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Abstract

Motivated by the pressing need to characterize protein–DNA and protein–RNA interactions on large scale, we review a compre-
hensive set of 30 computational methods for high-throughput prediction of RNA- or DNA-binding residues from protein se-
quences. We summarize these predictors from several significant perspectives including their design, outputs and availability.
We perform empirical assessment of methods that offer web servers using a new benchmark data set characterized by a more
complete annotation that includes binding residues transferred from the same or similar proteins. We show that predictors of
DNA-binding (RNA-binding) residues offer relatively strong predictive performance but they are unable to properly separate
DNA- from RNA-binding residues. We design and empirically assess several types of consensuses and demonstrate that ma-
chine learning (ML)-based approaches provide improved predictive performance when compared with the individual pre-
dictors of DNA-binding residues or RNA-binding residues. We also formulate and execute first-of-its-kind study that targets
combined prediction of DNA- and RNA-binding residues. We design and test three types of consensuses for this prediction
and conclude that this novel approach that relies on ML design provides better predictive quality than individual predictors
when tested on prediction of DNA- and RNA-binding residues individually. It also substantially improves discrimination be-
tween these two types of nucleic acids. Our results suggest that development of a new generation of predictors would benefit
from using training data sets that combine both RNA- and DNA-binding proteins, designing new inputs that specifically target
either DNA- or RNA-binding residues and pursuing combined prediction of DNA- and RNA-binding residues.

Key words: DNA-binding proteins; transcription factors; RNA-binding proteins; protein–DNA binding; protein–RNA binding;
protein–nucleic acids binding

Introduction

Interplay of proteins, DNA and RNA defines and regulates many
cellular-level activities. DNA-binding proteins are driving regu-
lation of gene expression and DNA transcription, replication
and repair [1, 2]. The RNA-binding proteins that interact with
several types of RNAs, such as mRNA, tRNA and rRNA, are
involved in a variety of cellular functions including protein syn-
thesis, regulation of gene expression, posttranscriptional modi-
fications and posttranscriptional regulation [3–5]. The number
of DNA-binding proteins in a genome is relatively substantial

and was estimated to be on average close to 3% of a eukaryotic
genome and 5% of an animal genome, which translates to about
800 proteins per animal genome [2]. Similarly, the fraction of
RNA-binding proteins was estimated to range between 2 and 8%
of eukaryotic genomes [5]. Experimental determination of
protein–DNA and protein–RNA interactions is technically chal-
lenging and relatively expensive and thus only a small fraction
of these interactions was characterized so far. With the recent
rapid accumulation of the protein, DNA and RNA data, i.e. as of
November 2014, NCBI’s RefSeq database [6] includes >9 million
of DNA and RNA transcripts and about 47 million nonredundant
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proteins from 49 000 organisms (source: http://www.ncbi.nlm.
nih.gov/refseq/), there is a pressing need to increase the pace of
the characterization of protein–DNA and protein–RNA inter
actions. To this end, the experimental data are being used to de
velop time- and cost-efficient computational models that could
be used to perform automated prediction of these interactions
for the millions of the uncharacterized proteins.

A number of models that predict the protein–DNA/–RNA
interactions from the protein sequence and structure have been
published and reviewed in the literature over the past several
years [7–10]. Some efforts have been also recently made to pre-
dict protein-binding nucleotides in the RNA sequences using
similar types of methodologies as for the prediction of the nu-
cleotide-binding residues in proteins [11, 12]. Our focus is on the
computational prediction of DNA- and RNA-binding residues
from protein chains. These methods can be used to find the
binding proteins in the vast sequence databases and to indicate
sites of these interactions. Table 1 summarizes recent compara-
tive reviews of the predictors of DNA-binding residues [13, 14]
and RNA-binding residues [7, 15, 16]. These comparative ana-
lyses provide useful clues about the predictive performance of
these predictors and help the end users to select a suitable
method from among many available choices. However, these
reviews and the corresponding predictive models focus solely
on the prediction of interactions with just one of the two nu-
cleic acids types. They do not consider how well they separate
between DNA and RNA interactions. In other words, they do not
test specificity of these predictions when applying a method for
the prediction of DNA-binding residues to predict RNA-binding
residues and vice versa. This is an important oversight given
similarity between DNA and RNA molecules and the fact that
the end users would not want them to be confused. Another
drawback of the prior comparative reviews is that they consider
data sets with incomplete annotations of binding residues.
This is because the annotations are based on a single structure
of protein–DNA or protein–RNA complex, which could be par-
tial if only a fragment of DNA or RNA is considered in a given
complex or if the same protein is involved in other binding
events.

Our review addressed these two drawbacks and offers a con-
siderably expanded scope (Table 1). We review a more complete
set of sequence-based predictors of DNA- and RNA-binding resi-
dues, including newer methods. We discuss how they define
binding residues, overview their predictive models and sum-
marize their outputs, which was neglected in the prior studies.
We perform comparative evaluation of predictive quality of
methods that are conveniently available as web servers and
which are runtime-efficient. This assessment is based on three
new benchmark data sets that consider DNA-binding proteins,
RNA-binding proteins and for the first time a combined set of
DNA- and RNA-binding proteins. The data sets use
protein–DNA and protein–RNA complexes released after
September 2010 (date when the newest data set used by the
published methods was collected) where the proteins have low
similarity to the proteins in the complexes that were released
before that date. This way the benchmark data are fair between
predictors, and the corresponding predictive performance con-
cerns novel (in regards to the interactions with DNA and RNA)
proteins. Importantly, our evaluation uses two commonly con-
sidered definitions of binding residues (based on cutoff dis-
tances of 3.5 Å and 5 Å between atoms of protein and the
nucleic acids) and considers a more complete set of binding an-
notations, which are transferred between multiple complexes
with the same or similar protein. T
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Moreover, we design and assess several types of consen-
suses including a logic-based approach, majority vote and an
extension of the majority vote in the form of a machine learning
(ML)-based consensus that uses regression. We show that logi-
c-based and majority vote consensuses do not offer improve-
ments when tested on our challenging (low similarity)
benchmark set, while the more sophisticated ML-based consen-
sus provides improved predictive quality. We also propose a
new approach to combine predictions of DNA- and RNA-binding
residues in which the four possible outcomes include
‘DNA&RNA-binding’, ‘DNA-binding’, ‘RNA-binding’ and
‘non-binding’. We develop a first-of-its-kind ML-based proto-
type predictor of these four outcomes. This method achieves
relatively good predictive performance and outperforms a naive
approach that directly merges predictions of DNA-binding and
RNA-binding residues. In particular it reduces the rate of mis-
predictions between DNA and RNA binding residues. We also
empirically demonstrate that the ML consensuses provide bet-
ter predictions for longer binding regions and that they predict
relatively few binding residues in proteins that do not interact
with DNA or RNA.

Materials and methods
Benchmark data sets

Similar to other studies [7, 13–16], the benchmark data sets
were extracted from structures of protein–DNA and
protein–RNA complexes collected from the Protein Data Bank
(PDB)[17]; these data were obtained in September 2013. The def-
initions of the binding residues differ between studies, with the
most prevalent approach based on a cutoff distance, i.e. a given
residue is considered as binding if at least one of its side chain
or backbone atoms is closer than the cutoff from an atom of the
RNA/DNA molecule [18]. Table 1 [‘cutoff(s) to define binding’ col-
umn] and Table 2 (‘cutoff’ column) reveal that the prior com-
parative reviews and 29 of 30 predictors of binding residues use
this definition, although the cutoff values used vary consider-
ably. We apply two frequently used values at 3.5 Å and 5 Å to ac-
commodate for these differences. We note that the 3.5 Å is used
most often when designing the prediction methods (13 of 30
methods in Table 2), while both of the considered thresholds
were used in the prior reviews (Table 1). We collected total of
1082 high-quality X-ray structures (resolution better than 2.5 Å)
of protein–DNA complexes, 271 protein–RNA complexes and
4 complexes that include both DNA and RNA. These complexes
are split into chains and the chains that have no binding resi-
dues or are shorter than 30 amino acids in length are removed.
As a result, we obtained 1935 (1939) DNA-binding chains and
981 (985) RNA-binding chains for distance cutoff of 3.5 Å (5 Å).

