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Abstract

Computational prediction of intrinsic disorder in protein sequences dates back to late 1970 and has
flourished in the last two decades. We provide a brief historical overview and we review over 30 recent
predictors of disorder. We are the first to also cover predictors of molecular functions of disorder,
including 13 methods that focus on disordered linkers and disordered protein-protein, protein-RNA and
protein-DNA binding regions. We overview their predictive models, usability and predictive performance.
We highlight newest methods and predictors that offer strong predictive performance measured based on
recent comparative assessments. We conclude that the modern predictors are relatively accurate, enjoy
widespread use and many of them are fast. Their predictions are conveniently accessible to the end users,
via webservers and databases that store pre-computed predictions for millions of proteins. However,
research into methods that predict many not yet addressed functions of intrinsic disorder remains an
outstanding challenge.

Key words intrinsic disorder; prediction; function of disordered proteins; protein-protein interactions;
protein-RNA interactions; protein-DNA interactions; MoRF; SLiM.

Introduction

Intrinsic disorder in proteins manifests as a lack of stable tertiary structure and could be present along the
entire protein chain or in specific regions. The corresponding intrinsically disorder proteins (IDPs) and
intrinsically disordered regions (IDRs) form dynamic conformational ensembles. In other words, atomic
coordinates of their residues and their dihedral angles vary largely over time, without a specific
equilibrium [1,2]. IDPs and IDRs were shown to be abundant in nature [3]. According to estimates
between 3 and 17% of eukaryotic proteins are fully disordered, depending on an organism [4], and about
30-50% of eukaryotic proteins have at least one long (> 30 consecutive residues) IDR [5,4,6,3]. These
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disordered proteins and regions are crucial for numerous cellular functions including regulation of
transcription, translation [7-10] and cell signaling [11-15]. They were shown to be associated with various
human diseases [16,17] and are being explored as potential targets for drug discovery [18,19].

Several databases were developed to store experimental annotations of disorder. The first and largest
repository of the experimentally verified IDPs and IDRs is DisProt [20-22]. This resource was released
over a decade ago, in 2005, by Prof. Dunker’s group at the Indiana University. It contains manually curated
IDRs together with the annotations of their functions, if available. The latest version 7.03 of DisProt
contains 2167 IDRs from 803 protein chains, compared to 290 IDRs from 179 proteins from the earliest
release of that database. Another source of experimentally verified IDPs is the IDEAL database [23]. This
database was published in 2011, originally with 153 annotated proteins and has grown to 582 proteins in
its latest version. While DisProt offers information on a larger set of disordered regions and a more
complete set of functional annotations of disorder, IDEAL focuses on the annotation of interaction-driven
functions. The latter database includes information on binding partners of IDPs and proteins with IDRs,
illustrates them in a context of the protein-protein interaction networks, and includes annotations of
domains. The Protein Data Bank (PDB) [24], which is the main source of the protein structures (ordered
proteins), can be also used to extract experimental annotations of disorder. IDRs can be found in PDB as
the regions that are missing in the X-ray crystal structures of proteins [25,20,26,27] or regions that are
associated with high structural variability in the NMR models [28,29]. Although these repositories of the
experimental annotations of disorder provide invaluable information to investigate disorder, they represent
only a small fraction of sequences in nature.

Motivated by the high levels of abundance and functional importance of IDPs and IDRs, numerous
computational methods were developed to predict disorder in protein sequences [30-33]. The predictive
models that are used by these methods were computed and benchmarked using the experimental
annotations of IDPs and IDRs from the abovementioned databases. These computational predictors are
used to efficiently and accurately find disordered proteins and regions for the millions of proteins that lack
experimental annotations. Given the large number and diversity of these methods, several relevant reviews
and comparative studies were released in the last decade [30,34,32,33,35-40,27,31]. These articles covered
most of the prediction methods and some related approaches (e.g. predictors of low complexity regions
and flexible residues) dating back to 1994. We cover a similarly comprehensive set of methods including
six newly released approaches that were not covered so far, and provide a more complete side-by-side
comparison of their availability, usability, architecture and predictive performance. We highlight ten well-
performing methods that were selected based on results from several large-scale comparative studies and
six most recent methods and describe them in greater depth. We also discuss resources that provide access
to predicted annotations of disorder and we are the first to comprehensively review a new group of
methods that address prediction of various cellular functions of disordered regions and proteins.

Historical overview

Inspired by ref. [32], the development of predictors of IDPs and IDRs can be divided into three periods:
the first generation (1979 to 2001), the second generation (2002 to 2006), and the third generation (2007
onwards).

The first generation predictors were released between 1979 and 2001, and during that time only a few
methods were authored. The first method, which aims to predict lack of globular structure, was proposed



in 1979 by Williams [41]. This approach was designed to identify proteins that form random coil
conformations. However, this methods lacked a proper empirical validation when it was published and a
recent evaluation showed that it provides relatively poor predictive performance [32]. The first well-tested
IDP predictor was proposed in 1997 by Romero and colleagues [42]. It is based on a neural network model
that uses a variety of physiochemical properties of the input protein chain including amino acid
compositions, aromaticity, flexibility, hydropathy and hydrophobicity. Another early predictor was
proposed by Uversky and co-workers in 2000 by using charge and hydropathy to find disordered proteins
[43]. This idea was later implemented in the FoldIndex method [44].

This second generation methods were developed between 2002 and 2006. The defining features of this
period are a rapid spike in the development efforts and use of relatively simple predictive models. The
second generation methods include approaches that predict intrinsic disorder based solely on
propensities/properties of amino acids of the input protein sequences, such as GlobPlot [45] and
IUPred[46,47], and methods that utilize popular machine learning models, such as the PONDR family of
predictors [48-53], DisEMBL [54] and DISOPRED [55]. One of new developments of this period was the
introduction of the evolutionary profiles as the predictive inputs. These profiles are in the form of the
position specific score matrix (PSSM) generated with PSI-BLAST. Several second generation methods
including PONDR-VL3P [51], DISOPRED?2 [6], PROFbval [56], DISpro [57] and NORSp [58], use this
new type of the input. This is in contrast to the first generation methods that did not use this information.

The third generation methods were released after 2006. The main characteristics of these methods are the
use of new or more sophisticated machine learning model and utilization of meta-predictors. Example
methods that take advantage of more complex machine learning models include OnD-CRF [59] that
applies a conditional random fields model, DNDisorder [60] that uses deep networks and boosting, and
DISOPRED3 [61] that combines three machine learning models: support vector machine, neural network
and nearest neighbor. The meta-predictors combine results generated by several individual prediction
methods, either via a majority vote consensus or a separate predictive model. The main aim of the meta-
predictors is to improve predictive performance when compared to their individual input predictors.
Examples meta-methods include CSpritz [62], MetaDisorder [63], MFDp [64], DisMeta [65], and MFDp2
[66]. We also note that a few methods use structural modelling in the prediction, including PrDOS that
utilizes structural templates [67] and DISOclust [68] that utilizes structural models.

Predictors of intrinsic disorder

We searched for the disorder predictors using a variety of sources including prior reviews [30,34,32,33,35-
37,31], studies that assess and compare predictive performance of these methods [38-40,27], and manual
search of PubMed with query “(((disorder[Title]) OR unstructured[Title]) AND prediction[Title]) AND
protein”. Among over 70 resulting methods, we consider 32 predictors that are publically available as
webservers or/and standalone software, that were published in reputable peer-reviewed scientific venues,
and that were released as part of the second or third generation of predictors.

