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Abstract: Background：Ion channels are a large and growing protein family. Many of them are associated with 
diseases and consequently they are targets for over 700 drugs. Discovery of new ion channels is facilitated with computational 
methods that predict ion channels and their types from protein sequences. However, these methods were never comprehensively 
compared and evaluated. Objective: We offer first-of-its-kind comprehensive survey of the sequence-based predictors of ion 
channels. We describe eight predictors that include five methods that predict ion channels, their types, and four classes of the 
voltage-gated channels. We also develop and use a new benchmark dataset to perform comparative empirical analysis of the 
three currently available predictors. Results: While several methods that rely on different designs were published, only a few 
of them are currently available and offer a broad scope of predictions. Support and availability after publication should be 
required when new methods are considered for publication. Empirical analysis shows strong performance for the prediction of 
ion channels and modest performance for the prediction of ion channel types and voltage-gated channel classes. We identify a 
substantial weakness of current methods that cannot accurately predict ion channels that are categorized to multiple 
classes/types. Conclusions: Several predictors of ion channels are available to the end users. They offer practical levels of 
predictive quality. Methods that rely on a larger and more diverse set of predictive inputs (such as PSIONplus) are more accurate. 
New tools that address multi-label prediction of ion channels should be developed.  

Keywords: ion channel; voltage-gated ion channel; ligand-gated ion channel; prediction. 

1. INTRODUCTION 

     Ion channels are integral membrane proteins that form a 
water-filled pore. They control flow of ions and voltage 
potential across cell membranes [1, 2]. While some of these 
channels are selective for specific ions, such as sodium or 
potassium, others may facilitate passage of multiple ion types, 
typically sharing the same positive or negative charge. Ion 
channels are typically categorized based on their gate types 
into voltage-gated and ligand-gated ion channels [3, 4]. Upon 
binding of the ligand, the ligand-gated channels undergo a 
conformational change that leads to the opening of the channel 
gate and ion flux. The voltage-gated ion channels open and 
close depending on the voltage gradient across the cell 
membrane. They are further classified into several classes 
including potassium (K+), sodium (Na+), calcium (Ca2+) and 
anion channels [4]. 

 
     The ion channels are expressed in virtually all tissues and 
cell types. They were found to be associated with over 30 
diseases. A few selected examples include retinal disease [5], 
deafness [6], renal cysts [7], cardiac arrhythmias [6, 8, 9] 

migraines [10], and epilepsy [6]. Correspondingly, many 
drugs target ion channels. One example is an antiarrhythmic 
drug lidocaine that acts as a voltage-gated sodium channel 
inhibitor [11]. Lidocaine’s action affects the conduction 
system and muscle cells of the heart, raising the depolarization 
threshold of heart and making it less likely to initiate or 
conduct action potentials [12]. Another example is ziconotide 
that targets calcium channels and is used for pain relief [13]. 
This compound blocks calcium influx into nerve terminals, 
which results in reduced release of glutamate and 
neuropeptides effectively interrupting spinal transmission of 
pain signal [14]. 
 
     Research shows that about 19% of human protein drug 
targets are in the ion channel family [15]. The number of ion 
channel-targeting drugs that have been approved by the US 
Food and Drug Administration (FDA) is steadily increasing 
since mid-1940s (Figure 1, these data were taken from Table 
S6 in [15] ). However, ion channels are still underutilized in 
the context of drug discovery and some of the ion channel-
targeting drugs have substantial toxicities and suboptimal 
efficacy [2]. Interestingly, the family of human ion channel 
proteins was estimated to account for 1% of the human protein 
coding genes, to be larger than the nuclear hormone receptor 
family, and to be as large as about half the size of the kinase 
and protease families [2]. Over 400 putative ion channels were 
found in the human genome alone [2] and over 300 types of 
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ion channels were already discovered [16]. The number of 
annotated ion channel proteins has grown rapidly in recent 
years. Figure 1 estimates this growth based on UniProt records 
[17] that were deposited over the last three decades.  

     The interest in the drugs that target ion channels and the 
need to expand the annotations of the ion channel proteins 
motivate the development of high-throughput computational 
tools that predict ion channels and their types directly from 
the protein sequences. Several computational methods were 
published over the past decade. However, to the best of our 
knowledge, they were never comprehensively surveyed and 
compared. This first-of-its-kind review article surveys the 
currently available computational tools and performs in-depth 
comparative assessment of their predictive performance. The 
unique aspects of this survey include the first empirical 
assessment of sequential prediction of the ion channels, their 
types and classes of voltage-gated channels; use of a novel 
benchmark dataset; and discussion of the predictions for ion 
channels that are classified into multiple types/classes. The 
latter aspect is overlooked by the current tools that assume that 
a given protein sequence can be classified into one specific 
ion channel type. The sequential prediction first classifies an 
input protein chain as ion channel vs. non-ion channel, 
following by the prediction of the ion channel type (voltage- 
vs. ligand-gated) for the putative ion channels, and finishing 
with prediction of the voltage-gated channel class (K+, Na+, 
Ca2+, vs. anion channel) for the putative voltage-gated 
channels. This is contrast to the prior assessments that 
evaluate predictions in parallel. This means that the input 
protein sequence is predicted as ion channel vs. non-ion 
channel; only the native ion channels are predicted as voltage- 
vs. ligand-gated; and only proteins in the voltage-gated class 
are predicted for the native voltage-gated channels. The main 
drawback of this assessment is that it assumes knowledge of 
native annotations of channel types and voltage-gated channel 
classes, which arguably is not a realistic scenario. One 
exception is the VGIchan method that performs sequential 
prediction of the voltage-gated ion channels and their classes. 
However, VGIchan does not cover the ligand-gated channels 
and, to the best of our reading of the corresponding article, it 
was evaluated in the parallel mode [18]. We perform 
assessment in parallel and sequential modes. 

2. SURVEY OF PREDICTORS OF ION CHANNELS, 
THEIR TYPES, AND CLASSES OF VOLTAGE-GATED 
CHANNELS 

     Eight computational methods have been developed to 
predict the ion channels, their types and classes of the voltage-
gated channels. Table 1 summarizes the year of their 
publication, scope of their predictions, details of their 
predictive models, and availability.  

