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Abstract 

Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly 
prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human 
proteins while mapping them into 24 compartments of the human cell. In agreement with previous 
studies, we show that human proteins are significantly enriched in disorder relative to a generic protein 
set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and 
the average protein-level disorder content in the human proteome are about 3 times higher than in the 
protein universe. Furthermore, levels of intrinsic disorder in majority of human subcellular compartments 
significantly exceed the average disorder content in the protein universe. Relative to the overall amount of 
disorder in the human proteome, proteins in localized in nucleus and cytoskeleton have significantly 
increased amounts of disorder, measured by both high disorder content and presence of multiple long 
intrinsically disordered regions. We empirically demonstrate that, on average, human proteins are 
assigned to 2.3 subcellular compartments, with proteins localized to few subcellular compartments being 
more disordered than the proteins that are localized to many compartments. Functionally, the disordered 
proteins localized in the most disorder-enriched subcellular compartments are primarily responsible for 
interactions with nucleic acids and protein partners. This is the first-time disorder is comprehensively 
mapped into the human cell. Our observations add a missing piece to the puzzle of functional disorder and 
its organization inside the cell. 
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1 Introduction 

Research suggests that protein universe, defined as the collection of all proteins of all organisms [1], 
includes two distinct subspaces composed of structured, mostly globular proteins [2-5] and disordered 
proteins [6-9]. The intrinsically disordered proteins (IDPs) or hybrid proteins that have ordered domains 
and intrinsically disordered protein regions (IDPRs) [10-13] are commonly found in all proteomes of all 
kingdoms of life and in viruses [14-18]. This high penetrance of intrinsic disorder in the protein universe 
stems from unique functional features of IDPs/IDPRs related to their high structural plasticity and lack of 
unique stable structure [10, 11, 19]. Structurally, these ‘floppy’ proteins and protein regions are described 
as highly dynamic ensembles of rapidly interconverting conformations [20, 21]. They complement the 
functional repertoire associated with the structured proteins by expanding the structure/disorder-to-
function continuum concept [22, 23]. Being mostly incompatible with catalytic and transport functions, 
which are dominated by the structured proteins, IDPs/IDPRs are multifunctional entities with high 
binding promiscuity that is crucial for signaling, regulation, and recognition [10, 11, 21, 24-31]. 
Moreover, intrinsic disorder is interlinked with the pathogenesis of various human diseases. In fact, the 
majority of human cancer-associated proteins [32], as well as many proteins associated with 
neurodegeneration [33], diabetes [34], cardiovascular disease [35], and amyloidosis [36], are either 
intrinsically disordered or contain long IDPRs, giving raise to the D2 (disorder in disorders) concept [37, 
38]. 
 
It is recognized now that different organisms possess different levels of intrinsic disorder, where the 
prevalence of disorder increases with the increase in the organism complexity [14-17, 39]. In particular, 
several studies have shown that eukaryotic organisms are enriched in disorder when compared to 
prokaryotes [14, 16-18, 40-42]. Moreover, multiple works have analyzed abundance and specific 
functional features of the intrinsic disorder in the human proteome [43-49]. In spite of this substantial 
amount of interest, one of the key understudied topics is the distribution of the intrinsic disorder across 
the human cell. The subcellular locations of proteins are related to their function and knowledge of this 
relationship is essential to decipher the intricacies of the molecular machinery in the cell. The past studies 
that investigate the distribution of the proteins across subcellular compartments in the human cell 
excluded the aspect of the intrinsic disorder [50, 51]. However, it is clear that the disorder is not 
uniformly distributed over the cell. While some IDPs and proteins with IDPRs were shown to be 
specifically compartmentalized within selected organelles [52, 53], the peculiarities of the disorder 
distribution across various organelles in the living cell are poorly understood. The arguably closest study 
on this topic analyzes distribution of disorder in cellular compartment as a secondary objective while 
primarily characterizing abundance of disorder across the organismal taxonomy [14]. Consequently, this 
analysis covers only 16 subcellular compartments, quantifies the amount of disorder with a single 
measure, focuses solely on characterizing compartments enriched in disorder and contextualizes this 
enrichment against one baseline of specific taxonomic domain of life.  
 
To fill this gap, we are reporting here the results of a large-scale computational analysis that 
comprehensively maps and functionally characterizes intrinsic disorder in the subcellular compartments 
of the human cell. We map the human proteome into 24 subcellular compartments, quantify disorder 
amount with multiple measures, investigate both enrichment and depletion of disorder across these 
compartments by using two key baselines, the human proteome and the protein universe. Beside these 
marked improvements, we incorporate several novel aspects including analysis of a relation between 
disorder and multi-compartment localization and examination of functional differences between 
disordered-enriched proteins localized in the disorder-enriched compartments vs. structured proteins 
localized in the disorder-depleted compartments. We also evaluate impact of using predictions by 
contrasting results secured using a more complete set of compartment annotations that rely on a 
combination of experimental and predicted data vs. solely experimental annotations. 
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2 Materials and Methods 

We map the human proteins collected from UniProt into a comprehensive set of subcellular 
compartments, annotate them with putative intrinsic disorder, and perform detailed statistical analysis of 
the prevalence, sequence-level characteristics, and molecular functions of the intrinsically disordered and 
ordered proteins. 

