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Abstract 

Understanding of molecular mechanisms that govern protein-protein interactions and accurate modeling 
of protein-protein docking rely on accurate identification and prediction of protein-binding partners and 
protein-binding residues. We review over forty methods that predict protein-protein interactions from 
protein sequences including methods that predict interacting protein pairs, protein-binding residues for a 
pair of interacting sequences, and protein-binding residues in a single protein chain. We focus on the latter 
methods that provide residue-level annotations and that can be broadly applied to all protein sequences. 
We compare their architectures, inputs and outputs, and we discuss aspects related to their assessment and 
availability. We also perform first-of-its-kind comprehensive empirical comparison of representative 
predictors of protein-binding residues using a novel and high-quality benchmark dataset. We show that 
the selected predictors accurately discriminate protein-binding and non-binding residues and that newer 
methods outperform older designs. However, these methods are unable to accurately separate residues 
that bind other molecules, such as DNA, RNA and small ligands, from the protein-binding residues. This 
cross-prediction, defined as the incorrect prediction of nucleic acid- and small ligand-binding residues as 
protein-binding, is substantial for all evaluated methods and is not driven by the proximity to the native 
protein-binding residues. We discuss reasons for this drawback and we offer several recommendations. In 
particular, we postulate the need for a new generation of more accurate predictors and datasets, inclusion 
of a comprehensive assessment of the cross-predictions in future studies, and higher standards of 
availability of the published methods.  
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1. Introduction 

Proteins are biomacromolecules that interact with a variety of other molecules including DNA, RNA, 
small ligands and other proteins [1-4]. Protein-protein interactions drive many cellular processes, such as 
signal transduction, transport, and metabolism, to name but a few. Knowledge of these interactions at a 
molecular level is important to develop novel therapeutics [5-7], annotate protein functions [8], study 
molecular mechanisms of diseases [9, 10], and delineate protein-protein interaction networks [11]. Several 
databases, such as Mentha [12], BioLip [13] and Protein Data Bank (PDB) [14] archive information about 
protein-protein interactions at molecule (protein) and molecular (residue or atomic) levels. The Mentha 
resource includes annotations of over 86 thousand protein-protein interactions at the protein level. BioLip 
archives 17 thousand interactions and includes annotations of protein-binding residues. PDB provides 
access to 71 thousand protein-protein complexes with detailed atomic-level structures. However, these 
annotations of protein-protein interactions are highly incomplete, especially if we factor in the facts that 
protein-protein interactions are promiscuous [15] and that we currently know over 67 million proteins 
[16]. Most of these proteins lack functional annotations including the information about the protein-
protein interactions. Computational methods that predict protein-protein interactions from the sequences 
can help to bridge this gap. 
 
Numerous computational methods for the prediction of protein-protein interactions have been developed 
in the recent years [17-22]. These methods can be divided into two groups based to the inputs that they 
use to perform predictions: structure-based vs. sequence-based [22]. Moreover, the inputs of the structure-
based methods could be either experimentally determined structures or structures that are predicted from 
protein sequences, typically using homology modeling. The use of the putative protein structures lowers 
the predictive quality of the predicted protein-protein interactions, and the extend of this decrease depends 
on the quality of the predicted structures [22]. Protein-protein docking and homology-based modeling are 
the two commonly used approaches that are utilized to implement the structure-based methods [23]. The 
former approach samples possible orientations and conformations of protein-protein complexes and then 
uses empirical scoring functions to select the most energetically favorable structure of the complex [24-
27]. The latter uses structure similarity to select proteins with similar structures from a database of known 
protein-protein complexes and transfers the annotations of interactions from these complexes onto the 
input protein [28, 29]. However, the use of the structure-based methods is limited by a relatively small set 
of proteins with experimentally determined structures and by computational cost of generating putative 
protein structures. These methods may also suffer substantial reduction in the predictive performance if 
the putative structures they use are not accurate [22]. In contrast, the sequence-based methods for the 
prediction of protein-protein interactions only need the protein sequence to predict protein-protein 
interactions. They can be applied to a much larger population of proteins with known sequences and do 
not require the computationally costly modeling of the structure. The sequence-based methods are 
subdivided based on granularity of the putative annotations of binding that they produce into two types: 
protein level-based vs. residue level-based. The protein level-based methods predict whether a given pair 
of proteins interacts. This can be done using both sequence-based as well as structure-based methods. The 
residue level-based methods predict binding residues in a single protein sequence or in a pair of interacting 
protein sequences. Table 1 summarizes these different types of the structure- and sequence-based methods 
for the prediction of interacting protein and residues.  
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Table 1. Categorization of methods that predict protein-protein interactions depending on the inputs (protein sequence vs. 
structure) and outputs (interacting proteins vs. residues).  
 

Inputs Outputs 
Interacting proteins  Interacting residues 

Structure pSTR-to-PRO: methods that predict whether a 
given pair of structures interact 

pSTR-to-RES: methods that predict protein binding 
residues for a given pair of structures 
sSTR-to-RES: : methods that predict protein binding 
residues for a given single structure 

Sequence pSEQ-to-PRO: methods that predict whether a 
given pair of sequences interact 

pSEQ-to-RES: methods that predict protein binding 
residues for a given pair of sequences 
sSEQ-to-RES: methods that predict protein binding 
residues for a given single sequence 

 
Table 2. Summary and comparison of recent reviews of predictors of protein-protein binding. The two main types of methods 
are structure-based (STR) and sequence-based (SEQ). N/A means that a given aspect is outside of the scope, √ and × represents 
that a given feature is and it is not considered by the authors, respectively. 
 

Review 
article (year 
published) 

Type of 
methods 
covered 

Scope of review of SEQ 
methods 

Scope of evaluation of SEQ methods 

Number 
of SEQ 
methods 
reviewed  

Number of 
recent SEQ 
methods 
reviewed 
(2014-16) 

Number 
of SEQ 
methods 
evaluated 

Number of 
recent SEQ 
methods 
evaluated 
(2014-16) 

Size of 
test 
dataset 

Test 
dataset is 
dissimilar 
to training 
datasets 

Test dataset 
includes 
full protein 
sequences 

Assess 
prediction 
of binding 
to other 
ligands 

This review SEQ 44 21 7 5 448 √ √ √ 
[21] (2016) SEQ, STR 9 0 N/A N/A N/A N/A N/A N/A 
[19] (2015) SEQ, STR 2 0 N/A N/A N/A N/A N/A N/A 
[20] (2015) SEQ, STR 4 0 2 0 176 × × × 
[22] (2015) SEQ, STR 2 0 1 0 90 × × × 
[18] (2011) SEQ, STR 4 0 N/A N/A N/A N/A N/A N/A 
[17] (2009) SEQ, STR 12 0 0 0 149 × × × 

 
The availability of many predictors of protein-protein interactions prompted publication of six reviews 
which cover both structure- and sequence-based methods [17-22]. Table 2 summarizes these reviews. 
Three reviews describe and discuss various predictors of protein binding, while the other three additionally 
perform empirical analysis. The first three articles discuss physicochemical characteristics of binding 
residues and binding interfaces including their evolutionary conservation and topological features [18, 19, 
21]. The review by Esmaielbeiki et al. also classifies protein interface prediction methods and summarizes 
their inputs and predictive models [21]. The other three reviews empirically assess the predictive 
performance of several predictors, primarily focusing on the structure-based prediction of protein-protein 
interactions [17, 20, 22]. While these six articles cover a large number of structure-based methods, Table 
2 reveals that they review no more than 12 sequence-based methods which do not include recent methods 
published after 2013. Our analysis shows that there are 44 sequence-based methods and 21 of them were 
published in the last three years. Also, these reviews empirically evaluate only a couple of older sequence-
based methods.  
 
The discussion of the available reviews indicates a clear need for a comprehensive review and empirical 
benchmarking of the sequence-based methods. To this end, we cover a comprehensive set of 44 sequence-
based predictors of protein binding residues, including methods that provide predictions at the protein and 
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residue levels. We discuss their inputs, predictive models, outputs and we offer practical and insightful 
analysis of their availability. We also empirically evaluate set of seven representative sequence-based 
predictors of protein-binding residues which includes five methods that were released in the last three 
years; see Table 2. This assessment was performed on a novel and large benchmark dataset that is 
characterized by a more comprehensive set of native annotations of binding residues than the currently 
used datasets. The latter stems from the fact that we are the first to transfer annotation of protein binding 
within clusters of protein-protein complexes that involve the same proteins. We are also the first to offer 
a detailed analysis of the sources of predictive errors. 