 
     The first two methods were released in 2006 and these are 
the only methods developed before 2011. One predictor was 
released nearly every year since 2011. The eight methods can 
be divided into two groups based on the scope of their 
predictions: three predictors of subfamilies of the K+ channel 
[19-21] and five more generic methods that predict ion 
channels and their types [18, 22-25]. The three most recent 
predictors, which include IonchanPred2.0, PSIONplus and the 
predictor by Tiwari and Srivastava, are in the latter group. 
They share the same scope that includes prediction of ion 
channels, their types and classes of the voltage-gated 
channels. The only other tool with equally broad scope is 
IonchanPred1.0 that was released in 2011. The VGIchan 
method predicts ion channels and classes of the voltage-gated 
channels, while missing the prediction of ion channel types.  
 
     The predictive models utilized by the eight methods use a 
diverse range of inputs, from simple models that rely on a 
single input type to complex models that utilize up to six 
distinct input types. The simplest predictors include the 
method by Liu et al [20] and iVKC-OTC [21] that use 
dipeptide composition (frequency of dipeptides in the input 
protein chain) and tripeptide composition (frequency of 
tripeptides), respectively, as the only inputs. The most 
complex model is arguably PSIONplus that relies on the 
information about amino acid (AA) composition, dipeptide 
composition, physicochemical properties of AAs, putative 
intrinsic disorder, putative solvent accessibility and 
evolutionary profile in the form of PSSM [26]. The first three 
types of inputs are often used in other bioinformatics 
applications [27-35], likely because they are easy and fast to 
calculate. The broad range and number of inputs used by 
different predictors of ion channels is likely to have 
substantial impact on the predictive quality of the 
corresponding methods. This survey empirically tests this 
hypothesis. Interestingly, these diverse inputs are processed 
by similar machine learning algorithms to produce the 
predictions. Seven out of the eight methods use the Support 
Vector Machine (SVM) algorithm. This is consistent with 
popularity of this model in the prediction of various structural 
and functional characteristics of proteins [32, 34, 36-47]. The 
only divergent tool by Tiwari and Srivastava [24] uses the 
Random Forest (RF) algorithm. Moreover, VGIchan applies 
SVM in combination with hidden Markov model (HMM) [18] 
while PSIONplus combines SVM with PSI-BLAST [26]. 
Interestingly, deep learning models that were recently used in 
a number of related studies [29, 48-50]  have not yet been used 
to predict ion channels. 

Figure 1. Number of ion channels annotated in UniProt and the 
number of drugs that target these proteins over the last seven 
decades. The cumulative number of drugs that target the ion 
channel family approved by the US Food and Drug 
Administration (FDA) are shown using solid line. The 
cumulative number of UniProt sequences is shown in dashed 
line. 
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Table 1. Computational predictors of ion channels, their types and classes of the voltage-gated channels. Webservers and implementations that are unavailable as 
of July 1, 2018 are given in italics in the URL column. 

 
Method name or  
authors [ref] 

Year Scope of  
predictionsb 

Featuresc Type of  
Modeld 

Availa-
bilitya 

Support for 
batch 
predictions 

URLa

Liu et al. [20] 2006 Subfamilies of K+ channels DPC SVM NA NA NA 
VGIchan  [18] 2006 Ion vs. non-ion; K+, Ca2+, Na+, 

anion  
AAC, DPC, HMM 
profile; PSI-BLAST 

SVM; 
SVM+BLAST; 
SVM+HMM; 

WS Yes http://crdd.osdd.net/raghava/vgichan/ 

IonchanPred1.0  [23] 2011 Ion vs non-ion; ligand- vs 
voltage- gated; K+, Ca2+, Na+, 
anion 

AAC, DPC SVM WS Yes http://cobi.uestc.edu.cn/people/hlin/tools/IonchanPred/ 

VKCPred [19] 2012 Subfamily of K+ channel AAC, DPC SVM SS Unknown http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/
iVKC-OTC [21] 2014 Subfamily of K+ channels TPC SVM WS Yes http://lin-group.cn/server/iVKC-OTC 
Tiwari and Srivastava  [24] 2015 Ion vs non-ion; ligand- vs. 

voltage-gated; K+, Ca2+, Na+, 
Cl- 

AAC, DPC, correlation, 
transition and 
distribution, Pseudo 
AAC 

RF NA NA NA 

PSIONplus  [22] 2016 Ion vs non-ion; ligand- vs. 
voltage-gated; K+, Ca2+, Na+, 
anion 

AAC, DPC, PP, putative 
intrinsic disorder, RSA, 
PSSM profile 

SVM+PSI-BLAST SS Yes https://sourceforge.net/projects/psion/ 

IonchanPred2.0 [25] 2017 Ion vs non-ion; ligand- vs. 
voltage-gated; K+, Ca2+, Na+, 
anion 

DPC, PP  SVM WS Yes http://lin-group.cn/server/IonchanPredv2.0/ 

 

a NA: not applicable, WS: webserver, SS: Standalone software. b K+: potassium; Ca2+: calcium; Na+: sodium; Cl-: Chloride. c AAC: amino acid composition, DPC: dipeptide composition, TPC: tripeptide composition, 
PP: physicochemical properties, RSA: relative solvent accessibility, HMM: hidden Markov model, PSSM: position specific scoring matrix. d RF: random forest; SVM: support vector machine.
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     Six methods are offered to end users as either webservers 
(VGIchan, IonchanPred1.0, iVKC-OTC and IonchanPred2.0) 
or standalone software (PSIONplus and VKCPred). The two 
other tools were not made available by the authors, rendering 
them impractical. Websites of the two initially available tools 
(IonchanPred1.0 and VKCPred) no longer work (Table 1). 
 
     Interestingly, half of the predictors, (VGIchan, iVKC-
OTC, PSIONplus and IonchanPred2.0) are still functional and 
offer a batch prediction mode where multiple proteins can be 
predicted together. This makes it easier for the users to 
perform predictions for a larger sets of proteins, such as 
protein families or proteomes.  
 
