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Abstract

Motivation: Accurate predictions of protein-binding residues (PBRs) enhances understanding of

molecular-level rules governing protein–protein interactions, helps protein–protein docking and

facilitates annotation of protein functions. Recent studies show that current sequence-based pre-

dictors of PBRs severely cross-predict residues that interact with other types of protein partners

(e.g. RNA and DNA) as PBRs. Moreover, these methods are relatively slow, prohibiting genome-

scale use.

Results: We propose a novel, accurate and fast sequence-based predictor of PBRs that minimizes

the cross-predictions. Our SCRIBER (SeleCtive pRoteIn-Binding rEsidue pRedictor) method takes

advantage of three innovations: comprehensive dataset that covers multiple types of binding resi-

dues, novel types of inputs that are relevant to the prediction of PBRs, and an architecture that is

tailored to reduce the cross-predictions. The dataset includes complete protein chains and offers

improved coverage of binding annotations that are transferred from multiple protein–protein com-

plexes. We utilize innovative two-layer architecture where the first layer generates a prediction of

protein-binding, RNA-binding, DNA-binding and small ligand-binding residues. The second layer

re-predicts PBRs by reducing overlap between PBRs and the other types of binding residues pro-

duced in the first layer. Empirical tests on an independent test dataset reveal that SCRIBER signifi-

cantly outperforms current predictors and that all three innovations contribute to its high predictive

performance. SCRIBER reduces cross-predictions by between 41% and 69% and our conservative

estimates show that it is at least 3 times faster. We provide putative PBRs produced by SCRIBER

for the entire human proteome and use these results to hypothesize that about 14% of currently

known human protein domains bind proteins.

Availability and implementation: SCRIBER webserver is available at http://biomine.cs.vcu.edu/serv

ers/SCRIBER/.

Contact: lkurgan@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Numerous protein functions, such as signal transduction, transport,

regulation, metabolism, transcription and translation, rely on inter-

actions with proteins, DNA, RNAs and small ligands (Chen and

Kurgan, 2009; Cook et al., 2015; Figeys, 2002; Konig et al., 2012;

Xie et al., 2011). Elucidation of protein–protein interactions (PPIs)

assists development of PPI networks (De Las Rivas and Fontanillo,

2012), facilitates annotation of protein functions (Ahmed et al.,

2011; Orii and Ganapathiraju, 2012), provides insights into

molecular mechanisms of diseases (Kuzmanov and Emili, 2013;

Nibbe et al., 2011), and finds applications in the discovery of novel

therapeutics (Petta et al., 2016; Sperandio, 2012). Information

about native PPIs is archived in several databases including Mentha

(at the protein level) (Calderone et al., 2013), BioLip (at residue

level) (Yang et al., 2012) and Protein Data Bank (PDB) (at atomic

level) (Berman et al., 2000). However, these resources provide ac-

cess to only a relatively modest amount of PPIs, e.g. 741 thousand

PPIs in Mentha and 21 thousand in BioLip. Significant majority of
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PPIs remain to be discovered when we factor in that over 133 mil-

lion proteins were already sequenced (UniProt, 2015) and that PPIs

are highly promiscuous (Meng et al., 2016; Patil et al., 2010; Peleg

et al., 2014). Computational predictors of PPIs help to bridge this

annotation gap. These methods make predictions from either pro-

tein structure or protein sequence (Esmaielbeiki et al., 2016;

Maheshwari and Brylinski, 2015). A high quality structural model is

not available for all proteins in a genome, and methods that incorp-

orate structural features are not always robust to issues with the

quality of the structural model (Maheshwari and Brylinski, 2015).

Thus, it is important to continue to improve sequence-based PPI pre-

dictors that can be applied to all sequenced proteins without the

need for computationally costly structurally modeling. The

sequence-based methods can be subdivided into protein level

approaches, which predict interactions between proteins treated as

units, and residue level approaches that predict protein binding resi-

dues (PBRs) (Zhang and Kurgan, 2018). We focus on the latter

group that provides more detailed information.

Recent survey lists 16 sequence-based predictors of PBRs (Zhang

and Kurgan, 2018). They include ISIS (Ofran and Rost, 2007),

SPPIDER (Porollo and Meller, 2006), methods by Du et al. (Du

et al., 2009) and Chen et al. (Chen and Jeong, 2009), PSIVER

(Murakami and Mizuguchi, 2010), predictor by Chen et al. (Chen

and Li, 2010), HomPPI (Xue et al., 2011), LORIS (Dhole et al.,

2014), SPRINGS (Singh et al., 2014), methods by Wang et al.

(Wang et al., 2014) and Geng et al. (Geng et al., 2015), CRF-PPI

(Wei et al., 2015), PPIS (Liu et al., 2016), iPPBS-Opt (Jia et al.,

2016), SPRINT (Taherzadeh et al., 2016) and SSWRF (Wei et al.,

2016). A recent comparative analysis has discovered a substantial

flaw shared by these methods (Zhang and Kurgan, 2018). Namely,

they are unable to accurately separate residues that bind other mole-

cules, such as DNA, RNA and small ligands, from PBRs. Empirical

analysis using a well-annotated dataset shows that the most accurate

SSWRF method cross-predicts 28% DNA-binding residues, 32%

RNA-binding and 19% small ligand-binding residues as PBRs, and

that it predicts the same fraction of PBRs among the native PBRs as

among the native nucleic acid-binding residues (Zhang and Kurgan,

2018). Overall, when setting up these methods to predict the correct

number of PBRs (equal to the number of native PBRs), they offer

sensitivity between 19 and 32% while at the same time cross-

predicting a comparable fraction of between 19 and 38% of the

other types of binding residues as PBRs (Zhang and Kurgan, 2018).

This suggests that these methods essentially predict all binding resi-

dues, instead of making predictions for specific interaction partners.

