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There are over 100 computational predictors of intrinsic disorder. These methods predict amino 

acid‐level propensities for disorder directly from protein sequences. The propensities can be 

used to annotate putative disordered residues and regions. This unit provides a practical and 

holistic introduction to the sequence‐based intrinsic disorder prediction. We define intrinsic 

disorder, explain format of computational prediction of disorder, and identify and describe 

several accurate predictors. We also introduce recently released databases of intrinsic disorder 

predictions and use an illustrative example to provide insights into how predictions should be 

interpreted and combined. Lastly, we summarize key experimental methods that can be used to 

validate computational predictions. 
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INTRODUCTION 

Though many proteins have a well-defined tertiary structure, a large portion of any 
studied proteome includes intrinsically disordered proteins (IDPs), which range from proteins that 
are entirely disordered to proteins containing ordered domains and one or more intrinsically 
disordered regions (IDRs). IDRs lack structure under physiological conditions and take the form 
of dynamic conformational ensembles (A. Keith Dunker et al., 2013; Habchi, Tompa, Longhi, & 
Uversky, 2014; Christopher J. Oldfield, Uversky, Dunker, & Kurgan, 2019; van der Lee et al., 
2014). Several bioinformatics studies demonstrated that IDPs are abundant in nature, with 
disordered amino acids comprising 19% of amino acids in eukaryotic proteins, 6% in bacterial 
proteins, and 4% in archaeal proteins (Z. Peng et al., 2015). Moreover, 30% to 50% of eukaryotic 
proteins have at least one long intrinsically disordered region (IDR; ≥30 consecutive amino acids 
(Ward, Sodhi, McGuffin, Buxton, & Jones, 2004; Xue, Dunker, & Uversky, 2012; Yan, Mizianty, 
Filipow, Uversky, & Kurgan, 2013). IDPs are crucial for many diverse cellular functions (Xie et 
al., 2007), such as transcription and translation (J. Liu et al., 2006; Z. Peng et al., 2014; Z. L. 
Peng, Mizianty, Xue, Kurgan, & Uversky, 2012; Staby et al., 2017; Toth-Petroczy et al., 2008), 
protein-protein interactions (Fuxreiter et al., 2014; Hu, Wu, Uversky, & Kurgan, 2017; V. N. 
Uversky, 2015c; Vacic et al., 2007; Yan, Dunker, Uversky, & Kurgan, 2016), protein-nucleic 
acids interactions (Varadi, Zsolyomi, Guharoy, & Tompa, 2015; C. Wang, Uversky, & Kurgan, 
2016; Zhao, Katuwawala, Oldfield, Hu, et al., 2021), cell signaling (Bondos, Dunker, & Uversky, 
2022; Mitrea & Kriwacki, 2013; V. N. Uversky, Oldfield, & Dunker, 2005), and phase separation 
(Ibrahim et al., 2023; V. N. Uversky, 2017). Disordered proteins also underly dark proteomes, 



which are collections of proteins that are not amenable to experimental structure determination 
(Hu, Wang, Song, Uversky, & Kurgan, 2018; Kulkarni & Uversky, 2018; V. N. Uversky, 2018). 
IDPs are linked to various human diseases (Anbo, Sato, Okoshi, & Fukuchi, 2019; Babu, 2016; 
Kulkarni & Uversky, 2019; V. N. Uversky et al., 2014; V. N. Uversky, Oldfield, & Dunker, 
2008) and they were suggested to be attractive targets for drug discovery efforts (Biesaga, 
Frigole-Vivas, & Salvatella, 2021; A. K. Dunker & Uversky, 2010; Hu, Wu, Wang, Uversky, & 
Kurgan, 2016; Metallo, 2010; Tsafou, Tiwari, Forman-Kay, Metallo, & Toretsky, 2018; V. N. 
Uversky, 2012). 