Table 1 summarizes availability and characteristics related to the convenience for the end users of the 32
methods, which are listed in a reverse chronological order. We show whether they are available as
webservers, standalone packages or both and provide URLSs of these resources. We also indicate whether
their webservers accept batch submissions (multiple sequences) and whether their predictions could be
considered high-throughput. The latter means that they finish a prediction in short amount of time,



typically under 30 seconds per average length sequence. Consequently, these high-throughput methods
can be used to perform predictions on a genomic scale. We found 12 such methods. They usually do not
use computationally expensive evolutionary information as their input. Nearly half of the predictors (15
out of 32) are available as standalone software. This allows the end users to incorporate these methods
into their own computational pipelines. All but one are implemented as webservers, which is convenient
for a less computer savvy end users. To use a webserver, these users need just a modern web browser and
Internet connection. Moreover, the webservers of five methods accept batch submission, which is useful
when a user requires to run a large number of predictions, e.g., when predicting disorder for a particular
family of proteins or in a particular proteome. The outputs generated by these methods could be binary
(each residue in the input protein chain is classified as either disordered or structured) or numeric
(propensity score that quantifies likelihood that a given residue is disordered). We note that all 32 methods
output both binary values and propensity scores.

Apart from the availability and usability, we also summarize methodologies that are utilized by the
selected 32 methods. Table 2 lists the various types of predictive models and inputs, and divides the
predictors into four classes:

1) Scoring function-based methods. They compute propensity of disorder using a scoring function or
formula based on selected physiochemical properties of the input amino acids, such as propensity to
form structured and disordered regions, certain secondary structures and solvent accessibility.
Examples include NORSp [58], GlobPlot [45] and IUPred [46,47].

2) Machine learning-based methods. The propensity for disorder is outputted from a classifier that is
generated using a machine learning algorithm. This classifier utilizes the sequence and sequence-
derived properties, such as evolutionary conservation, predicted secondary structure, predicted solvent
accessibility, as its inputs. Example classifier types include neural network, support vector machine,
regression, nearest neighbor, and conditional random field. Predictors in this class include DisEMBL
[54], RONN [69], DeepCNF-D [70] and DISOPRED [55,6,71,61].

3) Meta-predictors. These methods use predictions of disorder, in some cases together with other
sequence-derived properties, as the inputs to (re)predict disorder. This prediction is computed either
via voting, which is typical for methods that use only the prediction of disorder as inputs (e.g, disCoP
[72], MetaDisorder [63], metaPrDOS [73], DisMeta [65] and CSpritz [62]), or by using a classifier.
The examples of the latter classifier-based consensuses are MD [74], MFDp [64] and MFDp2 [66]
that use neural networks (MD) and support vector machines (both versions of MFDp).

4) Structure-based methods. Their predictive models use structural models, either predicted or in a form
of structural templates. Examples are PrDOS [67] and Disoclust3 [75].

Majority of the more recent models are either meta-predictors or machine learning-based predictors. The
most commonly used classifier in the latter class is the neural network. We also analyze various types of
inputs that these methods use including type, physiochemical property or position of amino acids in the
input protein sequence (AA), evolutionary conservation (EVO), predicted secondary structure (PSS),
predicted solvent accessibility (PSA), and predicted disorder (PDIS). The most commonly used inputs is
AA. The EVO input is often used by the machine learning methods. The use of PDIS has started only
around 2008 because accurate predictions of disorder has become available at this time. Besides these
inputs, some methods utilize other types of information including sequence alignment and predicted
disorder content [66], predicted flexibility [64,76], predicted globular domains and torsional angles [64],
and predicted residue-residue contacts [77]. The many available methods are diverse in terms of the
predictive models and inputs that they use. This fact has motivated the development of the meta-predictors



that exploit differences and complementarity between individual predictors to improve predictive
performance [78,72].



Table 1. Availability and convenience of the selected 32 publically available disorder predictors. Batch submission refers to ability to submit
multiple proteins using the webserver.

Name Year last Ref. Availability! Batch submission High URL

published (max # proteins) throughput
Disoclust 2015 [79,75] WS + SP No http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html
DISOPRED 2015 [61,55,6,71] WS +SP No http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1
DeepCNF-D 2015 [70] SP No Yes http://ttic.uchicago.edu/~wangsheng/DeepCNF D package v1.00.tar.gz
DisMeta 2014 [65] WS No http://www-nmr.cabm.rutgers.edu/bioinformatics/disorder/
disCoP 2014 [72] WS Yes (up to 5) http://biomine.cs.vcu.edu/servers/disCoP/
DNDisorder 2013 [60] WS No http://iris.rnet.missouri.edu/dndisorder/
MFDp2 2013 [66] WS Yes (up to 100) http://biomine.cs.vcu.edu/servers/MFDp2/
ESpritz 2012 [80] WS + SP Yes (no limit) Yes http://protein.bio.unipd.it/espritz/
MetaDisorder 2012 [63] WS No http://iimcb.genesilico.pl/metadisorder/
SPINE-D 2012 [81] WS + SP No http://sparks-lab.org/SPINE-D/
CSpritz 2011 [62] WS Yes (no limit) http://protein.bio.unipd.it/cspritz/
IsUnstruct 2011 [82] WS No Yes http://bioinfo.protres.ru/IsUnstruct/
MFDp 2010 [64] WS Yes (up to 5) http://biomine.cs.vcu.edu/servers/MFDp
PONDR-FIT 2010 [83] WS No Yes http://disorder.compbio.iupui.edu/metapredictor.php
MD 2009 [74] WS + Sp No https://ppopen.rostlab.org/
PreDisorder 2009 [84] WS + SP No http://sysbio.rnet.missouri.edu/predisorder.html
metaPrDOS 2008 [73] WS No http://prdos.hgc.jp/cgi-bin/meta/top.cgi
OnD-CRF 2008 [59] WS No http://babel.ucmp.umu.se/ond-crf/
Norsnet 2007 [76] WS + SP No https://ppopen.rostlab.org/
Ucon 2007 [77] WS + SP No https://ppopen.rostlab.org/
PrDOS 2007 [67] WS No http://prdos.hgc.jp/cgi-bin/top.cgi
PROFbval 2006 [56] WS + SP No https://ppopen.rostlab.org/
PONDR-VSL2B 2006 [52,53] WS + SP No Yes http://www.dabi.temple.edu/disprot/predictor.php
FoldUnfold 2006 [85] WS No Yes http://bioinfo.protres.ru/ogu/
DISpro 2005 [57,86] WS + SP No http://scratch.proteomics.ics.uci.edu/
FoldIndex 2005 [44] WS No Yes http://bioportal.weizmann.ac.il/fldbin/findex
IUPred 2005 [46,47] WS + Sp No Yes http://iupred.enzim.hu/
RONN 2005 [69] WS + SP No Yes https://www.strubi.ox.ac.uk/RONN
PONDR-VL3 2005 [50,51] WS No Yes http://www.dabi.temple.edu/disprot/predictor.php
DisEMBL 2003 [54] WS + SP No Yes http://dis.embl.de/
GlobPlot 2003 [45] WS No Yes http://globplot.embl.de/
NORSp 2003 [58] WS + SP No https://ppopen.rostlab.org/

!Availability: SP (standalone package); WS (webserver).