2. Overview of the sequence-based predictors of protein-protein 
interactions 

2.1 Sequence-based predictors of protein- and residue- level protein-protein interactions 

First, we perform literature search to select relevant methods. We search PubMed database on July 31, 
2016 by combining results of two queries: ‘protein-binding AND sequence’ and ‘protein-protein 
interaction AND sequence’ and we found 1585 articles. Next, we select recent and relevant publications 
based on reading the abstracts. In particular, we select articles which were published in past decade and 
that describe predictive methods. Among these selected methods we consider the newest version of 
methods that have multiple versions. We found 44 relevant articles. Supplementary Figure S1 shows 
that there were 7 methods released between 2006 and 2009, 16 between 2010 and 2013 and 21 since 2014. 
This increasing trend in the number of methods released in recent years demonstrates strong interest in 
this predictive task. 
 
There are three types of sequence-based predictors of protein-protein interactions which are defined 
according to their inputs (single vs. pair of protein sequences) and outputs (sequence vs. residue-level). 
The pSEQ-to-PRO methods predict whether a given pair of protein sequences interacts. The pSEQ-to-
RES approaches predict protein binding residues for a pair of input protein sequences. Finally, the sSEQ-
to-RES methods predicts binding residues in a single input protein sequence. Table 3 reveals that 23 out 
of the 44 methods belong to the pSEQ-to-PRO group, 5 are in the pSEQ-to-RES group and 16 in the 
sSEQ-to-RES category. Many methods were published in the last three years, primarily from the pSEQ-
to-PRO and sSEQ-to-RES types. Among the 44 methods, 28 (or 64%) were released to the research 
community as freely available webservers or source code. Table 3 provides the corresponding URLs 
(Uniform Resource Locators) to facilitate finding these predictors. The availability of the source code 
means that users will need to download the program, install it and run it on their own computer. Most of 
the recently published method are provided this way. While this might be an attractive option for 
bioinformaticians, especially in when these programs need to be incorporated into other computational 
platforms, these tasks could be prohibitively difficult for biologists. The webservers cater to less computer 
savvy users. The users only need a web browser that is connected to the Internet to perform prediction. 
They simply arrive at the given URL, enter their sequence(s), and click start. The predictions are 
performed on the server side and the results are delivered back to the users via the web browser and/or 
email. Unfortunately, 11 out of the 28 available methods are no longer maintained or take over 30 minutes 
to predict a single protein.  On the positive note, the number of the publically available prediction tools 
that were developed in the past three years is twice the number of the tools that were created in the previous 
seven years. 
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Table 3. Summary of the sequence-based predictors of the protein-protein interactions. We group these predictors into three 
types: pSEQ-to-PRO, pSEQ-to-RES and sSEQ-to-RES. The ‘Web Server’ and ‘Source Code’ indicate that a gven method is 
available as the online webserver and standalone source code, respectively. The bold font indicates that the corresponding 
predictor is available and provides prediction for a single protein in less than 30 minutes. ‘N/A’ means that neither web server 
nor source code is available. 

Type Method Ref. Year Predictor URL 

pS
EQ

-to
-P

R
O

 Shen et al. [70] 2007 N/A N/A 
Predict_PPI [71] 2008 Web Server http://www.scucic.cn/Predict_PPI/index.htm. 
Yu et al. [72] 2010 N/A N/A 
Meta_PPI [73] 2010 Source Code http://home.ustc.edu.cn/~jfxia/Meta_PPI.html 
PRED_PPI [74] 2010 Web Server http://cic.scu.edu.cn/bioinformatics/predict_ppi/default.html 
BRS-nonint [75] 2010 Web Server http://www.bioinformatics.leeds.ac.uk/BRS-nonint/ 
Zhang et al. [76] 2011 Source Code http://www.csbio.sjtu.edu.cn/bioinf/CS/ 
SPPS [77] 2011 Web Server http://mdl.shsmu.edu.cn/SPPS/ 
PPIPP [78] 2011 Web Server http://tardis.nibio.go.jp/netasa/ppipp/ 
Yousef et al. [79] 2013 N/A N/A 
PPIevo [80] 2013 Web Server http://lbb.ut.ac.ir/Download/LBBsoft/PPIevo/ 
You et al. [81] 2013 N/A N/A 
MCDPPI [82] 2014 Source Code http://csse.szu.edu.cn/staff/youzh/MCDPPI.zip 
You et al. [83] 2015 Source Code https://sites.google.com/site/zhuhongyou/data-sharing/ 
VLASPD [84] 2015 Source Code http://www.comp.polyu.edu.hk/~cslhu/resources/vlaspd/ 
Profppikernel [85] 2015 Source Code https://rostlab.org/owiki/index.php/Profppikernel 
You et al. [86] 2015 N/A N/A 
Jia et al. [87] 2015 Web Server http://www.jci-bioinfo.cn/PPI 
Huang et al. [88] 2015 N/A N/A 
Gao et al. [89] 2016 N/A N/A 
Sze-To et al. [90] 2016 N/A N/A 
Huang et al. [91] 2016 N/A N/A 
An et al. [92] 2016 N/A N/A 

pS
EQ

-to
-

R
ES

 PIPE [93] 2006 Web Server http://pipe.cgmlab.org/ 
Shi et al. [94] 2010 N/A N/A 
Chang et al. [95] 2010 N/A N/A 
PIPE-Sites [96] 2011 Web Server http://pipe-sites.cgmlab.org/ 
PETs [97] 2015 Source Code https://github.com/BinXia/PETs 

sS
EQ

-to
-R

ES
 ISIS [47] 2007 N/A N/A 

SPPIDER [48] 2007 Web Server http://sppider.cchmc.org/ 
Du et al. [60] 2009 N/A N/A 
Chen et al. [49] 2009 Source Code http://ittc.ku.edu/~xwchen/bindingsite/prediction 
PSIVER [54] 2010 Web Server http://tardis.nibio.go.jp/PSIVER/ 
Chen et al. [63] 2010 Source Code http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm 
HomPPI [44] 2011 Web Server http://homppi.cs.iastate.edu/ 
Wang et al. [61] 2014 N/A N/A 
LORIS [55] 2014 Source Code https://sites.google.com/site/sukantamondal/software 
SPRINGS [56] 2014 Source Code https://sites.google.com/site/predppis/ 
CRF-PPI [57] 2015 Source Code http://csbio.njust.edu.cn/bioinf/CRF-PPI 
Geng et al. [62] 2015 N/A N/A 
iPPBS-Opt [64] 2016 Web Server http://www.jci-bioinfo.cn/iPPBS-Opt 
PPIS [65] 2016 Source Code http://csbio.njust.edu.cn/bioinf/PPIS 
SPRINT [58] 2016 Source Code http://sparks-lab.org/yueyang/server/SPRINT/ 
SSWRF [59] 2016 Source Code http://csbio.njust.edu.cn/bioinf/SSWRF/ 
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Table 4. Summary of the single sequence-based predictors of protein-binding residues. We summarize key aspects including their architecture (input features and 
classifiers used to perform predictions), evaluation and performance measurements that were used in past studies, and their outputs. The first four sub-columns 
under the architecture list various classes of features. √ means that a given aspect (feature class) is relevant or considered, while × indicates that it is not considered. 
The ‘Predictive model’ column lists machine learning algorithms that are used to build predictive models including neural networks (NN), K-nearest neighbors 
(KNN), support vector machine (SVM), random forest (RF), Naïve Bayes (NB), regularized logistic function (RLF) and radial basis function (RBF). One methods 
is based on the sequence alignment. We show the number of folds k in the ‘k-fold cross-validation on the training dataset’ column. For the ‘Binary values’ column, 
SN, SP, PRE, ACC, MCC, and F1 stand for sensitivity or recall, specificity, precision, accuracy, Mathew’s correlation coefficient, and F1-measure, respectively. 
For the ‘Propensity scores’ column, AUC is the area under ROC curve. The definition of these measurements is provided in Section 3.3. Methods that have listed 
values in the ‘Binary values’ column output binary predictions of binding residues (protein binding vs. other residues). Methods that have listed values in the 
‘Propensity scores’ column output propensities for the protein binding (a numeric score that quantifies likelihood that a given residue binds proteins).  
 

