
Shaping the Software Option at the University of Alberta

Lukasz Kurgan, Scott Dick, Petr Musilek, and Marek Reformat
University of Alberta

Department of Electrical and Computer Engineering
ECERF, 2nd Floor

Edmonton, Alberta, Canada T6G 2V4
{lkurgan, dick, reform, musilek}@ece.ualberta.ca

Abstract

Teaching Software Engineering (SE) is a

challenging task. There is a broad spectrum of topics
which are part of the SE discipline, and it is not
possible to cover all of them. What is needed is a
representative set of subjects which demonstrate to
students the fundamental aspects of SE and increase
their understanding of the tasks and problems SE deals
with. An additional difficulty is the need to overcome
the students’ perceptions about SE, which are
substantially different from real-world practice.

 The Computer Engineering - Software Option
degree is a fairly new undergraduate program at the
University of Alberta. The program is currently being
reshaped from its original version. These
modifications account for CEAB accreditation
requirements, new facilities, students’ feedback, and
new approaches in delivering course content to the
students. The paper gives an overview of the changes
and our experiences in teaching SE courses by
highlighting several exciting developments.

1. Introduction

The Computer Engineering - Software Option (SO)
degree in the Department of Electrical and Computer
Engineering at the University of Alberta was created in
the late 90’s, with the first cohort graduating in 2003.
The program currently has about 80 students, and is
supported by several full-time faculty members and
two lab technicians. It is a fairly new undergraduate
program with the long-term goal of delivering an
industry-relevant, lab-based, and practical SE
background to the SO stream students. Since its
foundation, the program has undergone a steady
evolution that will be finalized in the 2005-2006
academic year. The changes accommodate for a variety
of factors, like accreditation requirements, new faculty
and facilities, students’ feedback, and new

developments in the SE domain. This paper highlights
several main factors that were identified to have an
impact on the program, and solutions that are either
currently deployed or will shortly be rolled out in the
program.

In practice, teaching SE is difficult because students

often do not understand the seriousness of the
knowledge that is conveyed to them. We have
observed that a recurring theme in the classes is a lack
of belief in software engineering as a true engineering
discipline. Although the SO is offered to engineering
students, they appear to arrive with a preconception
that software development is akin to a craft, rather than
an engineering process. At the University of Alberta,
undergraduate computer engineering students are first
exposed to general engineering courses; and can thus
be presumed to have begun developing the engineering
“set of mind.” Despite this, it is difficult to persuade
students to apply that “set of mind” to their software
engineering courses.

Our experience has been that the students’ first

reaction is that SE more an artistic process than an
engineering one. Specific challenges that were
encountered, which are similar to those described in
[19], are:
1. Student’s immaturity. The majority of the students

have little or no exposure to industrial software
development, being first-time-in-college students
straight out of high school. Virtually none of the
students currently in the program are non-
traditional students with industrial experience.

2. Unexpected ways of doing business. Before the
students take the SO courses, they complete a
series of computer engineering classes, and simply
expect that SE is no more then just a coding
activity. They have yet to understand that it also
includes many software lifecycle activities, such
as size and time estimation, scheduling, tracking,
requirements engineering, software design, etc.

Students are surprised to learn that merely
“hacking code” will not be an adequate
methodology in either the SO degree or industry.

3. Divergence between students’ actual and
perceived abilities. Large-scale software
development requires students to reflect on their
own and other developers’ performance. This is
difficult since students’ actual abilities to write
software in an organized fashion differ
significantly from their perceived abilities. This
raises a serious issue of students not paying
enough attention to the material, thinking that it is
trivial and does not require any substantial effort
beyond learning how to become a master code-
writer.

Contrary to the students’ view, SE is defined as the

“application of a systematic, disciplined, quantifiable
approach to the development, operation and
maintenance of software” [5]. This definition stresses
the importance of teaching not only software design
methods and programming languages, but most of all
teaching aspects such as requirements engineering,
software processes, software testing and software
quality, just to name a few important topics. Upon
graduation students must be able to contribute to large-
scale software development projects, which are
characterized by well-defined and verifiable
functionality and quality.