There are several databases of IDPs. The largest and oldest database of manually curated 
and functionally annotated IDRs is DisProt (Piovesan et al., 2017; Quaglia et al., 2022; Sickmeier 
et al., 2007; Vucetic et al., 2005). It includes about 2500 IDPs and provides functional 
information for several hundred IDRs. Information on experimentally annotated IDRs can be also 
collected from the IDEAL database (Fukuchi et al., 2014), which covers information about 
binding partners of IDPs, and Protein Data Bank (PDB) (Burley et al., 2021), where they 
correspond to amino acids with missing coordinates in crystal structures or highly flexible 
residues in nuclear magnetic resonance (NMR) structures (DeForte & Uversky, 2016; Monzon et 
al., 2020). However, these repositories cover only a small fraction of sequences in nature, given 
that recent version of the UniProt resource provides access to over 230 million protein sequences 
(UniProt, 2023). Interestingly, sequences of IDRs are very different when compared to the 
sequences of structured regions and proteins. Their compositional bias includes enrichment in 
charged and polar amino acids and depletion in hydrophobic residues (A. K. Dunker et al., 2001; 
Theillet et al., 2013; V. N. Uversky, 2013, 2015b; V. N. Uversky & Dunker, 2010; V. N. 
Uversky, Gillespie, & Fink, 2000; R. M. Williams et al., 2001; Yan, Cheng, Kurgan, & Uversky, 
2020; B. Zhao & L. Kurgan, 2022a). This bias inspired the development of the TOP-IDP scale 
that quantifies propensities of amino acids for the disordered state (Campen et al., 2008). The 
huge number of proteins that lack disorder annotations and the intrinsic compositional bias of 
IDRs motivate development of computational predictors of disorder. These methods are designed, 
trained and validated using the experimentally annotated IDRs and IDPs and can be used to 
predict intrinsic disorder directly from protein sequences. Over 100 disorder predictors have been 
already developed (Zhao & Kurgan, 2021). Several recent studies review and comparatively 
assess disorder predictors (Katuwawala & Kurgan, 2020; Katuwawala, Oldfield, & Kurgan, 2020; 
Kurgan, 2022; Y. Liu, Wang, & Liu, 2019; F. Meng, V. Uversky, & L. Kurgan, 2017a; F. Meng, 
V. N. Uversky, & L. Kurgan, 2017b; Necci, Piovesan, Dosztanyi, Tompa, & Tosatto, 2018; 
Necci, Piovesan, Predictors, DisProt, & Tosatto, 2021; Z. L. Peng & L. Kurgan, 2012; Walsh et 
al., 2015; B. Zhao & L. Kurgan, 2022b; Zhao & Kurgan, 2023b). These studies survey and 
categorize large collections of methods, analyze and compare their predictive quality, and identify 
potential future research directions. Disorder predictors are often categorized into four broad 
classes based on predictive models that they use (Kurgan, 2022; Meng et al., 2017a): 

 Scoring function-based methods. These methods compute propensity for intrinsic disorder 
utilizing a function that takes physiochemical properties of individual amino acid in protein 
sequences as its inputs. Examples methods in this group include NORSp (Jinfeng Liu & Rost, 
2003), GlobPlot (Linding, Russell, Neduva, & Gibson, 2003), IUPred (Dosztányi, Csizmok, 
Tompa, & Simon, 2005; Dosztányi, Csizmók, Tompa, & Simon, 2005), IUPred2A 
(Meszaros, Erdos, & Dosztanyi, 2018) and IUPred3 (Erdos, Pajkos, & Dosztanyi, 2021). 

 Machine learning-based methods. They produce the disorder propensity using predictive 
models that are generated by machine learning algorithms, such as neural networks, support 
vector machines, and random forests. Inputs to these models typically include physiochemical 
properties of amino acid, evolutionary conservation, and sequence-derived characteristics of 
the input sequences, such as putative secondary structure and solvent accessibility. Examples 



are DisEMBL (Linding, Jensen, et al., 2003), DISOPRED (Jones & Cozzetto, 2015; Jones & 
Ward, 2003), ESpritz (Walsh, Martin, Di Domenico, & Tosatto, 2012), SPINE-D (T. Zhang 
et al., 2012), AUCpred (S. Wang, Ma, & Xu, 2016), SPOT-Disorder (Hanson, Paliwal, Litfin, 
& Zhou, 2019; J. Hanson, Y. Yang, K. Paliwal, & Y. Zhou, 2017), rawMSA (Mirabello & 
Wallner, 2019), and flDPnn(Hu et al., 2021). Recently published machine learning methods 
nearly exclusively rely on deep neural networks, primarily motivated by the fact that deep 
networks produce the most accurate disorder predictions (Bi Zhao & Lukasz Kurgan, 2022) 