Table 2. Architectures of the selected 32 publically available disorder predictors.

Name Class' Predictive model® Inputs®
AA EVO PSS PSA PDIS Other inputs
Disoclust SB SF-+consensus X Alignment of predicted folds.
DISOPRED ML SVM+NN+NNE X X
DeepCNF-D ML Deep CNF X X X X
DisMeta Meta Consensus X
disCoP Meta Regression X
DNDisorder ML DN-+boosting X X
MFDp2 Meta SVM X  Sequence alignment, predicted disorder content.
ESpritz ML NN
MetaDisorder Meta Consensus X X Predicted folds.
SPINE-D ML NN X X
CSpritz Meta Consensus X
IsUnstruct SF SF Energetic potential scores.
MFDp Meta SVM X X Predicted flexibility, globular domains, and torsional angles.
PONDR-FIT Meta Consensus X
MD Meta NN X X X Local sequence profile, sequence complexity.
PreDisorder ML NN X X Multiple sequence alignment profile.
metaPrDOS Meta Consensus X
OnD-CRF ML CRF X X
Norsnet ML NN X X X Predicted flexibility.
Ucon ML NN Predicted residue-residue contacts.
PrDOS SB SVM-ttemplates X Structural templates.
PROFbval ML NN X X X X Chain length.
PONDR-VSL2B ML SVM+LR X
FoldUnfold SF SF X
DISpro ML NN X X X
FoldIndex SF SF X
IUPred SF SF X Interaction energy.
RONN ML NN Sequence alignment.
PONDR-VL3 ML NN X Sequence complexity.
DisEMBL ML NN X
GlobPlot SF SF X
NORSp SF SF X X X Predicted membrane helices, coil-coil regions.

IClass: Meta (meta predictor); ML (machine learning-based method); SB (structure-based method); SF (scoring function-based method).

Predictive model: CNF (convolutional neural fields); CRF (conditional random field); DN (deep neural network); LR (logistic regression); SF (scoring function); NN
(neural network); NNE: (nearest neighbor); SVM (support vector machine).

SInputs: AA (AA type, property, propensity and/or position); EVO (evolutionary information based on PSSM or HMM profile); PDIS (predicted disorder); PSA (predicted
solvent accessibility); PSS (predicted secondary structure).



Predictive performance of predictors of intrinsic disorder

A key aspect of these predictors is their predictive performance, i.e., how well they predict the disordered
and structured residues in the input protein sequence. The assessment of predictive performance is
performed by comparing predicted disorder to native annotations of disorder for a set of proteins for which
the native annotations are known; these proteins are typically dissimilar to the proteins that were used to
derive predictors. Since predictions include the numeric propensities of disorder and binary values, they
are accordingly accessed using different quality measures. The most widely used metric for the binary
predictions is Matthews Correlation Coefficient (MCC), while the predicted propensities are usually
evaluated with the Area Under receiver operating characteristic Curve (AUC). These two measures were
used in the most recent Critical Assessment of protein Structure Prediction (CASP) experiments: CASP9
[40] and CASP10 [87], and in several recent empirical assessments of the disorder predictions [88,38,27].
The MCC is defined as
c_ TPxTN - FPx FN )
\/(TP+ FP)X(TP+ FN)x(TN + FP)x(TN + FN)

where TP is the number of true positives (correctly predicted disordered residues), FN is the number of
false negatives (native disorder residues predicted as structured residues), FP is the number of false
positives (native structured residues predicted as disordered residues) and TN is the number of true
negatives (correctly predicted structured residues). MCC values range between O that corresponds to
random predictions and 1 for perfect predictions; negative values of MCC would indicate inverse
predictions. The AUC is used to evaluate the propensities by considering a range of predictions with
varying values of the true positive rates TPR = TP/(TP + FN) and false positive rates FPR = FP/(FP +
TN). The propensity score is binarized using a set of thresholds that equal to a set of all unique values of
the propensity. The residues associated with propensities above the threshold are assumed to be disordered
and with propensities equals or lower than the threshold to be structured, and the corresponding TPR and
FPR values that form the ROC curve are computed for each threshold. The area under the ROC curve
typically ranges between 0.5 that corresponds to a random predictor and 1 for a perfect predictor.

Several large scale evaluations of the predictive performance of disorder predictors were published over
the last quindecennial. Prediction of intrinsic disorder was included in the CASP starting with CASPS in
2002 [89] and until CASP10 in 2012 [87]. CASP is a biannual event where predictions submitted by a
large number of research groups across the world are evaluated on a blind dataset by an independent
groups of assessors (the assessors do not participate in the event). The blind datasets typically include
about 150 new proteins that could not be used to develop the participating predictors. The inclusion into
CASP coincided with the start of the second generation period and was likely the driving factor of the
rapid growth in the development of the disorder predictors. The latest CASP event that included prediction
of the intrinsic disorder was CASP10 where 26 computer servers (methods that do not include any human
intervention) and two human expert groups were evaluated, compared to a much smaller set of 6 groups
that participated in CASP5. The two human expert groups in CASP 10 were outperformed by the computer
models [87]. The highest MCC achieved in CASP10 was 0.53 and the highest AUC was 0.91, indicating
that the modern predictors are characterized by strong predictive performance. One of interesting aspects
that was assessed in CASP10 is a relation of the predictive quality and the length of the IDRs. Interestingly,
predictions of long IDRs (over 30 consecutive residues in length) were found to be generally characterized
by lower predictive performance when compared to the predictions of shorter regions [87]. Such
differences in the predictive performance relative to the length of the IDRs motivate the development of
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methods, such as PONDR-VSL2 [53] and MFDp [64], that aim to improve predictive performance by
specifically considering disordered regions that are either long or short. Finally, we note that the prediction
of intrinsic disorder in CASP11 was cancelled due to a lack of a sufficient number of suitable protein
targets.

Apart from CASP there were three major empirical assessments published in recent years [88,38,27]. The
comparative review from 2012 by Peng and Kurgan includes 19 predictors that were tested on a dataset
of nearly 500 proteins [38]. The second review by Cheng’s group that was released in 2012 included 32
methods that were evaluated on 117 proteins [88]. The most recent study that was published in 2015 by
Tosatto’s group compared 14 predictors on a large set of 25 thousand proteins [27]. Table 3 summarizes
the MCC and AUC values of the 23 out of the considered here 32 methods that were included in at least
one of these four studies: CASP10 and the three comparative reviews. We report the best result across
multiple versions of ESpritz, DisEMBL, and [UPred methods. The 10 methods that were ranked in the top
three based on either the AUC or MCC score in at least one assessment are highlighted with bold font.
According to these results, the most accomplished predictors include DISOPRED, MFDp, PONDR-
VSL2B, and PrDOS that have secured top 3 finish in two assessments. Several other methods, such as
ESpritz, PONDR-FIT, MD, PreDisorder, IUPred, and DisEMBL performed very well in one of the
assessments. We observe that the predictive performance depends on the level of sophistication of the
underlying predictive models. Typically, more complex models and meta-predictors offer stronger
predictive performance but they also require longer runtime to generate the predictions. Examples are
DISOPRED that used multiple machine learning models, MFDp and PONDR-VSL2B that are meta-
predictors, and PrDOS that combines a modern machine learning model and structural templates. Overall,
the AUC values (MCC values) range between 0.73 and 0.85 (MCC was not measured) in [88], 0.70 and
0.82 (0.18 and 0.45) in [38], 0.61 and 0.91 (0.24 and 0.53) in [87], and 0.61 and 0.81 (0.11 and 0.31) in
[27]. The lower predictive performance in ref. [27] is attributed to the fact that this assessment included
only high-throughput methods which typically trade predictive quality for the computational efficiency.
The differences in the predictive quality in different studies stem from the use of different predictors and
datasets but in general the range of values is comparable and the top performing methods secure
consistently high scores. For example, DISOPRED has secured AUC (MCC) of at least 0.78 (0.41), MFDp
at least 0.82 (0.45), and PrDOS at least 0.85 (0.53). We conclude that some of the current predictors of
intrinsic disorder consistently provide high quality predictions with AUC > 0.8 and MCC > 0.4.