     Overall, we observe that while many tools were published, 
only a few of them are currently available and offer a broad 
scope of predictions. These tools include VGIchan, 
PSIONplus and IonchanPred2.0. They are capable of 
predicting ion channels, their types (expect for VGIchan) and 
classes of the voltage gated channels. Moreover, the lack of 
availability and support for the published tools after they were 
released is a major problem that should be addressed in the 
future. 

 

3. COMPARATIVE ASSESSMENT OF THE ION 
CHANNEL PREDICTORS 

 
     We empirically compare predictive performance of the 
currently available and representative ion channel predictors. 
We consider the methods that are currently available as either 
webserver or standalone software since only these tools can 
be easily utilized by the end users. Moreover, we limit the 
considered methods to those that offer a broad scope of 
predictions, i.e., tools that predict ion channels and their types. 
Three of the eight surveyed methods meet these two practical 
conditions: IonchanPred2.0 [25], VGIchan  [18] and 
PSIONplus [22] . These three tools cover a diverse range of 
models, from a simple IonchanPred2.0 that uses two types of 
inputs, through the intermediate VGIchan that utilizes four 
types of inputs, to the most complex PSIONplus that relies on 
six types of inputs. Three highlights of this comparative 
empirical analysis include: 1) assessment of two alternative 
ways to make these predictions: parallel and sequential; 2) a 
novel and high-quality benchmark dataset; and 3) analysis of 
the results for proteins that are annotated with single vs. 
multiple ion channel types/classes. 

 

3.1. Materials and methods 

3.1.1. Two ways to predict ion channels and their 
types/classes from protein sequence: 

     The outcomes generated by the considered predictors 
include: ion channel vs. non-ion channel; voltage-gated vs. 

ligand-gated ion channel; four classes of voltage-gated ion 
channels: potassium (K+), calcium (Ca2+), sodium (Na+) and 
anion. There are two ways to make these prediction: 

- Parallel prediction (Figure 2A) where prediction of ion 
channel vs. non-ion channel, voltage- vs. ligand-gated ion 
channel, and the prediction of the four classes of voltage-
gated ion channel (K+, Ca2+, Na+ and anion) are 
performed individually. The inputs for these three 
predictions are a generic protein sequence, a native ion 
channel sequence (the outcomes do not include non-ion 
channels) and a native voltage-gated ion channel (the 
outcomes do not include non-voltage-gated ion channel), 
respectively.  

- Sequential prediction (Figure 2B) where in the first step 
a generic sequence is predicted as ion channel vs. non-ion 
channel. In the second step the prediction of the ion 
channel type (voltage- vs. ligand-gated) is performed for 
the putative ion channels generated in the first step. 
Finally, the prediction of the voltage-gated channel class 
(K+, Na+, Ca2+ vs. anion channel) is performed for the 
putative voltage-gated channels generated in the second 
step. 

 
     A substantial drawback of the parallel approach is that the 
predictions of the ion channel type and the voltage-gated 
channel class require that the input protein sequence is already 
known to be the ion channel and voltage-gated channel, 
respectively. The published methods were tested in the 
parallel way, where tests were performed on the entire test 
dataset for the prediction of ion channels, using only the ion 
channels from the test dataset for the prediction of ion channel 
types, and using only the voltage-gated channels from the test 
dataset for the prediction of the voltage-gated channel classes. 
To the best of our knowledge, we are the first to evaluate these 
predictors in a more realistic sequential way. 

 

Figure 2. Two alternative ways to predict the ion channels and ion 
channel types. Solid gray lines denote inputs while dashed black 
lines denote putative annotations generated by the predictors. 
Panel A shows the parallel prediction while Panel B represents 
sequential prediction. 
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3.1.2. Benchmark dataset: 

     We developed a new benchmark dataset to comparatively 
evaluate predictive performance of the three predictors. The 
dataset is designed to share low identity to the training dataset 
of the three methods. This ensures that these predictions are 
beyond the capability of a simple sequence alignment and that 
the evaluation does not favor any of these tools. The overall 
protocol to collect this dataset is inspired by [18, 22, 23, 25]. 
The only differences are that we maintain a stricter sequence 
similarity cut-off at 30% when compared to 40% used in [23, 
25]  and 90% used in  [18] ( [22] uses the same 30% cut-off), 
and that similar to [18] we manually verify the ion channel 
annotations using the UniProt records. The dataset was 
collected on December 21, 2017 using the following five 
steps: 
1. We collected the annotations of ion channels and their 

types/classes from UniProt using reviewed manual 
annotations and excluding annotated proteins fragments. 
We collected 473 ligand-gated ion channels by executing 
the following query: Gene Ontology (GO) term “ligand-
gated ion channel activity [ligand-gated ion channel 
activity [15276]” AND Evidence level “Any manual 
assertion” AND Reviewed “Yes” AND Sequence 
“Fragment” “No”. We found 660 voltage-gated ion 
channels by running the following query: GO term 
“voltage-gated ion channel activity [voltage-gated ion 
channel activity [5244]” AND Evidence level “Any 
manual assertion” AND Reviewed “Yes” AND Sequence 
“Fragment” “No”. We also collected 13,657 high quality 
non-ion channels that include other types of membrane 
proteins with the following query: GO term “membrane 
[16020]” AND Evidence level “Any manual assertion” 
AND Reviewed “Yes” AND Sequence “Fragment” “No” 
AND Subcellular location  Subcellular location[CC] 
Subcellular location term “Membrane[SL-0162] with 
Evidence “Any manual assertion” Type “Any”. We retain 
the membrane proteins that do not include the keyword 
“channel” in GO molecular function annotation. 

2. We cleaned up the dataset generated in step 1 to remove 
sequences with non-standard AAs and very short chain 
that are likely to be protein fragments. In particular, we 
excluded sequences that are shorter than 30 AA and that 
include X, B and Z characters. The resulting dataset 
includes 14,739 proteins.  

3. We reduced the sequence similarity between the collected 
ion channels and non-ion channels and the training 
datasets of IonchanPred2.0, VGIchan and PSIONplus. 
First, we combined the 14,739 proteins with the training 
datasets of the three predictors. The combined dataset 
was processed with CD-HIT webserver [51, 52] using 
sequence identity cut-off 30% to generate 5,739 clusters. 
Clusters that contain any training sequences were 
removed. For each clusters that does not include training 
sequences we extracted sequences as follows: 
- We collected all ion channels sequences for each 

cluster that includes ion-channels  
- We collected a representative non-ion channel 

sequence identified by CD-HIT for the clusters that 
do not include ion-channels  

This resulted in selection of 4,819 proteins that share < 
30% similarity with the training datasets of the three 
predictors.  