Motivated by a recent work that evaluated predictive quality
of methods that find small ligand binding pockets on the pro-
tein surface [51], we improve the annotations of binding resi-
dues by transferring these annotations between similar
proteins. This similarity stems from the fact that the structures
of protein–DNA and protein–RNA complexes could concern
paralogs, similar or the same proteins in different organisms,
and structures of the same proteins solved at different reso-
lutions or with different co-factors. Using the procedure intro-
duced in [51], we first find proteins that are similar in their
structure and sequence. The structural similarity is expressed
with the template modeling (TM) score [52]. The similarity in
the sequence is measured with the sequence identity expressed
as a fraction of aligned residues over the length of the shorter

sequence, where the alignment is calculated using bl2seq [53]
with default parameters; we only consider the aligned proteins
for which e-value <0.001. The two similarity scores are used to
perform clustering of protein chains where two chains are as-
signed into the same cluster if their TM score >0.5 and the se-
quence identity >80% [51]. The chains in the same cluster are
assumed to be sufficiently similar and are represented by one
chain with the largest number of binding residues. The annota-
tions of binding residues of the remaining chains in the same
cluster are transferred into this chain. This is done based on the
alignment with bl2seq (e-value <0.001) where annotations are
transferred for positions that are matched in the alignment. As
a result of the transfer, the number of annotated DNA-binding
residues was enlarged by 13.7 and 7.9% for the annotations
based on the 3.5 Å and 5 Å threshold, respectively. Similarly, the
number of RNA-binding residues increased by 9.7 and 4.7%,
respectively.

The original redundant data sets were reduced after the
clustering to the nonredundant data set of 356 (359) DNA-
binding proteins, and 175 (175) RNA-binding proteins based on
the cutoff at 3.5 Å (5 Å). We split them into training and test pro-
teins based on their release date. We observe that the data sets
used by the considered predictors of DNA- and RNA-
binding residues were collected before September 2010.
Correspondingly, the binding proteins released before
September 2010 constitute the training set, which we use to se-
lect and compute consensuses. The proteins released after
September 2010 are less likely to be used to train the published
methods. Furthermore, we reduce this set of proteins by exclud-
ing those that are similar to the training proteins. Using CD-HIT
[54], we clustered all training and test protein chains sharing
�30% sequence similarity and we removed all test proteins that
are in the same cluster with any of the training chains. The re-
maining test proteins share <30% sequence similarity with
training proteins. Based on the cutoff at 3.5 Å (5 Å), our training
data set contains 293 (295) DNA-binding proteins and 149 (149)
RNA-binding proteins. The test proteins were used to establish
the following data sets: ‘DNA_T’ test data set that includes 47
(48) DNA-binding proteins, ‘RNA_T’ test data set that contains
17 (17) RNA-binding proteins, and the combined ‘COMB_T’ test
data set that has 64 (65) nucleic acid-binding proteins when
applying the cutoff at 3.5 Å (5 Å); ‘T’ denotes the fact that the an-
notations were transferred. We also define the corresponding
three test data sets where the annotations were not transferred:
‘DNA_NT’, ‘RNA_NT’ and ‘COMB_NT’. The full set of both train-
ing and test chains that includes annotations with and without
transfer and for both cutoff is available in the Supplementary
data; these data can be used to derive the six data sets, which
would facilitate future comparative studies.

We also developed a data set that includes proteins that are
unlikely to interact with DNA/RNA to investigate whether bind-
ing residues would be still predicted in these chains. We con-
sider human proteins from the complete human proteome
collected from the UniProt [55]. We included proteins that
satisfy the following constrains: not located in nucleus; not
annotated as DNA-binding, RNA-binding and nucleic acid-bind-
ing in Gene Ontology [56]; not having DNA, RNA, nucleic acid or
nucleotide terms in protein name; not having the DNA, RNA,
nucleic acid or nucleotide keyword. We clustered the resulting
set of 12 361 human proteins using CD-HIT with 30% sequence
similarity and selected one chain from each cluster to remove
similarity that could bias evaluation. Next, we removed chains
that share �30% sequence similarity with any chains in our
training set to further reduce possibility that these chains bind
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to RNA or DNA. To do that we clustered the human proteins
with proteins from the training data set using CD-HIT at 30%
similarity and we kept only the 6559 human proteins that were
not located in the same cluster with any chains from our train-
ing set. To have the size similar to the size of our test data sets
and to accommodate for the computational cost of predictions,
we selected at random 50 proteins from this set of human pro-
teins to form the data set of the nonbinding proteins.

Selection of methods included in the empirical
assessment

The empirical assessment includes sequence-based methods
for the prediction of DNA- and RNA-binding residues that were
selected from the comprehensive list of 30 methods shown in
Table 2. We selected nine predictors that were available as web
servers as of December 2013 when the predictions were col-
lected and which are runtime-efficient, i.e. they predict an aver-
age size protein sequence with 200 residues in under 10 min;
this assures that we cover methods that are convenient to use
for the end users. We use the most recent versions of methods
that have multiple versions. We include four predictors of DNA-
binding residues, DBS-PSSM [19], DP-Bind [22, 23], ProteDNA [30]
and BindNþ [31], and three for the predictions of RNA-binding
residues, Pprint [38], BindNþ [31] and RNABindR [16, 47, 48]. DP-
Bind implements a family of methods that includes three ML
models, support vector machine (SVM), kernel logistic regres-
sion (KLR) and penalized logistic regression, and two types of
consensuses of these models [23]. We consider the default KLR
classifier-based model, DP-Bind(klr), and the default majority-
vote-based consensus, DP-Bind(maj). ProteDNA offers predic-
tions in two modes, one with high-precision and another
balanced; we use the latter version, ProteDNA(B), that provides
a better balance between sensitivity and specificity [30]. We also
consider two recent consensus-based approaches, which com-
bine predictions of multiple methods: MetaDBSite [14] for the
DNA-binding and the consensus by Puton et al. [15] for the RNA-
binding. In total we examine 10 predictors, including three con-
sensus-based approaches, which cover a comprehensive range
of designs. These methods include a variety of predictive algo-
rithms (Table 2), such as neural networks, SVMs, regression,
Bayesian classifiers and consensuses, and they make use of sev-
eral different types of inputs, such as evolutionary profiles, se-
quence alignment, composition of amino acids and
physiochemical properties of amino acids.

From the list of recent methods we exclude DBS-pred [18]
and BindN [20], which were superseded by DBS-PSSM and
BindNþ, respectively; DBD-Threader [29] and SPOT-Seq [46] that
rely on libraries of structures of protein–DNA and protein–RNA
complex and took excessive amount of time to run; and several
methods that do not offer a web server including the predictor
by Ho et al. [21], by Jeong et al. [34, 35], RNAProB [39], ProteRNA
[42], RBRpred [43], and method by Wang et al [44]. We also could
not consider DISIS [24], DNABindR [25, 26], BindN-RF [27],
DBindR [28], NAPS [32], DNABR [33], PRINTR [36], RISP [37],
PiRaNhA [40, 41] and PRBR [45] because their web servers were
either no longer maintained or unavailable at the time of our
experiment.

