
Structural bioinformatics

Quality assessment for the putative intrinsic

disorder in proteins

Gang Hu1, Zhonghua Wu1, Christopher J. Oldfield2, Chen Wang2 and

Lukasz Kurgan2,*

1School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China and
2Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on June 7, 2018; revised on September 19, 2018; editorial decision on October 14, 2018; accepted on October 15, 2018

Abstract

Motivation: While putative intrinsic disorder is widely used, none of the predictors provides quality

assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue

level and have been applied in other bioinformatics areas. We recently reported that QA scores

derived from putative disorder propensities perform relatively poorly for native disordered resi-

dues. Here we design and validate a general approach to construct QA predictors for disorder

predictions.

Results: The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of

methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative

design elements including use and scaling of selected physicochemical properties of the input se-

quence, post-processing of disorder propensity scores, and a feature selection that optimizes the

predictive models to a specific disorder predictor. We empirically establish that each one of these

elements contributes to the overall predictive performance of our tool and that QUARTER’s outputs

significantly outperform QA scores derived from the outputs generated the disorder predictors.

The best performing QA scores for a single disorder predictor identify 13% of residues that are pre-

dicted with 98% precision. QA scores computed by combining results of the ten disorder predictors

cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA

scores. QA scores based on the high precision combined predictions are applied to analyze dis-

order in the human proteome.

Availability and implementation: http://biomine.cs.vcu.edu/servers/QUARTER/

Contact: lkurgan@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Intrinsic disorder is characterized by lack of stable tertiary structure

under physiological conditions (van der Lee et al., 2014). Recent

estimates reveal that up to 50% of eukaryotic proteins have at least

one long (� 30 consecutive residues) intrinsically disordered region

(IDR) (Ward et al., 2004; Xue et al., 2012a) and that approximately

19% of residues in these proteins are disordered (Peng et al., 2015).

As a part of their very diverse functional repertoire, proteins with

IDRs are enriched in cellular functions that involve protein–protein,

protein–nucleic acids and virus–host interactions (Dyson, 2012; Fan

et al., 2014; Fuxreiter et al., 2014; Hu et al., 2017; Meng et al.,

2016; Peng et al., 2014b, 2015; van der Lee et al., 2014; Wang

et al., 2016; Xue et al., 2014; Xue et al., 2012b). Given the high

abundance, functional importance and the fact that IDRs can be ac-

curately predicted from the protein sequences (Monastyrskyy et al.,

2014; Necci et al., 2017a; Peng and Kurgan, 2012; Walsh et al.,
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2015), many sequence-based computational disorder predictors

were developed (Atkins et al., 2015; Deng et al., 2012; Kozlowski

and Bujnicki, 2012; Meng et al., 2017). Their predictions are used

to support and plan experimental studies and to investigate preva-

lence and functions of disorder on a large, genomic scale (Peng

et al., 2013, 2014a, 2015; Pentony and Jones, 2010; Wang et al.,

2016; Xue et al., 2012a). The intrinsic disorder predictions are also

used in other areas, such as structural genomics (Oldfield et al.,

2013). Two large databases of putative intrinsic disorder: MobiDB

(Di Domenico et al., 2012; Piovesan et al., 2018; Potenza et al.,

2015) and D2P2 (Oates et al., 2012), enjoy a substantial amount of

interest. The MobiDB and D2P2 articles were cited 223 and 200

times, respectively (source: Google Scholar on June 7, 2018).

Perhaps surprisingly, the easy to collect disorder predictions do

not include quality assessment (QA) scores. We recently defined QA

for the prediction of disorder (Wu et al., 2017). The QA scores are

not disorder predictions but rather they are produced separately to

accompany these predictions. They quantify correctness (confi-

dence) of the disorder predictions at a residue level to reveal which

predictions are more likely to be correct. High values of QA scores

correspond to correctly predicted native disordered and structured

residues. On the other hand, residues that are incorrectly predicted

(native disordered predicted as structured or vice versa) should have

low QA scores. Importantly, the QA scores must be optimized for

specific predictors of disorder since these methods rely on different

types of disorder annotations (Meng et al., 2017; Piovesan et al.,

2018). While QA scores would be very useful to provide context for

the disorder predictions, to date there are no QA predictors for the

intrinsic disorder. In contrast, QA of putative tertiary protein struc-

tures has been intensely researched (Cao et al., 2016, 2017; Kihara

et al., 2009; McGuffin et al., 2013; Skwark and Elofsson, 2013).