Method Year 

Architecture  Evaluation Outputs and performance measurement 

Windo
w 

Sequence 
only 

Solvent 
accessibilit
y 

Evolutionar
y 
conservatio
n 

Predictive 
model 

k-fold cross-
validation on 
training dataset 

Leave-one-out 
cross-validation  
on training 
dataset 

Test on test 
dataset (similarity 
to the training 
dataset) 

Binary values Propensity 
scores 

ISIS 2007 9 × × √ NN × × √ (N/A) ACC × 
SPPIDER 2007 11 × × √ KNN 10 × √ (50%) SN, SP, ACC, MCC AUC 
Du et al. 2009 11 √ √ √ SVM 5 × × SN, SP, ACC, MCC, F1 AUC 
Chen et al. 2009 21 × × √ RF × × √ (30%) SN, SP, ACC, MCC AUC 
PSIVER 2010 9 × √ √ NB × √ √ (25%) SN, SP, ACC, MCC, F1 AUC 
Chen et al. 2010 19 √ × √ SVM 5 × √ (30%) SN, SP, ACC, MCC, PRE, 

F1 
× 

HomPPI 2011 × × × √ Alignment × × √ (30%) SN, SP, ACC, MCC × 
Wang et al. 2014 11 × √ √ SVM 5 × √ (25%) SN, PRE, ACC × 
LORIS 2014 9 √ √ √ RLF × √ √ (25%) SN, SP, PRE, ACC, MCC, 

F1 
× 

SPRINGS 2014 9 √ √ √ NN × √ √ (25%) SN, SP, PRE, ACC, MCC, 
F1 

× 

CRF-PPI 2015 9 √ √ √ RF × √ √ (25%) SN, SP, PRE, ACC, MCC, 
F1 

AUC 

Geng et al. 2015 9 × √ √ NB × √ √ (25%) SN, SP, PRE, ACC, MCC, 
F1 

× 

iPPBS-Opt 2016 15 √ √ × KNN 10 × × SN, SP, ACC, MCC AUC 
PPIS 2016 9 √ √ √ RF × √ √ (25%) SN, SP, PRE, ACC, MCC, 

F1 
× 

SPRINT 2016 9 √ √ √ SVM 10 × √ (30%) SN, SP, ACC, MCC AUC 
SSWRF 2016 9 √ √ √ SVM, RF × √ √ (25%) SN, SP, PRE, ACC, MCC, 

F1 
AUC 
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2.2 sSEQ-to-RES: methods that use single sequence to predict protein-binding residues 

The three types of sequence-based predictors of protein-protein interactions use different inputs and 
generate different outputs. They also require different types of datasets to build predictive models and use 
different test protocols and measures to perform empirical assessment. Consequently, each of the three 
types of methods would require a uniquely structured review. The methods in the sSEQ-to-RES group 
offer more detailed residue-level annotations compared to the sequence level annotations generated by the 
pSEQ-to-PRO methods. Moreover, they can be used for any of the millions of proteins with known 
sequences, compared to the pSEQ-to-RES methods that are limited to proteins that have known binding 
protein partners (they take interacting protein pairs as the inputs). Therefore, given their more detailed 
predictions and broad applicability, we focus our review and comparative assessment on the sSEQ-to-
RES methods. The other two categories of methods will be the subject of future studies. 
 
Nowadays, the sSEQ-to-RES predictors include methods that focus on the protein-binding residues and 
also methods that predict residues that interact with a variety of other ligands. Examples include methods 
that predict RNA-binding and DNA-binding residues [30-35] and a variety of other, small ligands [36]. 
The latter group of methods includes predictors of nucleotide-binding residues [37, 38], metal-binding 
residues [39], residues that interact with vitamins, [40, 41], calcium [42], as well as methods that predict 
binding to multiple types of small ligands [43]. Picking a suitable sSEQ-to-RES predictor of protein-
binding residues could be a daunting task given that currently already 16 of them were published. We 
provide practical information concerning the architecture of these methods, their outputs, and their 
predictive performance to facilitate an informed selection. Table 4 summarizes architectures and outputs 
of these predictors and discusses how they were assessed in the past studies.  
 
There are two main types of architectures of these predictive models. One is based on the sequence 
alignment and the other utilizes predictive models which are generated by machine learning algorithms. 
The alignment-based methods rely on the assumption that proteins with similar sequences share similar 
binding partners and binding residues [44]. They require a dataset of proteins with known annotations of 
protein binding residues. They perform predictions by transferring annotations of binding residues from 
proteins in that dataset that are sufficiently similar to the input protein; for example, having sequence 
similarity above 30% or the log(Evalue)< -50. The machine learning-based methods predict propensity 
for protein binding for each residue in the input sequence using a predictive model, instead of relying on 
the sequence similarity. The predictive models are generated by machine learning algorithms with the aim 
to differentiate between protein binding and the remaining residues in a training dataset of annotated 
protein sequences. These methods provide accurate predictions for proteins that are not limited by high 
levels of similarity with the proteins from the training dataset. In particular, the machine learning-based 
methods produce accurate results for proteins that share low (below 30%) similarity with proteins from 
the training dataset, and thus they complement predictions that can be obtained using the alignment-based 
approaches. Among the 16 sSEQ-to-RES predictors listed in Table 4, there is one alignment-based 
method (HomPPI [44]) and 15 machine learning-based methods.  
 
The machine learning-based methods perform predictions in the following two steps. First, each residue 
in the input protein chain is encoded with a feature vector. Second, the vector is input into the predictive 
model that generates predictions. In the first step, the vector of numeric features quantifies structural and 
physicochemical characteristics of the predicted residue and its neighbors in the sequence. These 
neighbors form a window that is centered on the predicted residue. Use of the window is motivated by the 
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fact that the knowledge of the characteristics of the neighboring residues provides useful clues for the 
prediction of the residue in the center of the window [30]. The length of the window varies widely between 
9 and 21 residues among different methods, with 9 residues being the most commonly used value, 
especially for the recent predictors (Table 4). The features are computed from two types of inputs: directly 
from the protein sequence and from putative structural information that is predicted from the protein 
sequence. The former type of features includes physicochemical properties and evolutionary conservation 
of amino acids as well as amino acid composition. The latter features are derived from the putative relative 
solvent accessibility that is obtained with other predictive tools, such as SANN [45] and PSIPRED [46]. 
The relative solvent accessibility is defined as a predicted solvent accessible surface of a given amino acid 
in the input sequence divided by the maximal possible solvent accessible surface area of that amino acid. 
This information is useful since the protein-binding residues are likely to be located on the solvent 
accessible protein surface. While a few of the early methods utilize solely the features computed directly 
from the sequence [47-49], most of the methods published in the last three year combine both types of 
features (Table 4). The most popular by far feature type is the evolutionary conservation, which is 
typically computed from the position specific scoring matrix generated by the PSI-BLAST algorithm [50]. 
In the second step that performs prediction of protein binding residues, the features are input into a 
predictive model (classifier) that computes predictions in the form of binary values (protein-binding vs. 
other residues) and/or propensities for binding (a numeric score that quantifies likelihood that a given 
residue binds proteins). Half of the 16 methods generate both propensities and binary values, while the 
other eight generate only the binary values. For the former eight methods, which can be identified based 
on the ‘Propensity scores’ column in Table 4, these propensities are typically converted into binary values 
by using a threshold. More specifically, residues with the putative propensities below the threshold are 
predicted not to bind proteins, while residues with the propensities above the threshold are predicted to 
bind proteins. The most popular machine learning algorithm that is used to generate these predictive 
models is support vector machine [51]; it was utilized in 5 out of the 16 predictors (Table 4). The second 
most popular algorithm is random forest [52].  
 
The sSEQ-to-RES predictors are assessed using a variety of test types and measures of predictive 
performance, typically using test sets of proteins that were not used to build these models. These tests aim 
to estimate predictive performance that end users should expect to observe on his/her proteins of interest, 
which is why evaluation is done on proteins that are not used to build the predictive models. These tests 
include cross-validation on the training datasets and tests on ‘independent’ (different from the training 
dataset) test datasets. Most of the methods were evaluated using both test types (Table 4). In the k-fold 
cross-validation, the training dataset is divided into k equally sized parts (folds). Each time, k-1 folds are 
used to train the predictive model and the remaining fold is used as the test set. This is repeated k times so 
that each fold is used once as the test set. The leave-one-out cross-validation is an extreme case of the k-
fold cross-validation where k is equal to the number of all proteins in the dataset. Another important aspect 
of the assessment of these single-sequence based methods for the prediction of protein binding residues is 
the fact that proteins in the independent test sets share low sequence similarity with the training proteins, 
typically below 25 or 30% (Table 4). This is because proteins with higher levels of similarity can be 
accurately predicted by the alignment-based methods.  
 