There are several mechanisms applied to deliver a
high-quality SE program to the SO students, which
strive to overcome the above issues:
- Sound structure

The core SO classes are organized in the following
manner:
o Introductory overview classes: CMPE 210 and

CMPE 300. The goal of these classes is to raise
awareness of the problems associated with SE,
and lay out background information.

o Specialized classes:
 CMPE 310 that introduces software

requirements engineering;
 CMPUT 301 that introduces software

design with a focus on user interfaces;
 CMPE 410 that introduces advanced

design and programming concepts;
 CMPE 420 that introduces construction of

reliable and secure software systems.
The goal of these classes is to expose students
to advanced SE principles and methodologies.
There are also plans to add a class devoted to
the subject of software testing and advanced
software development paradigms.

o A capstone project: the program is summarized
with a realistic project, which gives hands-on
exposure to problems associated with
development of larger software systems.

- Project-based courses
SE is about working in large projects in teams, and
hence projects in the education are an indispensable
ingredient. The majority of the core SE classes
have a lab component that enables direct exposure
to concepts learned in the classroom. This is a very
effective approach, which is used to familiarize the
students with the “unexpected way of doing
business”, while at the same time teaching how to
reliably assess skills and abilities.

- Example-driven delivery of class lectures
The students are exposed to the class material in an
example-driven way. This provides a deeper
understanding of the inherent complexity and
problems associated with the concepts taught.

- Combination of research and education
It is essential to involve the same people, in terms
of academic staff and the postgraduate students, in
both research and teaching. We, as well as other
researchers [21], think that in this way students will
be engaged in cutting edge problems and
challenges. At the same time, this ensures that the
latest findings in SE are included in the courses. As
a result, students graduate with an awareness of
current topics and trends in the software
development industry, which provides an
advantage in the job market.

The remainder of the paper overviews several of the

most important highlights of the SO program. The
focus is to present major developments in the existing
program in all the main teaching areas.

2. First Things First

The first course in the Software Option that is entirely
dedicated to Software Engineering issues is CMPE
210: Principles of Software Implementation. The main
focus of this course is put on the concepts and topics
related to good programming style and development
process.

The first two weeks of the course give exposure to
software development principles. Such concepts as
rigor and formality, separation of concerns,
abstraction, and anticipation of change, modularity,
generality and incrementality are introduced and
explained. Next, the fundamental principle of
information hiding is discussed. The benefits of using

this principle are covered, and the common techniques
used to realize this principle are explained. The last
topic from the Software Engineering principles is
coupling and cohesion. Both measures are explained in
detail and illustrated by a number of different
examples. It is shown how coupling and cohesion can
be used to recognize and measure the degree of
component independence.

The rest of the course is dedicated to two topics, which
are directly related to the software development
process on the personal level. One of them is about the
rules of a good programming style; the second one is
about a process of programming and its improvement.
Both topics are taught concurrently.

The theme of a good programming style is covered by
detailed explanations of many implementation aspects
related to the basic as well as advanced structures of
the C programming language [11] [13]. Some of the
topics covered are:
- data structure issues (usage of variables,

fundamental and complex data types);
- control issues (conditionals, control loops);
- general issues (self-documented code, defensive

programming and programming tools).

Additionally, many concepts related directly to
software quality are covered. Students become familiar
with quality attributes, a process of quality assurance,
and different kinds of quality reviews such as
inspections, walkthroughs and code reading. One
whole week is dedicated to unit testing. A process for
generating test cases for statement and branch
coverage is shown and explained. Debugging is also
covered. Effective approaches for finding defects
together with numerous case studies are presented in
the class. Many suggestions and important aspects of
fixing defects are also provided.

The individual software process is taught in the
framework of the Personal Software Process (PSP)
[10]. The PSP is a scaled-down version of those
practices described in the Capability Maturity Model
for Software (CMM) that are suitable for individual
use. PSP methods are based on elements of
engineering, quality management and scientific
disciplines which are made practical for application at
the personal process level.
PSP embraces measurement of the process
performance, analysis of process measurements,
adjustments to and improvements of the process. The
main objective is to show how to control, measure, and
improve software development. A series of lectures is

designed to show students how application of PSP
techniques leads to improvement of the software
development processes. A schedule of topics taught in
these lectures is:
- introduction to PSP;
- planning overview and size measurement;
- size estimation;
- resource and schedule planning;
- process measurement;
- design and code reviews.

The main motivation behind the introduction of PSP to
students is the fact that PSP helps them to improve
their performance by bringing discipline to their
software development process. PSP embraces
measurement of the process performance, analysis of
process measurements, adjustments and improvements
of the process. This is a key step in breaking down the
student’s preconceived notion that SE is a trivial,
artistic process, and inculcating the beginnings of a
professional engineering approach to software
development.