In Wu et al. (2017), we used a large benchmark set of 26 thou-

sand proteins to empirically assess whether the propensities of in-

trinsic disorder generated by ten popular and computationally

efficient disorder predictors (i.e. methods that process such large

dataset in no more than several days) can be used as QA scores. We

name them default quality assessment (DQA) scores; they are

defined in Section 2.2. The ten predictors include three versions of

ESpritz that predict disorder annotated using X-ray structures,

NMR structures and DisProt database (Walsh et al., 2012), two ver-

sions of IUPred (Dosztanyi et al., 2005), two versions of DisEMBL

(Linding et al., 2003), RONN (Yang et al., 2005), VSL2B (Peng

et al., 2006) and GlobPlot (Linding et al., 2003). Our results reveal

that DQA scores are inaccurate, especially for the native disordered

residues. Supplementary Figure S1 shows that the native disordered

residues that are incorrectly predicted as structured have high DQA

values (and low putative propensities for disorder) for 9 out of the

10 methods. This is why their ROC curves lie close to or even below

the diagonal line, in particular for the low false positive rates. The

only predictor for which DQA scores are reasonable is VSL2B (thick

black line in Supplementary Fig. S1). However, the predictive qual-

ity of VSL2B’s DQA scores is rather modest, with the AUC ¼ 0.66

and AUClowFPR ¼ 0.005 (AUC for the FPR range < 0.05;

Supplementary Fig. S1B) for the native disordered residues.

We address the lack of methods that produce QA scores with de-

sirable levels of predictive performance. We have devised a compre-

hensive and innovative solution that:

• provides ten QA methods for the ten corresponding disorder pre-

dictors that were investigated in Wu et al. (2017). We focus on

this comprehensive group of methods because: (i) they are com-

putationally efficient, i.e. they can predict our large dataset

(6271 proteins and 1 778 616 residues) and genome-scale protein

sets in no more than several days; (ii) they are included in the

popular MobiDB database (Piovesan et al., 2018); and (iii) they

were empirically shown to provide accurate predictions (Walsh

et al., 2015) and their consensus accurately predicts long IDRs

(Necci et al., 2017b).
• optimizes each of the ten QA methods for the specific disorder

predictor. This way we demonstrate that accurate QA scores can

be produced for methods that rely on different sources of the dis-

order annotations, including X-ray structures, NMR structures

and a variety of other experimental techniques that are covered

in the DisProt database.
• uses a novel approach to design inputs for the models that gener-

ate QA scores. We rely on three ideas: (i) scaling of the sequence-

derived physicochemical properties of the input protein chain;

(ii) use of DQA scores; and (iii) empirical selection of predictive

inputs. The latter allows us to optimize these models for the spe-

cific disorder predictors. Consequently, our QA values outper-

form DQA values.
• provides the resulting ten QA methods as an easy to use and pub-

licly available webserver.

2 Materials and methods

2.1 Datasets
Disorder predictions were extracted from the MobiDB resource

(Piovesan et al., 2018). MobiDB provides the predictions from ten

methods: DisEMBLremark456 and DisEMBLHotLoops (Linding et al.,

2003), EspritzDisprot, Espritz-NMR and EspritzX-ray (Walsh et al.,

2012), Globplot (Linding et al., 2003), IUPredlong and IUPredshort

(Dosztanyi et al., 2005), RONN (Yang et al., 2005) and VSL2B

(Obradovic et al., 2005; Peng et al., 2006). We utilize a benchmark

dataset with native annotation of disorder from (Walsh et al., 2015)

that originally includes 25 717 proteins. We removed proteins with

sequences that have unknown/undetermined amino acid (AA) types.

Next, we reduced pairwise sequence similarity to 25% using

BLASTCLUST with the other parameters set to default (Camacho

et al., 2009) using the remaining 12 129 proteins. The resulting set

of 6271 protein chains shares < 25% similarity and includes 105

709 disordered and 1 672 907 structured residues. We selected at

random 999 proteins to establish a training dataset (to have an equal

number of chains for 3-fold cross-validation); the other 5272

sequences constitute the test dataset. We opted to use 3 folds instead

of the more commonly used setups with 5- or 10-folds to reduce the

amount of runtime necessary to process the cross-validation. This is

motivated by the relatively large size of the training dataset and the

need to repeat the whole process for each of the 10 predictors. This

size of the training dataset provides enough data to perform empiric-

al design, while the larger test dataset allows for a reliable statistical

analysis of differences between different approaches to the QA pre-

diction. The training dataset is used in the 3-fold cross-validation to

design and empirically parametrize the new QA methods. Once the

modelling is completed, we use the test dataset that shares <25%

similarity to the training proteins to comparatively evaluate these

methods. The datasets are available at http://biomine.cs.vcu.edu/serv

ers/QUARTER/.