This is because they utilize biased training datasets that include only

protein-binding proteins, without a sufficient population of residues

that bind other protein partners (Zhang and Kurgan, 2018).

Inclusion of the latter set of residues is crucial to develop models

that accurately differentiate between PBRs and residues that interact

with other partners. Moreover, these methods rely on inputs pro-

duced with PSI-BLAST that for an average-size protein chain

requires over 3 min of runtime, making whole genome-scale use

difficult.

We introduce SCRIBER, a novel sequence-based predictor of

PBRs. Our aims are to significantly reduce cross-predictions, offer

higher predictive quality and reduce runtime when compared with

the current methods. We incorporate four innovations to accomplish

these aims:

• We develop and utilize a new and high-quality dataset that cov-

ers interactions with multiple partners including proteins, DNA,

RNA and small ligands.

• We design an original architecture that employs predictions of

binding residues for several partner types (proteins, DNA, RNA

and small ligands) to effectively reduce cross-prediction of the

output PBRs.
• We use novel predictive inputs and effectively combine the novel

and previously used input types.
• We use much faster and more sensitive HHblits (compared to

PSI-BLAST used by the other methods) (Remmert et al., 2012)

and several other computationally-efficient tools to ensure that

SCRIBER needs low amount of runtime (<1 min for an average

size protein).

2 Materials and methods

2.1 Selection of current predictors for comparative

analysis
We empirically compare SCRIBER with representative set of current

predictors. Similar to the recent comparative review (Zhang and

Kurgan, 2018), the criteria used to select these methods are: i) avail-

ability of webserver or source code; ii) ability to produce prediction

for an average size protein sequence within 30 min; and iii) outputs

that include both binary scores (PBR versus non-PBR) and numeric

propensity for protein binding. The latter is necessary to compute

the commonly used measures of predictive performance.

Consequently, we select 7 out of the 16 current predictors that sat-

isfy these criteria: SPPIDER (Porollo and Meller, 2006), PSIVER

(Murakami and Mizuguchi, 2010), LORIS (Dhole et al., 2014),

SPRINGS (Singh et al., 2014), CRF-PPI (Wei et al., 2015), SPRINT

(Taherzadeh et al., 2016) and SSWRF (Wei et al., 2016).

2.2 Benchmark dataset
We generate a high-quality dataset to train and test SCRIBER by fol-

lowing procedure introduced in the recent comparative survey of the

sequence-based predictors of PBRs (Zhang and Kurgan, 2018). This

dataset includes proteins that interact with proteins, RNA, DNA

and small ligands, and provides high coverage of native binding resi-

dues by combining annotations across multiple complexes that share

the same protein. The data was sourced from the BioLip database

(Yang et al., 2012) that was extended by the authors to include pro-

tein–protein interactions. The BioLip data is compiled using protein

complexes from PDB that were solved with resolution �2.5 Å.

Residues in these complexes are defined as binding if the distance

between an atom of these residues and an atom of a given protein

partner <0.5 Å plus the sum of the Van der Waal’s radii of the two

atoms (Yang et al., 2012). We process the BioLip data to improve

quality and uniformly sample proteins. First, we remove protein

fragments. Second, we map BioLip sequences into UniProt records

to collect binding residues across different complexes where the

UniProt protein is shared, i.e. we transfer annotations of binding res-

idues onto the same UniProt sequence. Third, we cluster the UniProt

chains with a threshold of 25% similarity using Blastclust (Altschul

et al., 1997). We select one protein from each cluster, the one that

was the most recently released in UniProt, to ensure uniform sam-

pling of proteins. Finally, we divide the resulting 1291 proteins into

the TRAINING and TEST datasets. We ensure that proteins in the

TEST dataset have <25% similarity with the proteins in our

TRAINING dataset and in the training datasets of the 7 predictors

that are included in the comparative analysis (see Section 2.1). We

use Blastclust to cluster the 1291 proteins together with the proteins

from the training datasets of the 7 methods at 25% similarity. 1120

proteins that share <25% similarity with the training proteins used
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by the considered 7 predictors (they are in clusters that do not in-

clude any proteins from the 7 training datasets) are used to derive

the TEST dataset. Since the selected 7 predictors are computational-

ly expensive we limit the size of the TEST dataset to a randomly

selected subset of 40% of the 1120 proteins (448 proteins). The

remaining part of the set of 1291 proteins (which includes proteins

similar to the training datasets of the 7 methods and that share

<25% similarity to the TEST proteins) makes up the TRAINING

dataset. Table 1 summarizes the TRAINING and TEST datasets and

includes information about protein-, RNA-, DNA- and small ligand-

binding residues. Supplementary Table S1 compares sizes of datasets

used to train and test this and the other seven predictors. It reveals

that our datasets are 2.3 and 2.2 times larger compared to the larg-

est previously used training and test datasets, respectively.

2.3 Evaluation setup
SCRIBER and the other 7 predictors output both binary (PBR versus

non-PBR) and real-valued predictions (propensity for protein bind-

ing). We use the evaluation criteria from (Zhang and Kurgan,

2018). We assess the binary predictions using sensitivity (SN), speci-

ficity (SP), precision (PRE), accuracy (ACC), F1-measure (F1),

Matthews correlation coefficient (MCC) and cross-prediction rate

(CPR):

Sensitivity ¼ TP

TPþ FN
(1)

Specificity ¼ TN

TN þ FP
(2)

Precision ¼ TP

TPþ FP
(3)

Accuracy ¼ TPþ TN

TPþ FN þ TN þ FP
(4)

F1�measure ¼ 2� Sensitivity� Precision

Sensitivityþ Precision
(5)

MCC¼ TP�TN�FN�FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ� ðTPþFPÞ� ðTNþFPÞ� ðTNþFNÞ

p (6)

CPR ¼
FPDNA þ FPRNA þ FPligand

NDNA þNRNA þNligand
(7)

where true positives (TP) and true negatives (TN) are the correctly

predicted PBRs and non-PBRs, respectively, false positives (FP) are

non-PBRs incorrectly predicted as PBRs, and false negatives (FN)

are PBRs incorrectly predicted as non-PBRs. CPR is the fraction of

the other types of binding residues (DNA-binding, RNA-binding

and small ligand-binding residues) that are cross-predicted as PBRs.