Table 3. Empirical evaluation of the selected disorder predictors based on results from comparative
reviews [38,27,88] and CASP10 [87]. 9 of the 32 considered methods (DeepCNF-D, disCoP, DNDisorder,
MFDp2, IsUnstruct, FoldUnfold, DISpro, PONDR-VL3, and NORSp) are not listed since they were not



included in these comparative studies. Methods ranked in the top three based on AUC or MCC and in at
least one assessment are highlighted with bold font.

Name AUC MCC

[88] [38] [87] [27] [38] [87] [27]
Disoclust 0.79 0.78 0.82! 034 0.24!
DISOPRED 0.852 0.78° 0.904 0.41°> 0.53¢
DisMeta 0.69 0.46
ESpritz 0.86° 0.787 0.32% 0.28%
MetaDisorder  0.81° 0.84° 0.34°
SPINE-D 0.8310
CSpritz 0.83 0.32
MFDp 0.82'1 0.82 0.89'2 0.45 0.492
PONDR-FIT 0.79 0.42
MD 0.82 0.44
PreDisorder  0.85 0.87"3 0.40"3
metaPrDOS 0.88 0.39'4
OnD-CRF 0.73 0.811 0.311
Norsnet 0.74 0.34
Ucon 0.74 0.31
PrDOS 0.85'¢ 0.91" 0.53"7
PROFbval 0.70 0.20
PONDR-VSL2B 0.79 0.81 0.40 0.26
FoldIndex 0.61 0.28 0.11
IUPred 0.78!8 0.78" 0.41'8 0.31"
RONN 0.76 0.76 0.37 0.22
DisEMBL 0.79% 0.32% 0.31%
GlobPlot 0.63 0.18 0.12

! under group IntFOLD2; 2 under group DISOPRED3C; 3 result for DISOPRED2; “ result for DISOPRED3; ° under grou
ESpritz; ® under group ESpritzv2;  result for ESpritz X-ray; ® result for ESpritz NMR; ° under group GSmetaDisorderMD; '
under group ZHOU-SPINE-D; !' under group biomine DR pdb; '?> under group biomine dr mixed; '* under group
MULTICOM-construct; '# under group metaprdos2; '> under group OnD-CRF2; '° under group Prdos2; !” under group Prdos-
CNF; '8 IUPred for long IDRs; '° IUPred for short IDRs; 2° DisEMBL-465; 2! DisEMBL-R.
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Detailed summary of selected predictors of intrinsic disorder

We provide a detailed and structured summary of several selected methods. These methods include ten
methods that secured the top three finish in at least one of the four assessments (methods shown in bold
font in Table 3) and six most recent methods that were published after 2012: DNDisorder [60], MFDp2
[66], disCop [72], DisMeta [65], DeepCNF-D [70] and Disoclust3 [75]. We discuss these 16 methods in
the chronological order. For each method, we introduce its authors, briefly overview its key architectural
characteristics, and provide details about its inputs, outputs and availability.

DISEMBL (2003)

DISEMBL [54] was developed by Linding et al. at the European Molecular Biology Laboratory (EMBL).
This method includes three predictive models, each implemented as a neural network, that focus on finding
disordered residues and residues in disorder-like conformations: loops and coils defined by DSSP, hot
loops (loops with high degree of mobility), and disordered residues defined as those that have missing
coordinates (i.e., remark465) in the X-ray structures in PDB. The latter version has secured the second
highest AUC (0.79) and MCC (0.31) in the recent assessment of disorder predictors by the Tosatto’s group
[27]. DISEMBL is a high throughput method and its predictions (based on the remark465 and hot loop
versions) are included in the MobiDB database [90].

Input: SwissProt ID or a single raw (unformatted) amino acid sequence.

Output: Predicted propensities for disorder for each residue in the input sequence for each of the three
models, formatted as plain text and in the CASP format (column-wise with the first column showing the
amino acids, second showing the binary predictions and the third giving the propensities); a plot
representing the propensity scores of being disorder for the three models. Binary prediction for each
residue in the input sequence for each of the three models.

Availability: A webserver and a standalone package running on a Linux platform.

URL: http://dis.embl.de

TUPred (2005)

IUPred [47,46] was authored by Dosztanyi et al. at the Hungarian Academy of Sciences. This predictor
finds putative intrinsically disordered residues and regions using a scoring functions that estimates energy
of inter-residue interactions and the fact that such energy differs between structured and unstructured
regions. [UPred has two versions: short and long. The former was designed to predict missing residues in
the X-ray structures while the long version was optimized to predict functionally relevant disordered
segments. Although the underlying scoring function is relatively simple, this method offers good
predictive performance and is very fast to compute. Based on the recent comparative review by the
Tosatto’s group [27], the version of IUPred that targets short regions secures third highest AUC (0.78)
and the highest MCC (0.31) among the considered 14 high-throughput predictors. The predictions by both
version of IUPred are included in the D?P? database [91] and the MobiDB database [90].

Input: SwissProt ID, TrEMBL ID, or a single raw (unformatted) or FASTA formatted amino acid sequence.
Output: Predicted propensities for disorder for each residue in the input sequence for each of the two
models; scores above 0.5 indicate that the corresponding residues is predicted as disordered. [UPred can
also output plots that show structured regions and propensities of disorder for long and short regions.
Availability: A webserver and a standalone package running on a Linux platform.

URL: http://iupred.enzim.hu
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PONDR-VSL2B (2006)

PONDR-VSL2B [53,52] was released by Obradovic et al. at the Temple University. This method is a part
of a larger family of PONDR predictors of disorder. The VSL (various short long) suffix stands for fact
that this method was built using disorder characterized by Various approaches (X-ray crystallography,
NMR and circular dichroism) and to predict both Short and Long disordered regions. The 2B recognizes
the fact that this is second of the two models, this one is based on SVM, while B indicates that this is a
Baseline predictor that utilizes only the information derived from amino acid composition [53]. In contract,
VSL2 (without “B”) utilizes information derived from amino acid composition, PSSM generated with
PSI-BLAST and predicted secondary structure. PONDR-VSL2B is much faster than PONDR-VSL2
(computations of PSSM and secondary structure are time consuming) and according to the test performed
by the authors its accuracy is only 3% inferior to VSL2 [53]. In the evaluation by Kurgan’s group [38],
PONDR-VSL2B achieved the third highest AUC (0.79). Predictions by this method are included the D*P?
database [91]. Moreover, this is the first method that predicts IDRs of various length with similar
predictive quality.

Input: A single raw (unformatted) amino acid sequence (up to 100 predictions per IP address per day;
query sequence limited to up to 5000 residues).

