
 Current Bioinformatics, 2008, 3, 00-00 1 

 

 1574-8936/08 $55.00+.00 © 2008 Bentham Science Publishers Ltd. 

Sequence-Based Methods for Real Value Predictions of Protein Structure 

Lukasz Kurgan
*,1

, Krzysztof Cios
2,5

, Hua Zhang
3,1

, Tuo Zhang
3,1

, Ke Chen
1
, Shiyi Shen

3,4
 and 

Jishou Ruan
3,4

 

1
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada; 

2
Department of 

Computer Science, Virginia Commonwealth University, Richmond, VA, USA; 
3
College of Mathematical Science and 

LPMC, Nankai University, Tianjin, PRC; 
4
Chern Institute of Mathematics, Tianjin, PRC; 

5
IITiS, PAN, Poland 

Abstract: Recent years observed a growing interest in computational methods that predict and characterize protein struc-

ture due to the increasing sequence-structure gap. This includes a spike in development of sequence-based in-silico meth-

ods that address prediction of several newly formulated real-value descriptors of protein structure. These descriptors in-

clude B-factor, backbone torsion angles, solvent accessibility, residue depth, contact number, residue-wise contact order, 

secondary structure content, and folding rates. Although they address different structural aspects, such as exposure to the 

solvent, spatial position and packing of the residues, their flexibility, amount of secondary structures in the protein, and 

folding time, the methods that are built to address them share similarities that could be exploited to improve future de-

signs. To date, no comprehensive overview that summarizes and contrasts solutions developed for these tasks was pub-

lished. To address this we compare different designs of real-value predictors based on information concerning input data 

encoding and prediction algorithms used. We also investigate evaluation standards, which include benchmark datasets, 

test criteria, and test procedures used in these predictive tasks. Finally, we summarize application areas and problems that 

use the above-mentioned predictions. We believe that the breath and number of these applications justify further devel-

opment of more accurate and integrated real-value prediction methods. 

Keywords: Real-value prediction, protein structure, solvent accessibility, residue depth, contact number, residue-wise contact 
order, secondary structure content, backbone torsion angles, B-factor, folding rate. 

INTRODUCTION 

 The number of computational systems that address char-
acterization and prediction of structural aspects of proteins is 
growing rapidly. Their development is motivated by the 
widening structure-sequence gap and the growing size of the 
databases, such as PDB [1], SWISS-PROT [2], SCOP [3], 
CATH [4], etc., which organize and provide access to ex-
perimentally-derived protein structures. The methods utilize 
information about known structures of roughly 50 thousand 
proteins (as of May 2008 50,900 protein structures were 
stored in the PDB) to find regularities, which are encapsu-
lated in models that can be used to perform high-throughput 
prediction of structures of over 5 millions proteins for which 
only the sequence is known (as of May 2008 5.4 million 
non-redundant protein sequences are stored in the NCBI’s 
RefSeq database [5]). 

 This review paper focuses on methods that use protein 
sequence to predict various aspects of structure of globular 
protein that are encoded using real values. Such descriptors 
quantify local properties of the amino acids such as their 
mobility in the crystal structure (B-factor), backbone torsion 
angle, exposure to the solvent (solvent accessibility, residue 
depth), number of neighboring residues (contact number), 
linear (along the protein sequence) distance to the neighbor-
ing residues (residue-wise contact order), and global proper-
ties that concern the entire protein such as the secondary  
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structure content and the folding rate. We observe that al-
though the abovementioned prediction methods address a 
variety of different objectives, they also share a number of 
similarities with respect to their designs and protocols used 
in their evaluation. We will summarize and contrast the se-
quence representations and prediction algorithms that are 
used in the above-mentioned works, as well as the datasets, 
quality indices, and test procedures used to evaluate their 
performance. Additionally, we will review applications that 
use these methods. 

 Although this survey concentrates on globular proteins, 
we emphasize that a large body of research is devoted to 
development of prediction methods that address membrane 
proteins, which account for approximately 30% of the 
known proteins. The representative targets in the context of 
the membrane proteins include prediction of membrane pro-
tein types [6-12], transmembrane helices [13, 14], and ame-
nability of membrane proteins for cloning, expression, and 
solubilization [15]. 

BACKGROUND 

 This section defines real-value protein structure descrip-
tors and summarizes methods that predict the defined de-
scriptor values using protein sequence as the input. In gen-
eral, any prediction method consists of two steps: 1) the pro-
tein sequence is converted into a feature-based representa-
tion, and 2) the feature values are fed into a prediction algo-
rithm to produce the values of the descriptors. 