There are two groups of measures of predictive performance of the sSEQ-to-RES predictors that address 
evaluation of the two types of outputs: the propensity scores and binary values. The measures that target 
the binary predictions include sensitivity, specificity, precision, accuracy, Matthews correlation 
coefficient (MCC) and F1-measure (Table 4). Sensitivity and specificity measure the fraction of protein-
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binding residues or non-protein-binding residues that are correctly identified as such, respectively. 
Accuracy quantifies the fraction correctly predicted protein-binding and non-protein-binding residues. 
Precision is defined as the ratio of correctly predicted protein binding residues among all predicted protein 
binding residues. The MCC and F1 measures take into account both correctly predicted protein-binding 
residues and correctly predicted non-protein-binding residues. These two measures are regarded as 
balanced, which means that they can provide an accurate measurements of predictive performance for 
imbalanced datasets. The datasets in this area are typically imbalanced, with a significant majority of the 
residues being non-protein-binding and only a relatively small number of protein-binding residues. The 
AUC, which quantifies the Area Under ROC (receiver operating characteristic) Curve, is used to evaluate 
the putative propensities. The ROC curve represents a tradeoff between sensitivity and false positive rate 
= 1 – specificity. Higher value correspond to more accurate predictions. Three out of the four methods 
that were published in 2016 generate propensity scores and were evaluated using AUC. 
 
Overall, we show that most of the sSEQ-to-RES predictors were developed in the last three years and that 
their predictive models were generated with machine learning algorithms that use a variety of feature types 
as inputs. The empirical assessment of these methods relies on the independent test sets that share low 
sequence similarity with proteins used to generate the predictive models and a mixture of several measures 
of predictive performance. The diversity of these measures and strict standards on the similarity are 
hallmarks of a mature field of research. Similar standards are in place in other areas of prediction of 1-
dimensional descriptors of protein functions and structure, such as secondary structure, solvent 
accessibility, residue contacts, and others [53]. 

3. Comparative empirical assessment of single sequence methods that 
predict protein-binding residues 

3.1 Benchmark datasets 

The source data for our benchmark datasets were collected from the BioLip database [13] in October 2015. 
These data contain 5,913 DNA-binding chains, 20,731 RNA-binding chains, 163,589 protein-binding 
chains and 112,797 ligand-binding chains. A given residue is defined as binding if the distance between 
an atom of this residue and an atom from a given ligand is less than 0.5Å plus the sum of the Van der 
Waal’s radii of the two atoms [13]. Our goal is to create a large, high quality and non-redundant dataset 
that uniformly samples the annotated protein sequences. First, to ensure the high quality we remove 
protein fragments. Next, we map BioLip sequences into UniProt records with identical sequences to allow 
future users of this dataset to map these proteins to other databases and to collect additional functional and 
structural annotations. This also allows us to improve quality of annotations of binding by mapping 
binding residues across different protein-protein complexes where one of the protein is shared; this way 
we transfer annotations of binding residues from all of these complexes onto the UniProt sequence. We 
ensure that the resulting dataset is non-redundant by using Blastclust [50] to cluster protein sequences 
with a threshold of 25% similarity. For each cluster of proteins that share >25% similarity, we select a 
protein that was most recently released in UniProt. The resulting dataset includes 1291 protein sequences. 
 
Next, we ensure that proteins in our dataset share low similarity with the proteins in the datasets used to 
develop the sSEQ-to-RES predictors that are included in the comparative assessment. This facilitates fair 
comparison that adheres to the standards in this field. First, we collect the training datasets of the seven 
predictors that we assess: SPPIDER [48], PSIVER [54], LORIS [55], SPRINGS [56], CRF-PPI [57], 
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SPRINT [58], and SSWRF [59]; the selection of these predictors is explained in Section 3.2. SPPIDER 
has used training set S435 with 435 protein chains. SPRINT has used a large training set with 1199 
proteins. Finally, PSIVER, LORIS, SPRINGS, CRF-PPI and SSWRF adopted the same training set 
Dset186. We chose to limit similarity of the proteins in our dataset to the proteins in all of these training 
dataset to 25% given that this threshold is the most often used in the prior studies (Table 4). We use 
Blastclust to cluster our 1291 proteins together with the proteins from the three training datasets at 25% 
similarity. We remove proteins from our set that are in clusters that include any of the proteins from the 
training datasets. The resulting 1120 protein sequences share <25% similarity with each other and with 
the training proteins used by the considered seven predictors. Since some of the seven predictors are 
computationally expensive we randomly pick 40% of the 1120 proteins as the final benchmark dataset. 
The selected set of 448 proteins constitutes our benchmark test dataset, which we name Dataset448. This 
dataset is substantially larger that the datasets used in prior reviews of the predictors of protein-protein 
binding [20-22] which use datasets with between 90 and 176 proteins (Table 2). 
 
Besides testing the overall predictive performance of the considered methods on our benchmark dataset, 
we also investigate whether these predictors can accurately identify protein binding residues among 
residues that bind other types of ligands (other-ligand binding residues). Dataset448 contains 15,810 
protein-binding residues (13.6% of all residues in the dataset), 557 DNA-binding residues (0.5%), 696 
RNA-binding residues (0.6%), 7,175 residues that interact with small ligands (6.2%), and 93,857 non-
binding residues (80.6%) that do not bind any of these ligands. We also name the residues that do not bind 
proteins, which include the non-binding residues and the residues that bind DNA, RNA or small ligands, 
as ‘non-protein-binding residues’. To quantify and compare the ability of these predictors to identify 
protein-binding residues among all ligand-binding residues we define two subsets of the Dataset448 
dataset. The PBPdataset336 is the dataset of 336 protein-binding proteins which excludes proteins from 
Dataset448 that bind only ligands which are not proteins. The nPBPdataset112 is the dataset that includes 
112 proteins from Dataset448 that bind only the ligands which are not proteins. 
 
Moreover, we also develop a test dataset that mimics the approach to develop the test datasets used in 
prior works in this area. This dataset is limited to the proteins that bind proteins (excludes the 112 proteins 
from Dataset448 that bind other ligands), and where annotations of the protein-binding residues are 
collected from a single protein-protein complex. To do the latter we randomly pick one complex from the 
set of complexes with the same protein that we use to transfer annotations of binding residues. This dataset 
is named PBCdataset336 and includes 336 protein-binding proteins that are annotated based on a single 
protein-protein complex. The PBCdataset336 dataset includes 28% fewer protein-binding residues when 
compared to the PBPdataset336 dataset. In other words, transfer of protein-binding annotations from 
multiple complexes with the same protein increases the number of protein binding residues by 28%. 
 
Table 5 summarizes the datasets used in this review. These datasets are utilized to evaluate and compare 
existing methods and will become a useful resource to validate and compare future methods. The 
Dataset448 dataset is provided the Supplement and includes the protein identifiers, sequences and 
annotations of protein-binding, RNA-binding, DNA-binding and small-ligand binding residues. The 
PBPdataset336 and nPBPdataset112 datasets can be derived from this dataset based on the included 
annotations of ligand-binding residues. 
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Table 5. Summary of the benchmark datasets that are used in this comparative review. 
 

Datasets Dataset448 PBPdataset336 nPBPdataset112 PBCdataset336 
Number of proteins 448 336 112 336 
Number of protein-binding residues1 15,810 15,810 0 11,982 
Fraction of protein-binding residues 13.6% 18.6% 0.0% 14.3% 
Breakdown of non-
protein-binding 
residues2 by ligand 
types 

Other ligand-binding 
residues3 

Number of DNA-binding residues 557 320 237 N/A 
Fraction of DNA-binding residues 0.5% 0.4% 0.8% N/A 
Number of RNA-binding residues 696 444 252 N/A 
Fraction of RNA-binding residues 0.6% 0.5% 0.8% N/A 
Number of ligand-binding residues 7,175 5,215 1,960 N/A 
Fraction of ligand-binding residues 6.2% 6.1% 6.2% N/A 

Non-binding residues4 Number of non-binding residues 93,857 64,673 29,184 71,713 
Fraction of non-binding residues 80.6% 76.1% 92.5% 85.7% 

Total number of residues 116,500 84,941 31,559 83,695 
 

1protein-binding residues bind to proteins 
2non-protein-binding residues do not bind to proteins and they include residues that bind to other molecules and that do not bind to proteins and the other molecules 
3other ligand-binding residues bind to DNA, RNA or small ligands and they do not bind to proteins 
4non-binding residues do not bind to proteins and the other molecules  
 
Table 6. Predictive performance on the Dataset448 dataset. Methods are sorted by their AUC values. CPR is the cross-predicted rate (ratio of other-ligand-binding 
residues predicted as protein binding). AUCC is the area under the CPR curve. The last row corresponds to a method that predicts binding residues at random. In 
other words, we assign each residue with a random value of propensity for protein binding. The binary predictions are based on the threshold for which the number 
of predicted and native protein binding residues is equal.  
 