We calibrate the binary predictions to allow for a reliable side-

by-side comparison between different predictors on the test dataset.

The calibration ensures that the number of predicted PBRs

generated by each predictor equals to the number of native PBRs,

allowing for side-by-side comparison of binary predictions across

different methods. We generate the binary predictions from the pro-

pensities using a threshold (residues with putative propensities >

threshold are labelled as PBRs and the remaining residues as non-

PBRs), and we ensure that the selected threshold provides the

desired number of putative PBRs. We note that the entire training

process of the SCRIBER model relies on the native annotations, and

above calibration is applied only to binarize predictions on the test

dataset.

The putative propensities are assessed with the area under re-

ceiver operating characteristic curve (AUC), area under precision-

recall curve (AUPRC), and area under cross-prediction curve

(AUCPC). The receiver operating characteristic curve plots TPR

(true positive rate) ¼ TP/(TPþFN) against FPR (false positive rate)

¼ FP/(FPþTN) that are computed by binarizing the propensities

using thresholds equal to all unique values of the propensities. The

precision-recall curve plots precision against TPR, while cross-

prediction curve is a relation of CPR against TPR, both computed

using the same thresholds as the receiver operating characteristic

curve. Given the imbalanced nature of our datasets (only about

14% of residues are protein binding, see Table 1), we also quantify

the AULC (Area Under the Low false positive rate ROC Curve)

value. AULC is the area under the receiver operating characteristic

where the number of predicted PBRs � number of native PBRs, i.e.

where FPR is relatively low. Since AULC values are relatively small,

we normalize them by dividing the measured value by the AULC of

a random predictor. AULCratio ¼ 1 means that a given method is

equivalent to a random predictor while AULCratio > 1 quantifies

the rate of improvement over the random predictor.

The design and parametrization of SCRIBER are carried exclu-

sively on the TRAINING dataset using 5-fold cross-validation with

the aim to maximize AUC. The final, already parametrized version

of the model is trained on the TRAINING dataset is than applied on

the TEST dataset, and the corresponding results are compared with

the 7 other predictors.

We evaluate significance of the differences in predictive quality

measured on the TEST dataset between SCRIBER and each of the

other 7 predictors. This quantifies robustness of the improvements

offered by SCRIBER by sampling a range of test sets drawn from the

TEST dataset. More specifically, we compare results over ten tests,

each based on randomly selected 50% of TEST proteins. We use the

Anderson-Darling test at 0.05 significance level to check if a given

set of measurement is normal. We apply the t-test to quantify signifi-

cance of differences for normal measurements, otherwise we use the

Wilcoxon rank sum test. Differences with P-value < 0.05 are

assumed statistically significant.

2.4 Architecture of the SCRIBER predictor
SCRIBER predicts protein-binding resides using a two-layer design

(Fig. 1). The first layer converts the input protein sequence into a

comprehensive profile that represents structural, evolutionary and

physiochemical properties which are relevant to binding. This

Table 1. Summary of the datasets

Dataset Number

of proteins

Number and fraction of different types of residues Total number

of residues
Protein-binding DNA-binding RNA-binding Small ligand-binding Non-binding

TRAINING 843 32 253 (14.3%) 1399 (0.6%) 1508 (0.7%) 13 643 (6.1%) 179 615 (79.2%) 225 299

TEST 448 15 810 (13.6%) 557 (0.5%) 696 (0.6%) 7175 (6.2%) 93 857 (80.6%) 116 500

Prediction of protein-binding residues i345
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profile is processed by five machine learning (ML) models to pro-

duce putative propensities for protein-, RNA-, DNA-, small ligand-

and ‘other’-binding. The ‘other’-binding label combines nucleic

acids and small ligand binding to represent all binding residues ex-

cept for the PBRs. The second layer utilizes these propensities and a

ML model to predict propensities for protein-binding, with the goal

to reduce the cross-predictions when compared to the propensities

produced in the first layer. The predictions are generated for each

residue in the input protein chain using information extracted from

a sliding window centered on the predicted residue. We do not pad

the window at the termini of the sequence, but we rather narrow the

window size on the side of the terminus. While multi-layer designs

were used in the past, SCRIBER’s architecture is novel in the sense

of using predictions of binding to multiple types of partners as

inputs to accurately and specifically predict PBRs in the second

layer. The other innovative aspects include use of novel predictive

inputs, design of predictive inputs that combine structural, physico-

chemical and evolutionary characteristics of the input sequence, and

application of computationally efficient methods to produce the

profile. Details are provided in Section 2.5.

2.5 Design of the first layer
The design of the first layer includes rational delineation of the

scope of the profile, selection of methods that are used to compute

the profile, construction of a feature vector that is generated from

the profile, feature selection and training/optimization of the ML

models:

• Sequence profile. A recent survey shows that key properties rele-

vant to characterization and prediction of PBRs and nucleic acid-

binding residues include amino acid-level propensity for binding,

solvent accessibility, evolutionary conservation, hydrophobicity,

polarity and charge (Zhang et al., 2017). These are motivated by

the observations that the binding residues tend to locate on the

protein surface and are typically evolutionarily conserved, and

because some amino acid types are more likely to interact with

certain protein partners. Moreover, charged residues are import-

ant for interactions with DNA and RNA (Ellis et al., 2006;

Lejeune et al., 2005) while polar residues are relevant to protein–

protein and protein–DNA interactions (Zhang et al., 2017).

