-annotated interactions with AUC = 0.76, whereas, 
its AUC drops to 0.60 for the disorder-annotated interactions [146]. Similarly, the disorder-
trained DeepDISOBind performs best on disorder-annotated interactions with AUC = 0.72, 
whereas, it secures a much lower AUC of 0.64 for the structure-annotated interactions [146]. 
Similar observations were published for the predictors of DBRs [148]. The fact that the ground 
truth annotations of binding for the disorder-annotated vs. structure-annotated datasets are 
different (residues vs. regions) and come from different source databases may explain the 
dichotomy in the method development efforts, i.e., methods are typically designed using either 
structure-annotated or disorder-annotated training sets and consequently they do not work 
equally well across the two annotation types. Similar observation of the dichotomy of 
structure-trained vs. disorder-trained predictions was reported for the sequence-based 
predictors of the protein-binding residues [187].  

To this end, two recently published methods, HybridRNAbind [146] and HybridDBRpred [148], 
were designed to address this dichotomy by targeting both types of annotations, i.e., they are 
trained and tested on datasets composed of both types of annotations. HybridRNAbind that 
predicts RBRs performs relatively well with the AUC of 0.76 on the structure-annotated 
interactions and AUC of 0.72 for the disorder-annotated interactions [146]. Similarly, 
HybridDBRpred that targets prediction of DBRs secures AUCs of 0.83 and 0.77 for the structure-
annotated and the disorder-annotated interactions, respectively [148]. The development of 
these two methods shows that it is possible to build predictors that work well across the two 
annotation types, and suggests that these efforts should continue. 

Cross-prediction between DBRs and RBRs 

DNA and RNA share relatively high levels of similarity in their physicochemical nature, as both 
are made up of a monomeric unit having a nitrogenous base and a sugar-phosphate group. 
Given their resemblance at the molecular level, it is reasonable to expect that predictors of 
nucleic acid binding residues may face difficulties to accurately discriminate between DBRs and 



RBRs. Besides accurately predicting putative binding residues, these methods also should be 
free from the cross-predictions where DBRs are confused for RBRs and vice versa. High levels of 
cross predictions would mean that the corresponding methods predict residues that interact 
with nucleic acids in the type agnostic manner. 

Two early surveys conducted empirical assessments of cross-predictions for several predictors 
of DBRs and RBRs, covering methods that were published before 2014 [33, 41]. These studies 
reported similar findings suggesting that none of these older methods accurately discriminates 
between DBRs and RBRs. Miao et.al. found that several accurate predictors of RBRs also obtain 
high AUC scores when tested on predicting DBRs in the DNA-binding proteins, which implies 
that these methods predict binding residues irrespective of whether they bind DNA or RNA 
[41]. While they also show that some methods, such as PRNA, RNABindRPlus, RBScore-SVM, 
discriminate between DBRs and RBRs, the predictive performance of these tools on the RNA-
binding datasets is low, with AUCs around 0.5 [41]. The study by Yan et. al. quantified cross-
predictions by measuring the fraction of DBRs (or RBRs) that are mis-predicted as RBRs (or 
DBRs) [33]. They found that among the RBR predictors, RNABindR has the highest cross-
prediction rate, incorrectly classifying more than 60% of DBRs as RBRs while BindN+ has the 
lowest rate, at around 45%. For the DBR predictors, DBS-PSSM generates the most cross-
predictions, with 44% RBRs predicted as DBRs. A positive exception is ProteDNA, predictor of 
DBRs, which accurately distinguishes DBRs from RBRs but has low sensitivity for DBRs, since it 
was designed to specifically predict DBRs in transcription factors [33]. These assessments 
emphasize the need to develop new predictors that minimize the cross-predictions between 
DNA and RNA. They motivated the release of DRNApred [127], which is the first method that 
was specifically designed to restrict cross-predictions. Consequently, a subsequent survey of 
the RBR predictors shows that DRNApred performs the best in terms of the cross-predictions 
[34]. However, these comparative studies are relatively old and do not cover recently published 
predictors [33, 34, 41]. We note that authors of several newer methods, such as NCBRpred 
[138], iDRNA-ITF [143], DNAgenie [78], DeepDISOBind [141], MTDsite [140], HybridDBRpred 
[148] and HybridRNAbind [146], evaluated cross-predictions and designed their models to 
minimize them. However, these studies considered/evaluated relatively few methods and used 
different datasets and metrics, constraining comparative analysis to a rather limited number of 
recent tools. Moreover, many recently published methods that include seven methods from 
2024 and several that predict both DBRs and RBRs [60-62, 74, 75, 139, 147, 149, 151-154] 
overlooked this crucial aspect. To this end, we note the reports of predictive performance that 
do not account for the cross-predictions should be interpreted with caution. 