Predictor Year 
released 

Predicted binary values (protein vs. non-protein binding residues) Predicted propensities 
Sensitivity Specificity Precision Accuracy F1-

measure 
MCC CPR AUC AULCratio AUCC 

SPPIDER 2007 0.20 0.87 0.19 0.78 0.19 0.06 0.33 0.52 1.69 0.60 
PSIVER 2010 0.19 0.87 0.19 0.78 0.19 0.06 0.25 0.57 1.58 0.54 
SPRINT 2016 0.19 0.87 0.19 0.78 0.19 0.06 0.38 0.58 1.55 0.66 
SPRINGS 2014 0.23 0.88 0.23 0.79 0.23 0.11 0.24 0.62 2.19 0.50 
LORIS 2014 0.27 0.89 0.27 0.80 0.27 0.15 0.19 0.65 2.75 0.44 
CRF-PPI 2015 0.27 0.89 0.27 0.80 0.27 0.16 0.20 0.67 2.72 0.45 
SSWRF 2016 0.32 0.89 0.31 0.82 0.31 0.21 0.20 0.69 3.49 0.39 
Random N/A 0.13 0.86 0.13 0.76 0.13 0.00 0.13 0.50 0.96 0.50 
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3.2 Selection of single sequence methods that predict protein-binding residues for the 
comparative assessment 

We empirically compare computationally-efficient methods that are available as either webservers or 
source code/downloadable software. This ensures that these methods are accessible to the end users. The 
criteria to select predictors for inclusion in the empirical assessment are as follows: (1) a working 
webserver or source code was available as of August 2016 when the predictions were collected; (2) ability 
to complete prediction of an average length protein sequence with 200 residues within 30 minutes; and (3) 
generation of both binary score and numeric propensity for protein binding. The latter is necessary to 
compute the commonly used measures for the evaluation of predictive quality. Out of the original list of 
16 methods we exclude ISIS [47] and methods by Du et al. [60], Wang et al. [61], and Geng et al. [62] 
which lack availability of the webserver or source code. The HomPPI  method [44] required prohibitively 
long runtime. We could not include the two older predictors by Chen et al. [49, 63] since their webservers 
were no longer maintained at the time of our experiment. Moreover, two methods that do not generate 
propensities: iPPBS-Opt [64] and PPIS [65], were also excluded.  
 
We include seven methods that satisfy the three criteria: SPPIDER [48], PSIVER [54], LORIS [55], 
SPRINGS [56], CRF-PPI [57], SPRINT [58], and SSWRF [59]. These methods rely on a variety of 
architectures defined by the use of different input features and different types of predictive models that 
were computed using different training datasets. Their input features include a number of combinations 
of features derived directly from the protein sequences and indirectly from the putative relative solvent 
accessibility. The predictive models they employ were generated by several machine learning algorithms, 
such as the k nearest neighbors [48], naïve Bayes [54], logistic regression [55], neural network [56], 
random forest [57, 59] and support vector machine [58, 59]. In the nutshell, they cover a broad range of 
currently available predictors and that their predictions are likely to differ from each other. 

3.3 Measures of predictive performance 

The outputs generated by the sSEQ-to-RES predictors include propensities and binary values. The authors 
of the 16 predictors use total of six measures of predictive performance to assess the binary predictions 
(Table 4). We use the same criteria to evaluate predictions of the seven methods on our benchmark 
datasets: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

       (1) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

        (2) 

𝑃𝑃𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

        (3) 

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑟𝑟𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

      (4) 

𝐹𝐹1 −𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑟𝑟𝑆𝑆 = 2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆×𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆

     (5) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝐹𝐹−𝐹𝐹𝐹𝐹×𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)×(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)×(𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇)×(𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹)

     (6) 

where TP, TN, FP and FN indicate the number of true positives (correctly predicted protein-binding 
residues), true negatives (correctly predicted non-protein-binding residues), false positives (non-protein-
binding residues incorrectly predicted as protein-binding) and false negatives (protein-binding residues 
incorrectly predicted non-protein-binding residues), respectively. The binary predictions are generated 
from the propensities using a threshold as follows: residues with putative propensities > threshold are 
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labelled as protein binding and the remaining residues as non-protein-binding residues. To allow for a 
side-by-side comparison between different predictors, we set the threshold value such that the number of 
predicted protein-binding residues equals to the number of native protein-binding residues. This way the 
number of predicted protein binding residues is correct and more importantly equal between different 
methods. This ensures that the values of the six criteria can be directly compared between the seven 
predictors. 
 
We introduce two new measures that provide further insights about the non-protein-binding residues that 
are predicted as protein-binding. The non-protein-binding residues include the other-ligand binding 
residues that bind other types of ligands (RNA, DNA and small ligands) as well as the non-binding 
residues that do not interact with proteins, DNA, RNA and small ligands. We measure the rate of cross 
prediction which is defined as the fraction of the other-ligands binding residues that are incorrectly 
predicted as protein binding, and the rate of over prediction which quantifies the fraction of the non-
binding residues incorrectly predicted as protein binding. Correspondingly, we introduce OPR (over-
prediction rate) and CPR (cross-prediction rate): 

𝑂𝑂𝑃𝑃𝑂𝑂 = 𝐹𝐹𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏

      (7) 

𝑀𝑀𝑃𝑃𝑂𝑂 = 𝐹𝐹𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷+𝐹𝐹𝑇𝑇𝑅𝑅𝐷𝐷𝐷𝐷+𝐹𝐹𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷+𝐹𝐹𝑅𝑅𝐷𝐷𝐷𝐷+𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠𝑛𝑛𝑏𝑏
    (8) 

where 𝐹𝐹𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛, 𝐹𝐹𝑃𝑃𝐷𝐷𝐹𝐹𝐷𝐷, 𝐹𝐹𝑃𝑃𝑅𝑅𝐹𝐹𝐷𝐷 and 𝐹𝐹𝑃𝑃𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑆𝑆𝑛𝑛𝑠𝑠𝑆𝑆𝑛𝑛 represent the numbers of different types of false 
positives including the non-binding, DNA-, RNA- and small ligand-binding residues that are predicted as 
protein-binding; 𝑁𝑁𝑆𝑆𝑃𝑃𝑆𝑆−𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛, 𝑁𝑁𝐷𝐷𝐹𝐹𝐷𝐷, 𝑁𝑁𝑅𝑅𝐹𝐹𝐷𝐷 and 𝑁𝑁𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑆𝑆𝑛𝑛𝑠𝑠𝑆𝑆𝑛𝑛 stand for the number of non-binding, DNA-, 
RNA- and small ligand-binding residues. Higher values of OPR and CPR measures mean that the amount 
of the over-prediction and cross prediction is higher, and this leads to more incorrect predictions of protein 
binding residues. Similar assessment of the cross-prediction was recently performed in the context of the 
prediction of DNA and RNA binding residues [66].  
 
We evaluate the putative propensities with the AUC measure which was also used by the authors of the 
sSEQ-to-RES predictors (Table 4). Moreover, we expand this evaluation motivated by the fact that the 
benchmark datasets are imbalanced. The latter means that the number of protein-binding residues is 
substantially smaller, by about 7 to 1 margin, than that the number of the non-protein-binding residues 
(Table 5). Given the imbalanced nature of the datasets, even modest values of the false positive rates 
(non-protein-binding residues predicted as protein-binding) correspond to severe over-prediction of the 
number of binding residues. Therefore, we introduce a new measure for the evaluation of the putative 
propensities that focuses on the low range of false positive rates of the corresponding ROC curve. The 
AULC (Area Under the Low false positive rate ROC Curve) quantifies the area under ROC where the 
number of predicted protein binding residues is equal or smaller than the number of native protein binding 
residues. This means that this score quantifies AUC for the predictions where the number of putative 
protein binding residues is not over-predicted. Instead of using the raw values of AULC, which are 
relatively small and would be difficult to interpret, we compute ratio of AULC for a given predictor to the 
AULC of a method that predicts binding residues at random (AULCratio). AULCratio=1 means the 
prediction from a given sSEQ-to-RES method is equivalent to a random result. AULCratio > 1 indicates 
a better than random predictor. Such ratio was recently used in a study that evaluates methods that predict 
disordered flexible linkers using a similarly unbalanced dataset [67].  
 