2.1 Mapping of Subcellular Compartments  

We use the Gene Ontology (GO) annotation from the Gene Ontology Consortium [54, 55] to annotate 
cellular components of human proteins, which can be used to map proteins to the subcellular 
compartment. Total of 18,477 human proteins from the reference human proteins in UniProt [56] had 
cellular component GO terms. Furthermore, to improve coverage we supplement the GO-derived cellular 
component annotations with the experimentally-derived GO terms that we collect from the recently 
established COMPARTMENTS database [57]. This resulted in the availability of the cellular components 
GO terms for 19,797 human proteins.  
 
We cover a comprehensive set of 24 subcellular compartments that cover all major organelles and 
membrane types in the human cell. They include cytoplasm (GO:0005737), nucleus (GO:0005694), 
nuclear membrane (GO:0031965), cell membrane (GO:0005886), cell junction (GO:0030054), cell 
projection (GO:0042995), cytoskeleton (GO:0005856), mitochondrion (GO:0005739), mitochondrial 
membrane (GO:0031966), endoplasmic reticulum (GO:0005783), endoplasmic reticulum membrane 
(GO:0005789), endosome (GO:0005768), endosome membrane (GO:0010008), Golgi apparatus 
(GO:0005794), Golgi membrane (GO:0000139), centrosome (GO:0005813), vacuole (GO:0005773), 
vacuolar membrane (GO:0005774), lysosome (GO:0005764), lysosomal membrane (GO:0005765), 
ribosome (GO:0005840), peroxisome (GO:0005777), peroxisomal membrane (GO:0005778), and other 
membrane (GO:0016020). This is comparable to the previous mapping efforts that considered 11 [57], 16 
[50] and 30 [51] compartments in the human cell.  
 
We map the 19,797 human proteins into these 24 subcellular compartments using their GO cellular 
component terms based on the “is_a” and “part_of” relations in the hierarchal structure of GO ontology. 
We categoriz the mapped cellular compartment annotations for a specific protein as either experimental or 
predicted. The experimental annotations require at least one GO term to be annotated experimentally in 
the GO database (keywords: Experiment, Direct assay, Physical interaction, Mutant phenotype, Genetic 
interaction and Expression pattern) or in the COMPARTMENTS database. The predicted annotations rely 
solely on the GO terms that were annotated via alignment/prediction in the GO database. 

2.2 Annotation of Intrinsic Disorder 

We investigate the feasibility of using the experimentally annotated intrinsic disorder in our analysis. We 
use version 3 of the MobiDB database [58], which provides access to a comprehensive collection of the 
experimentally-derived intrinsic disorder annotations. MobiDB aggregates experimental disorder data that 
is curated across multiple sources that include disorder databases, such as DisProt [59, 60] and FuzDB 
[61], as well as other databases where disorder information can be extracted indirectly, including Protein 
Data Bank (PDB) [62, 63] and Biological Magnetic Resonance Data Bank (BMRB) [64]. Using MobiDB 
3 we collect the experimental disorder annotations for 6,029 human proteins that we previously mapped 
into subcellular compartments. This corresponds to approximately 30% coverage of our dataset. We test 
whether this coverage is adequate to uniformly represent the 24 compartments. Supplementary Table S1 
compares the actual coverage of the compartments by the experimentally annotated proteins with the 
corresponding confidence intervals of the expected coverage values. The coverage meets the expected 
range for only 8 out of the 24 compartments (33%), while in the other cases, it is either significantly 
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higher (9 times) or significantly lower (7 times). We conclude that at this point we cannot use of the 
experimentally annotated disorder due to the relatively low overall coverage (30% of proteins) and 
uneven distribution across compartments (only 33% are covered proportionally). 
 
A feasible alternative is to use putative disorder, which can be obtained for virtually all proteins in our 
dataset, ensuring complete and even coverage across the subcellular compartments. There are over 60 
predictors of intrinsic disorder [65-68]. Multiple recent studies have shown that some of these predictors 
provide high quality results [13, 69-74]. More specifically, the most accurate predictors achieve the Area 
Under the ROC Curve (AUC) values, which range between 0.5 and 1, at around 0.90 [13, 72]. 
Furthermore, research shows that consensus-based predictors, defined as the methods that combine 
multiple “base” predictors of disorder, generate particularly accurate predictions [75-79]. 
Correspondingly, we use a recently developed consensus predictor, MobiDB-lite [77]. This method 
combines predictions produced by several base disorder predictors including three versions of ESpritz 
[80], two versions of IUpred [81, 82], DisEMBL [83], RONN [84], PONDR VSL2B [85] and GlobPlot 
[86]. Results produced by MobiDB-lite are used across several popular resources including MobiDB [58], 
UniProt [87], InterPro [88], and SIFTS [89]. We also emphasize that multiple studies have used putative 
annotations of disorder to characterize the abundance and functional features of disorder. For instance, 
disorder predictions were used to map disorder into intra-nuclear compartments [90], to characterize dark 
proteomes [7, 91], to link GC content and disorder enrichment [92], to analyze typically unstructured 
cysteine-depleted proteins [93], ribosomal proteins [94], histones [95], beta catenin [96] and several viral 
proteomes [97-102], and to provide functional insights into protein-protein interactions [44, 103, 104], 
protein-nucleic acids interactions [105, 106], and programmed cell death and autophagy processes [107-
109].   
 