The course contains a lab component which allows
students to practice the programming style standards
discussed in class. All programming activities are
performed in the framework of PSP. Students are
taught, and apply, five PSP phases:
- 0 – introduces time measurement, and monitoring

of defects,
- 0.1 – adds coding standard and size measurement,
- 1.0 – introduces size estimation and systematic

approach to testing,
- 1.1 – task planning and schedule planning,
- 2.0 – provides basic techniques of design and code

review.

3. Introduction to Software Engineering:
Real World Systems

CMPE 300, Introduction to Software Development
Process, is the only course in the SO lineup that is
mandatory also for Computer Engineering students. It
is an overview course that covers most major SE topics
and introduces necessary terminology. As the
Computer Engineering stream students cannot be
presumed to have taken CMPE 210, the issue of
student preconceptions is again crucial.

The lecture component of this course consists of three
lectures per week. It starts with the introduction of
software engineering as a discipline necessary to build
complex software systems in context of constant
change [3]. Subsequently, the Unified Modeling

Language (UML) is introduced, which is then used
throughout the course to model not only objects and
entities of software systems, but also to illustrate
important concepts such as software processes and
project deliverables. The core part of the course
provides introduction to the major activities of
software development, including requirements
analysis, static and dynamic modeling, system design
and object design, implementation, testing, and
maintenance. Design and implementation concentrate
on modern approaches including component based
development, design patterns, and frameworks. The
course also provides an introduction to some more
advanced topics such as project and rationale
management.

To provide exposure to real world problems, the
course has been recently redesigned to include non-
trivial team projects. Students form teams that
undertake development of software application for a
mobile robot. The course uses six Amigobots [1]
equipped with ultrasonic sensors, passive grippers, and
wireless Ethernet connections, as well as one color
camera. These robots come with an extensive class
library called ARIA (ActivMedia Robotics Interface
for Applications). ARIA is a powerful API
(Application Programming Interface) to ActivMedia
mobile robots, usable under Linux or Windows in C++
(Java and Python wrappers are also available). With
such infrastructure, students can make use of existing
components and concentrate on the development
process and building functionality of their systems
instead of routine programming of robotic behaviors.
At the same time, robots provide an application
platform that is very tangible (they really move) and
has real-time-real-world characteristics (latencies,
speed limitations, imprecision and ambiguity of
sensors). Although complicated devices, robots allow
almost immediate visual assessment of the quality of
design or coding. Robots are also very attractive,
which results in a substantial increase of students’
interest, their enthusiasm, and hence their ability to
learn. The projects can be selected from a growing list,
or proposed by student teams. The teams are actively
involved from the project inception to the product
delivery and public presentation.

During the two term history of this updated course we
have already seen many ingenious application ideas
and high quality software development projects. The
project topics range from simple demonstrations of
common driving procedures (backing up, parallel
parking) to advanced applications (3D mapping, line
following, support for visually impaired).

4. Software Requirements Engineering: A
Hands-On Approach

The CMPE 310 class is devoted to exposing
students to the area of software requirements
engineering. The class provides a comprehensive
review of widely used industrial practices for the
elicitation, documentation, modeling, and validation of
requirements. While this subject is often discussed
only in introductory SE classes, our observations of the
inability of students to understand the importance of,
and the difficulty inherent in, developing a correct,
consistent, and complete software requirement
specification (SRS) document led to the development
of this class. This relates to all three challenges listed
in section 1. In particular, students (who at the point of
taking this class are already exposed to UML) often
think that use case diagrams is all that they need to
properly understand and document software
requirements.

The two main themes of the class are: 1. “elicit, do

not assume”, and 2. “structured approach and
formalisms pay off”. Those two themes are used to
define the structure of the class, which consists of two
half-semester blocks. The class consists of lectures,
which are strongly supported by the lab components,
where students gain hands-on experience with the
concepts.

The first half is driven by the first theme, where

students are exposed to the software requirements
engineering process, several elicitation techniques, the
software vision document, and the SRS document
standards. The specific topics include
- Exposure to basic software requirements

engineering techniques by applying a mixture of in-
class lectures, readings, and student presentations
on a number of relevant publications [2] [8] [9]
[14] [17] [18]. The publications are carefully
selected to describe all main components of the
software requirements engineering process, and at
the same time challenge the students with self-
understanding of the material combined with in-lab
presentation. The readings and presentations are
performed in groups of 2-3 students, and are also
used to reinforce communication skills.

- Elicitation techniques, such as interviewing,
workshops, use case driven elicitation, and
software prototyping. There are two labs devoted to
the elicitation process, where the students learn to
elicit a software system in an interactive manner.