Evaluation measures and protocols

The considered predictors of DNA- and RNA-binding residues
output either only the binary prediction (binding versus
nonbinding) or binary prediction combined with a real-valued

score that quantifies propensity for binding. We evaluate both
types of outputs [57], and we exclude residues with missing
atomic coordinates in the source structure files (i.e. disordered
residues), as we could not compute their annotations of bind-
ing. The binary predictions are assesses based on

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
FPþ TN

MCC ¼ TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TPþ FPð Þ � TNþ FPð Þ � TNþ FNð Þ

p

where TP is the number of true-positive results (correctly pre-
dicted binding residues), FN is the number of false-negative re-
sults (incorrectly predicted binding residues), FP is the number
of false-positive results (incorrectly predicted nonbinding resi-
dues) and TN is the number of true-negative results (correctly
predicted nonbinding residues).

The predicted propensities are evaluated using receiver
operating curve (ROC), which is a plot of false-positive rate
(FPR), which equals 1 � Specificity, against the true-positive rate
(TPR), which is the same as Sensitivity. These two rates are
computed by binarizing the propensities using thresholds.
Similar to other studies we report the area under the ROC curve
(AUC).

Moreover, we introduce a new measure, called ‘Ratio’, which
quantifies the amount of cross-prediction between DNA- and
RNA-binding residues. Ratio is defined as the fraction of native
DNA-binding residues that are predicted as RNA-binding, and
the fraction of native RNA-binding residues that are predicted
as DNA-binding.

We also evaluate statistical significance of the differences in
predictive quality between the best-performing method and
each of the other considered methods. For a given data set, we
randomly select 70% of proteins to calculate the corresponding
Matthews correlation coefficient (MCC) and AUC values. This is
repeated 10 times, and we compare the corresponding 10 paired
results. Given that the measurements are normal, as tested
using the Anderson–Darling test [58] with 0.05 significance, we
use the paired t-test to investigate significance; otherwise we
use the Wilcoxon rank sum test. The difference between a given
pair of predictors is assumed statistically significant if P-value
<0.05.

Prediction of DNA and RNA binding

DNA and RNA binding amino acids share similar biochemical
properties, e.g. they are positively charged and have strong pro-
pensity to interact with the negatively charged phosphate back-
bone of DNA or RNA [22, 47]. However, the corresponding
interactions carry out different cellular function and thus a
given predictor should be able to separate DNA-binding resi-
dues from the RNA-binding residues. This is perhaps as crucial
as the ability to separate RNA-/DNA-binding residues from the
nonbinding residues. Here, we consider two types of predic-
tions: with two (binary) and four outcomes. The former repre-
sents the prediction of a residue as binding versus nonbinding,
for binding to either DNA or RNA. We are the first to consider
the prediction with four outcomes: DNA&RNA-binding residue
that binds to both DNA and RNA, DNA-binding residue (which
does not bind to RNA), RNA-binding residue (which does not
bind to DNA) and nonbinding residue. The results of the

92 | Yan et al.



two-outcome-based predictions of the DNA binding and of the
RNA binding can be combined to obtain the four outcomes as
shown in Table 3.

Design and assessment of consensus predictors

A consensus method combines the predictions from several indi-
vidual predictors of the DNA-binding residues or the RNA-binding
residues. Prior works demonstrate that use of a consensus could
provide improved predictive performance. Si et al. [13] developed
a consensus MetaDBSite that integrates six predictors of DNA-
binding residues. They have shown that MetaDBSite outperforms
each of the six individual methods. Similarly, for the prediction of
RNA-binding residues, Puton et al. [15] developed consensus of
three predictors that provides improved predictive quality when
compared with these methods.

We consider a comprehensive range of designs of consen-
suses and empirically assess their predictive performance. We
are the first to investigate logic-based consensuses, which are
selected as the best-performing (according to the MCC score on
the training data set) combination of k methods, k¼ 1, 2, . . . , N
where N is the total number of predictors of RNA- or DNA-bind-
ing residues that we consider in our empirical assessment. The
predictions of the k methods are combined using two
approaches, based on logical OR and logical AND operators.
Specifically, the AND-based consensus assumes that a given
residue is predicted as binding only if all k methods predict it as
binding; otherwise this residue is predicted as nonbinding. The
OR-based approach predicts a given residues as binding if any
of the k methods predict it as binding. We also considered a ma-
jority-vote-based consensus predictor. This consensus predicts
a residue as binding only if over half of the input methods pre-
dict so. This design generates the number of predicted binding
residues that is lower than a consensus that uses only the lo-
gical OR and higher than if only the logical AND is used given
that the same input predictors are used. The above two types of
consensuses are simple to implement by an end user and do
not involve any parameterization, which reduces risk of over fit-
ting into a given benchmark data set.

We also extend these relatively simple consensuses to a
more sophisticated ML consensus using linear logistic regres-
sion model. This model implements weighted average of the in-
put predictions and uses both the binary predictions and the
propensity scores generated by the individual DNA-binding or
RNA-binding predictors. We generate the regression model on
the training data set and assess its predictions on a given test
data set. As the number of the nonbinding residues is substan-
tially larger that the number of the binding residues in our
training set, we under-sampled the nonbinding residues. For
each training chain, we randomly sampled without

replacement 25% of the nonbinding residues, and as a result,
their number is about twice larger than the number of binding
residues. The propensity scores generated by the regression
model are binarized using the cutoff that corresponds to the
maximal values of MCC on the training data set.

We also implement and empirically test first-of-its-kind
method for the predictions of DNA- and RNA-binding residues
based on the four outcomes. We considered three different
approaches: ‘single consensus’, ‘multiple consensus’ and ‘ma-
chine learning consensus’. The ‘single consensus’ combines
outputs generated by a single DNA-binding predictor and a sin-
gle RNA-binding predictor. We use the best-performing, accord-
ing to the MCC score on the training data set, predictors and
apply the rules summarized in Table 3 to merge their predic-
tions. As consensuses of RNA-binding (DNA-binding) predictors
outperform individual predictors on the training data set, the
‘multiple consensus’ approach extends the single consensus by
integrating results of multiple predictors of RNA-binding resi-
dues or multiple predictors of DNA-binding residues. In other
words, this approach combines outputs generated by a consen-
sus of DNA-binding predictors and a consensus of RNA-binding
predictors. We examine the combination of the two logic-based
consensuses (multiple consensus logic) and two majority-vote-
based consensuses (multiple consensus majority vote). Also, we
combine the DNA-binding residue predictions with the RNA-
binding residue predictions predicted by the corresponding two
ML consensus predictors (multiple consensus ML). We also
design and test a novel consensus that combines predictions
generated by all considered predictors of DNA-binding and
RNA-binding residues using the logistic regression model (DNA
and RNA ML consensus). This is a single regression model ra-
ther than a combination of two regression models that is imple-
mented in the multiple consensus ML. All these consensuses
were build using only the training data set, i.e. the specific com-
binations of methods used in the multiple consensuses were se-
lected based on maximizing the MCC value on the training data
set, and the regression model for the DNA and RNA ML consen-
sus was also generated on the training data set.

Results
Sequence-based predictors of RNA- and DNA-binding
residues

Table 2 summarizes 14 sequence-based methods for the predic-
tion of DNA-binding residues and 16 for the RNA-binding resi-
dues. Perhaps their most striking characteristic is that these
predictors define binding residues in different ways. Virtually
all predictors, except for DNABindR [25, 28] and PRINTR [39], de-
fine a given residue as binding if at least one of its atoms is
closer than a cutoff distance from an atom of the RNA/DNA
molecule. However, the cutoff values vary widely between 3.5 Å
and 6 Å. The most commonly used value is 3.5 Å. Similarly, prior
comparative reviews [7, 13–16] also often consider value of 3.5 Å
and 5.0 Å, which is why we apply these two cutoffs.