4. We manually verified and extended the ion channel 
annotations. We also manually checked correctness of the 
ion channel annotations. Consequently, we removed 28 
annotated proteins which are unlikely to be ion channels. 
The removed proteins include several GPCRs, 
scaffolding proteins and transcriptional repressors. We 
added annotations of the voltage-gated channel classes 
based on the GO molecular function annotation from 
UniProt using keywords “sodium”, “potassium”, 
“calcium” “anion” and “chloride”. There are 29 proteins 
with multiple annotations. The sequences with multiple 
annotations were repeated once for each annotation to 
generate all corresponding sequence-label tuples.  

5. We created the final balanced benchmark dataset. The 
output from steps 3 and 4 is the dataset with 4,639 non-
ion channels and 175 ion channels. We selected at 
random 175 non-ion channels to create a balanced 
benchmark dataset with 350 proteins.  

 
     The composition of the benchmark dataset is summarized 
in Table 2. The benchmark dataset that includes UniProt 
accession numbers, sequences and annotations is provided in 
the Supplement. 
 
Table 2. Summary of benchmark dataset. 
 

Protein type Ion channel 
type 

Voltage-gated 
channel class 

Number of 
proteins 

Ion-channel 
Voltage-
gated 

Sodium (Na+) 20 
 Potassium (K+) 29 
 Calcium (Ca2+) 23 
 Anion 22 
 Ligand-gated   81 
Non-ion 
channel 

  175 

 
 
3.1.3. Evaluation of predictive performance: 

     The predictive performance of the three considered 
predictors was assessed using a broad selection of eight 
measures that were used in different combinations in previous 
related studies [18, 23-25, 36]. The same measures were also 
used in numerous related studies including prediction of 
crystallization propensity [33, 53], DNA and RNA binding 
proteins and residues [54, 55], disordered proteins [56], B-cell 
epitopes [36], beta-turns [57], secondary structure [58, 59], 
gamma-carboxylation sites [60], amidation sites [61], and 
outer membrane proteins [62, 63], to name a few. They 
include: 
Accuracy (ACC) = (TP+TN)/ (TP+FP+TN+FN), 
Matthews correlation coefficient (MCC) = 
(TP*TN+FP*FN)/SQRT((TP+FP)(TP+FN)(TN+FP)(TN+F
N)) 
F1 = 2TP/ (2TP+FN+FP) 
Sensitivity (SN) = TP/ (TP+FN) 
Specificity (SP) = TN/ (FP+TN) 
Precision (PRC) = TP / (TP+FP) 
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where TP, TN, FP and FN is the number of true positives, true 
negatives, false positives, and false negatives, respectively. 
This assessment was performed for each binary prediction 
(ion-channel vs. non-ion channels, voltage- vs. ligand-gated 
channels, sodium voltage-gated channel vs. other voltage-
gated channels, etc.). Using ion channels vs. non-ion channel 
as an example, TP is number of native ion channels correctly 
predicted as ion channels, TN is number of native non-ion 
channels correctly predicted as non-ion channels, FP is 
number of native non-ion channels incorrectly predicted as 
ion channels, and FN is number of native ion channels 
incorrectly predicted as non-ion channels. We also computed 
the average accuracy, average MCC, average F1, and Q4, Q6 
to evaluate the prediction over the four classes of the voltage-
gated ion channels, and the six outcomes that are generated in 
the sequential prediction regime:  

Q4 = (TP1+TP2+…TP4)/N 
Q5 = (TP1+TP2+…TP5)/N 

Q6 = (TP1+TP2+…+TP6)/N 
 
where N is total number of proteins in the benchmark dataset. 
We also assess statistical significance of the differences in the 
predictive quality measured with accuracy, MCC and F1 
between the most accurate predictor and the other methods. 
We do not include the other measures (specificity, sensitivity 
and precision) since they assess only part of the dataset, e.g., 
only negative or only positive samples. We evaluate these 
differences when using a range of different test datasets by 
repeating the tests 10 times where each repetition is based on 
50% of randomly chosen benchmark proteins. We use paired 
t-test to compare results over the ten pairs of datasets. We 
assume that the difference is statistically significant when p-
value < 0.05. 
 

3.2. Results 

     Similar to prior works [18, 22-25], we present results for 
the three types of the parallel predictions. This is followed by 
the novel assessment of the sequential prediction and the new 
evaluation for the proteins annotated with one type of ion 
channel vs. proteins annotated with multiple channel types. 
 

3.2.1. Evaluation of predictive performance: 

     The predictive quality for the parallel prediction of the ion 
channels is summarized in Table 3. The most accurate 
PSIONplus has achieved accuracy = 0.79, MCC = 0.59 and 
F1 = 0.80 and it outperforms the other two methods by a 
statistically significant margin (p-value < 0.05). The 
PSIONplus’s MCC value suggests a strong correlation 
between the predicted and native annotations of ion channels, 
with the other two methods securing more modest levels of 
correlation at 0.43 and 0.48. While PSIONplus’s sensitivity 
and specificity values are relatively balanced, IonchanPred2.0 
secures the highest sensitivity = 0.87 coupled with relatively 
low specificity = 0.59. This suggests that IonchanPred2.0 
tends to predict a large number of ion channels. The highest 
specificity = 0.89 is achieved by VGIchan, which reveals that 
this tool generates relatively few false positives. We also 
evaluated a random predictor that is implemented to generate 

the two outcomes at random while maintaining the correct 
proportion of the ion channels and non-ion channels labels. 
The three methods provide accuracy, MCC and F1 that are 
substantially higher than this random predictor. This shows 
that these methods provide useful predictions of the ion 
channels. 
 
Table 3. Predictive performance of PSIONplus, 
IonchanPred2.0, VGIchan and a random predictor for the 
parallel prediction of ion channels (denoted as positive 
samples) vs. non-ion channel on the benchmark dataset.  