We empirically evaluated predictive performance of the ten dis-

order predictors on the test dataset and, as expected, we found that

these results are consistent with the results published in (Walsh

et al., 2015), see Supplementary Figure S2. The native disorder con-

tent in the test dataset is 5.98%, while the putative content
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generated by the ten predictors ranges between 4% (for

EspritzDisprot) and 21% (for DisEMBLHotLoops).

2.2 DQA scores for the prediction of intrinsic disorder
Disorder predictors typically generate two outputs for each residue

in the input protein sequence: a real-valued propensity score that

quantifies likelihood for disorder and a binary prediction (disor-

dered versus structured residue). The binary prediction is obtained

from the propensities using a threshold, such that residues with pro-

pensities greater than the threshold are assumed to be disordered

and the remaining residues are assumed to be structured. Given the

maximal propensity value Vmax, minimal propensity value Vmin and

threshold C, the DQA scores are computed from the output propen-

sities as follows:

DQA ¼

P�C

Vmax � C
if P > C

P� C

Vmin � C
otherwise

8>>>><
>>>>:

Supplementary Figure S3 explains how the propensities for dis-

order generated with VSL2B are converted into the DQA scores. For

this method, Vmax¼1, Vmin¼0 and C¼0.5, respectively.

Essentially, the propensities that are further away from the threshold

(i.e. the value where the binary prediction changes) are associated

with higher DQA values.

2.3 Evaluation setup
QA scores for the disorder prediction range between 0 and 1, where

higher value correspond to a higher quality prediction. They repre-

sent the quality of the binary (disordered versus structured residue)

prediction. In principle, the correctly predicted residues should be

associated with higher QA scores than the incorrectly predicted

residues.

Supplementary Section 1 provides definitions of the measures

that we use to empirically assess the predictive quality of the QA

scores. Here, we just name and briefly explain these measure. We

use receiver operating characteristic (ROC) curve and the area under

ROC (AUC) to evaluate the QA scores. Ratio of native disordered

versus structured residues is skewed, with only about 5.98% native-

ly disordered AAs. Thus, similar to other studies that consider simi-

larly unbalanced data (Meng and Kurgan, 2016; Yan and Kurgan,

2017; Zhang et al., 2017) we compute AUCs for the low range FPR

values (AUClowFPR for the ROC curve where FPR < 0.05). The bin-

ary predictions (accurate/high quality versus inaccurate/low quality

prediction) are evaluated with MCC (Matthews correlation coeffi-

cient), true positive rate (TPR) and F1 score at false positive rate

(FPR) ¼ 0.05. Moreover, to balance the evaluation between the un-

evenly distributed disordered and structured residues, we evaluate

them separately and use a product of the two corresponding meas-

ures to quantify the results across the entire test dataset. Statistical

significance of differences in the predictive performance, in particu-

lar between the new QA scores and the corresponding DQA scores,

is assessed with t-test for normal measures, otherwise we use the

Wilcoxon rank test. We verify normality with the Anderson-Darling

test at 0.05 significance.

2.4 Design
The QUARTER (QUality Assessment for pRotein inTrinsic disordEr

pRedictions) model generates QA scores at the residue level and is

designed specifically for a given disorder predictor. However, we

used the same set of steps to design QUARTER for each of the ten

considered disorder predictors. The overall design consists of three

layers (Fig. 1):

• The first layer uses the input protein chain to derive a rich profile

of properties that are relevant to the QA prediction. The profile

includes the sequence, DQA scores produced by a given disorder

predictor, and a set of selected physicochemical properties of the

input protein.
• The second layer converts the profile into a fixed number of

custom-designed numerical features. We utilize information

about the predicted residue and its neighbors in the sequence to

compute these features. We use three types of sliding windows

that are color-coded in Figure 1: window of 3 adjacent residues

(in blue); window of 13 neighboring residues (in red); and win-

dow of background residues (in green). We use the background

residues as a contrast to the physicochemical properties of the

neighboring residues. We empirically selected 13 as the size of

the window of neighboring residues because 80% of native disor-

dered segments in the training dataset � this size. The residues in

the background window extend this window by another 12 resi-

dues (6 on each side). We pad the windows at either terminus of

the sequence with the residue from the center of the window. In

total, we consider over 150 features that are computed from the

profile using these three types of windows. We optimize

QUARTER for a specific disorder predictor by empirically select-

ing a subset of these features that maximizes predictive

performance.
• The third layer inputs the selected (disorder predictor-specific)

features into a logistic regression model that outputs the QA

scores.