The predictive models can be divided into two types: ‘se-
quence-only’ models that perform predictions using solely the
sequence and sequence-derived one-dimensional descriptors
[59], such as secondary structure and solvent accessibility; and
‘template-based’ models that rely on a library of structural tem-
plates. The latter group of methods uses the input sequence to
find a structure in complex with DNA or RNA that has similar
sequence, and they use this structure to perform predictions.
The two ‘template-based’ approaches, DBD-Threader [50] for

Table 3. The conversion of the prediction of DNA-binding residues
and the prediction of RNA-binding residues into the combined pre-
diction of the DNA- and RNA-binding residues

Outcome Two outcome predictions of
RNA binding

RNA-binding Nonbinding

Two outcome
predictions
of DNA
binding

DNAbinding DNA&RNA-
binding

DNA-binding
only

Nonbinding RNA-binding
only

Nonbinding
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the prediction of DNA-binding residues and SPOT-Seq [46] for
the RNA-binding residues provide accurate predictions but they
also require relatively long runtime; our tests using the web ser-
vers show runtime values up to several hours per protein for
DBD-Threader and 20 min to a few hours for SPOT-Seq.
Interestingly, SPOT-Seq was shown to discriminate between
RNA- and DNA-binding proteins [46], while we investigate
whether this could be also accomplished with the sequence-
only models.

The predictive strategy used by the ‘sequence-only’ methods
consists of two steps. First, each residue in the input protein se-
quence is encoded into a vector of numerical features. Next,
these features are used as inputs to a predictive model that out-
puts a binary value (binding versus nonbinding) and, for some
methods, also a numeric score that quantifies propensity for
the binding (Table 2). The information used to compute features
for a given residue is collected from a window of residues that
are adjacent to this residue in the sequence. The sizes of this
window vary widely between methods, ranging from 3 (one
residue on each side of the predicted residue) to 41; the most
frequently used value is 11 (Table 2). The sequence-only pre-
dictors use a variety of designs that vary both on the informa-
tion that is used to generate the features and the predictive
models used. The input features include information derived
directly from the protein sequence including amino acid com-
position (identity), and physiochemical properties of the input
amino acids, such as pKa value of side chains, hydrophobicity,
molecular mass and charge. Some features are also computed
from one-dimensional structural characteristics that are pre-
dicted from the sequence, such as secondary structure and solv-
ent accessibility. The most common input is based on the
results of multiple sequence alignment of the input chain into a
large sets of protein sequences (such as the nr database), pri-
marily in the form of the evolutionary profile quantified with
the position-specific scoring matrix (PSSM). This is related to
the fact that PSSM can be used to quantify conservation of resi-
dues and the binding residues were shown to be conserved in
the sequence [49, 60, 61]. Two predictors substitute PSSM with
another way to find conserved residues. ProteRNA method [42]
uses the WildSpan algorithm [62] while DISIS [24] uses MaxHom
[63] algorithm. The predictive models are exclusively imple-
mented based on a variety of ML algorithms including neural
networks, SVMs, Naı̈ve Bayes and decision trees. The SVM is
used most often, which is motivated by empirical results that
demonstrate that this type of model usually provides strong
predictive performance [15, 20]. However, we note that different
methods were trained and tested on different data sets, which
vary in terms of their release date, size, resolution of structures
used to generate annotation of binding, sequence similarity
within the data set and definition of binding annotation.
Moreover, they were evaluated using different protocols (e.g.
using test sets and a variety of cross-validation types) and the
predictive performance was assessed using different measures.
Therefore, we could not use the results reported in the ori-
ginal articles to directly compare predictive quality of these
methods. Our tests of methods that offer web server indi-
cate that DBS-pred [18] and BindN [20] are among the fastest
methods that complete the prediction of DNA-, RNA-binding
residues for an average-sized protein with about 200 amino
acids in <1 s.

Recent studies also investigated development of consensus
approaches. Si et al. [13] have implemented a consensus method
MetaDBSite that integrates predictions from six DNA-binding
predictors: DBS-pred [18], BindN [20], DP-Bind [23], DISIS [24],

DNABindR [25] and BindN-RF [27]. The results of these pre-
dictors are combined using the SVM model, and the resulting
consensus was shown to outperform each individual predictor.
Similarly, Puton et al. [15] assessed predictive quality of seven
sequence-based methods for prediction of RNA-binding resi-
dues and developed a consensus that combines predictions
from the top three predictors: PiRaNhA [41], Pprint [38] and
BindNþ [31]. The outputs of these methods were merged to-
gether using weighted average where the weights are the AUC
values on their benchmark data set. Again, empirical results
have shown that their consensus outperforms the results gen-
erated by each of the three single predictors. These results moti-
vated us to further investigate feasibility of building accurate
consensus-based approaches.

Assessment of the predictive performance of the
sequence-based prediction of DNA-binding and
RNA-binding residues

We perform empirical assessment of the 10 selected computa-
tionally efficient sequence-only predictors that are available as
web servers on the test data sets. The evaluation uses DNA_T
(with DNA-binding proteins only), RNA_T (with RNA-binding
proteins only) and COMB_T (with DNA- and RNA-binding
proteins) benchmark test data sets where annotations were
transferred between similar proteins, which results in a more
complete set of annotations. We also compare these results
with the results based on the original DNA_NT, RNA_NT
and COMB_NT test data sets without the transfer. We consider
two definitions of binding residues, using the cutoffs at 3.5 Å
and 5 Å.

Predictive performance on the data sets with DNA-
binding or RNA-binding proteins

Table 4 reveals that predictive performance of the individual
predictors of DNA-binding residues [DBS-PSSM, DP-Bind(maj),
DP-Bind(klr) and BindNþ] on the DNA_T data set is relatively
similar, with MCC values ranging between 0.293 and 0.307 (0.304
and 0.343), and AUC ranging between 0.795 and 0.797 (0.769 and
0.778) for the cutoff at 3.5 Å (5 Å). The only exception is the
ProteDNA method that is characterized by lower predictive
quality on this test data set. A likely explanation is the fact that
this method was designed to find binding residues specifically
in the transcription factors, which are a subset of our data set of
DNA-binding proteins. This is corroborated by the relatively low
value of sensitivity that was obtained by this predictor.
Interestingly, the MetaDBSite consensus is also underperform-
ing when compared with the results reported by the authors
[13]. The reason is that four methods that this consensus was
originally designed to use are no longer maintained.
Consequently, instead of combining results of six predictors the
current version of MetaDBSite is a simple ensemble of BindN
and DP-Bind based on the logical AND, i.e. a given residue is pre-
dicted as DNA-binding if both methods predict it as such.
Prediction qualities on the data set where binding residues are
defined based on the 5 Å threshold are characterized by a de-
crease in sensitivity compared with the threshold of 3.5 Å. This
means that the considered predictors do not predict the resi-
dues located between 3.5 and 5 Å as well as those that are closer
than 3.5 Å. This could be because most of these methods
(BindNþ, DBS-PSSM and MetaDBSite) were trained using the
3.5 Å cutoff, while the remaining two methods (DP-Bind and
ProteDNA) also use a lower cutoff at 4.5 Å.

94 | Yan et al.



T
ab

le
4.