We collect the MobiDB-lite’s predictions for the human proteins from the MobiDB database. Given that 
the GO data that we used to map subcellular compartments relies on a newer version of UniProt than the 
MobiDB resources that releases the MobiDB-lite’s predictions, we could not obtain disorder predictions 
for 1,235 proteins. The resulting dataset of 18,562 human proteins has both the subcellular compartment 
annotations and high-quality putative disorder data. We share this dataset, including the information about 
the disorder and the compartment annotations, in the Supplement. 

2.3 Representation of the Protein Universe 

We contextualize the analysis of the intrinsic disorder in the human proteome by comparing these results 
against the abundance of the disorder in a protein universe, defined as a set of proteins collected across 
multiple organisms [1]. We use the collection of the manually reviewed and annotated proteins in the 
SwissProt database [110] to represent the protein universe. The disorder information for SwissProt, which 
includes 554,779 proteins from over 9500 organisms, was obtained from MobiDB 3.  

2.4 Statistical Analysis  

We quantify the amount of disorder in a given protein using two measures, disorder content and presence 
of long disordered regions (LDRs). The disorder content is computed as the total number of putative 
disordered amino acids divided the length of the given protein sequence. LDRs are defined as segments of 
at least 30 consecutive putative disordered amino acids [16, 42]. These segments are recognized as 
functional disordered domains [16, 47], and many of them were found to be implicated in the protein–
protein recognition [111]. We quantify the number of proteins with LDRs as well as the average number 
of LDRs per protein when evaluating the amount of disorder across subcellular compartments.   
 
We assess significance of differences in the amount of disorder in specific subcellular compartments 
against two reference sets: the human proteome and the protein universe. We also perform this analysis 
when comparing disorder among proteins that localize in a few vs. many compartments. To ensure that 
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these analyses are robust, we randomly subsample the reference sets to select the same number of proteins 
that have the similar sequence length (with ±10% margin) when compared with a set of proteins in a 
given subcellular compartment. We similarly subsample the larger set of proteins that localize in the few 
compartments. This sampling procedure accommodates for the bias in the disorder amount across proteins 
that have different chain length [14, 112] and is consistent with the similar analyses done in several recent 
studies [93, 109, 113-115]. We evaluate the significance with the Student t-test if the underlying data 
distribution is normal (as tested with the Anderson-Darling test at 0.01 significance); otherwise, we apply 
the Wilcoxon signed-rank test. We utilize the Bonferroni Correction (BC) to adjust p-value to minimize 
the type I errors when performing multiple tests [116], i.e., when comparing different compartments 
against the same reference set. 
 

 
 
Figure 1. Fraction of proteins in subcellular compartments that were annotated based on the experimental and sequence-similarity 
derived evidence. The compartments are sorted in the descending order of the fractions. We report two numbers: the fraction among the 43,169 
protein-compartment annotation pairs [the fraction among the 18,562 annotated proteins]. The difference is due to the fact that many proteins are 
associated with multiple subcellular compartments. Supplementary Figure S1 shows the corresponding results where subcellular compartments 
were annotated based solely on the experimental evidence.  

3 Results 

3.1 Abundance of the Intrinsic Disorder in the Subcellular Compartments 
of a Human Cell 

Figure 1 summarizes the distribution of the human proteins across the 24 subcellular compartments. We 
report two numbers, the fraction among the 18,562 compartment-annotated human proteins (inside the 
square brackets) and the fraction among the 43,169 protein-compartment pairs. Our analysis reveals that 
on average human proteins are assigned to 43,169/18,562 = 2.3 subcellular compartments. We also 
provide the same analysis when limiting the protein set to the proteins that were assigned to the 
subcellular compartment using only the experimental annotations (by excluding sequence-similarity 
derived GO terms) in Supplementary Figure S1. We note that both results are very similar. The two 
compartments that have the largest number of proteins are the cytoplasm and nucleus, each hosting about 
40% of the human proteins. On the other end of the spectrum are the lysosome, ribosome, and 
peroxisome, which are home for about 1.5%, 1.2%, and 0.6% of the human proteins, respectively.  
 