Summary and outlook 

Sequence-based prediction of nucleic acid binding residues is a mature and active research 
area. We identified nearly 90 predictors that were published over the last two decades, 
including 29 that were published over the last five years and 12 that were released in 2024. We 
discussed multiple practical characteristics of these methods including their availability and 
impact, key features of their predictive models, and major aspects related to their training and 
assessment. We observed that the last decade produced a noteworthy progress in terms of 
improvements in the predictive quality, use of sophisticated predictive models and PLMs, and 



advancements on multiple vital and challenging issues, such as targeting of the two distinct 
annotation types (structure-based vs disorder-based) and cross-predictions. 

Our analysis of the availability reveals that predictors that have a web server or a standalone 
code are cited substantially more than tools without implementations. Methods with the 
arguably easier to use web servers attract more citations when compared to the tools with the 
code. Furthermore, we found that methods that have implementations that are working and 
are maintained over the long term (in particular working and maintained web server) secure 
much higher citation counts compared to tools with originally available implementations that 
currently do not work. In the context of predictive models, the recently released predictors 
increasingly rely on modern deep network architectures. Our analysis revealed that these 
models outperform the previously-dominant shallow machine-learning algorithms, which is in 
line with results of similar analyses in related area of protein structure and function prediction 
[177-179]. We also stressed the impact of training on two distinct types of datasets: structure- 
vs disorder-annotated. Majority of predictors were trained on the structure-annotated 
interactions and they perform poorly when tested on the disorder-annotated interactions. 
Similarly, the predictors trained on the disorder-annotated datasets perform rather poorly on 
the structure-annotated interactions. The underlying dichotomy of the predictive models and 
their inability to crossover to the other type of annotations mirrors the prediction of protein-
binding residues [187]. This motivated the development of the HybridDBRpred and 
HybridRNAbind methods that perform relatively well for both structure and disorder-annotated 
interactions. However, some protein-nucleic acid interactions are driven by an assembly of 
protein chains, such as the one found in the ribosomal complex [188, 189]. The sequence-based 
methods that are trained on monomeric protein chains may underperform for these proteins, 
particularly when compared with the structure-based methods that use the corresponding 
complexes for the training. Finally, we indicated that cross-predictions between DBRs and RBRs 
is a crucial aspect of empirical assessments of predictive performance, and yet this aspect was 
not evaluated for many of the recently published tools. Consequently, while some of the 
recently released predictors were shown to produce accurate results (AUC > 0.8 and MCC > 0.4; 
Supplementary Tables S2 and S3), users should also quantify and analyze their cross-prediction 
rates to formulate a more holistic picture of their performance. In general, users should avoid 
predictors with high cross-prediction rates since this means that their predictions are nucleic 
acid type agnostic. The binding residues that are predicted by the accurate sequence-based 
tools can be used to support subsequent modelling of the protein-nucleic acid interactions. In 
particular, tools that specialize in modelling and predicting binding specificity for the protein-
nucleic acids complexes [18, 190-194] would likely benefit from the knowledge where a given 
DNA or RNA binds on the protein surface. While some of these tools target specific types of 
proteins, such as transcription factors [190, 192, 194], other tools can be applied to a more 
generic class of nucleic acid binding proteins [18, 191, 193].  

Our analysis motivates several considerations for future work. Many of the recently released 
predictors of RBRs and DBRs utilize PLMs to derive inputs to the predictive models, with ProtT5 
and ProtBERT from the ProtTrans project [160] being the common selections. Our empirical 
analysis suggests that the use of PLMs leads to substantial improvements in predictive 
performance for predictors of both DBRs and RBRs, which is based on their overall higher AUC 