R
es

u
lt

s
o

f
em

p
ir

ic
al

as
se

ss
m

en
t

o
f

p
re

d
ic

to
rs

o
f

th
e

D
N

A
-

o
r

R
N

A
-b

in
d

in
g

re
si

d
u

es
o

n
th

e
D

N
A

_T
o

r
R

N
A

_T
d

at
a

se
ts

,r
es

p
ec

ti
ve

ly

M
et

h
o

d
B

in
d

in
g

re
si

d
u

es
d

ef
in

ed
ba

se
d

o
n

3.
5

Å
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We designed two types of consensuses: logic-based consensus,
which combines individual predictors of DNA-binding residues
(BindNþ, DBS-PSSM, DP-Bind and ProteDNA) using all permuta-
tions of logical OR and logical AND operators; and majority vote
consensus, which combines them using a majority voting rule (see
Materials and Methods section for details). The top three logic-
based and majority vote consensuses that obtain highest MCCs on
the training data set are compared with the best-performing indi-
vidual predictor, BindNþ, in Supplementary Figures S1A and S1B,
respectively. The best logic-based consensus combines BindNþ
and DBS-PSSM using logical AND, which means that a given
residue is predicted as binding only if both methods predict it as
binding. The best majority vote consensus combines BindNþ,
DBS-PSSM and ProteDNA, which means that a given residue is
predicted as binding only if at least two of these methods predict it
as binding. The results show that although the logic-based and ma
jority vote consensuses improve the prediction performance on
the training data set, they do not deliver these improvements on
the test data set. The logic-based approach provides similar (2.6%
worse) MCC when compared with the best-performing individual
predictor, DBS-PSSM, for the binding threshold equal 3.5Å (5Å) on
the test data set. Although majority vote consensus slightly im
proves MCC by 0.7% for the binding threshold at 3.5 Å, its MCC
drops by 2.1% for the threshold at 5 Å. The reason for the lack of im
provement is that the test data set is dissimilar to the training data
set (<30% sequence similarity) and such simple combinations of in
dividual predictors did not translate well between these two data
sets. Motivated by this, we extended these designs of the consen
suses into a more advanced ML consensus that applies linear logis
tic regression (see Materials and Methods for details). The ML con
sensus outperforms all single predictors by at least 4.7% (3.1%) in
MCC, 3.4% (3.0%) in AUC for the cutoff at 3.5 Å (5 Å), and these differ
ences are statistically significant (Table 4).

Analysis of the results concerning prediction of the RNA-
binding residues leads to similar observations (Table 4).
Predictive performance of the three considered predictors
(BindNþ, RNABindR and Pprint) vary between 0.141 and 0.219
(0.136 and 0.222) in MCC, and between 0.681 and 0.738 (0.648
and 0.711) in AUC on the RNA_T test data set based on the cutoff
at 3.5 Å (5 Å). The Meta2 consensus is not performing as well as
previously reported [15]. This is because some of the methods
Meta2 was originally designed to combine are no longer avail-
able. The logic-based consensus, which outperforms other con-
sidered consensuses on the training data set (Supplementary
Figure S1A), integrates predictions from BindNþ, RNABindR and
Pprint using logical AND. The majority vote consensus also com
bines these three individual predictors (Supplementary Figure
S1B). Similar to the results for the DNA-binding, these two types
of simple consensuses do not perform well on the test data set.
They only achieve equivalent or slightly worse MCC compared
with the best-performing predictor, BindNþ, on this data set.
However, the ML-based consensus outperforms all the individ
ual predictors. More specifically, its MCC is higher by at least
1.5% (0.7%), AUC by at least 1.8% (1.5%) and specificity by at least
7.2% (3.8%) for the threshold of 3.5 Å (5 Å).

Overall, we conclude that methods for the prediction of
DNA-binding (RNA-binding) residues are characterized by rela-
tively good predictive performance measured by their values of
MCC and AUC when tested on the dissimilar (in the sequence)
proteins that bind DNA (RNA). Their AUC is at about 0.8 (0.7),
and their predictions have modest correlation with the native
annotations at about 0.3 (0.2). They generally have relatively
high specificity coupled with modest sensitivity, which means
that they predict a subset of native binding residues with high

predictive quality while missing the remaining binding resi-
dues. Our analysis reveals that a simple consensus based on
majority vote or logic does not improve the predictive perform-
ance when applied to predict proteins that are dissimilar to the
proteins that were used to develop this consensus. At the same
time, a more sophisticated logistic regression-based consensus
outperforms all individual methods in the prediction of DNA-
binding and RNA-binding residues, even for the dissimilar
chains. We also note that predictive quality (see AUC and sensi-
tivity values in Table 4) on the data set where binding residues
are annotated based on the larger cutoff at 5 Å are consistently
slightly worse than for the cutoff at 3.5 Å. This suggests that
residues that are closer to RNA or DNA are easier to discrimin-
ate from the nonbinding residues.

Predictive performance on the data set with DNA- and
RNA-binding proteins

We are the first to comprehensively assess predictive perform-
ance of the considered predictors on the COMB_T data set that
combines DNA- and RNA-binding proteins, see Table 5. We ob-
serve a drop in MCC when compared with the results in Table 4.
This is a universal pattern, irrespective of whether we assess
predictors of DNA- or RNA-binding residues, and it reveals that
these methods confuse the two types of binding residues.
Sensitivity stays the same, as the annotation of the binding resi-
dues does not change compared with when we consider predic-
tion of DNA- or RNA-binding residues; we just introduce
additional nonbinding residues.

Considering individual predictors of DNA-binding residues,
the MCC on the COMB_T data set (Table 5) is lower by 3.8–5.5%
(3.8-6.4%) when compared with the results on the DNA_T data set
(Table 4) for the cutoff at 3.5 Å (5 Å). The only exception is
ProteDNA, which has low sensitivity and MCC and which predicts
a relatively small number of residues that selectively bind tran-
scription factors. Ratio, which quantifies fraction of RNA-binding
residues that are predicted to be DNA-binding, reveals that at
least 28.9% (25.0%) and as many as 48.7% (42.9%) of the RNA-
binding residues are mispredicted at the cut-off of 3.5 Å (5 Å).
Although the majority vote and logic consensuses do not offer
improved MCC when compared with their input methods on this
test data set, their Ratio is reduced to 23.2%. This means that the
individual predictors do not agree on the misprediction of the
RNA-binding residues as DNA-binding for a substantial number
of cases, i.e. they mispredict different residues. The ML-based
consensus that we designed again outperforms all other pre-
dictors on this data set. It secures the highest MCC equal 0.311
(0.326) and also the highest AUC of 0.841 (0.81), and these im-
provements are statistically significant (Table 5). Figure 1A
(Figure 1B) shows the ROCs for the ML consensus and all the indi-
vidual predictors that generate the propensity scores on the
COMB_T data sets at 3.5 Å (5 Å) binding cutoff. Notably, the TPR of
our ML consensus is higher than the TPR of any individual pre-
dictors for almost the entire range of FPR values. However, this
consensus still has a problem of substantial levels of mispredic-
tions between DNA and RNA binding residues, which is demon-
strated by the moderate values of Ratio (Table 5). We solve this
problem by proposing a new design of the ML consensus that
combines prediction of both DNA- and RNA-binding residues.

Similarly, assessment of the predictors of the RNA-binding
residues on the COMB_T data set demonstrates that the results
are worse when compared with the results on the RNA_T data
set. Specifically, MCC is lower by 5.7–10.5% (5.7–11%); AUC by
1.2–3.1% (1.7–3.6%); and specificity by 1.4–3.7% (1.7–4%) based on
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the cutoff at 3.5 Å (5 Å). Most importantly, the identical sensitiv-
ity coupled with the lower specificity indicates that predictors
of RNA-binding residues mispredict the DNA-binding residues
as RNA-binding, which is further confirmed by the values of
Ratio. Ratio tells that these methods mispredict between 47.8
and 64.3% (42.7 and 60.1%) DNA-binding residues as RNA-
binding depending on the cutoff value. Although the logic-based
and majority vote consensuses do not improve predictive per-
formance when compared with their input predictors on this
data set, the former consensus provides relatively low values of
Ratio. However, the ML-based consensus outperforms all the in-
dividual predictors. It secures the highest MCC, AUC and specifi-
city and the lowest (best) Ratio. The ROCs of this consensus and
all the individual predictors are shown in Figure 1C and D.
Overall, the ML consensus achieves the best performance when
considering the entire range of FPR values. Pprint performs well
at low FPR (<0.05) value, while its TPR drops substantially for
higher values of FPR. RNABindR curve overlaps with our ML con-
sensus curve at larger values of FPR, but this method has lower
PRF when FPR <0.45 and <0.25 for the binding cutoffs at 3.5 Å
and 5 Å, respectively. The only weakness of the ML consensus is
still relatively high values of Ratio, in spite of the fact that they
are lower than for the other methods.