 

Measure PSIONplus IonchanPred2.0 VGIchan Randoma 

Accuracy 0.79 0.73*b 0.70* 0.47* 

Sensitivity 0.86 0.87 0.51 0.47 

Specificity 0.73 0.59 0.89 0.47 

MCC 0.59 0.48* 0.43* -0.05* 

Precision 0.76 0.68 0.82 0.47 

F1 0.80 0.76* 0.63* 0.47* 
 

aThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of the ion channels and non-ion channels 
labels.  
b* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing PSIONplus is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 
The highest value for each specific measure is denoted with the bold font. 

 
 

3.2.2. Parallel prediction of the voltage-gated and ligand-
gated ion channels: 

     The predictive performance for the parallel prediction of 
voltage- vs. ligand-gated channels is evaluated in Table 4. 
This test excludes VGIchan that does not offer this type of 
prediction. The most accurate predictions are generated by 
PSIONplus that secures accuracy = 0.67, MCC = 0.35 and F1 
= 0.74. These results are significantly better than the results 
generated by IonchanPred2.0 and the random predictor (p-
value < 0.05). In contrast to the prediction of ion channels, the 
parallel prediction of the ion channel types is characterized by 
modest levels of predictive quality. This is apparent based on 
the PSIONplus’s MCC and accuracy values. However, these 
predictions are statistically significantly better than the results 
of the random predictor. Both PSIONplus and IonchanPred2.0 
over-predict the voltage-gated channels. This claim is 
supported by their high sensitivity and low specificity, where 
the latter is particularly low for IonchanPred2.0. 
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Table 4. Predictive performance of PSIONplus, 
IonchanPred2.0 and a random predictor for the parallel 
prediction of voltage-gated (denoted as positive samples) 
vs. ligand-gated channels on a subset of the benchmark 
dataset with the 175 ion channel proteins.  

 
Measure PSIONplus IonchanPred2.0 Randoma 

Accuracy 0.67 0.50*b 0.50* 

Sensitivity 0.85 0.84 0.53 

Specificity 0.47 0.11 0.46 

MCC 0.35 -0.07* -0.01* 

Precision 0.65 0.52 0.53 

F1 0.74 0.65* 0.53* 
 

aThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of the voltage- and ligand-gated channel 
labels.  
b* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing PSIONplus is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 
The highest value for each specific measure is denoted with the bold font. 

 
 
3.2.3. Parallel prediction of the four classes of the voltage-
gated ion channels: 

     Table 5 summarizes results of the empirical assessment of 
the prediction of the four classes of the voltage-gated ion 
channels. These tests exclude VGIchan that makes predictions 
in the sequential way, i.e., it does not predict the voltages-
gated channel classes for the sequence that it predicts as the 
non-ion channels. This prevented us from completing 
predictions for the entire set of voltage-gated ion channels 
from the benchmark dataset, i.e., since the non-voltage-gated 
ion channel outcome is not available for this assessment.  
 
     PSIONplus offers the average accuracy = 0.74, average 
MCC = 0.28, average F1 = 0.39 and Q4 = 0.48. These are 
relatively modest levels of predictive quality. However, 
PSIONplus still statistically significantly outperforms 
IonchanPred2.0 and the random predictor (p-value < 0.05). 
The trends of the predictive quality over the four classes of 
channels are visualized in Figure 3. The predictive quality is 
modest for the K+, Ca2+ and anion channels (MCC is between 
0.29 and 0.48 for PSIONplus) while none of methods can 
reliably predict the Na+ channels (MCC = 0). In fact, 
sensitivity that equals 0 for the prediction of Na+ channels 
reveals that they are never correctly predicted. Moreover, we 
observe that both PSIONplus and IonchanPred2.0 over-
predict the K+ channels. This is based on their high sensitivity 
and low specificity values. For PSIONplus this also results in 
lower MCC values compared to the predictions of Ca2+ and 
anion channels (solid green line in Figure 3). The Q4 value 
that quantifies the overall accuracy equals 0.48 for PSIONplus 
and 0.34 for IonchanPred2.0 when compared to 0.15 for the 
random predictor. This corresponds to a solid 3.2 and 2.3 folds 
improvement, respectively. 

Table 5. Predictive performance of PSIONplus, 
IonchanPred2.0 and a random predictor for the parallel 
prediction of the voltage-gated channel classes on a subset 
of the benchmark dataset with the 94 voltage-gated ion 
channel proteins.  

 
Method Label ACCa SNa SPa MCCa PRCa F1 Q4 

P
S

IO
N

pl
us

 

K+ 0.56 0.86 0.43 0.29 0.40 0.55  

Ca2+ 0.81 0.61 0.87 0.48 0.61 0.61  

Anion 0.80 0.27 0.96 0.33 0.67 0.39  

Na+ 0.79 0.00 1.00 0.00 0.00 0.00  

Average 0.74 0.44 0.82 0.28 0.42 0.39 0.48 

Io
nc

ha
nP

re
d2

.0
 

K+ 0.52 0.69 0.45 0.13 0.36 0.47  

Ca2+ 0.62 0.35 0.70 0.05 0.28 0.31  

Anion 0.76 0.18 0.93 0.16 0.44 0.26  

Na+ 0.79 0.00 1.00 0.00 0.00 0.00  

Average 0.67*b 0.31 0.77 0.08* 0.27 0.26* 0.34 

R
an

do
m

c  

K+ 0.51 0.21 0.65 -0.15 0.21 0.21  

Ca2+ 0.64 0.26 0.76 0.02 0.26 0.26  

Anion 0.57 0.09 0.72 -0.19 0.09 0.09  

Na+ 0.57 0.00 0.73 -0.27 0.00 0.00  

Average 0.57* 0.14 0.71 -0.15* 0.14 0.14* 0.15 
 

aACC: accuracy, SN: sensitivity; SP: specificity; MCC: Matthews correlation 
coefficient; PRC: precision;  
b* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing PSIONplus is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 
cThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of the four types of the voltage-gated 
channel classes.  
 

