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Abstract

Human leukocyte antigen class I (HLA-I) molecules bind intracellular peptides produced by protein hydrolysis and present them to the
T cells for immune recognition and response. Prediction of peptides that bind HLA-I molecules is very important in immunotherapy. A
growing number of computational predictors have been developed in recent years. We survey a comprehensive collection of 27 tools
focusing on their input and output data characteristics, key aspects of the underlying predictive models and their availability. Moreover,
we evaluate predictive performance for eight representative predictors. We consider a wide spectrum of relevant aspects including
allele-specific analysis, influence of negative to positive data ratios and runtime. We also curate high-quality benchmark datasets
based on analysis of the consistency of the data labels. Results reveal that each considered method provides accurate results, which
can be explained by our analysis that finds that their predictive models capture meaningful binding motifs. Although some methods
are overall more accurate than others, we find that none of them is universally superior. We provide a comprehensive comparison
of the convenience as well as the accuracy of the methods under specific prediction scenarios, such as for specific alleles, metrics
of predictive performance and constraints on runtime. Our systematic and broad analysis provides informative clues to the users to
identify the most suitable tools for a given prediction scenario and for the developers to design future methods.
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INTRODUCTION
Major histocompatibility complex (MHC) is an important gene
group that drives the vertebrate immune system. These genes
facilitate the detection and recognition of foreign threats,
resulting in a series of immune responses. In recent years
immunotherapy has become a promising approach to cancer
treatment, especially since its adverse effects are far lower than
those of chemotherapy or radiotherapy [1, 2]. This approach
exploits the fact that cancer cells produce unique neoepitopes
that are recognized by MHC [3, 4]. This is one of many factors
that motivate research toward improving our understanding of
mechanisms of peptide presentation in immune processes.

MHC molecules are divided into three subtypes: class I, class
II and class III. We focus on the class I MHC molecules (MHC-I),
which present endogenous peptides to CD8 + T cells [5]. MHC-I
are heterodimers consisting of a heavy α chain and a light β chain
where the interaction with the peptide occurs in the α chain. The
human MHC is called the human leukocyte antigen (HLA) and
research shows that HLA-I molecules primarily bind peptides that
are 8–12 amino acids in length [6].

Given the high promiscuity and importance of these interac-
tions to the immune response, vaccinology and immunotherapy
research benefits from predictions of peptide-HLA-I binding [7, 8].

The efforts that produce these predictive tools benefit from the
availability of experimentally verified peptide ligand databases,
such as the Immune Epitope Database (IEDB) [9]. The recent rapid
increase in the amount of these data, in part due to the use the
mass spectrometry-based methods [10, 11], resulted in the devel-
opment of many new computational predictors. These methods
primarily target the prediction of the HLA-I peptides since pep-
tides interacting with HLA-II are longer and more complex, mak-
ing their prediction more challenging [12]. In particular, recent
years have witnessed the application of modern machine learning
methods, including deep neural networks, to develop even more
accurate predictors of HLA-I peptides [13–16]. At a coarse-grained
level, these tools are categorized into two groups: structure-based
methods that rely on the protein and peptide structures [17–
19] and sequence-based methods that make predictions solely
from the peptide sequence [13–16, 20, 21]. We focus on the latter
type of method since the structure-based approaches are more
computationally demanding and limited to the peptides/proteins
with known structures.