We further investigate the mentioned above misprediction
by assessing methods that target RNA-binding (DNA-binding)
on the data sets with the DNA-binding proteins (RNA-binding
proteins); see Supplementary Table S1. The considered pre

dictors obtain relatively low specificity between about 0.7 and
0.9 (ideally specificity should be 1) and high Ratio between about
0.25 and 0.7 (ideally Ratio should be 0), except for ProteDNA
that predicts only a small subset of DNA-binding residues. We
note that the logic and ML consensuses overall secure lower val
ues of Ratio when compared with the individual predictors.
These results confirm our observations based on the results in
Table 5.

The results on the COMB_T, DNA_T and RNA_T data sets
(Tables 4 and 5) indicate that current methods that predict
DNA-binding or RNA-binding residues are characterized by
good predictive performance. However, although these pre-
dictors perform well on their own type of binding, they also
overpredict the other type of binding residues, i.e. predictors of
RNA-binding (DNA-binding) residues also predict a large num-
ber of DNA-binding (RNA-binding) residues as RNA-binding
(DNA-binding). This means that they tend to predict nucleic
acids-binding residues rather than more specific DNA- or RNA-
binding residues.

Predictive performance on the data sets with and
without transfer of annotations

We assess the predictors of DNA-binding or RNA-binding resi-
dues on the data sets where we did not transfer the binding
residues between the similar proteins: DNA_NT, RNA_NT and
COMB_NT. In these data sets, we used binding residues

Figure 1. The ROCs for the ML consensuses and the individual predictors of DNA- and RNA-binding residues. Panels A and B compare the DNA-binding predictors on

the COMB_T data set with the binding thresholds of 3.5A and 5A, respectively; Panels C and D compare the RNA-binding predictors on the COMB_T data set with the

binding threshold of 3.5 Å and 5 Å, respectively.
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annotated based on a single complex, which was also practiced
in the prior studies. The results that are summarized in the
Supplementary Tables S2 and S3 are analogous to the results
when using the more complete set of annotations that include
transfer from the similar proteins. That is, relative (with each
other) predictive quality of individual methods is similar and
their overall predictive performance is good. Similarly, the logic
and majority vote consensuses do not provide improved predict
ive performance while the ML consensus improves over the indi
vidual predictors on each of the three data sets, i.e. this consen
sus has higher MCC and AUC values. However, when directly
comparing Table 4 with the corresponding Supplementary
Table S2 or Table 5 with the corresponding Supplementary
Table S3, we observe that use of the transferred (more complete)
annotations results in a decrease in AUC and sensitivity.
Specifically, for the predictors of DNA-binding residues, the de
crease ranges between 0.4% (0.5%) and 1.3% (1.1%) in AUC, and
between 0.6% (0.2%) and 2.9% (1.6%) in sensitivity for the thresh
old used to define binding residues at 3.5 Å (5 Å). Similarly, for
the methods that predict RNA-binding residues, the AUC is
lower by up to 0.8% (0.8%) and sensitivity by up to 0.5% (0.6%).
These results suggest that the binding residues that were trans
ferred from similar proteins are more difficult to predict for the
current methods when compared with the remaining binding
residues. This could be explained by the fact that these methods
were designed (trained) on data set without the transfer of anno

tations. Such data sets would include false negatives, which are
binding residues that were annotated as nonbinding since their
annotations were not transferred from a similar protein.
Apparently mislabeling these residues in the training data sets
prevents these methods from correctly identifying them as bind
ing on our test data sets. Consequently, we believe that a new
generation of predictors should use training data sets with the
transferred annotations.

Assessment of the predictive performance of the
sequence-based combined prediction of DNA- and
RNA-binding residues

The published predictors were designed specifically to target ei-
ther protein–DNA or protein–RNA interactions. We empirically
demonstrate that these methods cross-predict into the other
nucleic acid type, i.e. methods that predict DNA-binding also
mispredict RNA-binding residues and vice versa. One way to po-
tentially alleviate this drawback is to redefine these two predic-
tion tasks as a single prediction with four outcomes:
DNA&RNA-binding, DNA-binding, RNA-binding and nonbinding
residue. We are the first to design such predictors and compre-
hensively assess their predictive performance. Our design inte-
grates multiple predictors of DNA- and RNA-binding residues
based on three types of consensuses: single consensus, multiple

Table 6. Results of empirical assessment of consensus-based methods on the COMB_T data set when considering prediction of combined
DNA- and RNA-binding residues and individual prediction of DNA- or RNA-binding residues

Method Prediction of DNA and RNA binding Prediction of DNA or RNA binding

DNA&RNA DNA RNA non-DNA &
non-RNA

DNA versus
non-DNA

RNA versus
non-RNA

Sensitivity
Single consensus N/A 0.101 0.164 0.839 0.482 0.399
Multiple consensus logic N/A 0.207 0.103 0.899 0.424 0.244
Multiple consensus majority vote N/A 0.085 0.259 0.821 0.447 0.457
Multiple consensus machine learning N/A 0.261 0.078 0.914 0.478 0.242
RNA and DNA machine learning consensus N/A 0.392 0.125 0.929 0.392 0.125

Specificity
Single consensus 0.908 0.962 0.942 0.552 0.888 0.854
Multiple consensus logic 0.957 0.951 0.974 0.438 0.919 0.933
Multiple consensus majority vote 0.922 0.976 0.895 0.590 0.916 0.821
Multiple consensus machine learning 0.955 0.956 0.986 0.451 0.922 0.945
RNA and DNA machine learning consensus 1.000 0.941 0.981 0.409 0.941 0.981

MCC
Single consensus N/A 0.074 0.072 0.277 0.256 0.114
Multiple consensus logic N/A 0.159 0.076 0.281 0.267 0.113
Multiple consensus majority vote N/A 0.086 0.081 0.280 0.277 0.116
Multiple consensus machine learning N/A 0.220 0.084 0.318 0.311 0.128
RNA and DNA machine learning consensus N/A 0.290 0.118 0.315 0.290 0.118

Ratio
Single consensus N/A N/A N/A N/A 0.289 0.498
Multiple consensus logic N/A N/A N/A N/A 0.232 0.279
Multiple consensus majority vote N/A N/A N/A N/A 0.232 0.551
Multiple consensus machine learning N/A N/A N/A N/A 0.267 0.240
RNA and DNA machine learning consensus N/A N/A N/A N/A 0.183 0.064

There are no DNA&RNA binding residues in this data set and thus we cannot compute sensitivity and MCC for this outcome. Values of Ratio cannot be computed for

the combined prediction of RNA and DNA binding. The ‘multiple consensus logic’ uses the two best-performing logic-based consensuses that we built for the predic-

tion of DNA-binding residues and RNA-binding residues, respectively; ‘multiple consensus majority vote’ combines the two best-performing majority-vote-based con-

sensuses for the prediction of DNA- and RNA-binding residues, respectively; ‘multiple consensus machine learning’ is the combination of the two machine learning

consensus for the prediction of DNA- and RNA-binding residues, respectively; and ‘DNA and RNA machine learning consensus’ combines predictions generated by all

considered predictors of DNA-binding and RNA-binding residues using logistic regression model.
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consensus and ML consensus. The single consensus combines
the best-performing (i.e. providing the highest MCC) on the
training data set predictor of DNA-binding residues, BindNþ
(DNA version), with the best-performing predictor of RNA-

binding residues, BindNþ (RNA version). The multiple consen-
sus approach combines multiple predictors of DNA-binding
residues and RNA-binding residues. We consider three designs
of the multiple consensuses: multiple consensus logic, multiple

Figure 2. Comparison between the DNA and RNA ML consensus that targets combined prediction of DNA- and RNA-binding residues and the considered predictors of

DNA- or RNA-binding residues. The predictors of DNA- or RNA-binding residues include the two ML-based DNA- or RNA- binding consensuses. The evaluation con-

siders prediction of DNA-binding residues (left side of the figure) and prediction of RNA-binding residues (right side of the figure) on the COMB_T test data set with the

binding residues annotated using cut-off at 3.5 Å.

