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ABSTRACT 

Motivation: Many drugs interact with numerous proteins besides 

their intended therapeutic targets and a substantial portion of these 

interactions is yet to be elucidated. PDID (Protein-Drug Interaction 

Database) addresses incompleteness of these data by providing 

access to putative protein-drug interactions that cover the entire 

structural human proteome.  

Results: PDID covers 9652 structures from 3746 proteins and 

houses 16,800 putative interactions generated from close to 1.1 

million accurate, all-atom structure-based predictions for several 

dozens of popular drugs. The predictions were generated with three 

modern methods: ILbind, SMAP and eFindSite. They are accompa-

nied by propensity scores that quantify likelihood of interactions and 

coordinates of the putative location of the binding drugs in the corre-

sponding protein structures. PDID complements the current data-

bases that focus on the curated interactions and the BioDrugScreen 

database that relies on docking to find putative interactions. Moreo-

ver, we also include experimentally curated interactions which are 

linked to their sources: DrugBank, BindingDB, and PDB. Our data-

base can be used to facilitate studies related to polypharmacology of 

drugs including repurposing and explaining side-effects of drugs. 

Availability and Implementation: PDID database is freely available 

at http://biomine.ece.ualberta.ca/PDID/. 

Contact: lkurgan@vcu.edu 

1 INTRODUCTION  

Majority of the molecular targets of drugs are proteins 
(Overington, et al., 2006; Rask-Andersen, et al., 2014) and there 
are several databases of the already characterized protein-drug 
interactions. DrugBank (Law, et al., 2014; Wishart, et al., 2006) 
provides access to biochemical and pharmacological information 
about a large set of 7759 drugs, including 1600 FDA-approved 
compounds, and their known 4104 protein targets. Therapeutic 
Target Database (Zhu, et al., 2010; Zhu, et al., 2012) offers a com-
prehensive coverage of over 20,000 drugs, including close to 
15,000 experimental drugs, and their interactions with 2360 protein 
targets. This database also links targets and drugs to about 900 
diseases. Other databases expand beyond the drug molecules to 
cover small drug-like ligands. BindingDB (Liu, et al., 2007) gives 
experimentally measured binding affinities between about 7000 
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known protein targets and a large set of almost half a million of 
small ligands. ChEMBL (Bento, et al., 2014; Gaulton, et al., 2012) 
contains structures, physico-chemical properties and bioactivity 
(e.g. binding constants, pharmacology data) of drug-like small 
molecules. The current release of ChEMBL incorporates 1.7 mil-
lion distinct compounds and 13.5 million bioactivity data points 
which are mapped to over 10 thousand protein targets, where the 
corresponding binding sites are defined at varying levels of granu-
larity (protein, protein domain, or residue-level). SuperTarget 
(Hecker, et al., 2012) includes about 6200 protein targets from 
several dozens of species and close to 200,000 drug-like com-
pounds. It integrates drug-related information from BindingDB, 
DrugBank, and the SuperCyp database of cytochrome-drug inter-
actions (Preissner, et al., 2010), adverse drug effects from SIDER 
(Kuhn, et al., 2010), drug metabolism, and pathways and Gene 
Ontology (GO) terms for the target proteins. The PROMISCUOUS 
database (von Eichborn, et al., 2011) integrates data from Drug-
Bank, SuperTarget and SuperCyp and covers about 6500 protein 
targets and over 25 thousands drug-like compounds that are anno-
tated with side-effects. This database also provides facilities that 
can be used to predict novel targets based on structural similarity 
between drugs and between side-effect profiles of drugs. STITCH 
(Kuhn, et al., 2010; Kuhn, et al., 2014) combines information from 
many sources of experimentally and manually curated interactions 
between small ligands and proteins including ChEMBL, PDB, 
DrugBank, Therapeutic Target Database, text mining of articles 
from MEDLINE and PubMed, and several other resources. It cur-
rently houses data on 390,000 chemicals and 3.6 million proteins. 
The recently released IntSide database (Juan-Blanco, et al., 2015) 
links about 1000 drugs with their human protein targets collected 
from DrugBank and STITCH, and with close to 1200 side-effects 
and other annotations of associated diseases, pathways, and cellu-
lar functions. While most of these resources summarize the interac-
tions at the protein or residue level, scPDB (Desaphy, et al., 2015; 
Meslamani, et al., 2011) includes molecular-level (all-atom) in-
formation for native binding sites in proteins structures collected 
from Protein Data Bank (PDB) (Berman, et al., 2000) that are suit-
able for docking of drug-like ligands. It includes molecular-level 
details of about 9200 binding sites (all-atom annotation of binding 
sites and list of ligand-binding residues grouped by various types 
of bonds) and binding modes (all-atom position of ligand inside the 
site) in 3600 proteins, and summary of physico-chemical proper-
ties of approximately 5600 drug-like ligands. 
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However, many of the established drugs interact not only with 
the intended therapeutic target protein(s) but also with other pro-
tein targets (off-targets). Individual compounds were shown to on 
average target 6.3 proteins (Hu and Bajorath, 2013; Mestres, et al., 
2008). Given a high degree of incompleteness of this information 
(Mestres, et al., 2008; Peters, 2013), the number of off-targets is 
likely substantially higher. To compare, DrugBank includes 15199 
protein-drug interactions for 7759 drugs with the average number 
of targets per drug at 1.96, which further substantiates incomplete-
ness of the currently available data. Moreover, this polypharma-
cology can be both beneficial if a given drug can be repurposed for 
a different disease and harmful, leading to side-effects (Peters, 
2013). A couple of high-profile examples include imatinib that was 
repurposed for treatment of gastrointestinal stromal tumors (Hirota, 
et al., 1998) and sorafenib for the kidney and liver cancers 
(Wilhelm, et al., 2006). The incompleteness of the data combined 
with the importance of polypharmacology motivates research to-
wards elucidation of novel protein-drug interactions. Conventional 
(non-computational) methods for the identification of novel off-
targets rely on an in vitro counter-screen of a given drug against a 
“large” set of enzymes and receptors (Bass, et al., 2004). Recog-
nizing corresponding implications related to side-effects, pharma-
ceutical companies have implemented screening protocols for the 
drugs that they currently develop. For instance, Novartis screens 
against interactions with a panel of 24 targets associated with seri-
ous side-effects and high hit rates (Urban, 2012), Pfizer screens 
against between 15 and 30 targets (Wang and Greene, 2012), and 
Roche uses a panel of 48 targets (Bendels S, 2013).  
Compared to the experimental screens, computational methods 