Table 1 summarizes the number of proteins, the disorder content, and the number and fraction of proteins 
with the LDRs in the protein universe (represented with Swiss-Prot), the entire human proteome, and for 
each of the 24 subcellular compartments in the human cell. These measures are defined in Section 2.4.  
Our analysis suggests that 44.2% of human proteins contain putative LDRs. This result is in close 
agreement with multiple previous studies that have found a very similar rate of 44% [11, 117] and 44.1% 
[47]. The fraction of proteins with LDRs and the average protein-level disorder content in the human 
proteome are about 3 times higher than the disorder content in the protein universe. This is in line with 
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several past studies that show that eukaryotic organisms are substantially enriched in disorder, when 
compared with the proteins from the prokaryotic species [14, 16-18, 40-42].  
 
Table 1. Summary of protein disorder annotation in protein universe, human genome, and each cellular 
compartment. Human subcellular compartments were sorted by the descending average of disorder content per 
protein in each given cellular compartment. The average disorder content was computed as the average of the 
protein-level content for a given protein set. The long disordered regions (LDRs) are defined in the literature as the 
sequence segments with at least 30 consecutive disordered amino acids. 

Dataset  No. 
proteins 

Average of 
protein-level 

disorder content 

No. proteins 
with LDRs 

% of protein 
with LDRs 

Protein universe (Swiss-Prot) 554,779 0.047 74,639 13.5% 
Human  Whole proteome 18,562 0.128 8,204 44.2% 

Nucleus 7,309 0.171 4,197 57.4% 
Cytoskeleton 2,252 0.151 1,266 56.2% 
Centrosome 646 0.146 391 60.5% 
Cytoplasm 7,535 0.133 3,691 49.0% 
Nuclear membrane 293 0.133 160 54.6% 
Cell projection 2,366 0.123 1,199 50.7% 
Golgi apparatus 1,054 0.101 467 44.3% 
Cell junction 4,800 0.097 1,733 36.1% 
Ribosome 223 0.096 57 25.6% 
Endosome 1,117 0.096 430 38.5% 
Cell membrane 4,805 0.095 1,952 40.6% 
Endosome membrane 731 0.088 271 37.1% 
Golgi membrane 642 0.085 233 36.3% 
Endoplasmic reticulum membrane 370 0.084 147 39.7% 
Endoplasmic reticulum 604 0.083 257 42.5% 
Other membranes  5,223 0.082 1,857 35.6% 
Vacuole 344 0.079 119 34.6% 
Mitochondrion 1,325 0.070 343 25.9% 
Lysosome 271 0.065 81 29.9% 
Mitochondrial membrane 518 0.059 106 20.5% 
Peroxisomal membrane 54 0.058 12 22.2% 
Vacuolar membrane 320 0.054 96 30.0% 
Lysosomal membrane 261 0.050 76 29.1% 
Peroxisome 106 0.035 20 18.9% 

 
 
Our analysis reveals that the intrinsic disorder distributes unevenly across the subcellular compartments. 
In particular, we found that the disorder content in several compartments, such as nucleus, cytoskeleton, 
centrosome, cytoplasm, and nuclear membrane, is higher than the average disorder content in the human 
proteome. The most disorder-enriched nucleus has disorder content of 0.171, which is a 33% increase 
over the overall proteome-level disorder content of 0.128. Literature similarly points to the high amounts 
of disorder in the nucleus, in human and other eukaryotes [16, 109, 118]. The other 19 compartments are 
characterized by the lower than expected disorder content ranging between 0.035 (for peroxisome) and 
0.123 (for cell projection). We note that while there are relatively few compartments where the amount of 
disorder is enriched (relative to the overall amount in the human proteome), they account for nearly half 
of the subcellular compartment annotations. As Figure 1 reports, the five compartments with the higher-
than-expected disorder content account for 17.5% (cytoplasm) + 16.9% (nucleus) + 5.2% (cytoskeleton) + 
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1.5% (centrosome) + 0.7% (nuclear membrane) = 41.8% of the compartment’s annotations. Furthermore, 
we observe that a substantial fraction of human proteins, anywhere between 18.9% (for perixosome) and 
60.5% (for nucleus), include LDRs. To compare, only 13.5% of proteins in the protein universe have 
LDRs. Importantly, Table 1 also shows that the vast majority of human subcellular compartments are 
characterized by the increased disorder content as compared to protein universe. In fact, there is only one 
compartment (peroxisome) that has disorder content (0.035) lower than that of protein universe (0.047). 
Moreover, every single subcellular compartment in the human cell contains a larger fraction of proteins 
with LDRs, ranging between 20.5% and 60.5%, than the protein universe (13.5%).  
 

 
Figure 2. Disorder characteristics in the protein universe, human proteome and across subcellular compartments in the human cell that 
were annotated based on the experimental and sequence-similarity derived evidence. The left y-axis quantifies the disorder content, 
including the average of the protein-level content and the aggregate, over all proteins, content. The right y-axis quantifies the characteristics of the 
long disordered regions (LDRs) including the fraction of proteins with LDRs and the average number of LDRs per protein. The dashed horizontal 
lines correspond to the disorder content values (darker shades) and LDR-related characteristics (lighter shades) that were measures on the human 
proteome. The subcellular compartments are sorted based on their average of the protein-level disorder content. Statistical significance of the 
differences in the protein-level disorder content and LDR numbers between proteins in a given subcellular compartment and proteins in a given 
reference set (human proteome and protein universe) was evaluated with the Wilcoxon signed-rank test; the underlying data is not normal. 
Further details are explained in Section 2.4. The annotations of the significance are shown at the top of the plots where “*” denotes significant 
difference (p-value < 0.01) and “ns” denotes differences that are not significant. 