Figure 3. Sensitivity in the function of the minimal size of binding regions for the ML-based consensus predictors, the best individual predictors and the existing con-

sensus predictor for the prediction of DNA- or RNA-binding residues. We consider only the binding residues that are in regions of the size larger or equal to the value

shown on the x-axis; the other binding residues were removed from the assessment. The linear fit into the sensitivity values is shown using lines. The black and gray

lines are for the DNA-binding and RNA-binding predictors, respectively. The line type denotes a given predictor.
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consensus majority vote and multiple consensus ML. Moreover,
the DNA and RNA ML consensus combines predictions gener-
ated by all considered predictors of DNA-binding and RNA-bind-
ing residues using the logistic regression model (see ‘Design
and assessment of consensus predictors’ section for details).
We assess these methods on the COMB_T test data set that in-
cludes annotations that were transferred from similar proteins
and where binding residues were defined with the cutoff at
3.5 Å (Table 6). This data set shares low, <30%, sequence simi-
larity with the training data set that was used to develop con-
sensuses. There are no DNA&RNA-binding residues in this data
set, so we cannot compute sensitivity and MCC for this
outcome.

All multiple consensuses outperform the single consensus
in MCC for the combined prediction of DNA and RNA binding
(Table 6). Moreover, the single consensus substantially overpre-
dicts the RNA&DNA outcome with the corresponding specificity
at 0.908. The multiple consensuses reduce this overprediction
obtaining specificities between 0.922 and 0.957. The result of
this overprediction for both single and multiple consensuses is
the relatively low sensitivity for the prediction of DNA binding
and the prediction of RNA binding, i.e. many of the RNA or DNA
binding residues are predicted to bind both RNA and DNA.
However, the RNA and DNA ML consensus, which is inherently
designed to predict the four outcomes, correctly does not pre-
dict the DNA&RNA binding residues (specificity ¼ 1) and secures
high values of specificity and MCC. Its MCC is higher by 7 and
3.4% for the prediction of DNA-binding residues and RNA-
binding residues, respectively, when compared with the best
multiple consensus. This result demonstrates that the RNA and
DNA ML consensus provides improved predictive performance
when compared with the other consensuses.

We applied the considered consensuses to predict DNA-
binding residues and RNA-binding residues separately (the two
right-most columns in Table 6). The predictions of the consen-
suses that consider four outcomes are converted into prediction
of DNA-binding residues as follows: ‘DNA&RNA-binding’ and
‘DNA-binding’ are assigned as ‘DNA-binding’; ‘RNA-binding’
and ‘non-binding’ are assigned as ‘non-binding’. For the predic-
tion of RNA-binding residues, the conversion assumes
‘RNA-binding’ for the ‘DNA&RNA-binding’ and ‘RNA-binding’
predictions, and ‘non-binding’ for the ‘DNA-binding’ and ‘non-
binding’ predictions. Table 6 shows that the two ML consen-
suses outperform the other types of consensuses having higher
values of MCC and specificity. The main observation is that the
RNA and DNA ML consensus offers substantially reduced values
of Ratio, at 0.183 and 0.064 for the DNA and for the RNA binding,
respectively, compared with the second best Ratios of 0.232 and
0.240. This means that this novel type of consensus generates
predictions with lower rate of mispredictions between DNA-
and RNA-binding residues.

We compare results generated by the two ML consensuses
for the prediction of DNA-binding residues with the considered
predictors of DNA-binding, see Figure 2. The DNA and RNA ML
consensus obtains MCC of 0.290, which is lower than MCC of
0.311 of the multiple consensus ML for the prediction of DNA-
binding residues (black bars in Figure 2). However, the former
consensus has by far the lowest values of Ratio at only 0.183
(gray bars in Figure 2), except for the ProteDNA that predicts a
small subset of DNA-binding residues and has the lowest MCC.
Similar conclusions are true when considering prediction of the
RNA-binding residues (Figure 2). The DNA and RNA ML consen-
sus secures MCC of 0.118, which is lower compared with the
best MCC of 0.128 obtained by the multiple consensus ML. It

also boasts the lowest value of Ratio at 0.064 compared with the
second lowest value at 0.240. Most importantly, the novel DNA
and RNA ML consensus improves over all individual predictors
having higher MCC while providing much lower Ratio for pre-
diction of the RNA and the DNA binding residues (Figure 2).
These results suggest that the development of consensuses for
the combined prediction of DNA- and RNA-binding residues
could offer a viable solution to generate high-quality prediction
of DNA- or RNA-binding residues where the cross-predictions
are substantially reduced.

Assessment of the predictive performance on binding
regions

We investigate the predictive quality of our consensus pre-
dictors and all considered individual predictors on the predic-
tions of DNA- or RNA-binding regions, defined as a stretch of
consecutive binding residues. Figure 3 analyzes relation be-
tween sensitivity (fraction of correct predictions among the na-
tive binding residues) and the minimal length of the binding
regions. We observe an increase in the sensitivity with the
length of the binding regions for the DNA and RNA ML consen-
sus and the multiple consensus ML for the prediction of DNA
binding residues and prediction of RNA binding residues (solid
lines in Figure 3). On the other hand, the current consensuses,
MetaDBSite and Meta2, are characterized by lower sensitivity
for the longer binding regions (dashed lines in Figure 3). The
best-performing individual predictors, DBS-PSSM for the DNA
binding and BindNþ for the RNA binding (Table 5) offer the
same levels of sensitivity irrespective of the length of the bind-
ing regions (dotted lines in Figure 3). Although DBS-PSSM has
the highest sensitivity, this method also has lowest specificity
and MCC that is lower than MCCs of the considered consen-
suses (Table 5), which means that it overpredicts binding resi-
dues. All together, we conclude that the ML consensuses work
especially well for the longer binding regions.

Assessment of the predictive performance on proteins
that do not interact with DNA and RNA

We test the considered predictors on 50 human proteins that do
not interact with either DNA or RNA molecules to estimate their
specificity, which ideally should equal 1. Except for ProteDNA,
which only predicts a small subset of DNA-binding residues, the
considered individual DNA-binding predictors have specificity
between 0.78 and 0.87. The multiple consensus ML for the pre-
diction of DNA-binding residues and the MetaDBSite consensus
have higher specificities at 0.92 and 0.93, respectively. The high-
est specificity at 0.95 is achieved by the DNA and RNA ML con-
sensus. Similar results are observed for the RNA binding
predictors. The three individual RNA-binding predictors and the
Meta2 predictor obtain specificity ranging between 0.78 and
0.86. The multiple consensus ML has specificity of 0.97 while
the RNA- and DNA-ML consensus secures the highest specificity
of 0.99. Overall, the ML consensuses, and in particular the novel
design that combines prediction of RNA and DNA binding resi-
dues, offer reduced levels of FP predictions.