B-factor 

 The B-factor (also called B-value, Debye–Waller factor, 
or temperature factor) is used to measure local flexibility 
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(mobility) of residues. B-factor values are reported from 
experimental atomic-resolution structures. They quantify the 
decrease of intensity in diffraction due to the dynamic disor-
der caused by the temperature-dependent vibration of the 
atoms and the static disorder related to orientation of the 
protein molecule. High values indicate higher mobility of 
residues in crystal structures. The B-factor of i

th
 residue is 

defined as: 

Bi = 8 ui
2

 

where <ui
2
> is the unidirectional mean-square displacement 

averaged over the lattice [16]. The B-factor values of C  at-
oms are commonly used to represent motion of the backbone 
[17]. We note that these values depend on a number of other 
factors such as the overall resolution of the protein structure, 
crystal contacts, and applied refinement procedures [18, 19]. 
As a result, they are usually normalized as [20, 21]: 

Bi,normalized = (Bi –Bavg) /  

where Bavg is the average of the B-factor values of a given 
structure and  is the corresponding standard deviation. The 
distribution of B-factor values along a protein sequence re-
flects flexibility and dynamics of the underlying structure. 
For instance, protein core is usually characterized by low B-
factor values since it should be well packed to provide rigid-
ity for the entire structure. At the same time, surface would 
usually include some flexible regions which would have high 
B-factor values. The reason is that the protein interacts with 
other molecules, which requires certain degree of structural 
flexibility. 

 To date, only a handful of methods performed sequence-
based prediction of B-factor values. The first two methods 
used very simple techniques based on weighted sum [22] and 
averaging [17], which were followed by a method that used 
logistic regression predictor and a more complex feature 
representation based on the sequence composition and the 
predicted secondary structure [23]. The two recent methods 
encode the sequence with multiple alignment profile and use 
support vector regression (SVR) [24] and neural network 
[25] algorithms to predict the B-factors. The neural network 
method utilizes additional features based on the predicted 
secondary structure, solvent accessibility, and the secondary 
structure content. We note that several works reduce the real-
value prediction to a classification problem in which the B-
factor values are binned with a threshold into two categories 
that correspond to rigid and flexible residues, respectively 
[23, 25]. The main disadvantage of the latter methods is that 
the selection of the cutoff thresholds is neither objective nor 
optimal [24]. 

Solvent Accessibility and Residue Depth 

 The solvent-accessible surface area (ASA) of a residue 
indicates its level of burial (or exposure) to solvent in the 
protein structure and is usually expressed in terms of relative 
solvent accessibility (RSA). The RSA is defined as:  

RSAi = 100%  ASAi / MASAi 

where ASAi is the solvent-accessible surface area of the i
th

 
residue observed in a given structure, and the MASAi is the 
maximum obtainable value of the solvent-accessible surface 
area for the corresponding type of the amino acid [26]. Al-
ternatively, ASA value is normalized by the maximum value 

of exposed surface area obtained for an extended tripeptide 
conformation of Ala-X-Ala or Gly-X-Gly [27]. The reason 
for normalization is that different amino acids have different 
ASA distributions with largely varying mean and median 
values [28]. The RSA values range between 0 (fully buried) 
and 100% (fully exposed). The knowledge of solvent acces-
sibility is useful in the context of understanding relationships 
between the structure and function of a protein because ac-
tive sites are often located on the surface.  

 The sequence-based prediction of solvent accessibility 

was addressed by relatively large number of methods. The 

first method was developed in 2003 and applied a neural 

network algorithm for predictions [29]. Majority of the 

newer methods encode the protein sequence using multiple 

alignment and use a variety of prediction algorithms such as 

neural networks [30-33], look-up table [34], linear regression 

[35], multiple linear regression (MLR) [36], support vector 

machines (SVMs) [37], SVR [38], and two stage SVR [39, 

40], and energy optimization [41]. Similarly, as in the case 

of the B-factor predictions, some of the existing RSA predic-

tion methods cast the real-value prediction as a classification 

problem using a cutoff threshold that results in categorizing 

the residues as being either exposed or buried. These meth-

ods use a wide range of predictors including neural networks 

[26, 42-44], Bayesian statistics [45], substitution matrix [46, 

47], information theory [48], multiple linear regression [49], 

SVM [50] and two-stage SVM [51]. However, the inherent 

problem with imposing the threshold is that it arbitrarily 

separates buried and exposed residues, and this arbitrariness 

is due to the extent of variations of RSA values for different 
residues [30]. 

 Since the RSA values do not provide information how to 

characterize the buried residues, i.e., the ASA values of the 

buried residues are zero or near zero, an alternative descrip-

tor was developed as follows. An atom depth is defined as 

the minimum distance between an atom and a dot of solvent-

accessible surface [52], or the distance between the atom and 

its closest solvent-accessible neighbor [53], and finally based 

on volume [54]. The depth values can be used to identify a 

subset of residues that make the largest contribution to the 

stability of the molecule, i.e., residues at the protein core 

[52]. These residues are of special importance since burial of 

the core residues is a major driving force for folding [55]; 

recent research shows that the most deeply buried residues in 

the native protein fold might be the first to fold [56]. We 

note that so far only one method for prediction of residue 

depth, based on the SVR predictor that represents the input 

sequence using multiple sequence alignment, was developed 
[57]. 

Contact Number 

 The contact number (also called coordination number or 

Ooi number) of a given residue is defined as the number of 

C  atoms of other (neighboring) residues within a sphere 

around the C  atom of that given residue (that usually ex-

cludes the two nearest-neighbor residues along the sequence) 

[58, 59]. In a recent work, this definition was modified by 

considering C  atoms (C  for glycine) instead of C  and 

smoothing the boundary of the sphere by a sigmoid function 
[60]: 
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where w is a constant determining the sharpness of the 
boundary of the sphere and dc is a cutoff radius. The com-
monly accepted value of w is 3 [60-62]. The newer definition 
of the contact number results in a floating point number 
while the original definition produces an integer. The contact 
numbers provide a useful input to constrain de novo predic-
tion of the tertiary protein structure. This is since the number 
of possible protein conformations that satisfy constraints 
imposed by the contact numbers along the protein sequence 
is very limited [63]. 