that find novel drug targets are more cost- and time-effective, al-
low screening of a larger number of targets and provide insights 
into the molecular-level mechanisms of protein-drug interactions 
(MacDonald, et al., 2006). These in-silico methods are successful 
in the context of drug repositioning and identification of off-targets 
(Liu, et al., 2013). A couple of databases that focus on the putative 
protein-drug and druggable protein-protein interactions were re-
cently released. BioDrugScreen (Li, et al., 2010) stores results of 
docking of about 1600 small drug-like molecules against 1589 
known proteins targets in human, which were annotated based on 
DrugBank and HCPIN (Huang, et al., 2008) databases. Docking 
was ran for close to 2000 cavities on the surfaces of these proteins, 
for the total of about 3 million receptor–ligand complexes. Drug-
gable Protein–protein Interaction Assessment System (Dr. PIAS) 
(Sugaya and Furuya, 2011; Sugaya, et al., 2012) is a database of 
druggable protein–protein interactions (PPIs) predicted by a ma-
chine learning method. This database lists druggable interactions 
predicted from over 83 thousand PPIs in human, mouse and rat, 
but they are not associated with specific compounds.  
We developed Protein-Drug Interaction Database (PDID) that 

complements existing repositories and addresses the lack of access 
to a comprehensive set of putative protein-drug interactions. Based 
on close to 1.1 million of all-atom predictions over the entire struc-
tural human proteome (10 thousand structures for over 3700 pro-
teins) PDID provides access to all putative targets (between 4444 
and 7184, depending on the prediction method used) of several 
dozens of popular drugs. Unique features of our database are:  