3.2 Statistical Analysis of the Intrinsic Disorder in the Subcellular 
Compartments of a Human Cell 

Figure 2 summarizes several key characteristics of the intrinsic disorder across the protein universe, 
human proteome and the 24 subcellular compartments. We analyze the overall disorder content (fraction 
of disordered residues across all proteins in a given protein set), the average of the protein-level disorder 
content, the fraction of proteins with LDRs, and the average number of LDRs per protein. Consistent with 
the observations in Table 1, we show that the disorder characteristics are enriched in the human proteome 
when compared to the protein universe; the differences in the disorder content and LDR numbers are 
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statistically significant (p-value < 0.01). The plot also highlights substantial differences in the disorder 
amounts across the subcellular compartments. We observe that the four disorder characteristics are 
mutually correlated. One exception from this trend is the ribosome, where the LDR-driven characteristics 
are unusually lower compared to the disorder content values. This stems from the fact that many 
ribosomal proteins are short, thus their likelihood of presence of LDRs is lower while they may still have 
substantial disorder content. Overall, the compartments with the low disorder content (e.g., peroxisome, 
lysosome, mitochondrion, vacuole, and their membranes) are also characterized by relatively low 
fractions of proteins with LDRs (between 19 and 35%) and low numbers of LDRs per protein (between 
0.30 and 0.64). On the other hand, the disorder content-enriched compartments that include nucleus, 
cytoskeleton, centrosome, cytoplasm, and nuclear membrane, feature between 49 and 60% of the proteins 
with LDRs and, on average, more than one LDR per protein.  
 
We quantify significance of the differences in the protein-level disorder content and LDR number between 
proteins in the 24 subcellular compartments and a given reference protein set: human proteome and protein 
universe. The results are summarized at the top of Figure 2. The proteins in the nucleus and cytoskeleton 
are significantly enriched in the intrinsic disorder measured with disorder content and number of LDRs 
when compared to the human proteome (p-value < 0.01). On the other end of the spectrum, proteins in 15 
subcellular compartments (Golgi apparatus, endoplasmic reticulum, vacuole, mitochondrion, lysosome and 
their membranes, endosome, peroxisome, cell membrane, and cell junction) are significantly depleted in 
disorder content and number of LDRs relative to the human proteome (p-value < 0.01). While the number 
of the significantly disorder-enriched compartments is rather small, they cover 8,562 proteins (46%), while 
the 15 disorder-depleted compartments account for 12,153 proteins (65%); the sum is over 100% since 
majority of proteins are localized in multiple compartments. Furthermore, proteins in all but seven 
subcellular compartments (these exceptions include vacuole, lysosome, peroxisome, and their membranes, 
and mitochondrial membrane) are significantly enriched in disorder content when compared to the protein 
universe (p-value < 0.01; Figure 2). We visualize the corresponding distributions of the protein-level 
disorder content and the protein-level LDR numbers for the 24 subcellular compartments, the human 
proteome and the protein universe in Supplementary Figure S2. 
 
Moreover, we observe that the above differences are virtually identical to the results produced when using 
the subcellular compartments annotated based solely on the experimental evidence (Supplementary 
Figure S3). More specifically, across 98 significance calculations, there are only two differences when 
comparing the disorder content and number of LDRs in the cytoskeleton against the human proteome. 
Overall, we observe that the distributions of the proteins (Figure 1 and Supplementary Figure S1) and 
the comparative analysis of the disorder characteristics (Figure 2 and Supplementary Figure S3) are 
very consistent across the two parallel analyses that rely on the experimental vs. the combined 
experimental and sequence-similarity derived evidence of subcellular locations. This suggests that the 
more comprehensive analysis that relies on the larger annotation pool is as accurate as the analysis that 
considers the purely experimental data.  

3.3 Proteins that localize to fewer subcellular compartments are more 
disordered 

Figures 2 shows that only a few subcellular compartments are enriched in disorder when compared to the 
larger number of the disorder-depleted compartments. This imbalanced relation can be explained by the 
fact that many proteins are localized in multiple compartments. Figure 3 summarizes relation between the 
number of compartments per protein and the disorder content. It reveals that human proteins that are 
found in a few compartments are substantially more disordered than the proteins that localize in many 
compartments. To compare, the average disorder content for the large collection of proteins that localize 
to a single compartment is at about 0.12, whereas the content for a smaller set of proteins that localize at 
least eight compartments is at about 0.07. The difference in the disorder content is statistically significant 
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(p-value < 0.01). This interesting trend also explains the imbalanced nature of our results. The few 
disorder-enriched compartments include a large number of disorder-rich proteins that are associated with 
fewer subcellular compartments compared to the larger number of the disorder-depleted compartments 
that cover fewer and disproportionally less disordered proteins that are localized across many 
compartments. More specifically, the number of protein-compartment assignments for the proteins that 
have higher than average disorder content equals 11,568, while the number of the pairs with lower than 
average disorder is similar and equals 12,584. 
 