 The contact number can be predicted from the protein 
sequence with the use of four methods. The first attempt was 
made in 1980, where a very simple empirical predictor was 
devised [58]. The other three methods use multiple align-
ment to represent the input sequence and linear regression 
[60], SVR [64], and then critical random networks [62] algo-
rithms to do the predictions. The real value contact number 
was also reduced to two states that are defined by the values 
that are higher or lower than a threshold determined by the 
average value of the residue distribution. The corresponding 
classification was addressed by several prediction methods 
[44, 65, 66]. 

Residue-Wise Contact Order 

 The residue-wise contact order (RWCO) was developed 
based on several formerly developed structural descriptors. 
The relative contact order, which describes the complexity of 
protein topology, was used to study the correlation between 
protein topology and folding rate [67]. This descriptor was 
extended into residue contact order (RCO), which is the av-
erage contact order of a given residue [68]. The RWCO, a 
generalization of RCO, is a sum of sequence separations 
between the i

th
 residue and the contacting residues and is 

defined as [62, 69]: 

>

=
2|:|

||
jij

iji CjiRWCO  

where Cij = 1 if the i
th

 and j
th

 residues are in contact and Cij = 
0 otherwise, and where the two nearest-neighbor residues 
along the sequence are excluded. The RWCO values are 
usually normalized by the length of the corresponding pro-
tein chain and they are usually smoothed with the use of the 
sigmoid function (r). We observe that RWCOi = n  RCOi 
where n is the number of contacting residues with the i

th
 

residue. The contact order is a global descriptor (concerns 
the entire protein), while RWCO and RCO are local (per-
residue) descriptors. The usefulness of the RWCO was justi-
fied in a recent study in which it has been shown that the 
tertiary protein structure can be recovered from a set of three 
types of 1D descriptors which include the secondary struc-
ture, and the contact number and residue-wise contact order 
[61]. This in turn enabled design of novel methods for eluci-
dating the sequence-structure relationship of proteins. 

 To date, three prediction methods were developed to pre-
dict RWCO values for protein residues using the sequence as 
the input. They all use multiple alignment while employing 
different prediction algorithms such as critical random net-
works [62], linear regression [69], and SVR [70]. 

BACKBONE TORSION ANGLES 

 The protein backbone consists of a linked sequence of 
rigid planar peptide groups. The rotational angle of the C–N 
bond is fixed at 180° for the common trans-conformation 
and 0° for the rare cis-conformation. As a result, the back-
bone can be described by two rotation angles (torsion angles) 
of the C –N bond ( ) and the C –C bond ( ), which by 
convention vary between -180° and 180°. The distribution of 
the /  angles in protein structures is clustered around al-
pha (centered at  = 60° and  = 40°), beta (centered at 

 = 120° and  = 120°) and L-alpha (centered at  = 60° 
and  = 0°) regions of the Ramachandran plot [71]. Analysis 
of the torsion angles shows that -helices and -sheets con-
sist of residues with the angles distributed mostly in the al-
pha and beta /  angle regions, respectively [72]. This indi-
cates that the knowledge of the torsion angles provides use-
ful information for learning secondary protein structure. 

 Several methods have been developed for prediction of 
the /  angles. The first method, which predicts  angles 
using a neural network in the context of improving the accu-
racy of secondary-structure prediction, was proposed in 2005 
[73]. This was followed by another neural network method 
that predicts  angles proposed in 2007 [33]. Recently, the 
neural network predictor was used to predict both  and  
angles [74]. As in the case of the B-factor, solvent accessibil-
ity, and contact number, several methods were developed to 
predict discrete dihedral-angle states [72, 75-81].  

Secondary Structure Content 

 The secondary structure content is defined as the per-
centage of the -helix, -strand, and coil secondary struc-
tures in the protein sequence: 

contentx = countx / L 

where x = { -helix, -strand, coil}, countx denotes the num-
ber of residues assuming secondary structure of type x, and L 
is the length of the protein chain. Alternatively, instead of 
using the three secondary structure states, some methods 
address a finer division into secondary structures that include 
eight states defined with DSSP [82]. In this case x = { -
helix,

 
-strand, -bridge, 310-helix, -helix, H-bonded turn,

 

bend, random coil}. The content encapsulates the bulk (pro-
tein-wide) information concerning secondary structure with-
out the knowledge of which residues assume a particular 
secondary structure. This information is useful to character-
ize an overall type of the protein fold, such as those defined 
in the SCOP [3] and CATH [4] databases. 