 Meta/consensus methods. These approaches combine predictions of multiple predictors of 
intrinsic disorder to provide improved accuracy when compared to using predictors 
individually. They include MFDp (M. J. Mizianty, Peng, & Kurgan, 2013; Marcin J. 
Mizianty et al., 2010; M. J. Mizianty, Uversky, & Kurgan, 2014), MetaDisorder (Kozlowski 
& Bujnicki, 2012), PONDR-FIT (Xue, Dunbrack, Williams, Dunker, & Uversky, 2010). 
CSpritz (Walsh et al., 2011), DisCoP (Fan & Kurgan, 2014; C. J. Oldfield, Fan, Wang, 
Dunker, & Kurgan, 2020), and MobiDB-lite (Necci, Piovesan, Dosztanyi, & Tosatto, 2017). 

 Hybrid methods. These predictors combine the machine learning approaches with structural 
modelling, typically using template-based structure predictions. Examples of representative 
methods in this category are PrDOS (Ishida & Kinoshita, 2007) and Disoclust3 (McGuffin, 
Atkins, Salehe, Shuid, & Roche, 2015). 

This overview complements the current surveys by providing a practical guide to the 
prediction of intrinsic disorder from protein sequences. It explains the format of the 
computational prediction of disorder, uses an example prediction to illustrate how to use and 
understand results produced by disorder predictors, identifies and summarizes a few arguably 
most accurate and useful predictors, introduces databases of disorder predictions, and discusses 
experimental methods that can be used to validate the disorder predictions. 

PREDICTION OF INTRINSIC DISORDER FROM SEQUENCE 

Computational predictors of intrinsic disorder use protein sequence as their sole input. 
They automate the entire prediction process and generate putative propensity for intrinsic disorder 
for every amino acid in the input sequence. Typically, this propensity is a positive numeric score 
where a low value denotes high propensity for a structured conformation and a high value denotes 
high propensity for the intrinsic disorder. The numeric propensity is usually accompanied by a 
binary prediction, where an amino acid is categorized as either structured or disordered. The 
binary prediction is typically derived from the propensity such that the disorder is predicted when 
the propensity is higher than a pre-defined threshold. While generally propensity values generated 
by different methods are bound to the unit interval, the thresholds differ across predictors. 

We illustrate predictions of intrinsic disorder using the nucleoprotein (also known as 
nucleocapsid protein, NC, or protein N) from the SARS-CoV-2 virus (UniProt entry: P0DTC9). 
N protein is one of the major viral proteins playing several significant roles in transcription, and 
virion assembly of coronaviruses (McBride, van Zyl, & Fielding, 2014). This structurally 
heterogeneous multidomain RNA-binding protein is found inside the viral envelope, where it 
binds to and stabilizes the viral genomic RNA forming a ribonucleoprotein (RNP) core required 
for the RNA encapsidation during viral particle assembly (Chang, Hou, Chang, Hsiao, & Huang, 
2014; Chang et al., 2009; Saikatendu et al., 2007). The self-association of the N protein is also 
responsible for the formation of a shell, the capsid, which protects the genetic material from 
external agents. The 419 amino acid-long N protein of SARS-CoV-2 shows a high sequence 
identity of 88.76% and 89.74% with N proteins of Bat CoV and Human SARS N proteins, 



respectively. Similar to its SARS-CoV homologue (Chang et al., 2006), this protein includes two 
functional domains known as N- and C-terminal domains, or NTD and CTD respectively, that are 
responsible for RNA binding (NTD) and homo-dimerization (CTD). Earlier bioinformatics 
analysis revealed that the N proteins of coronaviruses contain the highest levels of intrinsic 
disorder, with N proteins from SARS-COV-2 Human SARS CoV, and Bat CoV being 
characterized by the mean predicted intrinsic disorder content of 64.91%, 71.09%, and 65.80%, 
respectively (Giri et al., 2021). Bioinformatics analysis also revealed the presence of three long 
intrinsically disordered regions in the polypeptide chain, which are believed to be responsible for 
an intricate mechanism that leads to the regulation of the formation of the RNP complex. They 
are also engaged in many interactions with other viral proteins or host proteins, as has been 
demonstrated for the homologous nucleocapsid protein of the CoV that causes SARS (Chang et 
al., 2014; Giri et al., 2021). 