 
3.2.4. Sequential prediction ion channels, their types and 
classes of the voltage-gated ion channels: 

     The sequential prediction of the ion channels, their types 
and the four classes of the voltage-gated ion channels is 
summarized in Table 6. This analysis considers methods that 
can predict the six outcomes: PSIONplus, IonchanPred2.0 and 
the random predictor. VGIchan that predicts five of the six 
outcomes (it does not predict the ligand-gated ion channels) is 
evaluated in the next paragraph. PSIONplus secures modest 
levels of predictive performance with the average accuracy = 
0.85, average MCC = 0.29, average F1 = 0.35, and Q6 = 0.55. 

Figure 3. MCC and F1 scores for the prediction of the four 
voltage-gated ion channel classes for IonchanPred2.0, 
PSIONplus and the random predictor. 
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This Q6 is 2.1 times better than the Q6 of the random predictor. 
The predictions produced by PSIONplus are statistically 
significantly better than the predictions with IonchanPred2.0 
and the random predictor (p-value < 0.05). However, the 
predictions from IonchanPred2.0 are also at practical levels 
with Q6 = 0.4, which is 1.5 times better than the random 
predictor.  
 
Table 6. Predictive performance of PSIONplus, 
IonchanPred2.0 and a random predictor for the sequential 
prediction of the ion channels, their types and the voltage-
gated channel classes in the benchmark dataset.  

 

Method Label ACCa SNa SPa MCCa PRCa F1 Q6 

P
S

IO
N

pl
us

 

Ion channel 0.79 0.86 0.73 0.59 0.76 0.80  

Ligand-gated 0.79 0.40 0.91 0.36 0.58 0.47  

K+ 0.79 0.86 0.78 0.40 0.26 0.40  

Ca2+ 0.86 0.26 0.91 0.13 0.16 0.20  

Anion 0.93 0.18 0.98 0.24 0.40 0.25  

Na+ 0.94 0.00 1.00 0.00 0.00 0.00  

Average 0.85 0.43 0.88 0.29 0.36 0.35 0.55 

Io
nc

ha
nP

re
d2

.0
 

Ion channel 0.73 0.87 0.59 0.48 0.68 0.76  

Ligand-gated 0.69 0.10 0.87 -0.04 0.19 0.13  

K+ 0.67 0.66 0.67 0.19 0.15 0.25  

Ca2+ 0.85 0.26 0.90 0.12 0.15 0.19  

Anion 0.91 0.14 0.96 0.12 0.20 0.16  

Na+ 0.94 0.00 1.00 -0.01 0.00 0.00  

Average 0.80*b 0.34 0.83 0.14* 0.23 0.25* 0.40 

R
an

do
m

c  

Ion channel 0.45 0.45 0.45 -0.11 0.45 0.45  

Ligand-gated 0.59 0.12 0.74 -0.14 0.12 0.12  

K+ 0.85 0.10 0.92 0.02 0.10 0.10  

Ca2+ 0.87 0.00 0.93 -0.07 0.00 0.00  

Anion 0.88 0.05 0.94 -0.02 0.05 0.05  

Na+ 0.89 0.00 0.94 -0.06 0.00 0.00  

Average 0.75* 0.12 0.82 -0.06* 0.12 0.12* 0.26 

 

aACC: accuracy, SN: sensitivity; SP: specificity; MCC: Matthews correlation 
coefficient; PRC: precision;  
b* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing PSIONplus is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 
cThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of annotations of the non-ion channels, 
ion channels, ion channel types and classes of the voltage-gated ion channels.  

Table 7. Predictive performance of VGIchan and a 
random predictor for the sequential prediction of the ion 
channels and the voltage-gated channel classes in the 
benchmark dataset. 
  
Method Label ACCa SNa SPa MCCa PRCa F1 Q5 

V
G

Ic
ha

n Ion 
channel 

0.81 0.67 0.89 0.58 0.77 0.72  

Anion 0.92 0.05 1.00 0.13 0.50 0.08  

Na+ 0.93 0.00 1.00 0.00 0.00 0.00  

Ca2+ 0.91 0.00 1.00 0.00 0.00 0.00  

K+ 0.80 0.93 0.78 0.48 0.34 0.50 

Average 0.87 0.33 0.93 0.24 0.32 0.26 0.68

R
an

do
m

b  Ion 
channel 

0.55 0.35 0.65 0.00 0.35 0.35  

Anion 0.84 0.05 0.92 -0.04 0.05 0.05  

Na+ 0.87 0.10 0.93 0.03 0.10 0.10  

Ca2+ 0.86 0.17 0.92 0.10 0.17 0.17  

K+ 0.81 0.14 0.90 0.03 0.14 0.14 

Average 0.79*c 0.16 0.86 0.02* 0.16 0.16* 0.46
 

aACC: accuracy, SN: sensitivity; SP: specificity; MCC: Matthews correlation 
coefficient; PRC: precision;  
bThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of annotations of the non-ion channels, 
ion channels and classes of the voltage-gated ion channels. 
c* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing VGIchan is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 

     Figure 4 visualizes the values of MCC and F1 for the three 
methods over the six outcomes. The lowest predictive quality 
is for the Na+ channels (and for the ligand- vs. voltage-gated 
channel prediction for IonchanPred2.0), while the strongest 
predictions are observed for the prediction of ion channels. 
PSIONplus and IonchanPred2.0 fail to correctly predict any 
of the Na+ voltage-gated channels (sensitivity = 0 and 
specificity = 1 in Table 6). Except for this channel class, the 
PSIONplus predictions are universally better than the 
predictions from IonchanPred2.0, while the latter predictor is 
always better than the random predictions. 

     We also assess VGIchan and compare it to the random 
predictor in Table 7. The overall predictive performance of 
VGIchan is modest with average MCC = 0.24, average 
accuracy = 0.87, average F1 = 0.26 and Q5 = 0.68. VGIchan’s 
Q5 is 1.5 times better than the Q5 of the random predictor and 

Figure 4. MCC and F1 scores for the sequential prediction with 
IonchanPred 2.0, PSIONplus and the random predictor. 
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its MCC, accuracy and F1 are significantly better (p-value < 
0.05). The predictions for the Na+ and Ca2+ channel classes 
are inaccurate, with sensitivity = 0 and specificity = 1. This 
reveal that VGIchan misses to correctly predict any of these 
two types of voltage-gated channel classes. It also predicts 
very few of the anion voltage-gated channels (sensitivity = 
0.05). The average MCC, average F1 and ratio of Q5 or Q6 
compared to the random predictor, which are arguably the 
most suitable to compare between the assessments in Tables 
6 and 7 that cover different number of predictive outcomes, 
are slightly higher for PSIONplus. However, we conclude that 
both VGIchan and PSIONplus offer predictions that have 
practical value based on their substantial improvement when 
contrasted with the random predictor.  
 