 The first attempt to predict the secondary structure con-
tent dates to 1970’s when MLR method was used with amino 
acid composition of the protein sequence as the sequence 
representation [83]. Subsequent attempts used either neural 
networks or MLR methods and a variety of features com-
puted from the protein sequence as input to the prediction 
method. The features include the molecular weight of a pro-
tein [84], auto-correlation functions based on hydrophobicity 
[85-87], pair-coupled composition [88-91], a selected subset 
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of composition vector features [92], composition moment 
vector [93], multiple alignment [94] and various physico-
chemical properties of amino acids combined with their 
composition [95]. One exception is a method that uses ana-
lytic vector decomposition predictor [96, 97]. Among the 
above-mentioned methods, five address eight-state content 
prediction [88-91, 94], while the remaining methods predict 
the three types of secondary structures. Several researchers 
investigated impact of a priori knowledge of structural 
classes on the quality of the content prediction [86, 98, 99]. 
The main drawback of the latter methods is that they require 
knowledge of the structural class of the input sequence. This 
information could be either inferred based on the known 
secondary structure, or predicted, but structural class predic-
tion is difficult and is characterized by relatively low accu-
racy [100, 101]. 

 The secondary structure content is closely related to 
structural classes, which categorize protein structures based 
on the amounts and arrangement of the constituent secondary 
structures. The three most commonly considered classes in-
clude all-  (proteins that contain mostly helices), all-  (pro-
teins that contain mostly strands), and mixed class (proteins 
with both helices and strands), although several definition 
that consider different number of classes were proposed [3, 
4, 97, 102, 103]. A recent survey summarizes and contrasts 
these definitions [104]. We note that the prediction of struc-
tural classes received a wide attention resulting in the devel-
opment of numerous prediction methods [100, 102, 103, 
105-122]. 

Folding Rate 

 The folding rate measures how fast a protein folds from 
the unfolded state to its native tertiary structure. Although 
the folding rates are sometimes measured in different ex-
perimental conditions, a recent contribution by Maxwell and 
colleagues established a set of standard conditions. They 
require 25°C, pH of 7.0, and 50nM buffer [123]. The folding 
rates are usually represented as decimal or natural logarithm 
of the protein folding rate in water, log(kf), which are nega-
tively correlated with the actual folding time.  

 A number of methods were developed to predict folding 
rates using protein sequence as the input. In the first attempt, 

a simple linear function of the effective chain length, which 
is computed using predicted secondary structure, was used to 
perform predictions [124]. Several other linear regression 
models that use features computed from physicochemical 
properties and composition of the constituent residues were 
recently developed [125-127]. Similarly, as in the case of the 
secondary structure content, a priori knowledge of structural 
classes was found to be useful in building the sequence-
based predictors [128, 129]. A recent in-depth review of the 
methods used to predict folding rates can be found in [130]. 

COMPARISON OF SEQUENCE-BASED REAL-

VALUE PREDICTION METHODS 

 In spite that the above-mentioned descriptors address a 
diverse range of structural aspects (such as the exposure to 
the solvent, spatial position and packing of the residues, their 
flexibility, and amount of secondary structures and folding 
time of a protein) the methods that address them share sev-
eral similarities. We compare different designs that address 
real-value predictions based on the information how the in-
put sequence is encoded and which prediction algorithms are 
used. We also investigate evaluation standards, which in-
clude benchmark datasets, test criteria, and procedures 
adopted for each of these tasks. 

 Table (1) presents a high-level overview of the real-value 
prediction methods. Over 50 real-value prediction methods 
were developed, with most of them published in the last five 
years, and in case of four descriptors the real values were 
collapsed into categorical predictions (which resulted in de-
velopment of additional prediction methods discussed in the 
Background section). We observe that two descriptors, 
namely, solvent accessibility and secondary structure con-
tent, attracted the most attention. In some other cases, such 
as sequence-based prediction of backbone torsion angles and 
residue depth, the number of existing prediction methods is 
small and as the result they are excluded from further discus-
sion. In the case of residue depth, the reason is that this task 
was defined very recently, while in the case of torsion angles 
the low count is due to an overlap with a wide variety of 
sequence-based secondary structure prediction methods. Our 
subsequent discussion also excludes folding rate prediction 
methods as they are discussed in depth in a recent review 
[130].  

Table 1. Summary of Sequence-Based Real Value Prediction Methods 

 

Scope of the Prediction Prediction Target # Published Methods Year First Method was 

Published 

Prediction of Discretized 

Target 

B-factor 5 1985 Yes 

Solvent accessibility 13 2003 Yes 

Residue depth 1 2008 No 

Contact number 4 1980 Yes 

Residue-wise contact order 3 2005 No 

Per Residue (local) 

Backbone torsion angles 31 2005 Yes 

Secondary structure content 162 1973 No Per Protein (global) 

Folding rate 63 2004 No 

 1 only one method predicts both  and  angles; the remaining two methods predict only  angle. 
 2 3 out of the 16 methods require the knowledge of structural classes. 
 3 2 out of the 6 methods require the knowledge of structural classes. 
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DESIGN OF THE PREDICTION METHODS 

 Table (2) compares the prediction methods with respect 
to the input sequence representation and the prediction algo-
rithms used. For each descriptor (target), the corresponding 
prediction methods are ordered chronologically in the de-
scending order. 