We also propose two new measures of the putative propensities that are motivated by the OPR and CPR 
criteria. They are analogous to AUC but instead of measuring the area under the ROC curve defined by 
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the true positive rates against the false positive rates, they quantify the area under the curve defined by the 
OPRs/CPRs against the true positive rates. The corresponding two measures are named AUOC and AUCC 
and they quantify the area under the OPR and CPR curves, respectively. Importantly, higher values of 
AUOC and AUCC correspond to the predictors that more heavily over- and cross-predict protein binding 
residues. The values of AUOC and AUCC range between 0 (optimal predictor) and 0.5 (equivalent to a 
method that predicts binding residues at random). Thus, methods characterized by stronger predictive 
performance should have low values of these two measures.  

3.4 Assessment of the predictive performance on Dataset448 

We empirically evaluate the single sequence methods that predict protein-binding residues on the novel 
Dataset448 dataset. This dataset includes complete protein sequences (test datasets used to assess 
predictors in the past rely on fragments of protein chains collected from PDB) with more complete 
annotations of binding residues (based on mapping of annotations between compatible protein-protein 
complexes) that cover multiple types of ligands: proteins, DNA, RNA and small ligands. We also include 
results from a “random” predictor as a point of reference to assess the existing predictors. The random 
predictor assigns a random value propensity for each residue. The binary predictions are assigned by 
selecting a cut-off that ensures that the number of putative binding residues predicted by the random 
method is equal to the number of native binding residues. This is consistent with the other predictors and 
ensures that the random results provide the correct number of binding residues. 
 
The ROC curves for considered seven sSEQ-to-RES predictors and the random predictor on the 
Dataset448 dataset are provided in Supplementary Figure S2A. Four out of seven predictors produce 
AUCs > 0.6, which correspond to modest levels of predictive performance. All seven methods outperform 
the random predictor that secures AUC = 0.5. The SSWRF method secures the highest AUC = 0.69, which 
suggests that this is a fairly accurate predictor. Since the threshold to compute the binary predictions is set 
to ensure that the number of protein binding residues predicted by each method equals the number of the 
native protein binding residues, results summarized in Table 6 can be used to directly compare different 
predictors. The SSWRF predictor that has the highest AUC also obtains the highest sensitivity = 0.32. 
This means that about one out of three predicted protein binding residues generated by this method are 
correct. This should be considered as an accurate result given that fraction of correctly predicted putative 
proteins binding residues (sensitivity) is three times higher than the fraction of the non-protein-binding 
residues incorrectly predicted as binding, i.e., sensitivity = 3*false positive rate = 3*(1 – specificity). The 
accuracy of SSWRF = 0.82 and MCC = 0.21; the latter reveals a modest level of correlation between the 
predicted and native binding residues. Overall, three methods secure sensitivity that at least doubles their 
false positive rate (SSWRF, LORIS, and CRF-PPI) and these methods also obtain the highest specificity, 
precision, accuracy, F1-measure, MCC and AUC values. The predictive performance for the other four 
methods is rather modest, with MCC < 0.12 and AUC < 0.63. To compare, the random predictor secures 
MCC = 0, AUC = 0.5 and accuracy = 0.76. We also calculate the AULCratio, which quantifies how much 
better is the AUC value of a given predictor for the predictions with low false positive rate (left side of 
the ROC curve) from the AUC of a method that makes random predictions. This measure reveals that 
SSWRF is 3.5 times better that random, and that three other methods (CRF-PPI, LORIS and SPRINGS) 
are at least two times better. Moreover, even the three other less accurate methods are at least 55% better 
than random. The three best performing methods, which include SSWRF, CRF-PPI and LORIS, are also 
among the newest, which demonstrates that progress has been made in the recent years. 
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3.5 Assessment of the cross-prediction between other-ligand binding and protein-
binding residues on Dataset448 

Besides the evaluation of the overall predictive quality, we are the first to assess the extent of the cross-
prediction, defined as incorrect prediction of residues that bind other ligands (DNA, RNA and small 
ligands) as protein binding. The relatively low sensitivity coupled with low precision and F1-measure 
(Table 6) suggest high levels of cross-predictions for all considered methods. We quantify that using CPR 
(cross-prediction rate defined as the ratio of native other-ligand-binding residues predicted as protein 
binding) and AUCC (area under the CPR curve); see Table 6. We observe that CPR is higher than 
sensitivity for SPPIDER, PSIVER, SPRINGS and SPRINT while the random predictor secures CPR that 
is equal to its sensitivity. In other words, these four methods predict a higher fraction of the native other-
ligand-binding-residues as protein-binding when compared to the fraction of native protein-binding 
residues that they predict as protein-binding. This means that in fact these four methods predict ligand 
binding residues rather than protein binding residues. The CPR values for SSWRF, CRF-PPI and LORIS 
are lower than the corresponding sensitivities, which reveals that these methods predict proportionally 
more protein-binding residues among the native protein-binding residues than among the native other-
ligand binding residues. However, the CPR values of these methods are still relatively high, at about 0.2. 
They predict 20% of the native other-ligand-binding-residues as protein-binding compared to between 27 
and 32% of the native protein-binding-residues predicted as protein-binding.  
 
The AUCC values, which assess CPRs across different true positive rates (fractions of correctly predicted 
protein-binding residues), tell the same story. The CPR curves shown in Figure 1A show that CPR values 
are relatively high across the entire spectrum of the true positive rates and all predictors. Curves of four 
methods (SPPIDER, PSIVER, SPRINGS and SPRINT) are located above a diagonal that corresponds the 
results from the random predictor. Correspondingly, their AUCC values > 0.5 (Table 6), which suggests 
that these methods perform worse than the random predictions. This agrees with our observation that their 
CPRs are higher than sensitivities. While AUCC values < 0.5 for the other three predictors (SSWRF, 
CRF-PPI and LORIS), these values that range between 0.39 and 0.45 are relatively poor given that AUCC 
of the random predictor equals 0.5. The OPR (over-prediction rate) values that quantify fraction of native 
non-binding residues incorrectly predicted as protein-binding are lower than CPRs and the corresponding 
curves are located well below the diagonal line (Figure 1B). This means that the seven predictors generate 
proportionally more correctly predicted protein-binding residues than the native non-binding residues 
incorrectly predicted as protein-binding. When taken together, the CPR and OPR curves (Figure 1) 
convey that the modern sSEQ-to-RES predictors predict ligand-binding residues rather than protein-
binding residues. In other words, they accurately discriminate between protein-binding and non-binding 
residues (OPR curves), but they also confuse protein-binding residues with the residues that bind DNA, 
RNA and small ligands (CPR curves).  
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Figure 1. The cross-prediction rate (CPRs) and over-prediction rate (OPR) curves as a function of sensitivity (fraction of 
correctly predicted protein-binding residues) based on predictions on the Dataset448 dataset. CPR is the fraction of native 
other-ligands-binding residues incorrectly predicted as protein-binding while OPR is the fraction of native non-binding residues 
incorrectly predicted as protein-binding. 
 
Motivated by these results, we further analyze the cross-predictions for specific types of the other ligands: 
DNA-, RNA- and small ligand-binding residues. Figure 2 compares the CPR values for these ligands with 
the corresponding sensitivity for the native protein-binding residues and OPR for the native non-binding 
residues. The figure also includes results from the random predictor. A well-performing predictor should 
have higher sensitivity relative to the values of CPRs and OPR while the random method has comparable 
values of CPR, OPR and sensitivity. In general, while the seven methods have high sensitivity and low 
OPR, their CPR values are high and comparable to the sensitivity. The CPR values for SPPIDER, PSIVER, 
and SPRINGS are equally high for the native DNA, RNA and small-ligand binding residues. The SPRINT 
method significantly over-predicts protein-binding among the native small-ligands binding residues and 
also produces high CPR values for the native DNA- and RNA-binding residues. SSWRF, CRF-PPI and 
LORIS confuse protein binding residues with DNA- and RNA-binding residues (high CPR values for the 
nucleic acids-binding residues) but they secure reasonable low CPR for the native small-ligand binding 
residues. In other words, these three methods can distinguish protein-binding from small-ligand binding 
residues, but not from the nucleic acid-binding residues.  
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Figure 2. Cross-prediction rates (CPRs) for the native DNA-, RNA- and small-ligand binding residues and the corresponding 
sensitivity for the protein-binding residues and over-prediction rate (OPR) for the non-binding residues based on predictions 
on the Dataset448 dataset. 
 