Case studies

We illustrate predictions of the most successful in our tests ML
consensuses and all considered individual predictors of DNA-
and RNA-binding residues on two proteins selected from the
test data set. The overall predictive performance measured with
MCC for the consensuses on these two proteins is similar to the
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value on the whole test data set. Figure 4A compares predic-
tions for the DNA-binding aprataxin ortholog Hnt3 (PDB ID:
3SPD). We observe that virtually all binding regions (except for
the residues near position 160) were captured by most pre-
dictors. Both ML consensuses for the prediction of DNA-binding
residues filter FP predictions (nonbinding residues predicted as
binding) at both termini (shown using boxes in Figure 4A).
These boxed regions are relatively far away from the native
binding regions. Moreover, they annotate a few binding residues
that were predicted by a subset of individual predictors (shown
in bold and underline in Figure 4A) which are either correct pre-
dictions or immediately adjacent to the native binding residues.
The RNA and DNA ML consensus reduces some of the FP gener-
ated by the multiple consensus ML, particularly near position
135. The best performing in our tests individual method that
predicts RNA-binding residues (last line in Figure 4A) generate
FP that generally line up with the location of the DNA binding
residues. However, the ML consensuses, in particular the novel
DNA and RNA ML consensus, substantially reduces these mis-
predictions. Similar observations are true for the predictions for
the RNA-binding polyadenylate-binding protein 1 (PDB ID: 4F02)
shown in Figure 4B. The two ML consensuses filter out FP gener-
ated by the individual predictors of RNA binding residues in the
boxed regions that are relatively far from the native binding re-
gions. They also correctly locate binding residue at position 36
that was missed by one of the individual RNA-binding pre-
dictors. Moreover, the best performing in our tests predictor of
the DNA binding residues incorrectly predicts relatively many
DNA binding residues (last line in Figure 4B) which again align
with the native RNA binding residues. The ML approaches for
the prediction of DNA binding residues reduce the number of
these mispredictions by a large factor.

Overall, the case studies demonstrate that the ML consen-
suses successfully reduce some of the FP generated by the indi-
vidual predictors and correctly predict binding residues even if
some of the individual predictors do not. The novel DNA and
RNA ML consensus further reduces some of the FP generated by
the multiple consensus ML.

Conclusions

High-throughput identification of nucleic acid-protein inter-
actions is critical to improve our understanding of macromol-
ecular functions and biophysical mechanisms of gene
regulation. We performed a comprehensive review of 30 se-
quence-based predictors of DNA- or RNA-binding residues.
Although these methods vary in their design, they commonly
use evolutionary information and sliding windows to encode in-
puts and SVM as the predictive model. This suggests that the
binding residues tend to appear in conserved sequence seg-
ments. The input features used to predict DNA-binding residues
overlap with the inputs used by the predictors of RNA-binding
residues, which is not surprising given the chemical similarity
between DNA and RNA. Our empirical assessment of DNA-
binding (RNA-binding) predictors on the DNA-binding (RNA-
binding) proteins that have working web servers reveals that
they are characterized by acceptable levels of predictive per-
formance. They have AUCs at about 0.7–0.8 and MCCs between
0.1 and 0.3 when measured on a hard data set of proteins
characterized by low sequence similarity to the proteins used to
design these methods. However, when tested on the test data
set that include both RNA- and DNA-binding proteins, we found
that these predictors are guilty of substantial amounts of cross-
prediction, i.e. they predict RNA-binding residues as

DNA-binding and vice versa. In other words, they are unable to
properly separate DNA from RNA binding residues. This is likely
the results of use of similar input features and the fact that
these methods were trained based on data sets that use either
only DNA-binding or only RNA-binding proteins. A unique char-
acteristic of our empirical assessment is the fact that we used
multiple similar proteins to annotate binding residues, thus
providing a more complete annotation. We found that these
binding residues transferred from similar proteins, when
compared with previous assessments that used only a single
structure, are more challenging to predict by the current meth-
ods. We speculate that this is because these ‘additional’ binding
residues are mislabeled in the training data set of these
methods.

Motivated by the prior success in building consensus-based
predictors [13, 15], we designed and empirically tested a simple
logic-based consensuses based on combinations of logical OR
and logical AND operators, a majority vote consensus, and a
more sophisticated ML consensus. We show that the logic and
majority-vote-based consensuses do not offer improvements
when tested on the hard test data set. However, the ML consen-
suses provide improved predictive performance when
compared with the individual methods for the prediction of
DNA-binding residues and for the prediction of RNA-binding
residues on the same hard test set. We also performed first-
of-its-kind study concerning combined prediction of DNA- and
RNA-binding residues. We designed three types of consensuses
to address this prediction, including a ML-based approach. The
ML consensus offers strong predictive performance in the com-
bined prediction and, most importantly, also for the prediction
of DNA-binding or RNA-binding residues individually. We em-
pirically show that this consensus provides higher values of
MCC compared with the best-performing individual predictors
while it also substantially reduces the cross-prediction. We also
assessed how the consensuses and individual predictors per-
form on longer binding regions and show that the ML consen-
suses perform better for longer binding regions. When tested on
the nonbinding proteins, once again the ML consensuses secure
the lowest levels of FP and the highest specificity. Finally, we
illustrate these empirical results using two case studies.
They demonstrate that the ML consensuses filter out false pre-
dictions of the binding residues generated by individual pre-
dictors that are located relatively far from the native binding
residues.

Finally, our results prompt several recommendations. First,
we found that many of the original web servers are either no
longer maintained or only transiently online. Besides this being
inconvenient for the end users, it also negatively affects con-
sensuses that rely on the web server calculations. We recom-
mend that new consensuses should be built using stand-alone,
local implementation of the input predictors and that the stand-
ards in supporting web servers should be improved. Although
our consensuses rely on the web servers, as some of the input
predictors do not offer stand-alone versions, we use methods
that were available over extended period of time; we performed
predictions with these methods between December 2013 and
early 2015. Second, new generations of DNA-binding (RNA-
binding) specific predictors are needed. Such methods would
not only separate the DNA-binding (RNA-binding) residues from
the nonbinding residues but also from the RNA-binding (DNA-
binding) residues. This could be accomplished via a number of
avenues including (1) building training data sets that combine
both RNA- and DNA-binding proteins; (2) design of new inputs
that are predictive specifically for either DNA- or RNA-binding
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residues; (3) by considering building methods that address com-
bined prediction of DNA- and RNA-binding residues; and (4) by
combining the different types of inputs and features used by
the current predictors of DNA-binding and RNA-binding resi-
dues (Table 2). The latter would lead to faster runtime compared
with a consensus that combines outputs of these predictors.
Third, we advocate that the currently predominant annotation
of the binding residues should be improved by transfer from
similar proteins, instead of using individual complexes. This
would improve completeness of the annotations and would
lead to the development of more accurate predictors.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.

Key Points

• Our detailed analysis of a comprehensive set of 30 se-
quence-based predictors of DNA- or RNA-binding resi-
dues covers their design, outputs and availability.

• Modern predictors that offer web servers are charac-
terized by good overall predictive performance but
they cannot discriminate between DNA- and RNA-
binding residues.

• Consensus-based methods based on ML provide im-
proved predictive performance when compared with
individual prediction methods.

• Annotation of DNA- or RNA-binding residues should
combine information from the corresponding com-
plexes that involve the same or similar proteins.

• New prediction methods that better discriminate be-
tween DNA- and RNA-binding residues should be built
by using training data sets that combine both RNA-
and DNA-binding proteins, designing new inputs that
specifically target either DNA- or RNA-binding resi-
dues, and by pursuing combined prediction of DNA-
and RNA-binding residues.
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