• It incorporates accurate predictions generated by three meth-
ods, ILbind (Hu, et al., 2012), SMAP (Xie and Bourne, 2008), 

and eFindSite (Brylinski and Feinstein, 2013; Feinstein and 
Brylinski, 2014), which are complementary and independent 
of docking that was used in the BioDrugScreen database 

• It uniformly covers the entire structural human proteome  

• It includes molecular level information on localization of the 
putative binding sites in the structures of the corresponding 
protein targets  

• It includes comprehensive annotations of known drug targets 
that are linked to their sources: DrugBank, BindingDB and 
PDB 

The methods that we use were shown empirically to provide 
high-quality predictions of drug targets (Hu, et al., 2012) and their 
results were already successfully used to predict novel off-targets. 
Examples include applications to find new off-targets of estrogen 
receptor modulators (Xie, et al., 2007), cholesteryl ester transfer 
protein inhibitors (Xie, et al., 2009), comtan (Kinnings, et al., 
2009), inhibitors of Trypanosoma brucei RNA editing ligase 1 
(Durrant, et al., 2010), nelfinavir (Xie, et al., 2011), raloxifene 
(Sui, et al., 2012), and cyclosporine A (Hu, et al., 2014). 

2 METHODS 

2.1 Datasets 

We collected the structural human proteome from PDB by removing low 
resolution structures (> 3Å) and following (Hu, et al., 2014; Xie, et al., 
2007) we kept proteins for which sequences were mapped to human pro-
teins in Ensembl (Hubbard, et al., 2002). More specifically, structures of 
chains with at least 90% sequence identity quantified using BLAST 
(Altschul, et al., 1990) with default parameters to any human protein from 
68th release of Ensembl were selected. As a result, we include total of 9652 
human and human-like high resolution structures that correspond to 3746 
unique human proteins; the structures are listed at  
http://biomine-ws.ece.ualberta.ca/PDID/files/list_proteome.txt. Protein 
chains that correspond to PDB structures were mapped to UniProt 
(Consortium, 2012) to facilitate mapping of proteins between PDID, PDB, 
DrugBank and BindingDB. 

The database includes drugs which were solved structurally in complex 
with at least one protein; this is necessary to predict targets. There are 355 
such drugs in PDB which we extracted with PDBsum (de Beer, et al., 
2014). The current release 1.1 includes 51 drugs, compared to the release 
1.0 that had 26 drugs. These compounds are listed in Table 1 and include 
popular antibiotics, anti-inflammatory, anti-viral and anti-cancers agents, 
immunosuppressants, and drugs for the treatment of osteoporosis, diabetes, 
heart attack, hypertension, edema, angina, glaucoma and other diseases. 
The currently included compounds comprehensively sample the structural 
drug space; we clustered structures of the 355 drugs using their structural 
fingerprint expressed with Tanimoto coefficient and sampled at least one 
drug from each of the resulting 25 clusters to select the 51 compounds. 

2.2 Putative protein-drug interactions 

Prediction of binding sites from protein structures for a given ligand (drug) 
are done by searching for sites that are similar to the known sites of this 
ligand, which are extracted from the structure(s) of the protein-drug com-
plex(es), or by docking the ligand to all binding sites. There are three clas-
ses of prediction methods that implement different trade-offs between 
accuracy and computational cost. These methods are based on searching for 
the similar sites using a reduced representation of protein structure or com-
plete all-atom structure of protein, and by docking the all-atom structure of 
ligand into the all-atom structure of the target proteins.  
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Table 1. Compounds included in the current release 1.1 of PDID. 