 
 
Figure 3. AUCC and AUOC values (x-axis) for the native DNA-, RNA-, small ligand- and non-binding residues based on 
predictions on the Dataset448 dataset. AUOC is the area under the over-prediction rate (OPR) for the native non-binding 
residues while AUCC is the area under the cross-prediction rate (CPR) for the native DNA-, RNA- and small ligand-binding 
residues. A predictor that generates predictions at random is shown at the bottom of the figure and it secures AUOC and AUCC 
at about 0.5. Values of AUOC<0.5 (>0.5) and AUCC<0.5 (>0.5) indicate that a given predictor is better (worse) than random.  
 
 
We also analyze the AUCC and AUOC values that quantify the area under the OPR curve for the native 
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respectively (Figure 3). The corresponding CPR and OPR curves are given in the Supplementary Figure 
S3. The AUCC/AUOC values>0.5 indicate that a given predictor is worse than random, while 
AUCC/AUOC<0.5 means that it is better than random. The white bars in Figure 3 that correspond to the 
AUOC values show that all seven methods are better than random when predicting native non-binding 
residues. The light gray bars reveal that SSWRF, CRF-PPI and LORIS produce accurate predictions for 
the native small-ligand binding residues. However, these three methods perform poorly (they are 
equivalent to a random predictor) for the native DNA- and RNA-binding residues. Moreover, SPPIDER, 
PSIVER, SPRINGS, and SPRINT substantially over-predict protein binding residues among the native 
DNA-, RNA- and small ligand-binding residues. Overall, these results agree with the analysis based on 
the CPR and OPR values from Figure 2.  
 
Overall, our analysis demonstrates that SPPIDER, PSIVER, SPRINGS, and SPRINT predict residues that 
bind proteins, RNA, DNA and small ligands instead of just the protein-binding residues. Namely, these 
methods predict protein-binding residues at the same or higher rate among the native RNA-, DNA- and 
small ligand-binding residues as among the native protein-binding residues. SSWRF, CRF-PPI and 
LORIS predict residues that bind proteins, RNA and DNA. In other words, while these three methods 
relatively accurately separate protein-binding residues from the non-binding and small-ligand binding 
residues, they confuse protein-binding and nucleic-acid binding residues.  
 

 
 
Figure 4. Comparison of fractions of incorrectly predicted protein binding residues among native residues that do not bind 
proteins in the nPBPdataset112 and PBPdataset336 datasets. These predictions are based on the threshold for which the number 
of predicted and native protein binding residues is equal based on the Dataset448 dataset that combines nPBPdataset112 and 
PBPdataset336. The right-most set of results is for a method that predicts binding residues at random. 

3.6 Assessment of the predictive performance on proteins that do not interact with 
proteins from the nPBPdataset112 dataset 

We empirically observe that the modern sSEQ-to-RES predictors overpredict protein binding residues. 
There could be two potential ways for that overprediction. First, these false positive predictions 
(incorrectly predicted protein-binding residues among the residues that do not bind proteins) could be in 
proximity of protein-binding residues and thus they could be predicted as protein binding since these 
methods use a window in the sequence to make predictions. Second, they overpredict protein binding 
residues irrespective of the proximity to the native protein-binding residues. We investigate that by 
evaluating false positive rates on the nPBPdataset112 dataset that includes proteins that do not have 
protein-binding residues. We compare these rates to the false positive rates on the PBPdataset336 dataset 
that includes solely the protein-binding proteins. Figure 4 illustrates that the false positive rates in the 
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nPBPdataset112 are comparable to the rates on the PBPdataset336 dataset across the seven predictors and 
the random predictor. They range between 0.11 and 0.13 on both datasets. Given that the predictions were 
computed such that the number of predicted protein-binding residues equals to the number of native 
binding residues and since the fraction of native protein-binding residues equals 0.14 (which is why the 
random method has false positive rates on both datasets at 0.14), these false positive rates are rather high. 
This suggests that the corresponding overprediction of protein binding residues is not driven by the 
proximity to native binding residues. Instead, this could be explained by our empirical observation in 
Figure 2 that shows that these methods do not discriminate between protein- and other ligand-binding 
residues. In other words, they substantially cross-predict the residues that bind ligands other than proteins 
as protein-binding. This results in high false positive rates for proteins that do not have protein-binding 
residues but which have residues that bind other ligands, which is the case of the proteins in the 
nPBPdataset112 dataset. 
 

 
 
Figure 5. Comparison of the overall predictive performance measured with AUC for the considered seven predictors on the 
Dataset448, nPBPdataset112 and PBPdataset336 datasets. The right-most set of results is for a method that predicts binding 
residues at random. Its AUC values are at 0.5 and thus the corresponding bars are not visible. 

3.7 Comparison with results from previous studies 

Our empirical residues in Table 6 are different from the results that were published in the articles that 
introduce these predictors. In these articles, SPPIDER, CRF-PPI, SPRINT and SSWRF were reported to 
obtain AUC values of 0.62, 0.71, 0.71 and 0.71 using their respective test datasets. Whereas, they secure 
lower AUC values of 0.52, 0.67, 0.58 and 0.69 on our Dataset448 (Table 6), respectively. The other three 
methods do not report AUC and it is virtually impossible to compare measures based on the binary 
predictions given that they depend on the selection of the threshold value. There are three potential reasons 
for these differences that stem from the use of different test datasets: (1) we use complete protein 
sequences based on UniProt records instead of potential fragments of protein chains based on PDB records 
that were used in past studies; (2) following the work in ref. [30] we improve the coverage of the 
annotations of protein-binding residues by transferring annotations from identical proteins across multiple 
complexes while the other studies use a single complex; (3) we include proteins that bind other ligands in 
our test dataset to investigate the cross-predictions instead of just the protein-binding proteins like it was 
done in previous studies.  
 
To verify whether the differences in AUC values are a result of these improvements to the test dataset, we 
create a different version of our test dataset that mimics the test datasets from the prior works. The 
PBCdataset336 dataset (Table 5 provides details on this dataset), was derived from Dataset448 by (i) 
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removing 112 proteins that do not bind to proteins; (ii) selecting at random a single chain among multiple 
protein-protein complexes with the same protein and using just this chain to annotate protein-binding 
residues. We compare the AUC values for the seven considered predictors and the random method on the 
Dataset448, PBPdataset336 (an intermediate dataset that includes only the protein-binding proteins and 
the complete set of protein-binding annotations) and PBCdataset336 datasets in Figure 5. Complete 
assessment of predictive performance of these methods on the three dataset is given in Supplementary 
Table S1 (for the PBPdataset336 and PBCdataset336 datasets) and Table 6 (for the Dataset448 dataset). 
The corresponding ROC curves are provided in Supplementary Figure S2. 
 
We observe a consistent, across the seven methods, trend in the AUC values as we increase similarity 
between our test datasets and the test datasets from the other works. To compare, as expected the results 
for the random predictor do not change between the datasets. The AUCs of the seven predictors on 
Dataset448 which includes full sequences, comprehensive annotations, and a complete set of proteins are 
the lowest. The AUC on the PBPdataset336 dataset that includes only protein-binding proteins goes up, 
and it again increases on the PBCdataset336 that is the most similar to the older test datasets. The relative 
increase of the AUC between PBCdataset336 and Dataset448 defines as (AUCPBCdataset336 – 
AUCDataset448)/AUCDataset448 ranges between 3.3 and 6.3%. The AUCs on the PBCdataset336 dataset that 
imitates the test datasets from the articles that introduce these predictors are similar to the previously 
reported AUCs, i.e., we obtain 0.70 vs 0.71 reported in ref. [57] for CRF-PPI; we measure 0.72 vs 0.71 
reported in [59] for SSWRF. Our AUC for SPRINT that equals 0.61 is lower than the 0.71 reported in ref. 
[58]. The likely reason is that SPRINT was designed to predict protein-peptide interactions, which are a 
subset of the protein-proteins interactions that we evaluate. Also, the test dataset used to evaluate SPRINT 
shared higher similarity to their training dataset at up to 30% compared with our datasets that share up to 
25% similarity (Table 4). This is in contrast to the test dataset used to assess CRF-PPI and SSWRF that 
rely on the same similarity of 25%. Finally, we measure AUC = 0.53 for SPPIDER which is lower than 
0.62 reported by the authors of this method [48]. However, 0.62 is also a low value and the authors of 
SPPIDER used the test dataset that shares much higher sequence similarity with their training proteins at 
up to 50% (Table 4) compared to our dataset that shares up to 25% similarity with the proteins from their 
training dataset. This may explain why our estimate of predictive performance is lower. 
 