Correspondingly, the profile includes putative relative solvent

accessibility (RSA), evolutionary conservation (ECO), relative

amino acid propensity (RAAP) for binding, and the selected rele-

vant physiochemical properties (charge, hydrophobicity and po-

larity). Importantly, we add a comprehensive set of novel inputs

(in the context of this prediction) generated from the protein se-

quence. This novel part of the profile includes putative protein-

binding intrinsically disordered regions, putative secondary

structure (SS) and selected physicochemical properties of amino

acids (aliphaticity, aromaticity, acidity and size). Inclusion of the

intrinsic disorder is motivated by its enrichment in protein–

protein, protein–DNA and protein–DNA binding (Dyson, 2012;

Peng and Kurgan, 2015; Peng et al., 2014b; Peng et al., 2017;

Varadi et al., 2015; Wang et al., 2016; Wu et al., 2015).
• Computation of profile. The RSA values are predicted with ac-

curate and fast ASAquick method (Faraggi et al., 2014). The

ECO values are computed from the outputs generated with fast

and sensitive HHblits (Remmert et al., 2012). The RAAP scores

are calculated using an approach described in (Zhang et al.,

2017). The putative protein-binding disorder is produced with

computationally efficient ANCHOR (Dosztanyi et al., 2009)

while secondary structure is predicted with fast version of PSI-

PRED that does not utilize multiple alignments (Buchan et al.,

2013). The physiochemical properties are quantified using the

AAindex resource (Kawashima et al., 2007). We emphasize that

the entire profile is generated utilizing computationally efficient

methods, resulting in a runtime-efficient implementation of

SCRIBER.
• Construction of feature vector from the profile. The profile is

converted into a fixed-size vector of numeric features. This is ne-

cessary to use the ML models. Prediction for a given residue in

the input protein chain is based on features that quantify profile-

based properties for 1) individual amino acids in the near vicinity

of the predicted residue (up to two residues away); 2) averaged

properties in 11-residues long sliding window centered on the

predicted residue; and 3) relative position of nearest structurally/

physicochemically/evolutionarily-defined residue. The first two

categories of features are consistent with the design of features

for related methods (Peng and Kurgan, 2015; Peng et al., 2017;

Zhang and Kurgan, 2018; Zhang et al., 2017). The selected

Fig. 1. Flowchart of the SCRIBER predictor. The first layer predicts putative propensities for DNA-binding (red font), RNA-binding (violet), small ligand-binding (or-

ange), other-binding (blue; includes DNA, RNA and small ligands) and protein-binding (green) residues. These propensities are combined in the second layer to

re-predict PBRs, with emphasis on reducing cross-predictions between protein binding and other-binding residues
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window size corresponds to an average window size used by the

current predictors (Zhang and Kurgan, 2018). The innovative

aspects of our feature encoding include: i) use of features that

quantify the novel parts of the profile; ii) development of features

that combine multiple structural, physicochemical and evolution-

ary properties, e.g. presence of conserved residues on putative

protein surface or presence of conserved disordered residues; and

iii) design of the relative position-defined features. The latter

novel feature set quantifies linear distance (in sequence positions)

to the nearest structurally/physicochemically/evolutionarily-

defined residue, e.g. distance to the nearest conserved residues or

nearest solvent exposed residue. We use the profile to generate

total of 1090 features, including 232 features based on the previ-

ously used inputs and 858 that rely on the novel part of the pro-

file. Supplementary Table S2 details calculation of these features.
• Feature selection. Some of the considered 1090 features may not

be relevant to the prediction of PBRs and some could be redun-

dant. We empirically compare three feature selection methods:

ML model-specific approach, filter-based selection and wrapper-

based selection. Each feature selection approach is parametrized

to maximize predictive quality (measured with AUC) based on 5-

fold cross validation on the TRAINING dataset. This is done for

each of the five predictors used in the first layer (Fig. 1); i.e. pre-

dictors of DNA-, RNA-, protein-, small ligand- and other-

binding residues. The first approach applies the LASSO method

that embeds feature selection into optimization of the regression

model, which is used for the prediction of PBRs (use of regression

is motivated in the next paragraph). We use LASSO implementa-

tion in MATLAB and we parametrize the number of regulariza-

tion coefficients. The second approach is a simple filter that does

not rely on the use of the ML model. First, we quantify predictive

value of each feature based on the AUC computed when this fea-

ture is used individually to make predictions of PBRs. Next, we

select a subset of features for which AUCs are greater that a para-

metrized threshold value. The third approach is the wrapper-

based feature selection that was used in several related studies

(Hu et al., 2018; Meng and Kurgan, 2018; Mizianty et al., 2010;

Yan et al., 2016; Yan and Kurgan, 2017) and which chooses fea-

ture sets that secure highest predictive performance of the ML

model. First, like in the filter approach, we rank features by their

AUCs when they are used separately to make predictions. Next,

we incrementally add to the set of selected features using this

ranked list. More specifically, starting with the top-ranked (the

most predictive) feature, we add the next-ranked feature to

the current feature set only if this results in a higher AUC than

the AUC obtained before this feature was added (i.e. when this

inclusion improves predictive quality); otherwise the next-ranked

feature is removed. We scan the sorted feature set once. The

same three feature selection methods are used to design the se-

cond layer, and thus the corresponding empirical results are com-

pared in Section 2.6.
• Selection and training of ML models. We pick logistic regression