We selected the logistic regression as our predictive model based

on several factors: i) this model outputs real numbers in the 0 to 1

range that intuitively correspond to the QA scores; ii) simplicity of

this linear model reduces likelihood of overfitting it into the training

dataset; iii) logistic regression has been successfully used to predict

disorder and functions of disorder (Meng and Kurgan, 2016;

Obradovic et al., 2005; Peng et al., 2014a, 2017), protein functions

(Zhang et al., 2018), protease cleavage sites (Song et al., 2018) and

post-translational modification sites (Li et al., 2018); and iv) com-

pared to other popular models, like SVMs and neutral networks,

this model is more computationally efficient to train from the train-

ing dataset and to produce predictions. Runtime efficient training

has allowed us to execute wrapper-based feature selection to opti-

mize design of our models for specific disorder predictors. Fast pre-

dictions are important when the model is applied on a genomic

scale, and facilitate our analysis of results on human proteome. The

prediction is simply computed as a sum of multiplications, which

requires relatively few calculations when the number of features is

low.

Fig. 1. Architecture of the QUARTER method

1694 G.Hu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/10/1692/5134059 by Virginia C
om

m
onw

ealth U
niversity Libraries user on 29 M

ay 2019

Deleted Text: s
Deleted Text: .
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty881#supplementary-data
Deleted Text: ,
Deleted Text: .
Deleted Text: .
Deleted Text: .


Detailed description of the three-layered design of QUARTER is

included in Supplementary Section 2. The first layer introduces on a

wide range of relevant physicochemical properties that include puta-

tive relative solvent accessibility (RSA), sequence complexity, hydro-

phobicity, charge, flexibility and propensity for the intrinsic

disorder. They are estimated/predicted from the input sequence

using several fast tools that have sub-second runtime. We scale val-

ues of the physicochemical properties to ensure that they are com-

patible with the QA scores. The second layer generates three groups

of features from the properties collected in the first layer using the

three sliding window types:

1. DQA-based features that are computed from DQA values gener-

ated by the corresponding disorder predictor.

2. Sequence-based features that are based on composition of AAs

and length of the input protein chain.

3. Physicochemical properties-based features that encode informa-

tion about scaled putative RSA, scaled hydrophobicity, scaled

disorder propensity, scaled flexibility, net charge and sequence

complexity.

We also attempted to use features computed directly from pro-

pensities predicted by the disorder predictors instead of the corre-

sponding DQA scores. The corresponding models performed poorly

given that the putative disorder propensities and QA scores are not

compatible (both low and high values of propensity correspond to

high QA values). Altogether, we consider 17 (DQA-based) þ 81

(Sequence-based) þ 70 (property-based) ¼ 168 features. We use

wrapper-based feature selection to select a subset of relevant fea-

tures that optimizes the predictive model for a specific disorder pre-

dictor. This approach was selected based on its successful use in

related studies (Mizianty et al., 2010; Yan et al., 2016; Yan and

Kurgan, 2017) and the fact that it directly optimizes the selected fea-

ture set for the predictive models that are ultimately used to make

the predictions. We use the wrapper selection to maximize predict-

ive performance measured with AUClowFPR in the 3-fold cross-

validation on the training dataset. We specifically focus on the

AUClowFPR of the native disordered residues since DQA values for

these residues have low predictive performance (Supplementary Fig.

S1). Supplementary Table S1 summarizes results of the feature selec-

tion across the 10 disorder predictors while Supplementary Table S2

provides ranking of features for each considered disorder predictor.

The selected features vary substantially between these predictors.

For instance, QA score predictor for ESpritzX-Ray is based primarily

on the DQA-based features, while the predictors for RONN and

VSL2B rely mostly on the physiochemical features. Possible reasons

why the selected feature sets are so diverse are that the underlying

disorder predictors use different sources of disorder annotations,

have different architectures and use different predictive inputs

(Meng et al., 2017; Peng and Kurgan, 2012). However, each dis-

order predictor-specific version of QUARTER uses features from

each of the three feature groups. The GlobPlot’s version includes the

smallest set of 7 features, while the version for ESpritzNMR boasts

the largest set of 21 features. Moreover, each selected features set is

relative small, allowing for the runtime efficient predictions.