and MCC values when compared to the predictors that do not utilize PLMs. However, PLMs 
used by the current predictors were produced using generic collections of protein sequences 
while several PLMs that were designed for specific types/classes of proteins were released in 
recent years. For example, IDP-BERT was designed to capture characteristics of intrinsically 
disordered proteins [195]; ProGen was built from sequences of five families of lysozymes [196]; 
and IgLM was trained using of antibody sequences [197]. We believe that similar efforts geared 
towards developing and using PLMs that target nucleic acid-binding proteins should drive 
further improvements in accuracy for the predictors of DBRs and RBRs. As a first step in this 
direction, the authors of the SOFB predictor adopted the generic ProtT5 PLM to make it more 
suitable for the recognition of nucleic acid binding residues, and named this model NABert 
[151]. Moreover, structural and functional aspects of proteins are typically conserved in their 
amino acid sequences. Consequently, evolutionary profiles generated using protein sequence 
databases are commonly used to predict nucleic acids binding residues [62, 74, 78, 81, 86, 88, 
91, 92, 94, 101, 129, 133, 153] and in related areas, such as the prediction of secondary 
structures [198-200], and intrinsic disorder [201-204]. A few studies have pointed to the impact 
of the quality of the evolutionary profile on the predictive performance, which in turns stem 
from the size and quality of the underlying sequence alignment databases [81, 205]. These 
considerations offer additional opportunities to improve predictive performance of future RBRs 
and DBRs predictors. 

Another important consideration concerns the ability of current and future predictors to 
accurately discriminate between DBRs and RBRs. The authors of future methods should 
measure and comparatively assess cross-predictions and design their models to minimize them. 
While in same aspects DNA and RNA are relatively similar, they are distinct in the structures of 
their binding interfaces [206, 207]. The π-stacking interactions between the aromatic amino 
acids and the nucleobases or sugar moieties of DNA and RNA play vital role in protein-nucleic 
acid recognition [208]. Previous studies highlighted differences between stacking interactions 
with DNA and RNA in terms of their rate of occurrences and preferences of amino acids with 
respective nucleobases [209, 210]. These fine details, which are typically extracted from 3D 
structures of protein-nucleic acids complexes, could be perhaps approximated from protein 
sequences or sequence-predicted protein structures, providing a way to improve the ability to 
distinguish between DBRs and RBRs. Moreover, future comparative assessments should cover 
the cross-prediction aspect to reveal which current methods accurately identify DNA vs RNA 
binding residues and which are nucleic acid type agnostic. The last such study was published in 
2020 [34] and is relative outdated given the large number of methods that were released 
subsequently. Furthermore, these assessments should cover cross-predictions between DBR 
and RBRs and also between DBRs/RBRs and residues that interact with other types of ligands, 
such as proteins, peptides and small molecules. Similar evaluations were done recently in the 
context of developing predictors of the protein-binding residues [211]. 

We also emphasize the substantial impact of ensuring sustained/long-term availability of web 
servers for the predictors of RBRs and DBRs. The current 40% availability rate should be 
improved to match levels in other areas, such as the 71% rate for the intrinsic disorder 
predictors [40]. As shown in a recent study [176] and our analysis, this is likely to increase their 
scientific impact that is indirectly measured by their citation rates. This can be accomplished by 



requiring the commitment to support web servers for an extended period of time at the point 
of publication, which would benefit both the developers and users. 

Lastly, the structures of the protein-nucleic acids complexes are useful to investigate atomic 
level details these interactions. They can be predicted when the native structures are 
unavailable, which is relatively common. Many predictors are available including several 
docking-based tools [212-215]. The recently released Flex-LZerD that considers flexibility of the 
protein upon docking to nucleic acids [216], which at least partly addresses predictions for the 
disordered binding regions. The release of AlphaFold3 that predicts structures of protein-ligand 
complexes, where ligands include proteins, nucleic acids, small molecules and ions  [217], is also 
notable. However, AlphaFold3 authors note that their model generates “spurious structural 
order (hallucinations) in disordered regions” [218], which is a major drawback in the context of 
prediction of nucleic acid binding residues that frequently reside in the disordered regions [46, 
47, 49-51]. Moreover, these methods can be applied only when the structure of the nucleic acid 
is known, in contrast to the tools that we review which make predictions solely from the 
protein sequence. 

Key points 

• 87 predictors of nucleic acid-binding residues in protein sequences were developed in the 

last two decades 

• Machine learning is the primary approach to develop these predictors 

• Recent use of deep learning and protein language models resulted in substantial gains in 

predictive performance 

• Cross-predictions between RNA-binding and DNA-binding residues are a significant 

challenge 

• Predictors with working web servers enjoy high citation rates, motivating development and 

long-term maintenance of web servers 
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