 
 
Figure 3. Disorder content for proteins associated with a given number of subcellular compartments that were annotated 
based on the experimental and sequence-similarity derived evidence. Proteins are grouped by the number of compartments 
they localize to, which is shown on the x-axis. The left y-axis quantifies the disorder content, including the average of the protein-
level content and the aggregate, over all proteins, content. The right y-axis is in the logarithmic scale and quantifies the number of 
proteins that localize to a given number of subcellular compartments (light gray bars). “*” denotes significant difference in 
disorder content when compared to the proteins that localize in a single compartment (p-value < 0.01). Details of the statistical 
tests are explained in Section 2.4. 

3.4 Functional Analysis of the Disordered and Structured Proteins 

We elucidate the molecular functions associated with the disordered proteins (defined as proteins with 
one or more LDRs) localized in the disorder-enriched subcellular compartments. Similarly, we also 
extract the molecular functions associated with the structured proteins (defined as proteins with zero 
disorder content) localized in the disorder-depleted compartments. We use PANTHER to identify these 
functions [119, 120]. More specifically, we compare the set of disordered/structured proteins in a given 
compartment against the human proteome to identify significantly overrepresented molecular functions of 
the disordered/structured proteins. The statistical significance was assessed with the Fisher’ exact test. We 
assume that a given function is significantly overrepresented if the enrichment rate > 4 and p-value < 
0.01. 
 
Table 2 summarizes the results of this analysis and provides four most enriched molecular functions for 
the disordered proteins in each of the two disorder-enriched compartments and for the structured proteins 
in each of the 15 disorder-depleted compartments. The complete set of overrepresented functions can be 
found in in the Supplementary Table S2 (for the disorder-enriched compartments) and Supplementary 
Table S3 (for the disorder-depleted compartments). The disordered/structured proteins provide many 
functions with very high enrichment rate. We identify between 4 (for peroxisome) and 95 (for cell 
membrane) functions that have rate = 2, which is equivalent to 200% increase compared to the expected 
value.  
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Table 2. Molecular functions associated with disordered protein in the disorder-enriched subcellular compartments and with structured proteins in the 
disorder-depleted compartments. We list top four functions that are significantly enriched when compared to the overall population of the human proteins 
based on the analysis with Panther software (p-value < 0.01 and enrichment rate > 4). Complete list of functions is provided in the Supplementary Table S2 (for 
disorder-enriched compartments) and Supplementary Table S3 (for disorder-depleted compartments). The disordered proteins are defined as proteins with at least 
one LDR while structured proteins have zero disorder content. The enrichment rate is defined as the rate between the observed and expected number of proteins 
with a specific molecular function in a given subcellular compartment. The p-values were computed based on the Fisher’ exact test with the false disorder rate 
correction.  

Subcellular locations 
Disorder/Structure 

enrichment 
(p-value) 

No. of functions 
with a given 

enrichment rate 
Top four significant molecular functions (p-value < 0.01 & enrichment rate > 4) 
[median of per protein disorder content] 

1.5 2 4 

Nucleus Disorder (p<0.0001) 83 76 21 activating transcription factor binding (GO:0033613) [0.184], nucleosome binding (GO:0031491) [0.466], K63-linked polyubiquitin 
modification-dependent protein binding (GO:0070530) [0.257], pre-mRNA binding (GO:0036002) [0.242] 

Cytoskeleton Disorder (p=0.0052) 33 32 16 
dynein heavy chain binding (GO:0045504) [0.222], microtubule binding (GO:0008017) [0.155], motor activity (GO:0003774) [0.106], 
ATP-dependent microtubule motor activity, plus-end-directed (GO:0008574) [0.073] 

Golgi apparatus Structure (p<0.0001) 32 31 20 
nucleotide-sugar transmembrane transporter activity (GO:0005338) [0], acetylglucosaminyltransferase activity (GO:0008375) [0], 
pyrimidine nucleotide-sugar transmembrane transporter activity (GO:0015165) [0], palmitoyltransferase activity (GO:0016409) [0] 

Endosome Structure (p=0.0023) 45 44 24 
solute: proton antiporter activity (GO:0015299) [0], ATPase-coupled intramembrane lipid transporter activity (GO:0140326) [0], 
cyclin-dependent protein serine/threonine kinase regulator activity (GO:0016538) [0], cyclin-dependent protein serine/threonine 
kinase activity (GO:0004693) [0] 

Cell membrane Structure (p<0.0001) 101 95 30 
transmembrane receptor protein serine/threonine kinase activity (GO:0004675) [0], activin binding (GO:0048185) [0], sugar 
transmembrane transporter activity (GO:0051119) [0], chemokine binding (GO:0019956) [0] 