The instructor’s role is to simulate a customer,
while the students learn hands-on how to elicit
information, and how to communicate and refine
understanding of the problem. We note that for
most of the students this is the first contact with
elicitation techniques, and such hands-on exposure
strongly reinforces their understanding of the
complexity of this task. An emphasis is also placed
on use case driven elicitation being much more
than the development of use case diagrams. The
students are exposed to, and expected to work in
the lab with, the textual use case standards that
provide much more information than diagrams.

- Exposure to several industrial standards for
developing both the vision and the SRS documents,
such as the IEEE 830 standard [4]. The students
end the first part of the class developing a larger
SRS document in the IEEE 830 standard.
The content of the first half of the class is supported

by a textbook by Wiegers [20], which provides a
practical, industry-influenced view of software
requirements engineering principles and elicitation
techniques.

The second half of the semester is driven by the

second theme. The students are exposed to several
formal software requirement engineering techniques,
with the goal to apply them in a real-life context. The
specific topics include:
- Operational specification models, such as Finite

State Machines and Petri Net models,
- Descriptive specification models, such as algebraic

specifications, and Rigorous Approach to Industrial
Software Engineering (RAISE) model [15] [16],

- Other formal methodologies, such as design by
contract,

- and the concepts and methods of verification and
validation of the requirements.
The content of the second half of the class is

supported by a textbook by Ghezzi et al. [6], which
provides an excellent, example-driven introduction to
the relevant formal methodologies. A strong emphasis
is put on applying the learned concept in practice by
providing hands-on experience during the labs. The
students are asked to model a real-life system using the
above methodologies, and with the goal of learning
their benefits and downsides.

An indispensable feature of the class is its project

driven theme. Over the course of the entire semester
the students are asked to elicit, document, and analyze
requirements of a real-life software system. The task is
divided into five project assignments that concern a
system for controlling traffic lights at a predefined

road intersection. The choice of the system is driven by
the two main themes of the class. First, the students
learn that only a proper elicitation process leads to
correct understanding of the system. The goal is to
model a well-know physical system, which is subject
to customer imposed assumptions that result in a
different-than-expected behavior pattern. Second, the
students apply formal techniques to properly analyze
the system.

The current design of the class resulted in positive

student reactions, who appreciate exposure to learning
the details of the material through self-reading,
presentations, project, and interactive lab sessions.

5. M-Commerce in the Capstone Project

A recent development in the Software Option is the
incorporation of a capstone design experience. As a
part of the CEAB accreditation requirements for
software engineering, CMPE 440 Software Systems
Design Project was rolled-out in Winter 2003,
providing a capstone design experience for the first
cohort of Software Option students. In common with
other capstone design courses, students are required to
work in teams to conceive, design and implement a
reasonably large software system. Team members are
randomly assigned, avoiding self-selection of
homogeneous teams [7]. These teams must then
promptly select from a list of proposed project topics,
or else propose one of their own. The teams must
prepare requirements documents (which require the
instructor’s approval before design may begin), design
documents and a working implementation of their
software system, using the skills and knowledge
gained during the course of their education. Team
skills are vital, as the students must adjust to an
unexpected group of teammates and meet the absolute
requirement of a working software system, all within
the 13-week semester.

The CMPE 440 course is taught as a single lecture

hour each week, coupled with 6 hours of lab time.
During the semester, three formal laboratories are used
to introduce the students to industrial-grade software
development tools; as of this writing, these tools
include the CVS version control system; the Bugzilla
defect-tracking tool; and the JUnit unit-testing
framework. A laboratory on refactoring, using the
Eclipse IDE, is being considered for roll-out in Winter
2005.

A principal development in Winter 2004 is the
introduction of mobile computing and m-commerce as
project areas for the students to work on. This requires
both the introduction of mobile computing concepts
(such as context awareness, network and access-point
handovers, and security and privacy concerns), and the
provision of a mobile-computing infrastructure for
student projects. This infrastructure is being
implemented via a Bluetooth wireless LAN; Bluetooth
was selected over 802.11 technologies because of the
limited space available in the Software Engineering
laboratory. Limited signal ranges are a signature
feature of mobile computing, and the signal range of
802.11 technologies was simply too large to allow
students to experiment with this phenomenon. Instead,
the Bluetooth infrastructure consists of Bluetooth-
equipped PDAs running PalmOS and J2ME, and
Bluetooth access points that will tie into the existing
wired LAN in the Software Engineering lab via
DHCP. Providing 3 access points and six shared PDAs
(to be augmented with a further 4 PDAs in Winter
2005) will allow the students to simulate a variety of
m-computing scenarios; the total cost of this
infrastructure, on the other hand, will be roughly
$8000 over the two-year period. Student interest in the
m-computing projects has been very high; of 8 teams
in Winter 2004, 3 have elected m-computing or m-
commerce projects. The students in this term were also
given the opportunity to help define the m-computing
infrastructure for the course; their suggestions were
well thought-out and helped determine the ultimate
direction for the Bluetooth infrastructure. This first
round of m-computing projects will be completed by
the end of March 2004, and we eagerly await the
presentations by these teams.