Output: Predicted propensities and binary scores for each residue in the input sequence.

Availability: A webserver and standalone version running on a Linux platform.

URL: http://www.dabi.temple.edu/disprot/predictor VSL2.php

PrDOS (2007)

PrDOS [67] was developed by Ishida and Kinoshita at the University of Tokyo. This is a hybrid design
that combines a machine learning model with a template-based approach. PrDOS uses an SVM model that
takes the PSMM generated with PSI-BLAST run on the input protein chain as the input. The output by
the SVM model is combined with results of a search for homologues in PDB. The final propensity for the
intrinsic disorder is computed as a weighted average of the results from SVM and the homology search.
This predictor offers one of the highest levels of predictive performance. PrDOS has secured the highest
AUC (0.85) in the assessment by Cheng’s group [88], and its new version based on conditional neural
field has achieved the highest AUC (0.91) and the second highest MCC (0.53) in CASP10 [87]. However,
the conditional neural field version is not available publically. Although PrDOS is not a high throughput
method (it takes >1 minute to run it for a sequence), its predictions over multiple genomes are included in
the D?P? database [91].

Input: A single raw (unformatted) or FASTA-formatted amino acid sequence

Output: Predicted propensities and binary scores for each residue in the input sequence; a plot of the
propensity scores.

Availability: A webserver.

URL.: http://prdos.hgc.jp/cgi-bin/top.cgi

PreDisorder (2009)

PreDisorder [92-94] was created by Cheng et al. at the University of Missouri. This is a machine learning
model based on a recursive neural network. The network utilizes a diverse set of inputs derived from the
input sequence including multiple sequence alignment profiles, predicted secondary structure and
predicted solvent accessibility. PreDisorder obtained the second highest AUC (0.82) in the comparative
evaluation published in 2012 by the same group [88] and also performed well in the CASP8 experiment
[95].
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Input: A single raw (unformatted) amino acid sequence.

Output: Predicted propensities and binary scores for each residue in the input sequence.
Availability: A webserver.

URL.: http://sysbio.rnet.missouri.edu/predisorder.html

MD (2009)

MD [74] is a meta predictor that was developed by Schlessinger et al. the Columbia University. This
method relies on a neural network model that utilizes a large set of diverse inputs that are derived from
the input protein chain. These inputs are divided into two types: 1) the outputs from four disorder
predictors including NORSnet [76], IUPred [46], DISOPRED2 [71], and UCon [77]; and 2) other
sequence-derived information including flexibility predicted with PROFbval [56], predicted secondary
structure and solvent accessibility, amino acid composition, annotation of low complexity regions,
sequence profiles, sequence length, estimated hydrophobicity and net-charge of the input protein, and
estimated sequence energy. MD is tied with MFDp [64] for the highest AUC (0.82) in empirical evaluation
by the Kurgan’s group [38], and achieved the second highest MCC (0.44) in the same evaluation. This
method is a part of a comprehensive PredictProtein Open platform [96] for the prediction of protein
structure and function. PredictProtein Open offers predictions of intrinsic disorder and flexibility,
disulphide bridges, effects of point mutations, gene ontology terms (functions), subcellular localization
and binding sites.

Input: A single raw (unformatted) or FASTA-formatted amino acid sequence

Output: Predicted propensities and binary scores for each residue in the input sequence.

Availability: integrated into the PredictProtein Open webserver.

URL.: https://ppopen.rostlab.org/

MFDp (2010)

MFDp [64] is a meta predictor designed by Mizianty et al. the University of Alberta. This method
combines three SVMs that were trained to predict short IDRs (<30 consecutive residues), long IDRs (30
or more consecutive residues) and IDRs of all length. Each of the three SVMs uses a rich set of inputs that
are categorized into two types: 1) the outputs from three predictors of intrinsic disorder, IUPred [46],
DISOPRED?2 [71] and DISOclust [68]; and 2) other sequence-derived information including the input
sequence, PSSM profiles generated with PSI-BLAST, flexibility predicted with PROFbval [56],
secondary structure predicted with PSIPRED [97], solvent accessibility and backbone dihedral torsion
angles predicted with Real-SPINE3 [98], and globular domains predicted with [UPred. This method was
shown to provide high levels of predictive performance. MFDp is tied with MD [74] for the highest AUC
(0.82) in the empirical evaluation by the same group [38], and secured the highest MCC (0.45) in the same
evaluation. Is also obtained third best AUC and MCC in CASP10 [87] and second best MCC in CASP9
[40].

Input: A single or multiple (< 5 sequences) FASTA-formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for each residue in the input sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/MFDp

PONDR-FIT (2010)

PONDR-FIT [83] is a meta predictor that was authored by Xue et al. at the Indiana University. It combines
outputs of six predictors of intrinsic disorder: PONDR-VLXT [48], PONDR-VSL2 [52,53], PONDR-VL3
[50], FoldIndex [44], IUPred [46] and TopIDP [99], using a neural network. The predictions from this
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method are provided together with the results from the other PONDR methods: PONDR-VSL2B,
PONDR-VL3 and PONDR-VLXT. PONDR-FIT achieved the third highest MCC (0.42) in the
comparative evaluation from 2012 by the Kurgan’s group [38].

Input: A single FASTA-formatted or EMBL-formatted amino acid sequence.

Output: Predicted propensities and binary scores for each residue in the input sequence; a plot of
propensity scores where residues above the 0.5 cut-off are predicted as disordered.

Availability: A webserver.

URL.: http://disorder.compbio.iupui.edu/metapredictor.php

ESpritz (2012)

ESpritz [80] was developed by Walsh et al. at the University of Padua. This machine learning predictor is
based on a bidirectional recursive neural work. ESpritz has three versions that were trained using different
sources of annotations of disorder based on X-ray crystals, NMR and the DisProt database. The NMR-
based version of ESpritz secured the third highest MCC (0.28) in the evaluation from 2015 by the same
group [27]. Each of the three versions has an option to be executed without the use of computationally
expensive evolutionary profiles, which results in a very fast runtime (typically < 10s per sequence).
Predictions generated by each of the three versions of ESpritz are included the D?P? database [91] and the
MobiDB database [90].

Input: A single or multiple FASTA-formatted amino acid sequence(s); the submission limit is less than
3000 proteins when pasted into online page; no limit if the proteins are uploaded in a file.

Output: Predicted propensities and binary scores for each residue in the input sequence; summary of
disorder for input protein(s).

Availability: A webserver and a standalone package running on a Linux platform.

URL: http://protein.bio.unipd.it/espritz

DNDisorder (2013)

DNDisorder [60] was created by Eickholt and Cheng at the University of Missouri; the same research
group also developed PreDisorder. The architecture of DNDisorder is an ensemble of deep neural
networks and this is the first predictor that applied this type of a machine learning model. The inputs to
these networks include information extracted from PSSM derived with PSI-BLAST, predicted solvent
accessibility, predicted secondary structure, and Atchley factors [100]. The Atchley factors are five
numeral values that quantify secondary structure, polarity, volume, codon diversity and electrostatic
charge of amino acids. This predictor achieved relatively good AUC of 0.83 and 0.85 in CASP9 and
CASP10, respectively [60].

Input: A single raw (unformatted) or FASTA-formatted amino acid sequence.

Output: Predicted propensities and binary scores for each residue in the input sequence.

Availability: A webserver.