Golgi membrane Structure (p=0.0005) 30 28 22 
UDP-galactose transmembrane transporter activity (GO:0005459) [0], sialyltransferase activity (GO:0008373) [0], pyrimidine 
nucleotide-sugar transmembrane transporter activity (GO:0015165) [0], acetylglucosaminyltransferase activity (GO:0008375) [0] 

Cell junction Structure (p<0.0001) 68 62 23 fructose-bisphosphate aldolase activity (GO:0004332) [0], cytokine receptor binding (GO:0005126) [0], cytokine activity 
(GO:0005125) [0], hydrolase activity, acting on acid phosphorus-nitrogen bonds (GO:0016825) [0] 

Endoplasmic reticulum 
membrane 

Structure (p<0.0001) 10 10 7 
oligosaccharyl transferase activity (GO:0004576) [0], mannosyltransferase activity (GO:0000030) [0], UDP-glycosyltransferase 
activity (GO:0008194) [0], transferase activity, transferring glycosyl groups (GO:0016757) [0] 

Endoplasmic reticulum Structure (p<0.0001) 19 18 16 
palmitoyltransferase activity (GO:0016409) [0], mannosyltransferase activity (GO:0000030) [0], acetylglucosaminyltransferase 
activity (GO:0008375) [0], transferase activity, transferring hexosyl groups (GO:0016758) [0] 

Other membrane Structure (p<0.0001) 32 25 5 taste receptor activity (GO:0008527) [0], nucleotide transmembrane transporter activity (GO:0015215) [0], organophosphate ester 
transmembrane transporter activity (GO:0015605) [0], carbohydrate transmembrane transporter activity (GO:0015144) [0] 

Vacuole Structure (p<0.0001) 9 9 7 
ubiquitin protein ligase binding (GO:0031625) [0], ubiquitin-like protein ligase binding (GO:0044389) [0], cysteine-type 
endopeptidase activity (GO:0004197) [0], cysteine-type peptidase activity (GO:0008234) [0] 

Mitochondrion Structure (p<0.0001) 30 26 19 
proton-transporting ATP synthase activity, rotational mechanism (GO:0046933) [0], cytochrome-c oxidase activity (GO:0004129) 
[0], ligase activity, forming carbon-sulfur bonds (GO:0016877) [0], electron transfer activity (GO:0009055) [0] 

Lysosome Structure (p<0.0001) 7 7 5 cysteine-type endopeptidase activity (GO:0004197) [0], cysteine-type peptidase activity (GO:0008234) [0], endopeptidase activity 
(GO:0004175) [0], peptidase activity, acting on L-amino acid peptides (GO:0070011) [0] 

Mitochondrial membrane Structure (p<0.0001) 35 34 21 
NADH dehydrogenase activity (GO:0003954) [0], cytochrome-c oxidase activity (GO:0004129) [0], proton-transporting ATP 
synthase activity, rotational mechanism (GO:0046933) [0], ATP transmembrane transporter activity (GO:0005347) [0] 

Vacuolar membrane Structure (p<0.0001) 20 20 20 
ubiquitin protein ligase binding (GO:0031625) [0], ubiquitin-like protein ligase binding (GO:0044389) [0], proton transmembrane 
transporter activity (GO:0015078) [0], ATPase-coupled transmembrane transporter activity (GO:0042626) [0] 

Lysosomal membrane Structure (p<0.0001) 18 18 14 proton transmembrane transporter activity (GO:0015078) [0], ATPase-coupled transmembrane transporter activity (GO:0042626) 
[0], primary active transmembrane transporter activity (GO:0015399) [0], SNARE binding (GO:0000149) [0] 

Peroxisome Structure (p=0.0002) 4 4 3 flavin adenine dinucleotide binding (GO:0050660) [0], cofactor binding (GO:0048037) [0], oxidoreductase activity (GO:0016491) [0] 
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This suggests that the disordered proteins in the disorder-enriched compartments and the structured 
proteins in the disorder-depleted compartments are crucial for a wide range of cellular functions. For the 
disordered proteins, these functions are primarily related to the interactions with transcription factors, 
chromatin, RNA, and a variety of protein partners. This is consistent with literature data that similarly 
point to the importance of disorder in the context of protein-protein interactions [44, 104, 109, 121-123], 
protein-transcription factors interactions [124-126], chromatin condensing and organization [95, 118, 
127], and protein-RNA interactions [94, 105, 128]. On the other hand, the structured proteins that are 
localized in the membranes are typically associated with molecular transport, while the other structured 
proteins are involved in the enzymatic activity and well as carbohydrate, nucleotide, cofactor and small 
ligand binding.  
 

 
 
Figure 4. Intrinsic disorder in the human cell. Subcellular compartments are color-coded to reflect their disorder status where darker shade of 
red indicates the degree of the disorder enrichment while darker share of blue shows the degree of the disorder depletion, relative to the disorder 
content of the human proteome. Two significantly disorder-enriched compartments (nucleus and cytoskeleton) include a list of the top five 
molecular functions that are associated with the proteins in these compartments that have long disordered regions. Similarly, the five most 
disorder-depleted compartments (peroxisome, lysosome and its membrane, vacuolar membrane, and mitochondrial membrane) include the list of 
the top five molecular functions associated with the fully structured proteins (zero disorder content). Median protein-level disorder content for the 
proteins annotated with a given function is shown inside the square brackets; the functions for the fully structured proteins have the median 
content of zero. The complete list of cellular functions for the disorder- and order-enriched compartments is available in Supplementary Table S2. 