as the prediction model because: i) it has been recently used to

make accurate predictions of various types of functional residues

including PBRs (Zhang et al., 2017), DNA- and RNA-binding

residues (Yan and Kurgan, 2017), intrinsically disordered resi-

dues (Meng and Kurgan, 2016; Obradovic et al., 2005; Peng

et al., 2014a; Peng et al., 2017), protease cleavage sites (Song

et al., 2018) and post-translational modification sites (Li et al.,

2018); ii) it outputs real numbers in the 0 to 1 range that intui-

tively quantify propensity for protein-binding; iii) of simplicity of

this linear model which decreases chances of overfitting the

TRAINING dataset; and iv) it is computationally efficient to

train from the TRAINING dataset and to generate predictions,

when compared to other popular models such as support vector

machines and neutral networks. The runtime efficient training is

critical because SCRIBER requires completion of 18 feature se-

lection experiments (three feature selection methods for each of

the six models: five in the first layer þ one in the second layer)

that rely on calculation of thousands of regression models in the

cross-validation setting. Moreover, the fast predictions facilitate

applications on a genomic scale and allow us to apply SCRIBER

to analyze PBRs in the human proteome.

2.6 Design of the second layer
The five predictions from the first layer are used as inputs to the se-

cond layer that applies a separate regression model to (re-)predict

PBRs with the goal to reduce cross-predictions with the other types

of binding residues. We exploit an empirical observation that cor-

rectly predicted interacting amino acids typically cluster in the pro-

tein sequence (Zhang et al., 2017). For instance, residues predicted

as DNA-binding the first-layer regression that are nearby many

other AAs that are also predicted to interact with DNA and fewer

residues predicted as PBRs are more likely to in fact interact only

with DNA; this way we can eliminate the cross-predicted PBRs.

Correspondingly, we encode the five predictions using features that

quantify the five sets of propensities generated in the first layer for

both individual residues located nearby the currently predicted

amino acid and an aggregated propensity (using average and stand-

ard deviation) in a sequence window centered on that residue.

Supplementary Table S3 details the corresponding set of 175 fea-

tures. Like in the first layer, we perform three feature selections to

optimize the regression model in the second layer, i.e. to maximize

its AUC in the cross-validation on the TRAINING dataset. We em-

pirically compare predictive performance offered by the correspond-

ing models to select the best option. After parametrization on the

TRAINING dataset was completed, we apply the three models to

make predictions on the TEST dataset. The model that relies on the

filter-based feature selection secures the lowest predictive perform-

ance, with AUC ¼ 0.665 and AUPRC ¼ 0.266. The second best

LASSO selection-based predictor secures AUC ¼ 0.691 and AUPRC

¼ 0.266. The wrapper selection-derived model secures the best per-

formance with AUC ¼ 0.715 and AUPRC ¼ 0.287. Consequently,

SCRIBER is implemented using the latter approach that selected 81,

88, 225, 223 and 249 features to make predictions of DNA-, RNA-,

protein-, small ligand- and other-binding residues in the first layer,

respectively, and 46 features for the model in the second layer.

Figure 2, which directly compares the three sets of results, also

reveals that the wrapper-based selection produces the model with

the lowest amount of cross-predictions; i.e. CPR ¼ 0.116 for

SCRIBER versus 0.127 for the LASSO-based predictor and 0.129

for the filter-based predictor.

3 Results

3.1 Improvement in predictive performance due to the

use of novel design strategies
SCRIBER relies on three novel design ideas: i) ‘novel features’: use

of features that quantify new inputs that we included in the sequence

profile; ii) ‘combined features’: use of innovative features that com-

bine information across different protein properties included in the

profile; and iii) ‘second layer’: use of the second layer that combines

putative propensities for protein, DNA, RNA and small ligand
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binding generated in the first layer to improve prediction of PBRs.

We perform an ablation study that quantifies improvements brought

by these innovative ideas by comparing the complete SCRIBER

model with its several versions that exclude these ideas. More specif-

ically we compare SCRIBER with MODEL1 that excludes all three

ideas (no novel features, no combined features and no second layer),

i.e. we use the prediction of PBRs generated in the first layer using

the remaining features; MODEL2 that does not use the combined

features and the second layer but uses the novel features; and

MODEL3 that does not use the second layer but applies both novel

and combined features. Supplementary Table S4 provides a com-

plete set of results for these four models on the TEST dataset, while

Figure 2 summarizes the four arguably key measures: AUC, AUPRC

(area under precision-recall curve), CPR (cross-prediction rate) and

AUCPC (area under cross-prediction curve). We observe a substan-

tial improvement in predictive performance when moving from the

simplest MODEL1 that excludes all novel design ideas to MODEL2

that includes just the novel features. AUC and AUPRC improve

from 0.647 to 0.691 and from 0.219 to 0.256, respectively, and

cross predictions are reduced with AUCPC decreasing from 0.374 to

0.340. MODEL3 that includes both novel and combined features

provides improvements compared to MODEL2, with AUC and

AUPRC going up to 0.712 and 0.281, respectively, and AUCPC

going further down to 0.313. Finally, SCRIBER that differs from

MODEL3 by inclusion of the second layer provides slightly higher

overall predictive quality (AUC ¼ 0.715 for SCRIBER versus 0.712

for MODEL3; AUPRC ¼ 0.287 versus 0.281) while significantly

reducing the cross predictions (AUCPC ¼ 0.282 for SCRIBER versus

0.313 for MODEL3, P-value ¼ 0.00026; CPR ¼ 0.116 versus

0.125, P-value ¼ 0.04). This is because the main objective behind

the design of the second layer is to decrease the cross-predictions ra-

ther than to improve prediction of PBRs. Moreover, Supplementary

Table S4 shows that SCRIBER significantly outperforms MODEL1

and MODEL2 on all measures of predictive quality (P-values �
0.0026). Overall, the consistent improvements over the consecutive

versions (Fig. 2) clearly demonstrate that each of the three novel

designs strongly contributes to the SCRIBER’s predictive

performance.