Overall, this experiment suggests that our benchmark test dataset provides reliable estimates of predictive 
performance. We observe that the predictive quality of the considered methods that we measured is 
comparable to that assessed by the authors when compatible datasets are used. Importantly, we also note 
that the predictive quality drops down when we consider full protein chains and a more complete set of 
transferred annotations of protein-binding residues. We hypothesize that the reason for this is that the 
current predictors were built on training datasets that make the same assumptions as the older test datasets 
by using fragments of protein chains and incomplete annotations of binding.  

4. Summary and conclusions 

Accurate identification of protein-binding residues is essential to improve our understanding of molecular 
mechanisms that govern protein-protein interactions and to improve protein-protein docking studies. 
Recent years have witnessed the development of a large number of computational methods that predict 
protein-protein interactions. Previous reviews of these methods mainly focused on the structure-based 
methods, while paying little attention to the many sequence-based methods. The influx of the sequence-
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based methods in past three years motivates this first-of-its-kind study in which we comprehensively 
review and empirically evaluate sequence-based methods for the prediction of protein-protein interactions.  
 
We categorize the sequence-based methods into three groups according into their inputs and outputs: the 
‘pSEQ-to-PRO’ methods that predict whether a given pair of sequences interacts, the ‘pSEQ-to-RES’ 
techniques that predict protein binding residues for a pair of input protein sequences, and the ‘sSEQ-to-
RES’ methods that predict protein binding residues in a single input protein chain. We focus our review 
and empirical evaluation on the ‘sSEQ-to-RES’ predictors since they provide more detailed residue-level 
annotations can be applied to all protein sequence, without the need to know the pairs of protein partners. 
We review the architectures of these methods, discuss their inputs and outputs, summarize how they were 
assessed and comment on their availability. 
 
We also perform a comprehensive empirical comparison of representative seven sSEQ-to-RES methods 
that are computationally-efficient and available to the end users as either webservers or source code. We 
have developed a high-quality and large benchmark dataset that is characterized by the more complete 
annotation of protein-binding residues and which includes annotations of residues that bind to other 
ligands. We share this dataset with the community to facilitate future comparative studies (see 
Supplement). Our empirical analysis demonstrates that the selected predictors perform well in 
discriminating protein-binding residues from non-binding residues. Their overall AUC values range from 
0.52 to 0.69 and they all outperform the random predictor. We found that more recent methods have higher 
predictive performance than the older method, with the newest SSWRF that obtains the highest AUC. 
Given that we set the number of predicted protein-binding residues equal to the number of native ones 
protein-binding residues, SSWRF yields sensitivity = 32% and specificity = 89%. This means that it 
correctly identifies 32% native protein-binding residues and 89% of native non-protein-binding residues. 
These results shows that progress has been made in this field in the recent years. We hypothesize that this 
progress is due to the use of more informative features to encode input residues in the recently designed 
predictors.  
 
However, we found that these predictors incorrectly cross-predict many residues that bind other ligands 
as protein-binding residues. We investigate this cross-prediction bias for each predictor and across 
different types of ligands. For instance, we uncover that when the number of predicted and native protein-
binding residues is equals, the best predictor SSWRF cross-predicts 28% DNA-binding residues, 32% 
RNA-binding and 19% ligand-binding residues as protein-binding. When compared to the sensitivity of 
this predictor which equals 32%, this reveals that SSWRF predict as many binding-residues residues 
among the native protein-binding residues as among the native nucleic acid-binding residues. Overall, we 
conclude that four methods: SPPIDER, PSIVER, SPRINGS, and SPRINT predict residues that bind 
proteins, RNA, DNA and small ligands instead of just the protein-binding residues; their cross-prediction 
rates for these types of ligands are comparable or higher than their sensitivity. The other three methods: 
SSWRF, CRF-PPI and LORIS, predict residues that bind proteins, RNA and DNA; their cross-prediction 
rates for nucleic acids are similar to their sensitivity.  
 
Furthermore, we also investigate the source of these cross-predictions. Our empirical analysis shows 
similar rates of cross predictions among protein-binding proteins and proteins that do not have protein-
binding residues. Thus, we conclude that cross-predictions are not driven by the proximity to the native 
protein-binding residues, which could be the influential due to the use of the sliding windows by the sSEQ-
to-RES predictors. Instead, our results suggest that these methods confuse the protein-binding residues 
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with residues that bind the other ligands. We hypothesize that this is because these predictors do not use 
a sufficiently rich set of inputs and since they use biased training datasets. Their inputs focus on the 
sequence conservation and solvent accessibility as means to separate protein-binding from non-protein-
binding residues (Table 4). While protein-binding residues are more solvent exposed and conserved than 
non-binding residues [68], the same is true for other ligands, such as nucleic acids [69]. Thus, these two 
factor would predict both protein-binding and nucleic-acid binding residues. Their training dataset are 
solely focused on the protein-binding proteins that include a relatively large number of protein-binding 
residues and relatively few residues that bind other ligands. This way, the predictive models derived from 
these datasets cannot be properly optimized to discriminate protein-binding from other-ligands-binding 
residues. 
 
Our new benchmark dataset presents a bigger challenge than the previously used test datasets. The 
empirically evaluated predictive performance of selected methods is lower on this dataset compared to the 
results reported by the authors. The differences likely stem from the fact that the training datasets used to 
build these methods use fragments of protein sequences and incomplete annotations of protein-binding 
residues when compared to our dataset. We demonstrate that our results are in agreement with the reported 
predictive performance when our dataset is scaled back to the format of the older test datasets. 

 
Our study prompts five recommendations. First, a new generation of more accurate sSEQ-to-RES 
predictors is needed. These predictors should not only separate the protein-binding residues from the non-
binding residues but, most importantly, also from residues that bind the other ligands. The authors of such 
studies are urged to compute CPR, OPR, AUCC and AUOC values to quantify the extent of the ability of 
their method to satisfy this objective. Second, the currently used annotations of protein-binding residues 
should be extended by transferring annotations across the same proteins in multiple protein-protein 
complexes. This will improve completeness of data that are used to both build and validate the predictors. 
Third, the authors of the sequence-based predictors of protein-protein interactions should be required to 
make their methods publically available, preferably as both webservers and standalone applications, and 
to maintain this availability over an extended period of time. Out of the 44 methods that we review, 16 
are unavailable and another 11 are no longer maintained, which totals to over 60% of the published 
methods that are not accessible to the end users. Fourth, standard benchmark datasets should be 
periodically compiled and made available. This will facilitate evaluation and comparative analysis of the 
predictive performance of the existing and new methods. We start this initiative with the inclusion of our 
benchmark dataset in the Supplement to this article. Fifth, the current methods predict protein binding 
residues but these residues are not grouped into specific sites of interaction on the protein surface (binding 
sites). An ability to group the predicted binding residues into binding sites would be particularly relevant 
for proteins that interact with multiple protein partners in multiple sites. Such clustering of putative 
binding-residues was performed in the context of prediction of several small ligand types including 
nucleotides, metal ions and heme group [38, 43]. The authors have used putative structure predicted from 
the protein sequence to spatially cluster the predicted binding-residues into the corresponding binding 
sites. 
 

Supplementary Data 

Supplementary data are available online at http://bib.oxfordjournals.org/. 
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Key Points 

• The article reviews over 40 sequence-based predictors of protein-protein interactions, with focus 
on 16 methods that predict protein-binding residues from single sequence.  

• Empirical results demonstrate that current predictors accurately discriminate protein binding from 
non-binding residues, but they also incorrectly cross-predict a large number of DNA-, RNA- and 
small ligand-binding residues as protein-binding. 

• The cross-predictions are driven by the inability of the predictors to separate protein-binding and 
other-ligand binding residues rather than a proximity to the native protein-binding residues 

• New datasets in this field should include more complete annotations of protein-binding residues 
and a larger number of nucleic acids and small ligand-binding residues and should be mapped into 
the full protein sequences. 

• A new generation of accurate predictors that utilize the improved datasets and that use novel 
predictive inputs and architectures to reduce the cross-predictions is needed. 
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