 

 

Figure 1 Putative disorder generated by the flDPnn method for the nucleoprotein from the SARS-CoV-2 virus; 
DisProt ID: DP03212; UniProt ID: P0DTC9. The prediction includes four lines: 1) protein identifier; 2) sequence; 3) 
binary prediction (1 for disorder and 0 for order); and 4) disorder propensities. Red and green colors represent 
predictions that correspond to individual putative IDRs. They can be used to identify corresponding residues between 
lines 3 and 4. 

We collected native IDRs for this protein from DisProt, version 9.3 (Quaglia et al., 2022), 
which were extracted from experimental data aggregated across several recent studies (Cubuk et 
al., 2021; Guseva et al., 2021; Savastano, Ibanez de Opakua, Rankovic, & Zweckstetter, 2020; 
Schiavina, Pontoriero, Uversky, Felli, & Pierattelli, 2021). This nucleoprotein has three IDRs: 
one at the N-terminus (positions 1 to 68; IDR1), one in the center of the chain (positions 172 to 
263; IDR2) and one at the C-terminus (positions 362 to 419; IDR3). We show disorder prediction 
that was generated by the flDPnn method (Hu et al., 2021) directly from the nucleoprotein 
sequence in Figure 1. The output generated by flDPnn includes the input (protein identifier and 
the nucleoprotein’s sequence) and the disorder prediction that consists of the binary prediction (1 
for disorder and 0 for order) and the disorder propensities. Other disorder predictors provide the 
same results, typically in a similar format. The sequence and the two predictions are in comma-



separable format. The binary prediction is computed from the putative propensities using the 
threshold of 0.31, i.e., amino acids with propensities > 0.31 are predicted as disordered. 

To interpret results produced by the predictors, users should first analyze the binary 
predictions to extract the corresponding putative IDRs, i.e., segments composed of consecutive 
disordered residues. Next, each predicted IDR should be assessed using the numeric propensities. 
Residues with high scores are more likely to be disordered and the corresponding predictions are 
more likely to be accurate. We suggest averaging the scores of residues in a given putative IDR to 
quantify the likelihood of the entire region to be correctly identified. On the other hand, low 
scores can be used to identify structured residues and regions. Predictions with scores close to the 
threshold (i.e., 0.31 for flDPnn) are arguably less accurate than the predictions with either much 
higher or much lower scores. We observe that binary predictions in Figure 1 are in relatively 
good agreement with the location of the native IDRs, i.e., disordered residues are predicted 
primarily at both termini and in the middle of the sequence. In particular, the two regions 
predicted at the termini, positions 1 to 89 and positions 408 to 419 have rather high average 
putative propensities of 0.56 and 0.58 (see green-colored annotations in Figure 1), respectively, 
and they nicely align with the native IDR1 and IDR3. Similarly, the putative disordered region in 
the middle of the sequence that spans positions 169 to 215 (see green-colored annotations in 
Figure 1) and which coincides with the native IDR2, similarly obtains a high average propensity 
of 0.56. To compare, some of the other predicted disordered regions, including a region between 
positions 97 and 100 and a region 142 to 153, have lower average propensities of 0.39 and 0.50, 
respectively, suggesting that these are less accurate predictions. In fact, we note that these regions 
do not overlap with the three native IDRs that are present in this protein. We further discuss the 
disorder annotations for this protein and compare them against predictions from several methods, 
including flDPnn, in the “Consensus-Based Disorder Predictions” section. 

SELECTED COMPUTATIONAL PREDICTORS OF INTRINSIC 
DISORDER 

The selection of a suitable disorder predictor is a rather daunting task because over 100 of 
these tools have been released to date (Zhao & Kurgan, 2021). One arguably compelling option to 
identify good predictors is to rely on results from community assessments. These assessments are 
organized by a community of experts where the predictions are evaluated against the ground truth 
on blind test datasets (i.e., data that are withheld from the authors of the predictors before the 
assessment) by independent assessors (i.e., assessors do not participate in the competitions). 
Community assessments are arguably more objective when compared to the comparative studies 
done by the authors of predictors. The disorder prediction has been included in several 
community assessments including the biannual CASP experiment between CASP4 in 2000 (Lesk, 
Lo Conte, & Hubbard, 2001) and CASP10 in 2012 (Monastyrskyy, Kryshtafovych, Moult, 
Tramontano, & Fidelis, 2014), and more recently in the Critical Assessment of Intrinsic Protein 
Disorder (CAID) experiment that was published in 2021 (Necci et al., 2021).  