Several surveys of the sequence-based predictors were pub-
lished in recent years [22–26]. However, they miss the most recent
tools, some provide a rather superficial description of the predic-
tors, and they present an empirical comparative assessment that
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is limited in scope. For instance, the most recent and broadest
to-date survey covers 15 predictors and provides a relatively
rudimentary evaluation of predictive performance [22]. We cover
a more comprehensive collection of 27 predictors, which includes
a new and significantly improved version of the popular NetMHC-
pan, NetMHCpan-4.1 [27] and several other recently released
methods, such as MHCflurry 2.0 [28], MHCSeqNet [29] and ACME
[30]. We discuss their inputs, predictive models, outputs and avail-
ability to comprehensively cover their key characteristics, limi-
tations and advantages. Moreover, we present arguably the most
well-rounded empirical assessment for a collection of eight rep-
resentative predictors. This assessment (i) analyses consistency
between two types of ligand labels: qualitative and quantitative;
(ii) reports a broad set of metrics of predictive performance (over-
all performance/performance limited by allele type and peptide
length): the area under the receiver operating characteristic curve
(AUC), the area under the curve of precision-recall (PR) curve
(AUPR) and Spearman’s rank correlation coefficient (SRCC); (iii)
provides a multifaceted analysis of key aspects that influence the
comparison of performance under different positive and negative
sample ratios; (iv) analyzes the ability of different predictors on
the capability of binding motifs and (v) evaluates the sensitivity
of data volume and running speed. The unparallel breadth and
depth of this study provide useful insights for both the users of
the current methods and the developers of the future predictors.

SURVEY OF CURRENT PREDICTORS
We cover a comprehensive collection of 27 sequence-based
predictors of the HLA-I peptides (Table S1). These methods rely
on models derived from training data, primarily using machine
learning algorithms for that purpose. We discuss three key aspects
of the design and implementation of these models including the
collection and annotation of the training datasets, approaches
to encode the raw inputs into feature-based representations
that can be processed by the machine learning models, and
algorithms that are used to produce these models (Table S1). We
also summarize several other important factors related to their
availability and formulation and restrictions on the inputs that
they use and outputs that they produce.

Training datasets
The majority of the predictors depend on the training data
extracted from IEDB [9, 31]. IEDB is the largest public resource
for HLA ligands and T cell epitopes and primarily relies on the
epitope data harvested from the PubMed database.

One of the consequential decisions that designers of these pre-
dictors make is the selection of the predicted values. At present,
two common choices are the quantitative affinity score and the
qualitative labels; see the ‘Outputs’ column in Table S1. The quan-
titative score denotes the interaction affinity between epitopes
and alleles. The binding affinity is real-valued where smaller
values imply a greater likelihood of binding. These values can
be binarized using a threshold value, which means that samples
with affinity < threshold are regarded as ‘binding’. Interestingly,
threshold values could be different for different alleles, although
500 nm is also used as the universal threshold across alleles [13,
32]. The use of the binding affinity value could be problematic
since it measures only the peptide–MHC binding while neglecting
other biological features of the underlying antigen presentation
process. An alternative is the qualitative mass spectrometry (MS)
derived eluted ligand (EL) based label. This label covers the bind-
ing event and prior steps in the processes, making it arguably

more reliable than the binding affinity label. The MS EL label has
five values in IEDB: positive, positive-high, positive-intermediate,
positive-low and negative. Some methods differ in how they pro-
cess the positive-intermediate and positive-low labels and in
some instances, these labels are even deleted [29]. Although the
majority of the predictors consider one of the label types, recent
literature [28, 33] reveals that some of the more recent methods
cover both types of predictions.

Another important aspect of the training datasets is the rate
of binding (positive) and nonbinding (negative) samples, which
is often heavily imbalanced. We study the rate based on the 11
907 epitopes that we extracted from IEDB. We find 28 alleles
for which the total number of positive and negative samples
is below 50, which renders the generation of reliable predictive
models virtually impossible. Among the remaining alleles, we
find extremely imbalanced data for 28 alleles. The number of
five where the number of positive samples is over five times
higher than the number of negative samples and 23 where the
number of negatives is over five times higher than positives.
The remaining 51 alleles include a more balanced distribution of
binding and nonbinding samples where the difference is less than
five folds. Given these extreme differences in the rate of binding
to nonbinding samples, some studies use randomly generated
peptides to maintain a consistent negative to positive rate [34,
35]. Typically, these peptides are generated from the nonbinding
regions of the proteins that have the binding peptides [22, 36, 37].

Finally, as the peptides that are presented to HLA type I
molecule are typically in the range of 8 to 11 residues long [33],
the current tools limit their predictions to the peptides in this
length range [22]; see the ‘Inputs’ column in Table S1.