 From Table (2) we observe that: 

• The information extracted directly from the sequence 
(such as composition vector, occurrence of sequence 
motifs, physicochemical and structural properties of 
amino acids) is often supplemented with additional 
information that includes multiple sequence align-
ment and results of other sequence-based prediction 
methods. 

• One of the most popular inputs is multiple sequence 
alignment which is computed using PSI-BLAST algo-
rithm [131]. The most commonly used output of the 
PSI-BLAST is the position-specific scoring matrix 
(PSSM), which is a 20 dimensional matrix (20 di-
mensions per each residue in the sequence) that pro-
vides log-odds scores for finding a particular match-
ing amino acid in the target sequence. 

• The inputs include results generated by other se-
quence-based prediction methods, such as predicted 
secondary structure and solvent accessibility. In par-
ticular, the predicted secondary structure was found 
useful in B-factor prediction, solvent accessibility 
prediction, and for prediction of residue-wise contact 
order. The prediction of the secondary structure was 
done with several methods that include PROFsec 
[132, 133], PHD [134], and PSI-PRED [135]. We ob-
serve that PSI-PRED was used in three out of five 
cases. The solvent accessibility, which was used in 
prediction of B-factor values, was predicted with the 
use of the PROFacc method [132, 133]. 

• The content prediction methods use the least amount 
of information. Only one prediction system uses mul-
tiple sequence alignment and none of the methods 
uses other predictions. This is because these methods 
address global (per sequence) predictions, while the 
PSI-BLAST and secondary structure are predicted per 
residue, which introduces a challenge with respect to 
the design of the corresponding input features. We 
observe that such features could be designed based on 
an approach reported in [100, 106]. 

• A relatively large variety of prediction algorithms 
was used. The most popular algorithms include sup-
port vector regression, neural network, and multiple 
linear regression. Two-stage predictors, which in-
volve building a second prediction model that takes as 
an input a set of predictions provided by prediction 
model incorporated in the first stage, were developed 
only for solvent accessibility. The second stage model 
uses several neighboring predictions produced by the 
first stage to improve the results. We believe that such 
design can prove useful when using other per-residue 
prediction targets.  

• A side-by-side comparison of the content prediction 
methods shows that support vector regression gener-

ates better results than neural networks and multiple 
linear regression for the secondary structure content 
prediction [94]. Similarly, support vector regression is 
shown comparable or better than linear regression and 
critical random networks for the RWCO prediction 
[70]. In case of other descriptors a direct comparison 
of different algorithms is more difficult and subjec-
tive due to the use of different datasets, evaluation 
procedures, and overall lack of comprehensive com-
parisons; see the next section for details. 

EVALUATION PROTOCOLS 

 Table (3) summarizes evaluation protocols used in devel-
oping real-value prediction methods. 

 The prediction methods were evaluated with two main 
types of tests, out-of-sample and in-sample. The in-sample 
tests (i.e., resubstitution) are based on the protein sequences 
used to develop the prediction model, while out-of-sample 
tests (i.e., cross validation and single-split) are based on us-
ing chains that were not used to design the model. The cross 
validation tests divide the dataset into n subsets and use n-1 
subsets to generate the model and the remaining subset to 
evaluate it; this is repeated n times, each time using a differ-
ent subset as the test set. The two most popular cross valida-
tion tests include the case when n is a small constant (usually 
3, 5, or 10), and when n is equal to the number of chains in 
the dataset (jackknife test). 

 From Table (3) we note that: 

• Some predictors are characterized by the lack of 
standard benchmark datasets, i.e., each new predic-
tor is evaluated on a different dataset. This is true in 
the case of B-factor and contact number prediction 
methods. The same is true for the prediction of sol-
vent accessibility and secondary structure content. 
Although in this case some benchmark datasets ex-
ist, their number is relatively large. More specifi-
cally, the total of ten datasets (nine are benchmark 
datasets) and twenty datasets (four benchmark 
datasets) were used to evaluate solvent accessibility 
and content predictors, respectively. This makes it 
difficult to establish a relative quality of prediction 
systems and constitutes a substantial challenge for 
developers of new methods (as they should be com-
pared with existing methods). The only exception is 
the prediction of residue-wise contact order where 
the three developed methods are tested on the same 
dataset. 

• The datasets vary in size. The smallest datasets in-
clude several sequences, while the largest include 
several thousands chains.  

• Most datasets were established using filtering based 
on the maximal pairwise sequence similarity, while 
authors used several different identity thresholds. 
They vary between 22% and 50%, with 25% being 
the most frequently used value. The choice of the 
thresholds is motivated by the fact that sequences 
with low similarity are more difficult to predict. For 
instance, more than 95% of protein chains charac-
terized by the 20-25% pairwise identity (referred to 
as the twilight-zone similarity) have different struc
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Table 2. Comparison of the Input Sequence Representations and Prediction Algorithms Used to Address Prediction of B-factor, 

Solvent Accessibility, Contact Number, Residue-Wise Contact Order, and Secondary Structure Content. 