We utilize results from CAID to select a group of accurate predictors (Lang & Babu, 
2021; Necci et al., 2021). These methods include the top three tools that produce the most 
accurate binary predictions: flDPnn (Hu et al., 2021), SPOT-Disorder2 (Hanson et al., 2019), and 
rawMSA (Mirabello & Wallner, 2019); and the top three methods that generate the most accurate 
putative propensities: flDPnn, rawMSA and ESpritz-DisProt (Walsh et al., 2012). With two 
methods overlapping between the two lists (flDPnn and rawMSA), which means that they provide 
high-quality binary and propensity predictions, altogether we identify four accurate tools. We 
describe these four predictors in the chronological order of their publication and discuss their 



place of origin, key architectural characteristics, and several practical aspects, such as inputs, 
outputs, and availability to end users. The latter aspect considers whether these methods are 
publicly available to the end users or have to be re-implemented, and discloses the mode of their 
availability, which includes code and webserver. Each availability option provides certain 
benefits and drawbacks. The code can be integrated into other/larger bioinformatics platforms and 
can be applied on a larger scale of hundreds or thousands of proteins, but it has to be run on the 
user’s own hardware and requires sometimes burdensome installation. The webservers are easier 
to use since predictions are run on the server side and typically do not require the installation of 
any software by an end user, but are harder to integrate into other platforms and more limited in 
scale, i.e., webservers typically constrain the input size since they might be used by multiple users 
and/or for other computations. Users need only a web browser and internet connection to utilize 
webservers and the results are delivered via the website and/or to a user-provided email. 

ESpritz-DisProt (2012) 

ESpritz-DisProt (Walsh et al., 2012) was created by Silvio Tosatto’s lab at the University 
of Padua in Italy. This is a machine learning method that relies on bidirectional recursive neural 
networks. The predictive model consists of four such networks that are trained using different 
types of inputs including Atchley sequence metrics (Atchley, Zhao, Fernandes, & Druke, 2005), 
one-hot encoding of the input protein sequence, and multiple sequence alignment profiles 
generated from the sequence. The results produced by the four networks are averaged. The 
networks were trained on the dataset that was collected from the DisProt database.  

Input: FASTA-formatted amino acid sequence. No limit on the number of input 
sequences. 

Output: Putative binary disorder annotation and propensity scores for each amino acid. 

Availability: webserver at http://old.protein.bio.unipd.it/espritz/; standalone code at 
https://biocomputingup.it/downloads 

SPOT-Disorder2 (2019) 

The SPOT-Disorder2 tool (Hanson et al., 2019) was developed by Yaoqi Zhou’s group at 
the Griffith University in Australia. This research team has recently moved to the Shenzhen Bay 
Laboratory in China. SPOT-Disorder2 has evolved from the SPOT-Disorder1 tool (J. Hanson, Y. 
D. Yang, K. Paliwal, & Y. Q. Zhou, 2017) and applies a machine learning approach that utilizes 
deep neural networks. The network architecture is based on the residual convolutional network 
that uses squeeze-and-excitation residual inception and long short-term memory (LSTM) units. 
The inputs to the networks are generated from the protein sequence using several other tools, 
some of which are relatively time-consuming to run. These inputs include the multiple sequence 
alignment profiles generated using PSI-BLAST (Altschul et al., 1997) and HHblits (Remmert, 
Biegert, Hauser, & Soding, 2012), and sequence-based predictions of secondary structure, 
backbone and dihedral angles, solvent accessibility, contact number, and half-sphere exposure 
produced by the SPIDER2 method (Heffernan et al., 2016; Heffernan et al., 2015). This network 
was trained on disordered proteins extracted from DisProt and PDB. 

Input: Up to 10 FASTA-formatted amino acid sequences for webserver. Sequences 
cannot be longer than 750 amino acids. 

Output: Putative binary disorder annotation and propensity scores for each residue. 