URL: http://iris.rnet.missouri.edu/dndisorder

MFDp2 (2013)

MFDp2 [66] is a meta method that was designed by Mizianty et al. at the University of Alberta; the same
research group that developed MFDp. It utilizes a novel architecture that includes three major components:
disorder predictor MFDp [64], predictor of disordered content (i.e., overall amount of disorder in a whole
protein) DisCon [101], and an alignment engine. DisCon was empirically shown to predict the disorder
content more accurately than MFDp and several other disorder predictors [66,101]. The idea behind
MFDp2 is to combine the predictions from MFDp with predictions using alignment against a database of
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annotated disordered proteins and adjust these results so that they agree with the disorder content predicted
with DisCon. MFDp2 was empirically shown in [66] to achieve relatively high AUC (0.86) and MCC
(0.48) values on a benchmark dataset with 105 proteins.

Input: A single or multiple (up to 100) FASTA-formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for each residue in the input sequence from MFDp2 and
MFDp; disorder content predicted with DisCon; evolutionary conservation, secondary structure predicted
with PSIPRED [97], and solvent accessibility predicted with Real-SPINE3[98] for each residue in the
input sequence.

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/MFDp2

disCop (2014)

DisCop [72] is a meta predictor by Fan and Kurgan at the University of Alberta; this research group also
developed MFDp and MFDp2. The defining feature of this meta method is that its input disorder predictors
were selected empirically from a large set of 20 disorder predictors to maximize predictive performance.
The selected seven methods include ESpritz (the DisProt and X-ray versions), CSpritz (the long disorder
version), SPINE-D, DISOPRED2, MD and DISOclust. Their outputs are combined together using a
regression model to produce a new disorder prediction that offers higher predictive performance compared
to any of the 20 predictors [72]. DisCop was shown to achieve high values of AUC = 0.85 and MCC =
0.50 on a benchmark dataset with over 240 proteins [72].

Input: A single or multiple (up to 5) FASTA-formatted amino acid sequence(s).

Output: Predicted propensities and binary scores for each residue in the input sequence from disCop and
MFDp; disorder content predicted with DisCon; evolutionary conservation, secondary structure predicted
with PSIPRED [97], and solvent accessibility predicted with Real-SPINE3[98] for each residue in the
input sequence

Availability: A webserver.

URL: http://biomine.cs.vcu.edu/servers/disCoP

DisMeta (2014)

DisMeta [65] is a meta predictor that was released by Huang et al. at the Rutgers University. This method
implements consensus of eight disorder predictors: DISEMBL [54], DISOPRED?2 [71], DISpro [57],
FoldIndex [44], GlobPlot2 [45], IUPred [46], RONN [69] and PONDR-VSL2 [52,53]. A user can also
select to generate the consensus prediction using a subset of these methods. To the best of our knowledge,
DisMeta was not empirically evaluated neither by the authors in the corresponding publication or in other
studies. This method has been used to select and prepare proteins for NMR and crystallization studies at
the Northeastern Structural Genomic Consortium (NESG) [65].

Input: A single raw (unformatted) amino acid sequence or the NESG target ID.

Output: Predicted disordered residues from each selected input predictor and the consensus score for each
residue in the input sequence; predicted secondary structure with PROFsec [102] and PSIPRED [97];
predicted secretion signal peptides with SignalP [103]; predicted transmembrane regions with TMHMM
[104]; predicted low complexity regions with SEG [105]; predicted disordered protein-binding residues
with ANCHOR [106].

Availability: A webserver.

URL: http://www-nmr.cabm.rutgers.edu/bioinformatics/disorder
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DeepCNF-D (2015)

DeepCNF-D [70] was created by Wang et al. at the University of Chicago. This method utilizes weighted
deep convolutional neural fields (CNF) as the machine learning model. This model uses physiochemical
properties of the input amino acids and sequence-derived evolutionary information, predicted secondary
structure and predicted solvent accessibility as its inputs. DeepCNF-D was evaluated by the authors on
the CASP9 and CASP10 datasets and achieved relatively high AUC values (0.86 and 0.90) and MCC
values (0.49 and 0.47) [70]; we note that this was done after the CASP experiments were concluded. This
predictor has a high-throughput version that uses only the properties of amino acids as the input; the AUCs
of that version are lower at 0.70 and 0.77 and MCCs at 0.40 and 0.43 when tested on the CASP9 and
CASPI10 datasets, respectively [70].

Input: A single FASTA-formatted amino acid sequence.

Output: Predicted propensities and binary scores for each residue in the input sequence.

Availability: A standalone software running on a Linux platform.

URL: http://ttic.uchicago.edu/~wangsheng/DeepCNF D package v1.00.tar.gz

DISOPRED3 (2015)

DISOPRED?3 [61] was authored by Jones and Cozzetto at the University College London. The first version
of this method (DISOPRED) was published in 2003 [55], the second (DISOPRED?2) around 2004 [6,71]
and the latest third version in 2015 [61]. DISOPRED3 has a two layer design. The first layer uses three
models to predict disorder which are next combined together in the second layer with a help of a neural
network. The three models in the first layer include the SVM model from DISOPRED?2, a new neural
network model that aims to predict long disordered regions, and a nearest neighbor model that is used to
predict disorder using a reference dataset of proteins annotated with disorder. Moreover, DISOPRED3
also predicts disordered protein-binding sites using an SVM-based model. This method provides very
accurate predictions. It has secured the second highest AUC (0.90) and the highest MCC (0.53) in CASP10
[87]. DISOPRED3 and DISOPRED2 are now embedded into the PSIPRED platform [107] that also
provides predictions of protein structure, membrane helices and topology of transmembrane helices,
protein domains, and protein functions.

Input: A single raw (unformatted) or FASTA-formatted amino acid sequence, or the multiple sequence
alignment of the input protein.

Output: Predicted propensities and binary scores for each residue in the input sequence; predicted binary
scores and propensities for the disordered protein binding sites for each residue in the input sequence.
Availability: A webserver and a standalone software running on a Linux platform.

URL: http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1

Disoclust3 (2015)

Disoclust3 [75] was released McGuffin et al. at the University of Reading. The first version of this method
was published in 2008 [68]. This predictor is based on a premise that structured residues are conserved in
three-dimensional space across multiple structural models, while the residues that vary in position or are
missing across these models are likely to be disordered. Disoclust3 used ModFOLDclust2 [108] to identify
residues with highly variable positions over multiple alternative structural models that are computed with
the IntFOLD3-TS method. The results from the above approach are combined with the results generated
with DISOPRED?3 [61] to generate the final prediction. Disclust3 achieved AUC = 0.82 and MCC = 0.24
in CASP10 [87]. This predictor is embedded into the IntFOLD platform [75] that also provides prediction
of tertiary structure, domain, binding sites and offers model quality assessment scores.
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Input: A single raw (unformatted) amino acid sequence.

Output: Predicted propensities and binary scores for each residue in the input sequence.
Availability: A webserver and a standalone software package (Java environment required).
URL: http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD2_form.html

Databases of putative annotations of intrinsic disorder

Recent comparative reviews reveal that predictors of intrinsic disorder are relatively accurate. These
predictions are used to guide experimental studies of disorder and to address practical problems in other
areas, such as targets selection in structural genomics [109]. They were also used to analyze prevalence
and functional characteristics of disorder on large scale across functionally related proteins [110,9,111]
and in whole proteomes [3,19,112-114]. To this end, several databases of the putative annotations of IDPs
and IDRs were developed to ease access to this information for the end users. Given that these resources
provide access to putative disorder for large sets of proteins, they include results generated by high-
throughput predictors of intrinsic disorder.