 

Prediction Target Input (Sequence Representation) Prediction Algorithm
1 

Reference 

sequence  

multiple sequence alignment 

SVR [24] 

sequence 

multiple sequence alignment 

predicted 2-state solvent accessibility and fraction of surface residues  

predicted secondary structure and secondary structure content 

NN [25] 

sequence 

K2 entropy 

predicted secondary structure 

LR [23] 

sequence Sliding window averaging [17] 

B-factor 

 

sequence Weighted sum  [22] 

multiple sequence alignment 

sequence 

predicted secondary structure 

Two-stage SVR [40] 

multiple sequence alignment  

entropy 

SVM [37] 

multiple sequence alignment 

sequence 

physicochemical and structural properties of amino acids 

NN [33] 

multiple sequence alignment Two-stage SVR [39] 

multiple sequence alignment NN [32] 

sequence n/a (energy optimization) [41] 

multiple sequence alignment MLR [36] 

multiple sequence alignment 

predicted secondary structure 

NN [31] 

multiple sequence alignment SVR and LinR [35] 

sequence SVR [38] 

sequence Look-up table [34] 

multiple sequence alignment NN [30] 

Solvent Accessi-

bility 

 

sequence NN [29] 

multiple sequence alignment Critical random network [62] 

sequence 

multiple sequence alignment 

LinR [60] 

sequence 

multiple sequence alignment 

SVR [64] 

Contact Number 

sequence n/a [58] 

sequence 

multiple sequence alignment 

predicted secondary structure 

SVR [70] 

sequence 

multiple sequence alignment 

LinR [69] 

Residue-Wise 

Contact Order 

multiple sequence alignment Critical random networks [62] 
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Table 2. Contd…. 

Prediction Target Input (Sequence Representation) Prediction Algorithm
1 

Reference 

sequence 

physicochemical and structural properties of amino acids 

MLR [95] 

sequence SVR  [91] 

multiple sequence alignment SVR [94] 

sequence NN [93] 

sequence MLR [92] 

sequence NN [90] 

sequence and hydrophobicity MLR [87] 

sequence 

hydrophobicity 

MLR [86] 

sequence MLR [89] 

sequence MLR [88] 

sequence and hydrophobicity MLR [85] 

sequence Vector decomposition [96, 97] 

sequence NN [84] 

Secondary Struc-
ture Content 

sequence MLR [83] 
1SVR (support vector regression); NN (neural network); LR (logistic regression); LinR (linear regression); MLR (multiple linear regression); SVM (support vector machine); n/a 

means that the prediction was performed without the use of a prediction algorithm (using an empirical model). 

 tures [136], which poses a substantial challenge for 
higher-level (secondary and tertiary) structure pre-
diction methods. For instance, the accuracy of the 
secondary structure prediction methods trained and 
tested on a protein set in which any pair of se-
quences shares twilight-zone similarity drops to 
only 65-68% [137]; when higher similarity is pre-
sent the accuracy rises to above 80% [138]. Only in 
the case of the RWCO and contact number predic-
tions the filtering is done based on homology (one 
chain per superfamily).  

• The most commonly used test procedures are based 
on cross validation, although we observe that no 
standards are imposed which specific one to use. 
This again makes it very difficult to perform com-
parison between different methods. The number of 
cross validation folds ranges from 3 to 10, while in 
content prediction some authors use the jackknife 
(leave-one-out) test. The jackknife test is computa-
tionally expensive, which prevents its use for per-
forming evaluation of per-residue (local) predictors. 

• The prediction quality was measured by a number 
of criteria that include Pearson correlation coeffi-
cient (PCC), mean absolute error (MAE), normal-
ized mean absolute error, absolute deviation, aver-
age relative deviation, root mean square error, and 
standard error. All of these criteria are computed 
between the predicted and the actual (true) values of 
the corresponding descriptors. The most commonly 
used are PCC and MAE. 

APPLICATIONS 

 The motivation to develop the above-mentioned predic-
tion systems stems from the benefits provided by the knowl-

edge of the corresponding real-value descriptors. In this sec-
tion we briefly summarize applications in which the above-
discussed descriptors were used. 

B-factor 

 The knowledge of B-factor values was used in prediction 
of protein flexibility [17, 22], analysis of protein thermal 
stability [139, 140] and active sites [141-143], correlating the 
side chain mobility with protein conformation [20, 144], 
analysis of disordered regions [23, 145] and protein dynam-
ics [146], prediction of protein-protein binding sites [147], 
and analysis of evolutionary divergence of protein backbone 
dynamics [148] and enzymatic reactions [149].  

Solvent Accessibility and Residue Depth 

 The solvent accessibility was used for tertiary structure 
prediction and fold recognition [150, 151], to develop amino 
acid substitution matrix [152], to predict stability of protein 
mutants [153, 154] to predict protein-protein interaction sites 
[155, 156], protein interfaces [157], protein domains [158], 
transmembrane domains [159], long-range contacts [160], 
and residue contacts [161]. Solvent accessibility and an accu-
rate estimation of the solvent accessible surface were also 
found important for studying protein-protein binding interac-
tion and the low-frequency collective motion in biomacro-
molecules [162, 163]. When compared with the solvent ac-
cessibility, the residue depth is characterized by higher corre-
lation with residue conservation, which motivated a number 
of interesting applications. The residue depth was used to 
analyze amide hydrogen/deuterium exchange rates in nuclear 
magnetic resonance experiments [164], local packing ar-
rangements in the protein core [165], to analyze and predict 
functional sites such as catalytic sites of enzyme [166] and 
phosphorylation sites [53, 167], and to perform prediction of 
the protein folds [151, 168, 169]. 
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Table 3. Comparison of the Datasets, Test Procedures, and Test Criteria Used to Evaluate Methods for Prediction of B-factor, Sol-

vent Accessibility, Contact Number, Residue-Wise Contact Order, and Secondary Structure Content 