3.2.5. Comparison of results for proteins annotated with 
single vs. multiple ion channel types/classes: 

     There are 29 proteins with multiple annotations of the 
channel types/classes in the benchmark dataset. The average 
annotation count for these proteins is 2.5. They account for 73 
samples (21% of the benchmark dataset) while the remaining 
277 proteins/samples have a single annotation. We assess the 
sequential predictions on the proteins that have one annotation 
(79% of the benchmark dataset, Table 8) and compare these 
results with Table 6 where the entire benchmark dataset was 
used. The results between the complete benchmark dataset 
and the set of single-annotation proteins are comparable. For 
instance, the average MCC, average F1, average accuracy and 
Q6 values for the most accurate PSIONplus equal 0.29 vs. 
0.27, 0.35 vs. 0.31, 0.85 vs. 0.87, and 0.55 vs. 0.61. Also, both 
PSIONplus and IonchanPred2.0 maintain substantial margin 
when compared to the random predictor on the benchmark 
dataset with the single-annotation proteins. Moreover, 
PSIONplus is statistically significantly better than 
IonchanPred2.0 (p-value < 0.05). This reveals that the 
considered predictors perform well on these proteins. 
 
     Next, we turn our attention to the 29 multi-annotation 
proteins. We note that none of the current predictors is 
equipped to make multiple different predictions for a single 
protein, and as such they are not capable to make correct 
predictions for these ion channels. We consider an option of 
combining predictions of the two methods that cover the entire 
set of six predictive outcomes (PSIONplus and 
IonchanPred2.0) to generate multiple predictions for these 
proteins. Table 9 compares the level of agreement between 
predictions generated by these two predictors between the 
proteins with single and multiple annotations. We observe that 
the two predictors are in agreement for roughly half of the 
proteins, which is substantially higher than the agreement 
between random predictors. The latter is expected given the 
overall significantly higher predictive performance of 
PSIONplus and IonchanPred2.0 when compared to the 
random predictors (Tables 6 and 8). The agreement levels are 
slightly higher for the multi-annotation proteins. This reveals 
that combining PSIONplus and IonchanPred2.0 will fail to 
produce the correct predictions for 59% of the multi-
annotation proteins. Table 10 directly evaluates predictive 
quality of combining these two methods to predict the 

multiple annotations for the 29 proteins. It reveals that while 
PSIONplus and IonchanPred2.0 correctly predict at least one 
of the annotations for 90% and 69% of these proteins, 
respectively, they correctly predict two annotations for only 
10% of the multi-annotation proteins. While these rates of 
correct predictions are better than the corresponding rates for 
random predictors (Table 10), they are short of levels that can 
find practical applications. Altogether, we conclude that the 
current tools cannot tackle the prediction of proteins with 
multiple annotations of ion channel types/classes and that 
combining these tools together is not going to yield 
satisfactory results. 

 
Table 8. Predictive performance of PSIONplus, 
IonchanPred2.0 and a random predictor for the sequential 
prediction of the ion channels, their types and the voltage-
gated channel classes for the proteins with a single 
annotation in the benchmark dataset.  

 
Method Label ACCa SNa SPa MCCa PRCa F1 Q6 

P
S

IO
N

pl
us

 

Ion channel 0.75 0.79 0.73 0.50 0.63 0.70  

Ligand-gated 0.81 0.44 0.92 0.40 0.60 0.51  

Anion 0.92 0.19 0.98 0.24 0.40 0.26  

Na+ 1.00 0.00 1.00 0.00 0.00 0.00  

Ca2+ 0.87 0.27 0.90 0.11 0.10 0.15  

K+ 0.87 1.00 0.86 0.37 0.16 0.28  

Average 0.87 0.45 0.90 0.27 0.31 0.31 0.61

Io
nc

ha
nP

re
d2

.0
 

Ion channel 0.66 0.78 0.59 0.36 0.53 0.63  

Ligand-gated 0.69 0.13 0.86 -0.02 0.21 0.16  

Anion 0.89 0.10 0.96 0.07 0.15 0.12  

Na+ 0.99 0.00 1.00 0.00 0.00 0.00  

Ca2+ 0.88 0.18 0.91 0.07 0.08 0.11  

K+ 0.74 0.57 0.75 0.11 0.06 0.10  

Average 0.81*b 0.29 0.84 0.10* 0.17 0.19* 0.43

R
an

do
m

c  

Ion channel 0.44 0.44 0.45 -0.11 0.32 0.37  

Ligand-gated 0.60 0.13 0.74 -0.13 0.13 0.13  

Anion 0.86 0.05 0.92 -0.03 0.05 0.05  

Na+ 0.94 0.00 0.94 -0.02 0.00 0.00  

Ca2+ 0.90 0.00 0.94 -0.05 0.00 0.00  

K+ 0.91 0.29 0.92 0.12 0.09 0.13  

Average 0.77* 0.15 0.82 -0.04* 0.10 0.11* 0.32
 

aACC: accuracy, SN: sensitivity; SP: specificity; MCC: Matthews correlation 
coefficient; PRC: precision;  
b* and = denote that predictive performance measured with accuracy, MCC 
and F1 of the best performing PSIONplus is significantly better and is not 
significantly different at p-value of 0.05 than the other method, respectively. 
cThe random predictor is based on a randomized assignment of the outcomes 
that maintains the correct proportion of annotations of the non-ion channels, 
ion channels, ion channel types and classes of the voltage-gated ion channels.  
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Table 9. Fraction of proteins for which predictions are in 
agreement for a pair of two random predictors and the 
pair of PSIONplus and IonchanPred2.0 predictors. The 
evaluation is performed for the single annotation and 
multi-annotation proteins in the benchmark dataset.  
 