3 Results

3.1 Empirical analysis of The Quarter model
QUARTER relies on several key ideas: (i) scaling of the values of the

input physicochemical properties; (ii) inclusion of the DQA-based

features; and (iii) use of the feature selection. We empirically study

contributions of these three design factors. To do that, we compare

the predictive performance of QUARTER with the following five of

its versions where we remove some of these factors:

Version 1. QA predictor with feature selection but without

DQA-based features and scaling of the physicochemical proper-

ties (no scaling, no DQA-based features and with feature

selection)

Version 2. QA predictor without feature selection and using only

DQA-based features (with scaling, only DQA features and no

feature selection)

Version 3. QA predictor with feature selection using only DQA-

based features (with scaling, only DQA features and with feature

selection)

Version 4. QA predictor without feature selection and using all

168 features (with scaling, all features and no feature selection)

Version 5. QA predictor without feature selection, DQA-based

features and scaling of the physicochemical properties (no scal-

ing, no DQA-based features and no feature selection)

We retrained the corresponding five models for each of the 10

disorder predictors in the 3-fold cross validation on the training

dataset. Figure 2 compares results between these five versions (the

five yellow boxplots) and the original QUARTER (red boxplots) on

the test dataset. Boxplots summarize results over the ten disorder

predictors where the error bars give the lowest and highest values

and the thick black line is the median of the ten results. To ease com-

parisons, the plots show ratio of the value of a given measure to the

median for the DQA scores (thick black line in the blue boxplots).

For instance, QUARTER’s median AUClowFPR¼3 means that it is

three times better than the median for the DQA scores. The numbers

at the top of the yellow boxes summarize statistical significance of

differences between QUARTER and the five setups in the (xþ, y-,

z¼) format, where x, y and z denote the number of disorder predic-

tors for which the QA scores from QUARTER are significantly bet-

ter, worse and not significantly different at P-value < 0.05,

respectively. For example, (7þ, 1-, 2¼) in Figure 2A means that

when considering the results for the ten disorder predictors

QUARTER was seven times significantly better, once significantly

worse and twice the difference was not significant when compared

to the second version (QA predictor with scaling, only DQA features

and no feature selection).

Figure 2 reveals that the five reduced versions produce on aver-

age (over the 10 disorder predictors) much lower predictive quality

when compared to QUARTER. The QUARTER’s median values of

AUClowFPR, MCC, TPR and F1 are higher than the corresponding

results for the five reduced versions. QUARTER also secures the se-

cond highest median AUC, behind only the version that is based on

all 168 features. However, the same version 4 secures much lower

AUClowFPR, which is arguably a more adequate measure given the

unbalanced nature of the dataset (i.e. the native disordered residues

make up about 5% of the test dataset). As expected, the biggest

drop in the predictive quality measured with AUClowFPR is for the

version 5 where we exclude all three key design factors.

Interestingly, version 4 that only excludes the feature selection has

the second worst range of the AUClowFPR values (Fig. 2A). When

compared to this version, the QA scores produced by QUARTER

are significantly better for nine of the ten disorder predictors.

Moreover, version 1 that includes only the feature selection and

removes the other two design factors (scaling and DQA-based fea-

tures) produces the second best (after QUARTER) median

AUClowFPR. These two observations suggest that feature selection

substantially contributes to the predictive performance of

Disorder quality assessment 1695
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QUARTER. This stems from the fact that we use feature selection to

optimize the QUARTER’s design for specific and different disorder

predictors. Furthermore, version 3 that uses solely the DQA-based

features is also much worse that QUARTER; the differences in

AUClowFPR, MCC, TPR and F1 are statistically significant for 7, 7, 8

and 8 out of the 10 disorder predictors, respectively. This clearly

demonstrates the importance of the physicochemical properties and

sequence-based features that we use to implement QUARTER.

Finally, removal of the scaling of physicochemical properties (ver-

sions 1 and 5) similarly results in a much lower predictive perform-

ance. Altogether, these results suggest that each of the three design

elements provides strong contribution to the QUARTER’s predictive

performance.

3.2 Empirical comparison with other approaches
Figure 2 also compares the QA scores computed by QUARTER (red

boxplots) with the DQA scores (blue boxplots) and scores that are

generated at random (gray boxplots). The latter scores are random

numbers in the 0 to 1 range, generated such that they produce the

same number of predicted positives (putative correct predictions) as

the DQA scores for a given disorder predictor. Results produced by

QUARTER significantly outperform both DQA and random scores.

Specifically, QUARTER’s AUClowFPR (Fig. 2A), TPR (Fig. 2D) and

F1 (Fig. 2E) are significantly higher (P-value < 0.05) than the corre-

sponding measures for DQA and random scores for each of the ten

disorder predictors. Similarly, the QUARTER’s AUC (Fig. 2B) and

MCC (Fig. 2C) significantly outperform random predictions and

DQA for 10 and 9 disorder predictors, respectively.