DICHOT [115] is the first such database. It provides predictions of intrinsic disorder for the human
proteome. It includes 20,333 protein chains collected from the Swiss-Prot database [116], where the IDRs
are predicted using DISOPRED?2 [6] and CLADIST [117]. This resource is now superseded by the two
more recent and much larger databases: MobiDB [90,118] and D?P? [91]. MobiDB offers access the
putative disorder generated by ten predictors: three versions of Espritz [80], two versions of I[UPred [46],
two versions of DisSEMBL [54], GlobPlot [45], PONDR-VSL2b [52] and RONN [69]. The database also
combines these 10 predictions into a consensus. Moreover, MobiDB includes experimental annotations of
disorder collected from DisProt and PDB, the latter based on both X-ray and NMR structures. The current
version 2.2 of MobiDB (version 2.0) covers over 80.37 million chains, which were obtained from the
UniProtKB and Swiss-Prot resources [116]. Importantly, these putative annotations of disorder are also
cross-referenced in UniProt [116]. D*P? is the second large repository of predicted annotations of intrinsic
disorder. It contains annotations generated with nine predictors: three versions of Espritz [80], two
versions of IUPred [46], PV2 [119], PrDOS [67], PONDR-VSL2b [52] and PONDR-VLXT [48]. It also
links to the experimental annotations of disorder from DisProt and IDEAL and includes putative
annotations of disordered protein binding regions computed with ANCHOR [120,106]. The current
version of D?P? contains annotations for 10.43 million proteins from 1,765 proteomes across all kingdoms
of life. The main difference between MobiDB and D?P? is that the former provides annotations for
arguably largest possible set of currently known proteins, while the latter provides the annotations for all
complete proteomes. Both MobiDB and D?P? include a number of secondary annotations to put the
putative disorder in the structural and functional context. For example, MobiDB includes information
about organism a given protein comes from, subcellular location, annotations of functions, post-
translational modifications, domains, secondary structure, and protein interactions. D?P? includes the
source organism and a comprehensive annotation of domains and post-translational modifications.

Predictors of functions of intrinsic disorder

IDPs and IDRs are involved in a wide repertoire of cellular functions. In recent years progress has been
made to develop methods that predict these functions from the protein sequences. In contrast to the
predictors of intrinsic disorder, these methods find a subset of IDRs that carry out a specific function. The
current predictors of functions of disorder address primarily binding-related functions that include
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interactions of IDRs with proteins, DNAs and RNAs. This is motivated by an observation that these
binding-related functions are the most prevalent functions carried out by IDRs. Based on the experimental
data from DisProt, 74% of the over 1000 functionally annotated IDRs in DisProt interact with proteins,
DNAs, RNAs, metals and lipids. The protein-protein binding is the most populated function, with over
450 annotated IDRs in DisProt.

The predictors of the most populated disordered protein binding regions are categorized into three classes.
The first class are the methods that predict generic disordered protein binding regions which include
ANCHOR [120,106] and disoRDPbind [121]. The second class focuses on a specific type of protein
binding regions called molecular recognition features (MoRFs). MoRFs are protein binding regions
located within IDRs that include at least five consecutive residues and which undergo disorder-to-order
transitions upon binding to their protein partners [122,123]. There are several predictors of MoRFs
including alpha-MoRFpred [124,125], MoRFpred [126], MFSPSSMpred [127], MoRFChiBi [128],
MoRFChiBiWeb [129], fMoRFpred [130], retro-MoRF [131] and DISOPRED?3 [61]. The third category
of methods aims to predict short linear sequence motifs (SLiMs). SLiMs are conserved in the sequence
and their length typically ranges between 3 and 10 consecutive amino acids [132]. They mediate protein-
protein interactions and although they are primarily disordered, about 20% of them are located in globular
protein domains [129]. The currently experimentally annotated SLiMs can be obtained from the
Eukaryotic Linear Motif (ELM) resource [133] and they can be predicted with the help of the SLiMpred
[134] and PepBindPred [135] methods.

So far only one predictor, disoRDPbind [121], which considers IDRs that bind to other types of ligands
was developed. This method combines three predictive models that provide putative annotations of the
disordered protein-, DNA- and RNA-binding residues. Just recently, the first method that addresses
prediction of a function of intrinsic disorder that is not related to binding was released. The DFLpred
method [136] predicts disordered flexible linker regions, elements that serve as linkers/spacers in multi-
domain proteins or between structured constituents within protein domains. The disordered flexible linkers
differ from linkers in three aspects. They are characterized by lack of defined structure, are longer (avg
length of 25 residues) and could be localized both within and between domains, for instance to link
structured elements within a domain. These linkers constitute the most populated in DisProt type of the
non-binding function of IDRs that accounts for about 9% of all functionally annotated disordered regions.

Table 4 lists summarizes availability and features related to the use user convenience of the
abovementioned 13 predictors of cellular functions of disorder, which are listed in the reverse
chronological order. Most of these methods, except for alpha-MoRFpred and retro-MoRF, are provided
to the end users as convenient to use webservers. Moreover, five methods: ANCHOR, MFSPSSMpred,
MoRFCHiBi, MoRFCHiBiWeb and DISOPRED3 are available as standalone packages. This option is
useful for users who would want to include them in other predictive pipelines. The table also indicates
whether the webservers accept batch submissions (i.e., multiple sequences in a single request) and whether
their predictions are high-throughput (they are computed quickly, typically in under 30 seconds, for an
average length sequence). Several predictors, such as ANCHOR, disoRDPbind, MoRFChiBi1, fMoRFpred,
and DFLpred, are very fast and can be used to perform predictions on the whole proteome scale. Four
methods are that available online, including MoRFpred, DisoRDPbind, fMoRFpred, and DFLpred, offer
an option to perform batch predictions to facilitate large-scale applications over protein families or whole
proteomes. Moreover, predictions from ANCHOR for over 10 million proteins are already included in the
D’P? database.
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Table 5 discusses architectures of the 13 predictors. Similar to the predictors of intrinsic disorder, it divides
these models into four classes based on the predictive models and inputs that they use:

1)

2)

3)

4)

Scoring function-based methods. These approaches input properties computed directly from the
protein sequence, such as sequence alignment and propensity for intra-chain interactions and binding,
as well as the propensity for intrinsic disorder into a scoring function to predict disordered protein
binding regions. The two methods in this category are retro-MoRF [131] and ANCHOR [120,106]
Machine learning-based methods. This the largest by far category includes nine methods: alpha-
MoRFpred [124,125], SLiMpred method [134], MoRFpred [126], MFSPSSMpred [127],
disoRDPbind [121], DISOPRED3 [61], fMoRFpred [130], MoRFChiBi [128] and DFLpred [136].
They compute propensity for a specific function utilizing machine learning classifiers. Inputs for these
classifiers are generated directly from the sequence and from the sequence-derived properties, such as
evolutionary conservation, putative secondary structure and putative solvent accessibility. While these
architectural details are similar to the predictors of intrinsic disorder, these methods also frequently
use multiple sequence alignment and putative annotations of disordered residues. The machine
learning-based methods predict protein, RNA and DNA binding regions as well as the disordered
flexible linkers.