3.2 Comparative assessment of predictive performance
Comparison with the seven representative predictors of PBRs

(Table 2) reveals that SCRIBER produces the most accurate predic-

tions. These improvements are statistically significant when

compared with each of the seven predictors and for all 12 evaluation

measures (P-values < 0.007). Compared to the second best SSWRF,

SCRIBER provides AUC ¼ 0.72 versus 0.69 (P-value ¼ 0.00002),

AUPRC ¼ 0.29 versus 0.26 (P-value ¼ 0.00005), AULCratio ¼ 3.7

versus 3.1 (P-value ¼ 0.000003), MCC ¼ 0.23 versus 0.18 (P-value

¼ 0.00000009) and F1¼0.33 versus 0.29 (P-value ¼ 0.0000001).

Moreover, when setup to predict the correct number of PBRs (equal

to the number of native PBRs), SCRIBER improves sensitivity by

5% (0.334 versus 0.288) while also providing s slightly higher speci-

ficity (0.896 versus 0.891). The corresponding ROC curves and

precision-recall curves are shown in Supplementary Figure S1A and

B, respectively. They demonstrate that SCRIBER provides the high-

est TPRs for FPRs < 0.73 and the highest precision over the entire

rage of recall, both with a wide margin ahead of the second best

SSWRF method. Overall, these results suggest that SCRIBER signifi-

cantly outperforms the current sequence-based predictors of PBRs.

3.3 Assessment of cross-predictions
The low predictive performance of current methods stems from the

observation that they incorrectly recognize residues that bind other

types of protein partners as PBRs, i.e. they produce a large number

of cross-predictions. One of the main strengths of SCRIBER is that

it offers by far the lowest levels of cross-predictions, with AUCPC ¼
0.28 and CPR ¼ 0.12 (Table 2), i.e. it incorrectly predicts only 12%

of residues that bind other types of protein partners as PBRs. This

rate is comparable to the SCRIBER’s overall false positive rate ¼ 1 –

specificity ¼ 10.4% (Table 2). To compare, the second lowest CPR

¼ 0.20 is by LORIS and the highest CPR ¼ 0.38 by SPRINT, com-

pared to their false positive rates at 11.3% and 12.7%, respectively.

Correspondingly, SCRIBER reduces the cross-predictions rates by

between 41% and 69% compared to the current predictors. The

corresponding CPR curves (see Supplementary Fig. S1C), clearly

shows that SCRIBER generates much lower CPRs across the entire

range of sensitivity, with a wide margin to the second best SSWRF.

CPR values should be substantially lower than the corresponding

sensitivity since only than the rates of correct predictions for the na-

tive PBRs are higher than the rates of cross-predictions for the other

types of binding residues. This is true for SCRIBER for which the

ratio of sensitivity to CPR ¼ 0.334/0.116¼2.9 (Table 2). Only three

other methods maintain ratio greater than 1: CRFPPI with ratio ¼
1.3 and SWRF and LORIS with ratios ¼ 1.4. The other four meth-

ods have the ratios ¼ 0.97 (SPRINGS), 0.76 (PSIVER), 0.61

(SPPIDER) and 0.48 (SPRINT). This means that they predict more

PBRs among the other types of binding residues than among the na-

tive PBRs. This observation confirms results in (Zhang and Kurgan,

2018) and reveals that these tools in fact indiscriminately predict all

types of binding residues as PBRs.

We investigate the cross-predictions for specific types of residues

including native DNA-binding, RNA-binding, small ligand-binding,

non-binding and all residues (see Fig. 3). The rates across all types of

binding residues are by far the lowest for SCRIBER, with largest

improvements for the DNA-binding, small ligand-binding and

RNA-binding residues. On average, the RNA-binding residues are

the most difficult to differentiate from PBRs, with SCRIBER’s CPR

¼ 0.178, which still is much lower than CPR ¼ 0.239 for the second

best SPRINT. Overall, we conclude that only SCRIBER is truly cap-

able of specifically predicting PBRs and differentiating them from

the other types of binding residues.

Fig. 2. Comparison of predictive performance on the TEST dataset between

different designs of the SCRIBER model and different feature selections. Bars

for the AUC and AUPRC are quantified with the left y-axis, while lines and

markers for the AUCPC and CPR with the right y-axis
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3.4 Comparative assessment of false positive

predictions
PBRs are annotated using a threshold that is applied to the distance

between atoms from the two proteins, resulting in a somehow arbi-

trary inclusion/exclusion of residues that are close to that cut-off.

Moreover, PBRs tend to cluster in the sequence since this proximity

often translates into proximity in structure. This suggests that some

of the false positives that are nearby native PBRs in the sequence

could be in fact involved in binding. The corresponding conjecture is

that the residues in close proximity in the sequence to the native

PBRs are more likely to in fact bind proteins when compared to the

residues that are farther away.

Figure 4 shows distance from the nearest native PBRs in the

TEST dataset for the false positives generated by all evaluated meth-

ods (each method is calibrated to predict the same number of PBRs

¼ number of native PBRs). Inset in the figure reveals that SCRIBER

predicts arguably higher quality false positives. 50% (60%) of its

predicted PBRs are no farther than 1 residue away (3 residues away)

from a native PBR, compared to 43% (51%) for the second best

SSWRF and an average of 33% (41%) for the seven current predic-

tors. The entire SCRIBER’s curve has a much higher slope compared

to the curves of the other methods, showing that its false positives

are closer to the native PBRs. The curves do not reach the fraction

of 1 because the remaining residues are predicted in proteins that do

not have native PBRs (the distance is undefined). The corresponding

fraction of PBRs residues that are predicted for proteins that do not

interact with proteins (while they may interact with the other types

of protein partners) is the best and equals 9.5% for SCRIBER, while

is equals 12% for the second best SSWFR and 21.7% for the third

best SPPIDER. Altogether, these results strongly suggest that

SCRIBER predicts higher quality false positives.