Figures 3A, 4B, C and D provide side-by-side comparison of

results for individual disorder predictors on the test dataset. They in-

clude AUClowFPR and F1 values for the native disordered and all resi-

dues. QUARTER outperforms DQA scores and random scores on

both measures when tested across the ten disorder predictors on all

residues (Fig. 3C and D). The results on the native disordered resi-

dues (Fig. 3A and B) show that the QA scores produced by

QUARTER are always better than the random scores and almost al-

ways better than the DQA scores. The only exception are the results

for the DisEMBLremark456 where QUARTER provides lower predict-

ive quality for the native disordered residues (Fig. 3A and B) but

much better results overall (Figs 3C and 4D); this suggests that

QUARTER’s QA scores for DisEMBLremark456 are much better for

the native structured residues. We note the relatively bad results of

the DQA scores generated by majority of the disorder predictors (ex-

cept DisEMBLremark456, RONN and VSL2B) for the native disor-

dered residues; see blue and gray bars in Figure 3A and B. These

results are a consequence of the trend that we discuss in the

Introduction (Supplementary Fig. S1). Given this trend, we compare

the ROC curves for QA scores from QUARTER (Fig. 3E) and with

the corresponding DQA scores (Supplementary Fig. S1B). The

QUARTER’ scores secure TPRs that are much above the random

predictor levels (diagonal line where TPRs equal FPRs) for all dis-

order predictors. This is stark contrast to most of the DQA scores (7

out of 10 disorder predictors) that are below the random levels

Fig. 2. Evaluation of predictive performance measured with AUClowFPR (A), AUC (B), MCC (C), TPR (D) and F1 (E) on the test dataset. We compare QA scores gener-

ated with QUARTER (in blue), five versions of QUARTER where specific design ideas were removed (yellow), DQA scores (blue) and random scores (black). Each

boxplots summarizes results over the ten disorder predictors where whiskers denote the lowest and highest results, box defines the range between the first and

third quartile, and the thick black line is the median result. To ease comparison, the plots show ratio of a given measure to the median result for the DQA scores,

e.g. QUARTER’s median AUClowFPR¼3 means that it is three times better than the median for the DQA scores. The numbers at the top of the boxes summarize

statistical significance of differences between QUARTER and the other methods using xþ, y-, z¼ format, where x, y and z are the number of disorder predictors

for which the QA scores from QUARTER are significantly better, worse and not significantly different, respectively. Details of the test are given in the

Supplementary Material; we assume that differences are significant when P-value < 0.05. For example, (7þ, 1-, 2¼) means that QUARTER is seven times signifi-

cantly better, once significantly worse and twice the difference between QUARTER and the other method is not significant. (Color version of this figure is avail-

able at Bioinformatics online.)
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A B E

C D

Fig. 3. Comparison of predictive performance between QUARTER, DQA scores and scores generated at random for individual disorder predictors on the test data-

set. (A) and (B) compare AUClowFPR and F1 for the native disordered residues, respectively. (C) and (D) compare AUClowFPR and F1 for all residues (computed as a

product of these values for the disordered and the structured residues; see Supplementary Material for details). (E) gives the ROC curves for the low FPR range

(FPR � 0.05) for the QA scores generated with QUARTER for the native disordered residues. Red circles correspond to disorder predictor-specific thresholds that

we established to select a subset of high quality predictions based on the QA scores from QUARTER

A

B

Fig. 4. Comparison between DQA scores (gray curves) and QA scores generated by QUARTER (black curves). (A) shows results for the predictions with VSL2B for

the p23 protein (UniProt ID: P13693). (B) gives results for the predictions with ESpritzDisProt for the nuclease YbcO (UniProt ID: P68661). The color-coded horizontal

lines on the x-axis identify the native disordered residues (in red), native structured residues (in blue) and correct predictions generated by a given predictor (in

green). (Color version of this figure is available at Bioinformatics online.)
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(Supplementary Fig. S1B). In particular, the QUARTER’s scores se-

cure TPRs � 0.12 at the FPR ¼ 0.05 for 8 out the 10 disorder pre-

dictors, and TPRs > 0.19 for RONN and VSL2B. We focus on the

results for the low FPRs given the low, 5% content of the native dis-

ordered residues in the test dataset. The QUARTER’s ability to per-

form well on the native disorder residues stems from the feature

selection that specifically targets improvements on these residues.

To sum up, when compared to DQA and random scores,

QUARTER provides significantly better predictive performance on

the disordered residues while also maintaining favorable predictive

quality on all residues.