Drug name Formula Drugbank ID PDB ID # complexes in PDB Primary use 

acetazolamide  C4 H6 N4 O3 S2 DB00819 AZM 22 Treatment of glaucoma, edema and epilepsy 
acyclovir  C8 H11 N5 O3 DB00787 AC2 5 Anti-viral for herpes, chickenpox, and shingles 
adenosine  C10 H13 N5 O4 DB00640 ADN 107 Treatment of cardiac arrhythmia 
alendronate  C4 H9 N O7 P2 -4 DB00630 AHD 3 Treatment of osteoporosis 
ampicillin  C16 H19 N3 O4 S DB00415 AIC 8 Antibiotic 
bepridil  C24 H34 N2 O DB01244 BEP 2 Treatment of angina 
caffeine  C8 H10 N4 O2 DB00201 CFF 10 Stimulant 
captopril  C9 H15 N O3 S DB01197 MCO 5 Treatment of hypertension 
cerulenin  C12 H19 N O3 DB01034 CER 8 Antibiotic  
chloramphenicol  C11 H12 CL2 N2 O5 DB00446 CLM 16 Antibiotic 
chloroquine  C18 H26 CL N3 DB00608 0TX 1 Treatment of malaria 
clavulanate  C8 H9 N O5 DB00766 J01 4 Antibiotic 
cyanocobalamin  C63 H88 CO N14 O14 P1 DB00115 CNC 10 Vitamin B12 activity 
cyclosporin A C62 H111 N11 O12 DB00091 CSA 30 Immunosuppressant 
didanosine  C10 H12 N4 O3 DB00900 2DI 1 Anti-viral for HIV 
dopamine  C8 H11 N O2 DB00988 LDP 9 Treatment of hypotension and cardiac arrest 
efavirenz  C14 H9 CL F3 N O2 DB00625 EFZ 6 Anti-viral for HIV 
erlotinib  C22 H23 N3 O4 DB00530 AQ4 3 Anti-cancer 
ertapenem  C22 H27 N3 O7 S DB00303 1RG 3 Antibiotic 
erythromycin  C37 H67 N O13 DB00199 ERY 9 Antibiotic 
estradiol  C18 H24 O2 DB00783 EST 28 Hormonal contraception 
exemestane  C20 H24 O2 DB00990 EXM 1 Anti-cancer 
furosemide  C12 H11 CL N2 O5 S DB00695 FUN 3 Treatment of hypertension and edema 
gemcitabine  C9 H11 F2 N3 O4 DB00441 GEO 3 Anti-cancer 
ibuprofen  C13 H18 O2 DB01050 IBP 9 Anti-inflammatory 
imipenem  C12 H19 N3 O4 S Db01598 IM2 12 Antibiotic  
indomethacin  C19 H16 CL N O4 DB00328 IMN 24 Anti-inflammatory 
isoflurane  C3 H2 CL F5 O DB00753 ICF 2 Anesthetic 
kanamycin  C18 H36 N4 O11 DB01172 KAN 21 Antibiotic 
l-carnitine  C7 H16 N O3 1 DB00583 152 8 Treatment of heart attack and heart failure 
mercaptopurine  C5 H4 N4 S DB01033 PM6 2 Immunosuppressant 
naproxen  C14 H14 O3 DB00788 NPS 4 Anti-inflammatory 
niflumic acid  C13 H9 F3 N2 O2 DB04552 NFL 2 Anti-inflammatory 
nitroxoline  C9 H6 N2 O3 DB01422 HNQ 1 Antibiotic 
pentamidine  C19 H24 N4 O2 DB00738 PNT 7 Anti-microbial  
pioglitazone  C19 H20 N2 O3 S DB01132 P1B 2 Treatment of diabetes 
ponatinib  C29 H27 F3 N6 O DB08901 0LI 3 Anti-cancer 
prednisone  C21 H26 O5 DB00635 PDN 8 Immunosuppressant 
progesterone  C21 H30 O2 DB00396 STR 15 Hormone replacement therapy 
rifampin  C43 H58 N4 O12 DB01045 RFP 7 Antibiotic 
ritonavir  C37 H48 N6 O5 S2 DB00503 RIT 12 Anti-viral for HIV 
salicyclic acid  C7 H6 O3 DB00936 SAL 36 Treatment of acne 
saxagliptin  C18 H25 N3 O2 DB06335 BJM 1 Treatment of diabetes 
streptomycin  C21 H39 N7 O12 DB01082 SRY 14 Antibiotic  
sulindac  C20 H17 F O3 S DB00605 SUZ 7 Anti-inflammatory 
suramin  C51 H40 N6 O23 S6 DB04786 SVR 12 Anti-microbial  
tobramycin  C18 H37 N5 O9 DB00684 TOY 6 Antibiotic 
tretinoin  C20 H28 O2 DB00755 REA 30 Treatment of acne 
vidarabine  C10 H13 N5 O4 DB00194 RAB 2 Antibiotic 
zidovudine  C10 H13 N5 O4 DB00495 AZZ 4 Anti-viral for HIV 
zoledronate  C5 H10 N2 O7 P2 DB00399 ZOL 12 Treatment of osteoporosis 