Encoding of predictive inputs
One of the main differences between predictors is how they
encode their predictive inputs (Table S1). The underlying chal-
lenge is to convert the raw inputs that have variable lengths (i.e.
sequences of the epitope and HLA-I allele) into fixed-size feature
vectors. This is necessary since virtually all machine learning
algorithms require fixed-size inputs. The HLA-I allele sequences
are typically collected from the immuno polymorphism database
[38]. Although binding of the allele sequence with the epitope
occurs in a specific site on the allele, this information is typically
unavailable. A common way to circumvent this issue is to encode
features based on key sites selected based on prior works that
include (i) positions {7, 9, 24, 45, 59, 62, 63, 66, 67, 69, 70, 73,
74, 76, 77, 80, 81, 84, 95, 97, 99, 114, 116, 118, 143, 147, 150, 152,
156, 158, 159, 163, 167, 171} [39]; (ii) positions {7, 9, 13, 24, 31,
45, 59, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 80, 81, 84, 95,
97, 99, 110, 114, 116, 118, 138, 143, 147, 150, 152, 156, 158, 159,
163, 167, 171} [40] and (iii) specific regions on two alpha helices
of allele, calculated by MUSCLE [41, 42]. Although most of the
methods generate input features from the sequences of peptides
and alleles, some add other relevant biological information [40].
One drawback of the latter tools is that they require these inputs
to make predictions, which limits their applications to scenarios
where this information is available.

Two common ways to derive features from sequences are
to use position-specific encoding and sequence context-based
encoding; see the ‘Peptide encoding’ column in Table S1. The
former method uses fixed-size vectors (typically 20-dimensional)
to represent amino acids at each position in the input sequence.
There are several widely used ways to produce this encoding: one-
hot, BLOSUM50, BLOSUM62 and position-specific scoring matrix
(PSSM). The one-hot approach applies a unit binary vector, e.g.
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[1, 0, 0, . . . , 0] for Alanine, [0, 1, 0, . . . , 0] for Arginine, where the
position of 1 in this vector denotes the amino acid type. The length
of this vector equals the number of the considered amino acid
types, which could be 20 or more if special types, such as X, are
covered. BLOSUMn is a matrix in which every position describes
the similarity between a pair of residues, where parameter n is the
similarity threshold. The PSSM is calculated from multi-sequence
alignments against a large library of sequences, typically gener-
ated using PSI-BLAST [43]. Elements of this matrix denote the fre-
quency of each amino acid type at a given query sequence position
in the alignment and can be used to reflect evolutionary conser-
vation. The other common approach is sequence context-based
encoding, often called embedding [44]. This approach originated
in the natural language processing area. The embedding model
captures relationships between a residue at a certain position in
the sequence and its surrounding residues in the same sequence.

Predictive models
The predictive models can be categorized in two ways, based on
the granularity of the models (allele-specific versus pan-specific)
and based on the type of approach/algorithm used to derive the
model; see the ‘Algorithm’ column in Table S1.

Table S1 shows that seven current methods are allele-specific
while 20 are pan-specific. As the name suggests, the allele-specific
approach is a collection of models that are specialized to pre-
dict specific alleles [13, 45, 46]. Given the uneven distribution of
the per-allele data (see Training datasets), these methods often
cluster alleles together and train models for an allele with the
largest amount of binding peptide data in each cluster. Next,
they transfer these models to other alleles in this cluster based
on the transfer learning concept [13, 47]. The transfer learning
takes a pre-computed model (trained on the most common allele
in a cluster) and uses it as a starting point to specialize it to
another allele from that cluster using the limited amount of data
for that allele. The allele-specific models can potentially provide
strong predictive performance, depending on the amount of per-
allele training data and the quality of the clustering of alleles.
They perform particularly well for alleles that have a large and
representative set of training peptides. However, results for small
sample size alleles from clusters of alleles that do not share suffi-
cient mutual similarity inevitably result in using a wrong starting
point to perform the transfer learning. This will ultimately harm
the predictive performance of the resulting models for these small
sample-size alleles. Moreover, this approach may not be able to
establish models for all alleles, particularly for those which are
poorly represented (or in extreme cases unseen) in the training
dataset. On the other hand, the pan-specific methods utilize a
single predictive model that is derived from the binding peptides
across different alleles [14, 16, 48]. They provide predictions for all
alleles that have sequence information and learn the relationship
between data features inside the predictive models without rely-
ing on clustering. Neither of the two approaches was established
as universally more accurate.