 

PSIONplus and  
IonchanPred2.0 

Two random  
predictors 

Single-annotation proteins 0.48 0.32 

Multi-annotation proteins 0.59 0.34 
 

aThe random predictors are based on a randomized assignment of the 
outcomes that maintains the correct proportion of annotations of the non-ion 
channels, ion channels, ion channel types and classes of the voltage-gated 
ion channels. 
 

Table 10. Predictive performance of a combination of 
PSIONplus and IonchanPred2.0 and a combination of 
two random predictors for the 29 proteins that have 
multiple annotations of channel types/classes.  
 

 

Ratio of predictions  
where at least one outcome 
was correctly predicted 

PSIONplus alone 0.90 

IonchanPred2.0 alone 0.69 

PSIONplus and IonchanPred2.0 combined 0.93 

Random predictor 1 alone 0.28 

Random predictor 2 alone 0.31 

Two random predictors combined 0.48 

 

Ratio of predictions  
where at least two outcomes 
were correctly predicted 

PSIONplus and IonchanPred2.0 combined 0.10 

Two random predictors combined 0.03 

4. DISCUSSION AND CONCLUSION 

     Ion channels play an important role in a wide range of 
cellular processes. Hundreds of ion channel were already 
annotated and many more await discovery. This protein 
family is associated with over two dozen human diseases 
[2]and is targeted by over 700 drugs [15]. Thus, the 
development of accurate computational tools that predict the 
ion channels from protein sequences is desirable.  
 
     We describe details of a comprehensive set of eight 
predictors of ion channels, three of which focus on the 
prediction of the subfamilies of K+ channels, and five that 
cover the prediction of ion channels, their types and four 
classes of the voltage-gated channels. The latter five methods 
offer a comprehensive solution for this predictive task. They 
are characterized by diverse designs and only three of these 
tools (IonchanPred2.0 [25], VGIchan [18] and PSIONplus 
[22]) are available to the end user as either webservers or 
standalone software. The lack of support and availability for 
the majority of the published predictors is a major problem. 
This should be tackled by requiring the provision and support 
of the implementation/software at the time when the 

predictors are published. This is already required to publish in 
some venues, such as the Nucleic Acids Research journal. 
 
     Empirical comparative assessment of the three currently 
available and comprehensive predictors on a novel and 
carefully crafted benchmark dataset reveals several interesting 
observations. First, the three computational tools offer strong 
predictive performance for the prediction of ion channels, 
with PSIONplus providing the most accurate results. Second, 
performance for the prediction of ion channel types (voltage- 
vs. ligand gated) is modest and only PSIONplus should be 
used for this purpose. The three tools provide modest levels 
of predictive quality for the prediction of the four classes of 
the voltage-gated ion channels, where PSIONplus takes a 
slight lead ahead of VGIchan. However, none of these tools 
accurately predicts sodium (Na+) channel class. First-of-its-
kind assessment of the sequential prediction of the ion 
channels, their types and the four classes of the voltage-gated 
channels reveals that PSIONplus is slightly more accurate 
than VGIchan (the latter also does not predict the ligand-gated 
ion channels) and statistically significantly more accurate than 
IonchanPred2.0. We speculate that PSIONplus is the most 
accurate because it uses a more diverse and broader range of 
six types of inputs when compared to the other two methods, 
particularly when contrasted to IonchanPred2.0 that uses only 
two types of inputs (Table 1). Moreover, the three methods 
are significantly more accurate than a random predictor, 
showing that end users would benefit from using these tools.  
 
     We are also the first to investigate prediction for proteins 
annotated with multiple type/classes of ion channels. The 
design of each of the current predictors precludes it from 
generating more than one prediction for a given input protein 
sequence. Combining outputs generated by multiple tools 
does not offer a feasible solution either. This is because they 
often produce the same prediction and because their combined 
predictions are inaccurate when they differ. New methods that 
can solve these problems are needed. One solution is 
motivated by the prediction of ligand-binding residues in 
proteins where some of the residues may interact with 
multiple types of ligands, such as DNA, RNA and proteins 
[35, 64, 65]. In this case specific methods are used to predict 
residues that bind to one type of ligand [54, 55, 66-69], and 
these methods are combined together to effectively annotate 
multiple types of ligands for the same residue [68]. In the 
context of this study, this would require building and 
combining multiple methods that would address prediction of 
specific types and classes of ion channels. The second option 
is to design one predictor that would rely on multi-label 
classification algorithms that directly produce multiple 
outcomes for the same input protein [70]. Such multi-labels 
predictors were recently designed to address prediction of 
protein and gene functions [71-73] and subcellular locations 
[74-76]. 
 
     The results for the three parallel tests (ion channels, their 
types, and classes of voltage-gated channels) for VGIchan and 
IonchanPred2.0 are lower than these reported in [18] and [25], 
respectively. There are three potential reasons. First, we use a 
stricter similarity cut-off between training and benchmark 
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sequences at 30% vs. 90% [18] and 40% [25]. This results in 
a harder and arguably more practical assessment. Second, we 
use a benchmark dataset that was not used to 
develop/parametrize these tools. This is in contrast to the prior 
works that develop and evaluate their tools using cross 
validation [18] and jackknife tests [25] on the training 
datasets. Both of these test, and in particular the jackknife test, 
allow the predictive model to draw on the sequence similarity 
in the training dataset to secure higher levels of predictive 
performance. Third, VGIchan was evaluated using a dataset 
with voltage-gated ion channels and the negative sequences 
that include all other proteins [18], instead of the arguably 
harder set of negatives used in this review and in  [22, 25]that 
includes other types of membrane proteins. Importantly, the 
results reported here for the prediction of ion channels and 
their types are consistent with results in [22] where a similar 
test protocol was used, i.e., test dataset with 30% similarity 
and membrane proteins as negatives. The results for the 
parallel prediction of the voltage-gated ion channel classes 
are, as expected, lower here compared to[22] where the 
corresponding test dataset shared much higher sequence 
similarity at 60% to the training proteins. The use of this high-
similarity test set was a result of a data shortage at the time 
when [22]was published.  
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