3.5 Case study
Supplementary Figure S2 illustrates and compares predictions from

SCRIBER and the second best SSWRF for the NADP reductase

taken from the TEST dataset (Uniprot ID: O29370). SCRIBER’s

and SSWRF’s AUC for this protein is similar to the AUCs on the

TEST dataset. Moreover, this protein includes PBRs and residues

that bind NADP (a small ligand), which allows us to study the cross-

predictions. SSWRF (green markers) successfully predicts six native

PBRs (correctly focusing on the cluster of native PBRs at the C-ter-

minus) and some of its predictions are close to the native PBRs, but

at the expense of also predicting four NADP-binding residues as

PBRs. SCRIBER (dark blue markers) correctly predicts 12 native

PBRs at the cost of 2 incorrect predictions located at the native

NADP site. Moreover, these two false positives are in the cluster of

PBRs at the C-terminus and are only 1 or 2 residues away from a na-

tive PBR. When comparing SCRIBER with the prediction from its

first layer (light blue markers), this case study shows that addition of

the second layer has substantially reduced the cross-predictions

(from 7 to 2) at the expense of a modest reduction of the correct pre-

dictions of PBRs (from 17 to 12). Overall, the SCRIBER’s outputs

offer a reasonably accurate approximation of the location of the na-

tive PBRs while excluding the other types of binding events.

3.6 Comparative evaluation of runtime
Runtime is an important consideration, particularly when consider-

ing large-scale applications that target big protein families or

genomes. The main bottleneck of the existing tools is that they re-

quire PSSM generated with PSI-BLAST (Altschul et al., 1997).

Furthermore, four of these methods (SPRINGS, LORIS, CRF-PPI

and SSWRF) also use solvent accessibility produced by SANN (Joo

et al., 2012). We use the time to compute the results with PSI-

BLAST alone and with PSI-BLAST and SANN to approximate the

lower bound of the runtime for these methods. We note that

SCRIBER applies much faster HHblits and ASAquick to compute

the same information. We consider complete prediction process

(including computation of the entire profile, calculation of features

and generation of propensities with the six regressions) to quantify

runtime for SCRIBER. All computations were done on the same

hardware (PC with i5 CPU and 8GB RAM) allowing us to directly

compare the results. We focus on relative differences in the runtime

rather than absolute values since the latter depend on the hardware

used.

We measure runtime in the function of chain length for 200 pro-

teins from the TEST dataset that uniformly sample the sequence

length. Figure 5 summarizes the measured time for SCRIBER, PSI-

BLAST (that estimates lower bound of runtime for SPPIDER,

SPRINT and PSIVER) and PSI-BLASTþSANN (that approximates

lower bound of runtime for SPRINGS, LORIS, CRF-PPI and

SSWRF). The three runtime measurements scale linearly with the

Fig. 4. Distance between the predicted PBRs and the nearest native PBRs

measured as the number of positions in the sequence for the proteins in the

TEST dataset. The y-axis shows fractions of putative PBRs that are � distance

shown on the x-axis away from the nearest PBR. Inset in the lower right cor-

ner shows the results for the low values of the distance

Fig. 3. Cross-prediction rates (CPRs) for the native DNA, RNA and small ligand

binding residues, over-prediction rates (OPRs) for the native non-binding resi-

dues, and Error Rates ¼ 1 – accuracy on the TEST dataset

i350 J.Zhang and L.Kurgan

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/14/i343/5529226 by Virginia C
om

m
onw

ealth U
niversity Libraries user on 02 August 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz324#supplementary-data
Deleted Text: ,
Deleted Text: ,


protein length, with SCRIBER having the smallest/best slope of the

linear fit. SCRIBER also offers by far the fastest predictions, with

runtime between 4 and 7.1 times faster (depending on the chain

length) than PSI-BLASTþSANN and 3 to 5.5 times faster than PSI-

BLAST. For an average length chain (approx. 300 residues)

SCRIBER takes about 45 s per proteins, compared to PSI-BLAST

that needs 194 s and PSI-BLASTþSANN that requires 246 s. Since

the latter two are just lower bounds of the actual runtimes, these

results indisputably show that SCRIBER offers substantially faster

predictions.

3.7 Protein binding domains in the human proteome
First, we investigate whether SCRIBER accurately predicts protein-

binding domains in the TEST dataset. We use Pfam (El-Gebali et al.,

2019) to annotate total of 600 domains in the TEST proteins, and

we map the native and putative PBRs into these domains. Figure 6

compares the corresponding fractions of domains with a given min-

imal number of native (black line) and putative (dark blue line)

PBRs. We performed the Kolmogorov-Smirnov test to investigate

whether these cumulative distributions for the native and putative

PBRs are statistically different. The test rejected the hypothesis that

they are different (P-value ¼ 0.08), suggesting that SCRIBER rela-

tively accurately estimates number of PBRs per domain. Given this

result, we use the computationally efficient SCRIBER to predict

PBRs in the complete human proteome (18 568 human proteins)

collected from UniProt (UniProt, 2015), which we also annotated

with 44 886 domains collected from Pfam (see the light blue line in

Fig. 6). Past analyses of structures of protein–protein complexes

show that these binding interfaces cover more than 37 amino acids

(only 3% were shown to be smaller), while large interfaces cover at

least 112 amino acids and are primarily found among homodimers

(Bahadur et al., 2004; Bahadur and Zacharias, 2008). We use these

two cut-offs to annotate the corresponding protein-binding domains

and protein-binding domains that have large interfaces (see two ver-

tical dashed lines in Fig. 6). The fractions of the corresponding

protein-binding domains in the TEST datasets that are estimated

using the native and putative PBRs are very similar: 21% versus

23% for all protein-binding domains, and 0% versus 2% for the

protein-binding domains that have large interfaces. Using this ana-

lysis, we estimate that about 14% of the currently known domains

in human proteins are protein-binding, and about 4% have large

interfaces and thus are likely to be formed by homodimers. The pre-

computed putative PBRs and domain annotations for the human

proteome are available on the SCRIBER’s website at http://biomine.

cs.vcu.edu/servers/SCRIBER/.