 

Prediction Target Datasets
1 

Test Procedure
2 

Test Criteria
3 

Reference 

766 chains (identity<25%) 5-fold CV PCC [24] 

1513 chains (identity<22%) 3-fold CV PCC [25] 

290 chains (identity<25%) 30 random single-split tests PCC [23] 

92 chains resubstitution PCC [17] 

B-factor 

 

31 chains (identity<50%) resubstitution PCC [22] 

215 chains Manesh215 (identity<25%) single-split 

5-fold CV 

MAE 

PCC 

[40] 

126 chains RS126 

480 chains Barton480 (identity<25%) 

5-fold CV MAE 

PCC 

[37] 

2640 chains (identity<25%) 10-fold CV MAE 

PCC 

[33] 

215 chains Manesh215 (identity<25%) 

338 chains Carugo338 (identity<25%) 

480 chains Barton480 (identity<25%) 

3-fold CV MAE 

PCC 

[39] 

480 chains Barton480 (identity<25%) single-split MAE [32] 

126 chains RS126 

215 chains Manesh215 (identity<25%) 

338 chains Carugo338 (identity<25%) 

480 chains Barton480 (identity<25%) 

independent test PCC [41] 

480 chains Barton480 (identity<25%) 

1277 chains Yuan1277 (identity<25%) 

5-fold CV MAE 

PCC 

[36] 

215 chains Manesh215 (identity<25%) 

480 chains Barton480 (identity<25%) 

5-fold CV MAE 

PCC 

[31] 

135 chains S135 (identity<50%, e-value<0.001) 

149 chains S149 (identity<50%, e-value<0.001) 

156 chains S156 (identity<50%, e-value<0.001) 

163 chains S163 (identity<50%, e-value<0.001) 

10-fold CV MAE 

PCC 

[35] 

480 chains Barton480 (identity<25%) 3-fold CV MAE 

PCC 

[38] 

480 chains Barton480 (identity<25%) JK MAE 

PCC 

[34] 

135 chains S135 (identity<50%, e-value<0.001) 

149 chains S149 (identity<50%, e-value<0.001) 

156 chains S156 (identity<50%, e-value<0.001) 

163 chains S163 (identity<50%, e-value<0.001) 

3-fold CV MAE 

PCC 

[30] 

Solvent Accessibility 

 

126 chains RS126 

215 chains Manesh215 (identity<25%) 

338 chains Carugo338 (identity<25%) 

480 chains Barton480 (identity<25%) 

3-fold CV MAE 

PCC 

[29] 

680 chains KN680 (one sequence per superfamily) 15 random single-split tests PCC 

DevA 

[62] 

1050 chains (identity<30%) 10 random single-split tests PCC 

DevA 

DevR 

[60] 

945 chains (identity<25%) 3-fold CV  
(2 folds to test & 1 to train) 

PCC  

RMSE 

[64] 

Contact Number 

39 chains single-split PCC [58] 
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Table 3. Contd…. 

Prediction Target Datasets
1 

Test Procedure
2 

Test Criteria
3 

Reference 

680 chains KN680 (one sequence per superfamily) 15 random single-split tests PCC 

DevA 

RMSE 

[70] 

680 chains KN680 (one sequence per superfamily) 15 random single-split tests PCC 

DevA 

[69] 

Residue-wise Contact Order 

680 chains KN680 (one sequence per superfamily) 15 random single-split tests PCC 

DevA 

[62] 

2187 chains (identity<25%) 

2483 chains (identity<40%) 

10-fold CV 

resubstitution 

MAE 

NMAE 

DevA 

[95] 

202 chains C202 (identity<35%) 

244 chains C244 (identity<35%) 

513 chains (SD score 5) 

7-fold CV 

independent test 

resubstitution 

MAE [91] 

202 chains C202 (identity<25%) 

5796 chains (identity<40%) 

single-split MAE [94] 

11206 chains 

2439 chains (identity<25%) 

single-split 

JK 

MAE 

DevA 

[93] 

475 chains E475 (identity 35%) single-split MAE 

SE 

[92] 

202 chains C202 (identity<25%) 

244 chains C244 (identity<25%) 

independent test 

resubstitution 

MAE 

DevA 

[90] 

740 chains (identity<30%) resubstitution 

JK 

MAE 

DevA 

[87] 

210 chains  

143 chains 

resubstitution 

JK 

MAE 

DevA 

[86] 

628 chains (identity<25%) 

52 chains (identity<35%) 

independent test 

resubstitution 

MAE 

DevA 

[89] 

202 chains C202 (identity<35%) 

244 chains C244 (identity<35%) 

independent test 

resubstitution 

MAE 

DevA 

[88] 

262 chains E262 (identity<35%) 