 

The fastest class of methods utilizes the reduced representation, usually 
in a form of a numeric vector that summarizes geometry and physicochem-
ical properties of binding sites. Representative examples of such methods 
that find similar binding sites are PatchSurfer (Hu, et al., 2014; Zhu, et al., 
2015) and method by Tomii’s group (Ito, et al., 2012). The latter algorithm 
was recently used to create the PoSSuM database (Ito, et al., 2015; Ito, et 
al., 2012) that includes 49 million pairs of similar binding sites computed 

from the known binding sites of 194 drug-like molecules over all protein 
structures from PDB. Given the large number of these putative sites it is 
likely that many of them are false positives and would have to be further 
screened via a more advanced method.  

The second class of methods that is characterized by a lower throughput 
performs docking of a given compounds into protein structures to find 
which proteins harbor binding sites that are complementary to the given 
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ligand. An example platform that utilizes such type of docking to find 
targets of a given ligand is INVDOCK (Ji, et al., 2006). Given the relative-
ly high computational cost of docking, we highlight the availability of the 
BioDrugScreen database (Li, et al., 2010). This database stores results of 
docking with AutoDock and scores these putative interactions based on 
several scoring functions, such as AutoDock, GoldScore, X-Score, Chem-
Score, PMF, and DFIRE. This docking-based database covers about 1600 
drug-like molecules and 2000 cavities on the surfaces of close to 1600 
human proteins. However, these results are limited to interactions that are 
localized in pockets/cavities on the protein surface rather than exploring the 
whole surface. This is motivated by prohibitively high computational costs 
of searching the entire surface. BioDrugScreen uses Relibase+ algorithm 
(Hendlich, et al., 2003) to identify pockets of interest, while INVDOCK 
uses an older algorithm by Kuntz and colleagues (Kuntz, et al., 1982). 