3.3 Case studies
We use two proteins from the test dataset to demonstrate practical

value of the putative QA scores generated by QUARTER. The first

protein (Fig. 4A) was predicted with VSL2B that produces reason-

ably good DQA scores for the disordered residues (Supplementary

Fig. S1). Predictions at the N-terminus are incorrect and both

QUARTER and DQA correctly identify these problems. However,

only QUARTER suggests that the VSL2B’s predictions are in fact in-

correct at the C-terminus. Similarly, a longer region between the

positions 98 and 112 that is incorrectly predicted by VSL2B coin-

cides with an appropriate dip in the QUARTER scores, while DQA

scores crest there. The putative disorder for the second protein

(Fig. 4B) was predicted by ESpritzDisProt that offers lower quality

DQA scores (Supplementary Fig. S1). Both termini of this protein

were incorrectly predicted and correspondingly both QUARTER

and DQA scores identify these problematic areas. However, only

QUARTER finds the low quality prediction of the disordered region

between positions 35 and 43. This means that ESpritzDisProt entirely

misses this disordered regions and QUARTER identifies this issue.

3.4 Quality assessment of disorder predictions in the

human proteome
We use QUARTER to select and characterize a subset of high qual-

ity disorder predictions in the human proteome. First, we setup

selection of the high quality predictions on the test dataset in two

steps: (i) for each of the ten disorder predictors; and (ii) we combine

the results from individual predictors to improve overall coverage.

Finally, we use the best setup to characterize the high quality puta-

tive disorder in the human proteins.

In the first setup step we use the QUARTER’s QA scores to iden-

tify a subset of high quality (i.e. high precision) predictions for each

disorder predictor. The corresponding optimal QA score threshold

(i.e. furthest from random) or FPR¼0.05 threshold was selected on

the test dataset, whichever had a lower FPR (Fig. 3E, red circles).

The black markers in Figure 5A show precision and coverage of

these high quality predictions. The best performing high quality pre-

dictions for DisEMBLremark456 (marked as method 1) secure 98%

precision and cover 13% of residues.

In the second setup step, we combine the high quality predictions

from multiple disorder predictors to increase coverage. The individ-

ual high quality predictions were combined residue-by-residue by

defining a high quality prediction if any QA predictor gave a high

quality prediction. For the high quality residues, the predictor with

the greatest QA score defines the order-disorder prediction. For the

remaining low quality residues, disorder predictions were combined

by majority vote. We evaluate the combined predictions by precision

and coverage of the high quality predictions (Fig. 5). We assess all

possible combinations of the ten methods. In general, coverage of

the test dataset with high quality predictions increased with larger

predictor combinations, accompanied by a narrowing range of pre-

cision. Maximum coverage and adequate 95.5% precision was

achieved by combining all ten predictors (Fig. 5A, pink point). This

best result covers 40% of the test dataset and offers proportional

coverage of the native ordered and disordered residues, at 40 and

41%, respectively.

We apply the ten-way combination of predictions to the

reviewed human proteome collected from the UniProt database (The

UniProt Consortium, 2017), which includes 20 737 proteins.

Individual and combination predictions for these human proteins

are available at http://biomine.cs.vcu.edu/servers/QUARTER/. The

overall coverage by the high quality predictions among human resi-

dues, 42%, is similar to the coverage in the test dataset. This sug-

gests that the results on the human proteome are characterized by

similar (to the test dataset) predictive performance. However, the

proportion of predicted disorder is much different for human resi-

dues than the test dataset, which are 38 and 6.5%, respectively. This

is not unexpected. The proportion of the disordered residues in the

test dataset, 6.0%, is comparable to the predicted estimate.

Moreover, previous estimates of the proportion of disordered resi-

dues in human proteins are much larger than in the test dataset (Xue

et al., 2012a,b). The high quality estimate of the proportion of in-

trinsic disorder agrees with a previous estimate of the frequency of

disordered residues in eukaryotes which is between 35 to 45% (Xue

et al., 2012a). We note that the high quality predictions cover less

than half of human residues, so this estimate may not accurately rep-

resent the entire proteome.

The high quality predictions are distributed broadly among

human proteins (Fig. 6, black line). A median protein has 40% of

residues with the high quality predictions. The distribution has a

long upper tail, with 16% of proteins having over 60% of residues

with the high quality predictions. Partitioning residues into pre-

dicted disorder and structure (Fig. 6, red and blue lines, respectively)

shows a narrower distribution of the high quality order predictions

and a broader distribution for the disorder predictions. This indi-

cates a larger variance in the amount of the high quality disorder

predictions from protein to protein.