347 chains 

independent test 

resubstitution 

JK 

MAE 

DevA 

[85] 

166 chains (identity<35%) 

262 chains E262 (identity<35%) 

398 chains (identity<35%) 

475 chains E475 (identity 35%) 

resubstitution 

JK 

MAE 

DevA 

PCC 

[96, 97] 

104 chains  

15 chains (identity 33%) 

resubstitution 

independent test 

MAE 

DevA 

[84] 

Secondary Structure Content 

18 chains resubstitution 

JK 

PCC 

MAE 

[83] 

1 We list the number of used protein chains (italics denote name of a benchmark dataset, i.e., dataset used across multiple contributions); text in brackets specifies whether the chains 

were filtered based on sequence similarity or homology. 
2 CV (cross validation); JK (jackknife); single-split means that the original dataset was split into training and tests sets; resubstitution means that the model was tested on the dataset 

used to design the prediction method; independent test means that the predictor was designed using another dataset and tested on the listed dataset(s). 
3 PCC (Pearson correlation coefficient); MAE (mean absolute error); NMAE (normalized mean absolute error); DevA (absolute deviation); DevR (average relative deviation); RMSE 

(root mean square error); SE (standard error).  

Contact Number and Residue-Wise Contact Order 

 Knowledge of the number of residue contacts is impor-
tant for deriving constraints to be used in modeling protein 
folding, protein structure, and in scoring remote homology 

searches [170-173] and in assessing the quality of protein 
structures in protein structure prediction [174]. Given the 
contact numbers along the protein chain, the number of pos-
sible protein conformations that satisfy these constraints was 
shown to be limited [63]. These constrains were used in mo-
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lecular dynamics simulations [61, 175] and simulations of 
lattice proteins [63]. A similar restraint was used for off-
lattice simulations [176]. The usefulness of the contact num-
ber and residue-wise contact order were justified in a recent 
study which shows that the tertiary protein structure can be 
recovered from a set of three one-dimensional descriptors 
that include secondary structure, contact number, and resi-
due-wise contact order [61]. 

Backbone Torsion Angles 

 The knowledge of torsion angles have been used to im-
prove fold recognition [72], sequence alignment [177], and 
accuracy of secondary structure prediction [73, 80]. 

Secondary Structure Content 

 Predicted secondary structure content was used in several 
areas such as structural class prediction [110, 178] and 
analysis of interactions between CapZ protein and cell mem-
branes [179]. In some applications, the predicted secondary 
structure and true (actual) secondary structure were used to 
compute the content. These content values were used in 
analysis of prion proteins [180], prediction of coding and 
noncoding RNAs [181], folding rates [124, 130, 182], fold-
ing transition-state position [183], and enzyme class [184], 
and to distinguish between enzyme and non-enzyme proteins 
[185]. 

CONCLUSIONS 

 The real-value prediction methods that address structural 
aspects of proteins span a wide spectrum of descriptors such 
as solvent accessibility, residue depth, B-factors, contact 
numbers, residue-wide contact numbers, backbone torsion 
angles, secondary structure content, and folding rates. In this 
review we summarized and compared prediction methods 
from two important perspectives, their design and their 
evaluation procedures. We show that in spite of addressing 
different objectives a number of similarities exist that can be 
exploited in development of new prediction methods.  

 The most popular prediction algorithms include support 
vector regression, neural networks, and multiple linear re-
gression. The two-stage design was found useful in solvent 
accessibility prediction, while no attempts were made to use 
such design in other tasks that address predictions for indi-
vidual amino acids. The input to the prediction algorithms is 
computed either directly from the protein sequence, and/or 
from other sequence-derived sources such as multiple se-
quence alignment or results of other sequence-based predic-
tion methods, including predicted secondary structure and 
solvent accessibility. One of the very popular inputs is the 
PSSM matrix generated by the PSI-BLAST algorithm. In 
spite of the similarities in the design, the only method that 
predicts several descriptors at the same time is Real-SPINE 
[33]. It predicts solvent accessibility and backbone  dihe-
dral angles. We believe that similarities between the real-
value predictors should be exploited to develop more meth-
ods such as Real-SPINE. For instance, contact number and 
solvent accessibility are characterized by negative correla-
tion with each other [60] that could be used in new designs. 

 The evaluation procedures use a variety of datasets, test 
procedures, and quality indices. We observe the overall lack 
of well-established benchmark datasets which makes it diffi-

cult to compare the relative quality of different prediction 
systems; it also poses a big challenge to developers of new 
predictors. Most of the used datasets were created based on 
the pairwise sequence similarity filters. The maximal identity 
thresholds vary between 22% and 50%, with the value of 
25% being the most frequently used. The evaluations are 
mostly based on cross validation tests with the number of 
folds ranging from 3 to 10. Although the prediction quality is 
measured using seven different indices, the two most popular 
ones are Pearson correlation coefficient and mean absolute 
error. 

 The breath and number of the discussed applications for 
the predicted real-values, which concern analysis and predic-
tions of various structural and functional aspects of proteins, 
signify the importance of the real-value prediction methods. 
We believe that these applications call for further develop-
ment of more accurate and integrated prediction methods. 
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