Our database takes advantage of the third class of methods that are com-
plementary to docking. These methods are not constrained to surface pock-
ets and produce accurate predictions of the protein-drug binding at the 
molecular level. They implement inverse ligand binding where structure(s) 
of known protein-drug complex(es), called template(s), is used to predict 
other protein targets together with the corresponding binding sites for the 
same drug. There are two ways to find novel binding sites based on similar-
ity to known binding sites, one based on the similarity of the corresponding 
protein fold and another based on similarity of binding pockets. The first 
approach is implemented by the eFindSite method (Brylinski and Feinstein, 
2013; Feinstein and Brylinski, 2014) and the other approach by the SMAP 
algorithm (Xie and Bourne, 2008). The eFindSite predictor is an improved 
version of FINDSITE method (Brylinski and Skolnick, 2008; Skolnick and 
Brylinski, 2009) that uses meta-threading with eThread (Brylinski and 
Lingam, 2012) and the Affinity Propagation clustering algorithm (Frey and 
Dueck, 2007) to optimize selection of the ligand-bound templates for a 
given query structure. It was empirically shown to outperform FINDSITE 
and several geometrical methods for detection of pockets (Brylinski and 
Feinstein, 2013). SMAP is based on a sequence order independent profile–
profile alignment (SOIPPA) which finds evolutionary and functional rela-
tionships across the space of protein structures (Xie and Bourne, 2007; Xie 
and Bourne, 2008; Xie, et al., 2009). SMAP utilizes a shape descriptor to 
characterize the structure of the protein template and the SOIPPA algorithm 
to detect and align similar pockets between the query and template proteins. 
We also include results from a novel meta-method ILbind (Hu, et al., 2012) 
which is a machine learning-based consensus of 15 support vector ma-
chines that combines prediction scores generated by SMAP and 
FINDSITE. Details concerning how predictions are performed with SMAP, 
FINDSITE and ILbind are given in (Hu, et al., 2012). Our recent article 
shows that ILbind, SMAP and FINDSITE accurately predict targets even 
when the corresponding structure of the query protein and the template(s) 
are substantially different, i.e., they are from different SCOP folds. The 
corresponding average (over three tested ligands) areas under the ROC 
(AUCs) equal 0.727, 0.693, and 0.687 for ILbind, SMAP and FINDSITE, 
respectively (Hu, et al., 2012). These results justify our use of the three 
predictors on the proteome scale. 

The PDID database provides access to pre-computed results of computa-
tionally expensive all-atom predictions by eFindSite and SMAP. Their 
average runtime for a single protein structure and a given drug is about 30 
minutes on a single CPU; the runtime of ILbind is negligible since it is 
based a consensus of results generated by the two predictors. This high 
computational cost makes ad hoc predictions for a given user query (a 
given drug or a given protein) computationally impractical. 

3 RESULTS 

3.1 Assessment of predictive quality 

We assessed predictive performance of ILbind, SMAP and 
eFindSite on a set of 25 representative drugs that are included in 

PDID. These compounds were selected from 25 clusters of chemi-
cally similar drug structures (one compound from each cluster) that 
were generated from the 355 drugs that can be found in complex 
with proteins in PDB. The evaluation follows the protocol from 
(Hu, et al., 2014). Briefly, native targets of the 25 drugs were col-
lected from PDB, BindingDB and DrugBank and we compare 
predictions from the three methods on the structural human prote-
ome against these native targets. We clustered proteins in the struc-
tural human proteome at 90% identity using BLASTCLUST and 
evaluated the results on the corresponding clusters, i.e., a given 
cluster is considered to be a native target of given drug (predicted 
to bind the drug) if at least one protein in this cluster shares at least 
90% identity with a native target of that drug (at least one protein 
in this cluster is predicted to bind that drug). The clustering assures 
that the evaluation is not biased towards targets that are overrepre-
sented with many structures of similar folds.  
Empirical results demonstrate that the three methods are charac-

terized by high predictive quality. The average AUCs over the 25 
drugs of eFindSite, SMAP and ILbind equal 0.630, 0.740 and 
0.761, respectively (Fig. 1A). Although ILbind outperforms the 
other two methods, which is expected from this meta-method and 
consistent with results in (Hu, et al., 2012), different methods per-
form better for different ligands. More specifically, eFindSite pro-
vides the highest AUC for 5 drugs, SMAP for 6 drugs, and ILbind 
for the remaining 14 drugs. Figure 1B gives average true positive 
rates (fractions of correctly predicted native targets) in the function 
of the fraction of predicted protein targets sorted in the descending 
order by the propensities for the interaction generated by each of 
the three predictors. It shows that 40% of the native targets (true 
positive rate = 0.4) are found in the top 4% of predictions from 
ILbind and SMAP and in top 14% of predictions from eFindSite. 
We note that predictive performance varies between compounds 