Fig. 5. Comparison of coverage and precision for selected high quality thresh-

olds (black points) and all combinations of 2 to 10 disorder predictors (white,

grey, purple, blue, cyan, green, orange, red and pink point, respectively). (A)

compares results for the entire test dataset, where labels correspond to indi-

vidual predictors (coverage, precision): 1, DisEMBLremark456 (0.13, 0.98); 2,

DisEMBLHotLoops (0.058, 0.95); 3, ESpritzDisProt (0.046, 0.97); 4, ESpritzNMR

(0.082, 0.97); 5, ESpritzX-Ray (0.055, 0.96); 6, GlobPlot (0.066, 0.93); 7,

IUPredlong (0.062, 0.98); 8, IUPredshort (0.093, 0.98); 9, RONN (0.079, 0.97); 10,

VSL2B (0.074, 0.95). (B) compares results for the disordered residues from

the test dataset, where labels correspond to individual predictors (coverage,

precision): 1, DisEMBLremark456 (0.1, 0.74); 2, DisEMBLHotLoops (0.084, 0.84); 3,

ESpritzDisProt (0.021, 0.3); 4, ESpritzNMR (0.091, 0.73); 5, ESpritzX-Ray (0.093,

0.86); 6, GlobPlot (0.063, 0.46); 7, IUPredlong (0.054, 0.62); 8, IUPredshort (0.074,

0.72); 9, RONN (0.12, 0.82); 10, VSL2B (0.16, 0.91). (Color version of this figure

is available at Bioinformatics online.)
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3.5 Functional characterization of human proteins

predicted with high quality
Proteins with over 60% of residues that have high quality predic-

tions were examined for bias in functional annotations to investigate

if there are distinguishing features of these 3280 accurately predicted

proteins. This set was further divided into two groups: putative dis-

ordered proteins that have majority of the high quality disorder pre-

dictions (HQD, 1236 proteins) and putative structured proteins

with majority of high quality structure predictions (HQS, 2042 pro-

teins). These two protein sets were submitted to the PANTHER ser-

ver (Mi et al., 2017) for analysis of overrepresentation of Gene

Ontology (GO) annotations relative to what would be expected

from a random sample of the human proteome.

Relative enrichment was found for HQD and HQS proteins for

several terms in the molecular function and cellular component

ontologies (Supplementary Fig. S4). Enrichment found for one set of

proteins often corresponds with depletion for the other, indicating

that these annotations are structure and disorder specific. HQD pro-

teins share several distinguishing GO terms with previous character-

izations of intrinsic disorder. Binding to nucleic acids, both RNA

and DNA, is a well-known function of many proteins with IDRs

(Dyson, 2012; Wang et al., 2016). Also, many proteins with IDRs

are known to localize to the nucleus (Frege and Uversky, 2015).

Proteins with IDRs are also known to play a role in the extracellular

matrix and associate with the cytoskeleton (Dunker et al., 2015).

For HQS proteins, enriched molecular functions and cellular com-

ponents all indicate integral or peripheral membrane involvement.

Transmembrane domains are often well structured, but transmem-

brane proteins often contain cytoplasmic or extracellular intrinsical-

ly disordered domains (Xue et al., 2009). These results do not

contradict this; HQS proteins are not necessarily predicted to be en-

tirely ordered; only the majority of their high quality predictions are

ordered. Overall, both the HQD and HQS term biases are consistent

with previous results for disordered and ordered protein biases.

4 Summary and conclusions

We design, implement, empirically test and release QUARTER,

first-of-its-kind tool that provides accurate QA scores for ten popu-

lar disorder predictors. The QA scores are individually optimized

for each of the ten disorder predictors. This optimization is guided

by an empirical feature selection and takes advantage of the disorder

predictor-specific DQA scores.

Empirical tests on a large test dataset reveal that QUARTER

generates high quality results. These tests show that our novel tool

produces accurate QA scores for a wide range of disorder predictors

that utilize different sources of disorder annotations. The

QUARTER’s AUClowFPR values are on average 300% higher than

the corresponding values for the DQA scores (Fig. 2A). We numeric-

ally demonstrate that our QA scores secure significantly better pre-

dictive performance on the native disordered residues when

compared to DQA and random scores. The empirical tests also high-

light the main reasons for the high predictive quality. The three key

contributing advancements are: scaling of the input physicochemical

properties; inclusion of the DQA-based features; and use of the em-

pirical feature selection.

The primary application of the QA scores is annotation/selection

of a high-quality subset of residue-level disorder predictions. We

show that the best QA scores for a single disorder predictor can be

used to identify 13% of amino acids for which disorder is predicted

with a very high, 98% precision. When combining predictions of the

ten considered disorder predictors, the QA scores can be used to

find 40% of residues for which disorder is predicted with 95% pre-

cision in the test dataset. Application of QUARTER to the human

proteome tells that 42% of human residues are predicted with high

quality (95% precision) and that about 38% of these residues are

disordered. This high disorder content and our functional analysis

of human proteins that are enriched in the high-quality disorder pre-

dictions are in good agreement with the existing literature.

We release QUARTER as a freely available webserver at http://

biomine.cs.vcu.edu/servers/QUARTER/. Details about the web-

server are provided in Section S3 in the Supplementary Material.
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