Some of the earlier predictors rely on rather simple proba-
bilistic models (scoring functions), which are based on position
specificity [45, 49]. They typically produce a prediction score
for a given peptide by adding or averaging scores computed
for the individual amino acids at each considered position. A
more recent trend is to derive predictive models using machine
learning algorithms. In the latter case, the model is learned
from training data by a given machine learning algorithm by
optimizing the fit of the model-produced outputs to the known
labels. Table S1 reveals that the dominant type of machine
learning algorithm used is the neural network. A large variety of

neural networks were utilized, from classical feed-forward net-
works [47, 50] to modern deep convolutional networks [15, 16, 48].
For instance, the multiple versions of the widely used NetMHCpan
use a rather simple shallow feed-forward neural network with
one hidden layer [27, 51–53]. However, other recent tools, such
as Seq2Neo [54], MHCnuggets [13] and ACME [30] rely on more
sophisticated deep convolutional topologies. Another interesting
approach to designing predictive models is consensus predictors.
They combine results produced by multiple input predictors of
the HLA-I peptides to provide improved predictive performance
when compared with the input methods. The underlying principle
is that the input predictors produce complementary results,
where this complementarity can be exploited to fix some of
the mistakes that they make individually. An early example is
NetMHCcons [55], which combines predictions generated by three
predictors: NetMHC 3.4 [56], NetMHCpan 2.8 [51] and Pickpocket
1.1 [57].

Availability, inputs and outputs
Important factors that may contribute to a higher user uptake
of these predictors are the public availability of the underlying
predictive models, formulation and potential restrictions on the
inputs and the format and scope of the outputs.

Although virtually all tools are available as standalone
software, only some can be used as webservers; see the ‘Software’
and ‘Webserver’ columns in Table S1. Examples of the webserver-
available methods include PickPocket, netMHCstabpan and
the most recent version of NetMHCpan. Webservers allow the
end users to run the predictions on the server side (using the
developer’s hardware) and free them from installation and
programming. Potential limitations of the web servers include
the inability to run batch jobs (i.e. process multiple predictions in
a single run) and limited throughput. The standalone software,
which has to be installed and run on the user’s hardware, is
arguably more suitable for computer-savvy users and those
who would like to incorporate these methods into broader
bioinformatics pipelines. Some software does not provide a
user interface, forcing the users to familiarize themselves with
command-line coding. This difficulty is often compounded by the
requirements to possess specific hardware and operating systems
to install and run the software.

The other significant aspect is the restrictions on the inputs
and the format and scope of the outputs (Table S1) [58–61]. Most
of the predictors accept the allele name-peptide pairs as inputs,
whereas some also accept the allele name-protein sequence pairs.
The pan-specific tools may take the allele sequence-peptide pairs,
without specifically being required to identify the allele. A couple
of notable observations include MHCflurry, which accepts inputs
solely from the terminal (not in a file), and MixMHCpred that
can be used to predict input 8- to 14-mer peptides. The types of
outputs are determined by the labels used to derive the underlying
predictive model (see Training datasets).