6. Summary and Future Work

To summarize, the Software Option at University of
Alberta is becoming a mature undergraduate program
with many exciting and strong cornerstones. However
the current model is still being redefined and upgraded.

There are two main directions envisioned for the

future. First, there is a strong support for industrial
involvement, by means of the approaches described in
[21]. For example, the software requirements
engineering class evolves towards involvement of
industrials partners, who will act as customers in the
elicitation and SRS development process. Naturally,
these industrial partners would also make ideal clients
for teams in the capstone design experience, although

care must be taken that no student project falls on the
critical path of any partner’s development efforts.

Secondly, there is a need for an increased emphasis
on management and business issues that are related to
the SE domain. It is well-known that political and
organizational considerations are key determinants of
the success of a software project; as future software
engineers, students must be exposed to these
considerations. A good overview of possible avenues
to explore is given in [12].

References
[1] Amogobot website, http://www.amigobot.com/
[2] Austin, R., and Devin, L., Beyond Requirements:

Software Making as Art, IEEE Software, pp. 93-95,
Jan/Feb 2003

[3] Bruegge, B., Dutoit, A. H., Object-Oriented Software
Engineering: Using UML, Patterns and Java, Prentice
Hall, 2004

[4] IEEE Standard 830-1998, IEEE Recommended
Practice for Software Requirements Specifications, IEEE-
SA Standards Board, 1998

[5] IEEE Standard Glossary of Software Engineering
Terminology, ANSI/IEEE Standard 610.12, 1990

[6] Ghezzi, C., Jazayeri, M., and Mandrioli, D.,
Fundamentals of Software Engineering, 2nd Edition,
Prentice Hall, 2003

[7] Goold, A., and Horan, P., Foundation Software
Engineering Practices for Capstone Projects and Beyond,
Proceedings of the 15th Conference on Software
Engineering Education and Training, pp. 140-147, 2002

[8] Gottesdiener, E., Requirements by Collaboration:
Getting It Right the First Time, IEEE Software, pp. 52-55,
Mar/Apr 2003

[9] Graham, D., Requirements and Testing: Seven
Missing-Link Myths, IEEE Software, pp. 15-17, Sep/Oct
2002

[10] Humphrey, W.S., A Discipline for Software
Engineering, SEI Series in Software Engineering, Addison-
Wesley, 1995

[11] Hunt, A., and Thomas, D., The Pragmatic
Programmer, Addison-Wesley, 2000

[12] Lawrence, P., Educating Software Engineering
Managers, Proceedings of the 16th Conference on Software
Engineering Education and Training, pp.78-85, 2003

[13] McConnell, S., Code Complete, Microsoft Press, 1993
[14] Neill, C., and Laplante, P., Requirements Engineering:

The State of the Practice, IEEE Software, pp. 40-45,
Nov/Dec 2003

[15] RAISE Method Group, The RAISE Development
Method, BCS Practitioner Series, Prentice Hall, 1995

[16] RAISE Language Group, The RAISE Specification
Language, BCS Practitioner Series, Prentice Hall, 1992

[17] Rupp, C., Requirements and Psychology, IEEE
Software, pp. 16-18, May/Jun 2002

[18] Tveito, A., and Hasvold, P., Requirements in the
Medical Domain: Experiences and Prescriptions, IEEE
Software, pp. 66-69, Nov/Dec 2002

[19] Umphress, D., and Hamilton, J. Jr., Software Process
as a Foundation for Teaching, Learning, and Accrediting,
Proceedings of the 15th Conference on Software
Engineering Education and Training, pp.160-169, 2002

[20] Wiegers, K., Software Requirements, 2nd Edition,
Microsoft Press, 2003

[21] Wohlin, C., and Regnell, B., Achieving Industrial
Relevance in Software Engineering Education, Proceedings
of the 12th Conference on Software Engineering Education
and Training, pp. 16-25, 1999