and primarily depends on their size. Higher AUCs are characteris-
tic for medium sized drugs (with molecular weight between 200 
and 400 g/mol) and lower AUCs for either small (below 200 
g/mol) or large (over 400 g/mol) drugs. To compare, the average 
AUCs for the small/medium/large drugs for eFindSite, SMAP and 
ILbind are 0.56/0.68/0.58, 0.7/0.83/0.58, and 0.7/0.86/0.59, respec-
tively. Example small and large compounds for which predictive 
quality is relatively low are salicyclic acid (138.1 g/mol; average 
AUC over the three methods of 0.50), isoflurane (184.5 g/mol; 
0.60), suramin (1297.3 g/mol; 0.55), and cyanocobalamin (1355.4 
g/mol; 0.57). Example drugs for which prediction are more accu-
rate are naproxen (230.3 g/mol; 0.88), furosemide (330.7 g/mol; 
0.94), and prednisone (358.4 g/mol; 0.87). 

3.2 Database contents and availability 

PDID is freely available at http://biomine.ece.ualberta.ca/PDID/. 
The backend is implemented with the relational MS MySQL data-
base and webpages use PHP script. Protein targets are linked to 
PDB, UniProt, BindingDB and DrugBank. Drugs are linked to the 
corresponding records in PDB, BindingDB and DrugBank. Protein 
and drugs are linked with each other through their known and puta-
tive interactions. The interactions are defined at molecular level, 
i.e., coordinates of the location of the drug in the protein structure 
file are included. Besides displaying this information in the brows-
er window, PDID allows to download the source files with the 
sequence and structure of the target proteins. We also offer down-
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load of the parsable raw source datasets in text format under the 
“Datasets” section on the main page. They include the current 
version of the structural human proteome (IDs of all considered 
protein structures), list of drugs, and predicted targets for each drug 
together with scores from each of the three prediction methods and 
the corresponding coordinates of the putative binding sites.  
The current version of PDID includes results of about 1.1 mil-

lion predictions of targets over the 10 thousand structures and 51 
drugs with the corresponding 5172, 7184, and 4444 putative tar-
gets generated by ILbind, SMAP, and eFindSite. It also includes 
730 known targets of the 51 drugs mapped from and linked to the 
corresponding records in DrugBank, BindingDB and PDB. Figure 
2 shows the number of native and putative targets for each drug. 
The median number of putative protein-drug interactions equals 
23, 30, and 31 for SMAP, eFindSite, and ILbind, respectively, 
compared to the median of 8 based on the known interactions col-
lected from DrugBank, BindingDB and PDB. 

The database will be updated semi-annually by adding additional 
drugs and proteins. The initial version 1.0 that included 26 drugs 
was released in October 2014 and the current version 1.1 in April 
2015. This schedule is consistent with other related resources, e.g., 
scPDB is updated annually, ChEMBL is updated twice a year, and 
DrugBank was recently updated in April 2015 (version 4.2), May 
2014 (version 4.1), and December 2013 (version 4.0). 

3.3 User interface 

The main page includes overview of the contents of the database, 
access to three available search types (by drug name, by ID of the 
protein target, and by sequence of the protein target), links to the 
source datasets and related resources, and date of the last update. It 
also includes link to the “About” page that explains contents of the 
database and introduces related methods and the “Help & Tutorial” 
page that explains the interface of the main page and the three 
types of output pages that correspond to the three search types. 
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Fig. 1. Predictive quality of eFindSite, SMAP, and ILbind for the 25 representative drugs. Panel A shows the average AUC computed over the 25 drugs; 
error bars give the corresponding standard deviations. Panel B shows average true positive rate (fraction of correctly predicted native targets) computed over 
the 25 drugs in the function of the ranking of predictions; the x-axis shows fraction of predicted protein targets sorted in the descending order by the predict-
ed propensities for the interaction. 
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Fig. 2. Number of native and putative targets for the considered 51 drugs. The native targets are based on annotations from PDB, DrugBank, and Bind-
ingDB. The predictions were generated by ILbind, SMAP and eFindSite. The drugs, which are shown on the x-axis, are sorted by their corresponding num-
ber of targets in the descending order and separately for each of the four annotations.  
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Fig. 3. Results of queries against the PDID database. Panel A shows results 
for a query for mercaptopurine. Detailed description of this webpage is 
given at http://biomine-ws.ece.ualberta.ca/PDID/help.html#drug_page. 
Panel B gives results form a query for mineralocorticoid receptor protein. 
Detailed explanations of contents of this page are available at 
http://biomine-ws.ece.ualberta.ca/PDID/help.html#prot_page. “?” symbol 
opens the corresponding help page.  