COMPARATIVE ASSESSMENT
We perform an empirical comparative assessment for a care-
fully selected set of eight representative predictors. We cover
two popular/highly-cited older tools: PickPocket [57] and netMHC-
stabpan [62]; MixMHCpred [63], which is the best-performing
predictor from the most recent comparative survey [22]; and
five latest tools: MHCflurry 2.0 [28], MATHLA [48], MHCSeqNet
[29], MHCflurry 2.0 [28] and NetMHCpan 4.1 [27]. The latter is a
significantly improved version of NetMHCpan-4.0, another tool
that ranked particularly well in a recent survey [22].
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Validation dataset
Before assessing the selected tools, we evaluate the consistency
between the binding affinity scores and the MS EL labels. Firstly,
we utilize commonly applied selection criteria to filter high-
quality data from IEDB (downloaded on 24 May 2022): (i) HLA-I
alleles that are of HLA-A, B and C subtypes; (ii) peptides with 8
to 14 amino acids in length; and (iii) peptides with both affinity
scores and MS labels. Next, the origin dataset extraction strategy
is applied for ligand: the single allele data (SA, where each peptide
is associated with a single MHC restriction) and the multi allele
data (MA, where each peptide has multiple options for MHC
restriction). As we explain in Training datasets, we mark peptides
with an affinity <500 nm as positive samples; the remaining
peptides are considered negative samples. The MS labels are
taken as the reference, and we compare the affinity classifications
against them, i.e. we use affinity labels to ‘predict’ MS labels.
The affinity-based annotations predict an AUC of about 0.94 for
MS labels across different selections of peptides. This analysis
highlights the need for careful curation of the labels to avoid
scenarios where models are trained and/or tested using low-
quality labels, which inevitably would lead to the generation of
substandard quality models.

We use the ‘SA + MA’ datasets to perform a comparative
assessment of the eight predictors. Moreover, we further curate
these data to minimize inconsistencies between the affinity-
based and the MS-based annotations of labels. In particular, we
solve conflicts between annotations of the same type by majority
vote, and we remove samples that have inconsistent annotations
between the affinity and the MS labels. The final curated origin
dataset (origin dataset) consists of 228 711 entries with 225 523
positive entries. To simulate the real scene (negative samples are
more than positive samples), we filled in the original dataset from
the random peptide library with a ratio of 1:5 (‘f5’ dataset) as the
test dataset below. Here are the processing steps of the f5 dataset:
(i) first, randomly select proteins from the proteome and cut them
according to different lengths to form a random peptide library
[64] with different lengths (8–14); (ii) grouping peptides of the
same allele and the same length; (iii) in each peptide group, if the
negative samples are more than five times the number of positive
samples, randomly select negative samples that are five times the
number of positive samples, and form the ‘f5’ dataset of this group
together with positive samples. If the negative sample is less than
five times the positive sample, randomly select peptide segments
from the random peptide library of corresponding length, so that
the number of negative samples is five times of positive sample,
forming the ‘f5’ dataset of this group; and (iv), finally, different
groups of ‘f5’ datasets are combined to form the ‘f5’ dataset in
this review.

Overall performance on different datasets
First of all, we test the performance of these eight tools on the ‘f5’
dataset. The classification performance of each tool is measured
using AUC and AUPR. What’s more, we use SRCC to evaluate the
ranking consistency of predicted binding possibilities with their
true affinity labels. The prediction results are shown in Figure 1.
The AUC, AUPR and SRCC of MHCflurry are all the highest,
followed by NetMHCpan and MATHLA. Except for MHCSeqNet,
other tools have shown good prediction results.

Performance limited by allele type and peptide
length
To observe the effect of the allelic subtype restriction conditions
on the results, we extract 151 subsets based on allele subtypes.

Figure S1 shows the number of subsets that perform best for each
tool. As can be seen from Figure S1, MHCflurry is still the best-
performing tool, followed by NetMHCpan and MATHLA. NetMHC-
stabpan also performs well in SRCC, with the best performance
on 21 sub-datasets. Figure 2 and Figure S2 compares the distribu-
tion of the average predicted results for different allele loci. The
prediction results at locus C are not as good as those of A and B,
which indicates that the current tools are relatively conservative
for the prediction of C loci. Kolmogorov Smirnov test [65] is used
to test whether the mean prediction outputs of different loci are
in the same distribution. As shown in Figure 2, the P-values show
that the average prediction results of loci A and loci B belong to the
same distribution with a confidence of more than 16%. Compared
with loci A, the confidence of the same distribution between loci
B and loci C is higher. This phenomenon may indicate that loci A
and loci B are similar in structure, whereas loci B and loci C are
also similar to each other, but there is a large structural difference
between loci A and loci C. At present, the best prediction effect is
still on loci A.