3.8 SCRIBER webserver
A webserver that implements SCRIBER is freely available at http://

biomine.cs.vcu.edu/servers/SCRIBER/. SCRIBER requires only the

FASTA-formatted protein sequences as input. Users should provide

email address where we send link to the results, once the prediction

is completed. The same link is also provided in the browser window,

but the window has to be open for the duration of the prediction. A

single request can service batch predictions of up to ten protein

chains. The server takes about 30 s to predict a query sequence

about 200 residues. The server outputs the putative propensities for

protein-, DNA-, RNA- and small ligand-binding generated by its

first layer, and the putative protein-binding propensities and anno-

tated PBRs produced by the second layer. The results are available

via an HTML page and a parsable comma-separated text file. We

archive the results, which can be accessed via the link, for at least

one month.

4 Summary and conclusions

Recent years have witnessed the development of over a dozen

sequence-based predictors of PBRs. However, these methods are

only modestly accurate and produce many cross-predictions.

SCRIBER outperforms the current methods by providing both statis-

tically significantly better predictive performance and significantly

reduced cross-predictions. Empirical analysis demonstrates that

SCRIBER is the only method that can accurately differentiate PBRs

from the other types of binding residues. The empirical tests also re-

veal that the novel design ideas implemented in SCRIBER strongly

Fig. 5. Runtime of SCRIBER and the lower bound of runtime for the other

seven methods. SPPIDER, SPRINT and PSIVER runtime is estimated by the

calculation of the PSSM with PSI-BLAST that they utilize to make predictions.

Runtime of SPRINGS, LORIS, CRF-PPI and SSWRF is estimated by the com-

bined time to calculate PSSM with PSI-BLAST and to predict RSA with SANN

that these methods apply to predict PBRs. We use the uniprot90 database

with 3 iterations of PSI-BLAST to calculate PSSMs, and default parameters

and nndb database to run SANN. The y-axis shows runtime in seconds. The

x-axis quantifies protein length. Each point reports median measurement of

runtime and chain length, measured on 20 proteins drawn from the TEST

dataset in the corresponding length range. Standard deviations of the chain

length and runtime are denoted by whiskers. The lines show linear fit into the

measured median values. Values next to the PSI-BLAST and PSI-

BLASTþSANN lines reflect the ratio of these measurements to the corre-

sponding value for SCRIBER, e.g. 4.7 in the lower left corner means that the

PSI-BLAST’s runtime for short chains is 4.7 times higher than the SCRIBER’s

runtime

Fig. 6. Fraction of domains that have a given minimal number of native and

putative PBRs domains in the TEST dataset and the human proteome
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contribute to its high predictive performance. These innovations

includes use of novel and combined input features and application

of putative propensities for protein-, DNA-, RNA- and small ligand-

binding to reduce cross-predictions of PBRs. We show that

SCRIBER predicts higher quality false positives (located closer to

the native PBR) than the current predictors; i.e. about 60% of PBRs

predicted by SCRIBER are no farther than 3 residues away from a

native PBR. Furthermore, our conservative estimates demonstrate

that SCRIBER’s predictions are generated at least three times faster

than the results of the current tools. Altogether, we conclude that

SCRIBER delivers accurate, partner type-specific and runtime-

efficient sequence-based predictions of PBRs.

Recent literature shows that the current sequence-based predic-

tors of PBRs find various practical applications including estimation

of protein–protein binding affinity (Lu et al., 2018) and functional

characterization of a wide array of proteins (Banadyga et al., 2017;

Burgos et al., 2015; Mahboobi et al., 2015; Mahita and

Sowdhamini, 2017; Ntostis et al., 2015; Wiech et al., 2015; Yang

et al., 2017; Yoshimaru et al., 2017). They are also applied in the

context of personalized medicine as part of a platform for prediction

of functional effects for single point variants or mutations (Hecht

et al., 2015). Availability of more accurate and faster tools, such as

SCRIBER, is likely to attract additional users and open other areas

of applications.

One of the SCRIBER’s limitations is that it does not provide in-

formation about the binding partner(s) for the predicted PBRs. The

corresponding partner-specific methods predict residues involved in

a particular PPI; i.e. inter-protein residue-residue contacts. A few

such predictors that rely on machine learning-derived models were

published in recent years (Ahmad and Mizuguchi, 2011; Fout et al.,

2017; Minhas et al., 2014; Sanchez-Garcia et al., 2019). They make

accurate predictions when using protein structures as the input while

their sequence-based versions are substantially less accurate

(Sanchez-Garcia et al., 2019). These versions use rather simple pro-

files that include the sequence itself, evolutionary information and

putative solvent accessibility. SCRIBER-inspired architecture that

uses more comprehensive profile should provide improvements

when used for the partner-specific predictions. We are also planning

to extend SCRIBER to predict interactions with other biomolecules,

such as DNA, RNA and small ligands. This extension should be

addressed with multi-labels models to accommodate for the fact

that some amino acids interact with multiple types of partners. So

far only a few methods that predict binding residues for multiple

partner types are available (Carson et al., 2010; Peng and Kurgan,

2015; Peng et al., 2017; Su et al., 2018; Wang et al., 2010; Yan and

Kurgan, 2017; Zhang et al., 2017), and none of them covers such a

wide range of partners or applies multi-label models.
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