The search by drug name returns a table with details of known 
and putative targets including links to the corresponding records in 
PDB, DrugBank and BindingDB, links to files with structure and 
sequence of each target, and propensities for binding outputted by 
ILbind, SMAP and eFindSite (Fig. 3A). Targets are sorted by the 
number of methods that predict them as binding (propensities 
shown in green font indicate prediction of binding) and by the 
scores generated by the most accurate ILbind when the number is 
the same. Detailed description of the formatting and contents of 
this output page can be found at http://biomine-
ws.ece.ualberta.ca/PDID/help.html#drug_page. Each target protein 
is available as a link that leads to a webpage with the summary of 
results for this target. 

The search by protein ID returns a webpage that maps this ID in-
to corresponding UniProt protein (quality of mapping is annotated 
using sequence similarity), gives links to the sequence and struc-
ture files, provides customizable visualization of the structure to-
gether with the localization of the putative (red dots) and known 
(blue sticks) ligands, and a table that summarizes information 
about drugs that are known and predicted to bind this protein (Fig. 
3B). This information includes color-coded scores generated by 
each methods that generated prediction and the corresponding 
predicted location of the drug in the protein structure. We use 
JSmol (Hanson, et al., 2013) to visualize structures and BLAST to 
compute sequence similarity. Detailed description of this webpage 
is available at http://biomine-ws.ece.ualberta.ca/PDID/help.html# 
prot_page.  
The search based on protein sequence invokes BLAST that 

compares the input chain with the target sequences included in the 
databases. The most similar target is selected given that its similar-
ity quantified with the e-value is better than a user-defined cutoff; 
default e-value cutoff equals 0.001. The resulting webpage dis-
plays the alignment of the query and target proteins and the sum-
mary of results for the aligned target protein; the format of the 
summary is the same as for the query based on the protein ID.  

4 DISCUSSION 

Numerous drugs are highly promiscuous and we do not know 
many of their targets. PDID database addresses this issue by 
providing access to a complete set of putative protein-drug interac-
tions and a set of known protein-drug interactions in the structural 
human proteome. Our database includes data that otherwise would 
be accessible only to individuals and research groups with signifi-
cant computational expertise and resources. The putative interac-
tions were generated by three accurate predictors, ILbind, SMAP 
and eFindSite, that were shown to produce results that led to find-
ing new drug targets (Durrant, et al., 2010; Hu, et al., 2014; 
Kinnings, et al., 2009; Sui, et al., 2012; Xie, et al., 2011; Xie, et al., 
2009; Xie, et al., 2007) and which complement the existing Bio-
DrugScreen database that relies on docking. The database also 
integrates annotations of known protein targets collected across 
DrugBank, BindingDB and PDB, links proteins to the correspond-
ing records in UniProt, and provides coordinates of the location of 
binding sites in the structures of the putative drug targets. 
PDID can be used to systematically catalog protein-drug interac-

tions and to facilitate various studies related to polypharmacology 
of drugs (Xie L, 2012), such as explaining side-effects caused by 
interactions with off-targets and for the drug repurposing. Relevant 
recent examples include use of predictions with ILbind to find 
three novel off-targets of cyclosporine A that explain nephrotoxici-
ty associated with use of this immunosuppressant (Hu, et al., 
2014). Another example involves repurposing of raloxifene, which 
is used for prevention and treatment of osteoporosis, as a potential 
compound to treat Pseudomonas aeruginosa infections based on 
predictions with the SMAP method (Sui, et al., 2012).  
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