Besides, we divide and evaluate the datasets based on the
length of peptides. It is found that the number of data items with
a peptide length of 9 accounts for 53.0%. This indicates that HLA-
I prefers to present peptides of length 9, followed by length 10.
Figure 3 is the density maps of the average prediction results of
eight tools on the ‘f5’ dataset. From Figure 3 and Figure S3, we
can see that except for the subset with a peptide length of 8, the
prediction accuracy decreases with the increase of peptide length.
On the subset with peptide length of 8, the prediction accuracy is
much lower than that of the peptide length of 9. This suggests
that the binding properties of the 8-mer peptide are specific. This
finding is consistent with the previous studies [66, 67], which
implicates that the binding of the 8-mer peptide is related to the
structural changes of some HLA alleles.

Finally, we divide the datasets into subgroups based on the
restrictions of allele subtypes and peptide lengths. The experi-
mental results are similar to that with the allelic subtype restric-
tion, as shown in Figure S4. It should be noted that the binding
peptides in all subsets with more than 100 samples are 9 or 10
amino acids in length, which also indicates the preference of HLA-
I for presenting peptides with 9 and 10 amino acids.

Comparison of performance under different
positive and negative sample ratios
In reality, the number of bound and unbound peptides is very
heterogeneous during HLA-I peptide presentation. To evaluate the
performance under different proportions of positive and negative
samples, we populate the test set with different proportions of
negative peptides. First, we randomly intercept one million pep-
tides from UniProt [68] database for each length as a random pep-
tide library. The random peptide library is then used to populate
the test sets, and the resulting data sets have positive and negative
sample ratios of 1:1, 1:5, 1:10 and 1:50, respectively. The results
of these test sets are shown in Figure S5. From Figure S5, we can
see that with the gradual increase of negative samples, the perfor-
mance of these eight tools has changed, but the overall trend is
similar. With the increase in the percentage of negative samples,
MHCflurry and MATHLA perform better on AUC and SRCC, and
MHCflurry and NetMHCpan perform better on AUPR, these tools
are better suited to work in more demanding situations.

Capability of binding motifs
The binding motif of allele subtypes can reflect the preference for
binding peptides at different positions. We use the ‘ggseqlogo’ R
package [69] to draw real binding patterns for 68 subsets with

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad150/7126340 by Virginia C

om
m

onw
ealth U

niversity Libraries user on 21 April 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad150#supplementary-data


HLA class I peptide-binding prediction | 5

Figure 1. The overall performance of eight tools in different metrics on the ‘f5’ dataset.

Figure 2. The average distribution of predicted results for alleles with different locus. The number between different distributions indicates the
confidence that two distributions belong to the same distribution.

Figure 3. Distribution of predicted results for different peptide lengths.

more than 100 positive samples, as shown in Figure S6. For
instance, HLA-A∗01:01 prefers the 9-mer peptides which have
Thr/Ser at the second position, Asp at the third position from the N
terminal and Tyr at the first position from the C terminal, whereas
HLA-A∗01:01 with binding peptides of length 10 shows the similar
preference. Statistics show that almost all of the alleles show
a preference for N-terminal position 2 and C-terminal position
1. The alleles show similar positional binding preferences for
peptides of different lengths. Thus, the ability to capture motifs
is also considered to be an important measure of the quality of
a tool. Firstly, we extract more than 1000 positive samples from
68 subgroups, including seven groups, and draw their true motifs.
Secondly, each of these alleles is predicted to bind to a million
random peptides. Then we pick out the top 1000 peptides in each
tool according to the predicted scores for each allele and draw
their binding motifs with these peptides. As shown in Figure 4,
almost all the tools can capture allele preference, but they differ
slightly in detail.

To find the relationship between the similarity of allelic
sequences and their binding motifs, we re-cluster the 45 alleles
in dataset one according to full sequence, pseudo-sequence
1 and pseudo-sequence 2 (described in 2.2), as shown in
Figure S7. It can be seen that the full sequence-based allele
clustering can better reflect the similarity of their binding motifs,
whereas the other two sequence representation methods are less
effective.