Meta-predictors which include the MoRFChiBiWeb method [129]. This predictor uses sequence
alignment and a Bayesian approach to combine MoRFChiBi, Espritz, and sequence conservation
profiles to (re)predict MoRF regions. Benchmarks performed by the authors of MoRFChiBiWeb
reveal that it is more accurate than MoRFChiBi but it also requires longer runtime.

Structure-based methods that include PepBindPred [135]. This method relies on the structure of the
protein that binds to a disordered region to generate molecular docking scores that are processed with
a machine learning model to predict SLiMs.

Majority of the predictors of the cellular functions of disorder are based on machine learning models. In
contrast to the predictors of intrinsic disorder that primarily use neural networks, these methods most often
adopt machine learning models in the form of support vector machines. Moreover, nine out of the 13
methods use putative annotations of intrinsic disorder as one of their inputs, which is motivated by the
fact that these functional regions are located in IDRs.
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Table 4. Availability, convenience, and architecture of the 12 predictors of functions of disorder. Batch submission refers to ability to submit
multiple proteins using a webserver.

Method Year last Ref. Predictive target Availability! Batch High URL
published submission throughput

DFLpred 2016 [136] linkers WS Yes Yes http://biomine.cs.vcu.edu/servers/DFLpred/

MoRFCHiBiWeb 2016 [129] protein binding WS + SP No http://morf.chibi.ubc.ca:8080/mcw/index.xhtml

fMoRFpred 2015 [130] protein binding WS Yes Yes http://biomine.cs.vcu.edu/servers/fMoRFpred/

DISOPRED3 2015 [61] protein binding WS + SP No http://bioinf.cs.ucl.ac.uk/disopred

MoRFCHiBi 2015 [128] protein binding WS + SP No Yes http://morf.chibi.ubc.ca:8080/mcw/index.xhtml

disoRDPbind 2015 [121] protein, RNA, DNA binding WS Yes Yes http://biomine.cs.vcu.edu/servers/DisoRDPbind/

PepBindPred 2013 [135] protein binding WS No http://bioware.ucd.ie/~compass/biowareweb/Server pages/p
epbindpred.php

MFSPSSMpred 2013 [127] protein binding WS + SP No http://webapp.yama.info.waseda.ac.jp/fang/MoRFs.php

MoRFpred 2012 [126] protein binding WS Yes http://biomine.cs.vcu.edu/servers/MoRFpred/

SLiMPred 2012 [134] protein-binding WS No http://bioware.ucd.ie/~compass/biowareweb//Server pages/
slimpred.php

retro-MoRFs 2010 [131] protein-binding N/A N/A N/A N/A

ANCHOR 2009 [120,106] protein binding WS + SP No Yes http://anchor.enzim.hu

alpha-MoRFpred 2007 [124,125] protein binding N/A N/A N/A N/A

! Availability: WS (webserver); SP (standalone package).
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Table 5. Architectures of the 12 predictors of functions of disorder.

Name Class' Predictive model® Inputs’
AA EVO PSS PSA PDIS Other inputs

DFLpred ML LR X X  Propensity for secondary structure estimated from sequence.
MoRFCHiBiWeb  Meta Bayes X X X

fMoRFpred ML SVM X X X

DISOPRED3 ML SVM X X

MoRFCHiBi ML SVM X

disoRDPbind ML LR X X X Multiple sequence alignment, sequence complexity.
PepBindPred SB NN X X Docking scores.

MFSPSSMpred ML SVM X

MoRFpred ML SVM X X X X  Predicted B-factors, multiple sequence alignment.
SLiMPred ML NN X X X X  Predicted structural motifs and domains.

retro-MoRFs SF SF X X Multiple sequence alignment.

ANCHOR SF SF X Propensity for disorder, intra-chain interactions, and binding.
alpha-MoRFpred =~ ML NN X X X  Three disorder predictors are used.

IClass: Meta (meta predictor); ML (machine learning-based method); SB (structure-based method); SF (scoring function-based method).
?Predictive model: Bayes (Bayesian rule); LR (logistic regression); NN (neural network); SF (scoring function); SVM (support vector machine).

SInputs: AA (AA type, property, propensity and/or position); EVO (evolutionary information based on PSSM or HMM profile); PDIS (predicted disorder); PSA (predicted
solvent accessibility); PSS (predicted secondary structure).
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Figure 1 visualizes predictions generated by several methods that find disordered protein binding regions
(Figure 1A) and disordered DNA binding regions (Figure 1B) and compares them to the location of the
corresponding native annotations of disordered protein and DNA binding residues, respectively. The
predictors produce putative numeric propensities for a given function and the corresponding binary values
that denote which disordered residues are predicted to bind proteins and DNA. The propensity scores are
included at the top of each panel while the corresponding binary predictions are shown as horizontal lines
at the bottom. The binary predictions are generated from the propensities by applying a threshold
suggested by the authors, i.e., residues with propensities higher than the threshold are predicted as binding.
We caution the reader that these results should not be assumed as typical and representative of the
predictive performance of the corresponding methods, but rather they are used to illustrate how to use and
interpret these predictions.

Figure 1A shows predictions of disordered protein binding regions from DisoRDPbind and putative MoRF
regions generated by MoRFpred, ANCHOR, MFSPSSMpred, and MoRFCHiBiWeb for anophelin protein
(DisProt ID: DP00824). This protein has a MoRF region between positions 54 and 83 [137]. We also
include native annotations of IDR in this protein (positions 23 to 83) and the corresponding predictions of
intrinsic disorder generated with IUPred. The predicted disordered residues are in good agreement with
the native disordered residues (gray and black/light red horizontal lines at the bottom of Figure 1A that
denote putative and native annotations, respectively) and they can be used to filter out results from the
methods that predict the functional disordered regions. This allows us to eliminate the false predictions
from ANCHOR, MoRFpred and MoRFCHiBiWeb near the N-terminus. Interestingly, both MoRFpred
and ANCHOR accurately find the protein binding region at the C terminus (green and pink horizontal
lines at the bottom of Figure 1A). The other three methods, MFSPSSMpred (violet horizontal line),
MoRFCHiBiWeb (dark red horizontal line) and DisoRDPbind (orange horizontal line) identify the entire
IDRs as protein binding. The latter method aims to find generic disordered protein binding regions, rather
than the MoRF region that is present in this protein, and this is likely why its results are less accurate.
However, all five methods correctly suggest presence of the disordered protein binding region in this
protein demonstrating that their outputs can be used for a practical purpose.

Figure 1B illustrates predictions of disordered DNA binding regions from DisoRDPbind for Thymine-
DNA glycosylase protein (DisProt ID: DP00719). This protein includes disordered DNA binding region
between positions 51 and 111 [138] denoted by the light red horizontal line at the bottom of Figure 1B
and two disordered regions (positions 1 to 111, and positions 340 to 410). Like in the above example, the
putative disordered regions produced with [UPred are in relatively good agreement with the native
disordered regions (gray and black/light red horizontal lines at the bottom of Figure 1B that denote putative
and native annotations, respectively). Using these putative annotations of IDRs as a filter, the predictions
from DisoRDPbind (dark red horizontal lines) point to the correct location of the native disordered DNA
binding region. Once again, our example reveals that use of the putative annotations of disorder in tandem
with the putative annotations of disordered binding regions leads to an accurate hypothesis that suggest
location of the native DNA binding region.
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