3.5 Intrinsic Disorder in the Human Cell 

Figure 4 summarizes the results of this study by mapping the intrinsic disorder into the human cell. The 
two significantly disorder-enriched subcellular compartments, relative to the overall amount of disorder in 
the human proteome, include nucleus (disorder content = 0.17 and 57% of the proteins with LDRs) and 
cytoskeleton (disorder content = 0.15 and 56% of proteins with LDRs). The 15 disorder-depleted 
compartments are colored in blue and include the cell junction, endosome, cell membrane, peroxisome, 
and well as Golgi apparatus, endoplasmic reticulum, mitochondrion, vacuole, lysosome and their 
membranes. The median protein-level disorder content in these compartments is either below 0.05 (Golgi 
apparatus and its membrane, endosome and cell membrane) or at zero (the remaining disorder-depleted 
compartments). We list the key cellular functions associated with the disordered proteins in the most 
disorder-enriched compartments and for the structured proteins in the most disorder-depleted 
compartments. As we mentioned above, the disordered proteins are crucial for the protein-nucleic acids 
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and protein-protein interactions in the cytoskeleton and nucleus. On the other hand, the structured proteins 
are primarily involved in molecular transport, enzymatic activity and interactions with smaller ligands. 

4 Summary and Conclusions 

Intrinsic disorder defines structural and functional heterogeneity of proteins [20, 23, 122, 129, 130]. It 
plays a crucial role in the existence of proteoforms (i.e., structurally and functionally different forms of a 
protein encoded by a given gene [131]) contributing to the notion of protein multifunctionality and 
protein structure-function continuum [22, 23]. The disorder-based heterogeneity and the presence of the 
proteoforms that can be (dis)ordered to different degree form the foundation of the “disorder-based 
heterogeneity pyramid”. The next level of this pyramid is related to the inhomogeneous involvement of 
disorder in protein function, as a result of which, one can find order-specific (catalysis and transport) and 
disorder-specific (recognition, regulation, signaling) protein functions [23, 27, 104, 111, 122, 130, 132-
142], which may co-exist within one hybrid protein molecule that includes both disordered and ordered 
regions [143, 144].  
 
In the cell, proteins typically do not act alone, but are engaged in the formation of highly connected and 
regulated protein-protein interaction (PPI) networks [145]. The node degree distributions in these 
networks follows a power law with a relatively low number of highly-connected hubs; i.e., nodes with a 
number of links that greatly exceeds the network average number of links [145, 146]. Not surprisingly, 
many hubs of the PPI networks are IDPs/IDPRs [44, 147-152], which are known to be promiscuous 
binders. Furthermore, even if a given hub is an ordered protein, most of its partners were shown to be 
IDPs or hybrid proteins using their IDPRs to interact with such a hub [44].  
 
Data reported in our study fill the gap between the well-studied distribution of disorder within the PPI 
networks vs. relatively poorly understood distribution of disorder at the subcellular level. In agreement 
with literature [14, 16-18], our comprehensive analysis shows that human proteins are substantially 
enriched in disorder, relative to a generic protein set that represents the protein universe. We demonstrate 
that IDPs/IDPRs are not homogeneously distributed within a cell. Instead, proteins located in several 
subcellular compartments (nucleus and its membrane, cytoskeleton, centrosome, and cytoplasm) are 
enriched in disorder, measured by both high disorder content and presence of multiple IDRs, relative to 
the remainder of the human proteins. This enrichment is statistically significant for nucleus and 
cytoskeleton. Moreover, we show that proteins localized to a few subcellular compartments are more 
disordered than proteins that are localized to many compartments. Our analysis also reveals that the 
disordered proteins localized in the most disorder-enriched compartments are primarily responsible for 
the interactions with DNA, RNA and a variety of protein partners. We believe that these are important 
observations that add a missing piece to the puzzle of multifunctionality of disorder.  
 
Our study of the peculiarities of protein intrinsic disorder distribution within the generic human cell sets 
the grounds for the subsequent analyses of the differences in disorder distribution between the somatic 
and germ cells, peculiarities of disorder distribution within the gametes and stem cells, specific features of 
disorder distribution within the somatic cells from different organs and tissues, as well as changes in 
disorder distribution associated with cell cycle. Another logical extension of this study is a comparative 
analysis of the peculiarities of intracellular distribution of IDPs/IDPRs within plant, bacterial, and 
archaeal cells. These analyses should culminate in the creation of corresponding cellular disorder/order 
heat-maps, which would consider not only the distribution peculiarities of disordered and ordered protein 
within the various intracellular compartments, but also would pay attention to the levels of such 
compartment-specific disordered and ordered proteins and changes in these levels during the cell life.    
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