Sensitivity of data volume
To evaluate the effect of data volume on the performance of each
tool, we divide the ‘f5’ dataset into different subsets based on
different alleles and different peptide lengths. The scatter plots
of the relationship between different data volumes and their
measured values are shown in Figure S8. The predictions of these
tools are very unstable at small data volumes, but they tend to
stabilize as the data volume increases. We believe that better
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Figure 4. Comparison of true binding motifs and predicted motifs by eight tools on HLA-A∗02:01 with peptides of length 9.

and more stable computational tools will be developed with the
gradual increase of experimental data in the future.

Comparison of running speed
We compare the running speeds of these tools for different pre-
dicted data volumes in the same running environment, as shown
in Figure 5. The running speed here only includes the process of
the model inputting data from files and outputting the results.
As the amount of input data increases, MHCFlurry’s running
time increases dramatically, reaching over 3000 s at 106 input
data. When the input data amount increases to 106, NetMH-
pan and MHCSeqNet have similar running times of 2392.16 and
2311.94 s, respectively. The other five tools are faster and they run
at comparable speeds. It is worth mentioning that although the
MATHLA tool has a fast prediction speed, its input data needs to
be converted to the npz format, which will take more waiting time
that cannot be ignored.

CONCLUSIONS
HLA-I molecules play an important role in human immunity. They
present partial cleavage products of endogenous proteins to the

Figure 5. Comparison of running time consumption of each tool with
the increase of input data. Each node is the average of five repeated
experiments.

T cells so that the immune system can recognize whether there
is a mutation and facilitate further immune response. Accurate
prediction of peptides that can be presented by HLA-I molecules
provides useful information, particularly in the context of the
recognition of neoepitopes. Recent years have seen an accel-
eration in the development of predictors, especially those that
rely on modern machine learning algorithms like deep neural
networks. The use of these cutting-edge algorithms aims to boost
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predictive performance. We review a comprehensive collection
of 27 predictors, focusing on recent tools that apply modern
algorithms. We compare them in terms of model inputs and
outputs, algorithms and data encoding used and their availability.
This analysis provides informative clues to the user to identify
tools that are available via the most suitable means (code versus
webserver), that rely on more sophisticated algorithms, and that
satisfy their requirements concerning the inputs and outputs.

We also empirically compare a carefully selected set of eight
predictors that covers popular older tools and several newest
methods. This comparison benefits from our analysis of the relia-
bility of data labels, which resulted in the curation of high-quality
benchmark datasets. Moreover, we apply a variety of metrics and
consider several different angles of assessment (alleles, negative
to positive data ratios, runtime, etc.) to provide a comprehen-
sive picture of various aspects of predictive quality. On the ‘f5’
dataset, the overall dataset, allele-specific datasets and peptide-
length specific datasets, MHCflurry is always the most accurate
tool for prediction. We test predictive performance under differ-
ent positive-to-negative sample ratios. The corresponding results
reveal that the performance of different tools changes in different
ways with varying ratios. With the increase in the percentage
of negative samples, MHCflurry and MATHLA perform better on
AUC and SRCC, and MHCflurry and NetMHCpan perform better
on AUPR. Furthermore, our analysis finds that each of the eight
predictors captures meaningful binding motifs, which explains
why they are capable of making accurate predictions. Finally, we
show that some methods are faster than others, with the older
PickPocket, netMHCstabpan, MHCnuggets and MixMHCpred being
the fastest.

Altogether, our empirical analysis demonstrates that although
MHCflurry can perform better on more alleles, there is no univer-
sally best predictor for all time. This systematic survey provides
invaluable insights that allow us to identify the most suitable
methods for a given prediction scenario. We also provide useful
guidance for the development of future methods. As the predictive
performance is sensitive to the amount of data, we anticipate that
future methods that will benefit from larger training datasets will
inevitably provide more accurate predictions.

Key Points

• We survey a comprehensive collection of 27 tools focus-
ing on their input and output data characteristics, key
aspects of the underlying predictive models and their
availability.

• We provide a comprehensive comparison of convenience
and accuracy of these methods under specific predic-
tion scenarios, such as for analysis of specific alleles
and length of peptides, influence of negative to positive
data ratios, metrics of predictive performance and con-
straints on runtime.

• We provide practical observations and discuss directions
for future developments in this research area.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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