Availability: webserver at http://zhouyq-lab.szbl.ac.cn/servers/; standalone code at 
http://zhouyq-lab.szbl.ac.cn/download/ 

rawMSA (2019) 

RawMSA (Mirabello & Wallner, 2019) was released by Björn Wallner’s lab at the 
Linköping University in Sweden. This is a machine learning tool that utilizes a deep neural 
network. The network has a rather complex architecture that consists of an embedding layer 
followed by two-dimensional convolutional layer, two stacked LSTM bidirectional recurrent 
layers, and three stacked fully-connected layers. The sole input to this network is a multiple 
sequence alignment generated from the sequence using HHblits (Remmert et al., 2012). The 
network was trained on a dataset collected from PDB. Interestingly, the authors demonstrate 
empirically that a similar predictive architecture can be used to accurately predict other aspects of 
protein structure, such as secondary structure, solvent accessibility and inter-residue contact maps 
(Mirabello & Wallner, 2019).  

Input: FASTA-formatted amino acid sequence. 

Output: Putative binary disorder annotation and propensity scores for each amino acid. 

Availability: no webserver; standalone code at https://bitbucket.org/clami66/rawmsa 

flDPnn (2021) 

The flDPnn method (Hu et al., 2021) was designed by Lukasz Kurgan’s lab at the 
Virginia Commonwealth University in USA in collaboration with the bioinformatics groups at the 
Nankai University in China. This is also a machine learning approach that relies on a deep neural 
network. However, the network architecture is rather rudimentary, consisting of just four fully 
connected layers. The innovation behind flDPnn is the network input that is produced with the 
assistance of several tools that derive/predict a broad range of relevant structural and functional 
characteristics of proteins from the sequence. This include the secondary structure predicted with 
the single-sequence version of PSIPRED (Buchan & Jones, 2019), initial disorder prediction 
(which is refined and improved by flDPnn) generated with IUPred (Dosztanyi, 2018), multiple 
sequence alignment profiles generated using with PSI-BLAST (Altschul et al., 1997), disordered 
DNA and RNA binding residues predicted with DisoRDPbind (C. J. Oldfield, Peng, & Kurgan, 
2020; Z. Peng & Kurgan, 2015; Z. Peng, Wang, Uversky, & Kurgan, 2017), disordered protein 
binding residues predicted by DisoRDPbind and fMoRFpred (Yan et al., 2016), and disordered 
linkers predicted by DFLpred (Meng & Kurgan, 2016). Moreover, the above information is 
encoded at three levels of aggregation: residue, sliding sequence window and full protein 
sequence, before it is passed to the neural networks. Importantly, in contrast to SPOT-Disorder2, 
the above tools that are used to generate inputs are specifically selected to be computationally 
efficient. The model was trained using data collected from DisProt. Interestingly, a variant of this 
predictor that applies a logistic regression model instead of the neural network, called flDPlr, is 
also available and produces only marginally less accurate disorder predictions (Hu et al., 2021). 

Input: Up to 20 FASTA-formatted amino acid sequences for the webserver. 

Output: Putative binary disorder annotation and propensity scores for each residue. 

Availability: webserver at http://biomine.cs.vcu.edu/servers/flDPnn/; standalone code at 
https://gitlab.com/sina.ghadermarzi/fldpnn and docker container at 
https://gitlab.com/sina.ghadermarzi/fldpnn_docker 



 

We note that the four methods rely on the same type of the machine learning algorithm, 
the neural networks. The three more recent methods (i.e., SPOT-Disorder2, rawMSA and flDPnn) 
utilize deep neural networks that are characterized by inclusion of many (i.e., more than three) 
layers. The main differences between these methods are the use of different network architectures 
and different network inputs that are derived from the protein sequence. The observation that the 
deep learning methods secure favorable predictive performance, which is how we selected the 
above methods, is supported by a recent study that empirically demonstrates that deep network-
based methods statistically outperform other types of models when applied to the disorder 
prediction (Bi Zhao & Lukasz Kurgan, 2022). 

 

 

Figure 2 Comparison of predictive quality measured on the DisProt dataset, runtime and availability of the top-
performing methods from the CAID experiment: flDPnn, SPOT-Disorder2, rawMSA and ESpritz-DisProt. The blue 
bars and the right-size axis show the AUC scores that quantify quality of the predicted propensities and F1 values 
that assess quality of binary predictions. The red x marker is the median per-protein runtime measured in seconds 
that can be quantified using the logarithmic scale shown on the right y-axis. 

PREDICTIVE PERFORMANCE, RUNTIME AND AVAILABILITY OF 
ACCURATE PREDICTORS OF INTRINSIC DISORDER 

Similar to other assessments of disorder predictors, the CAID experiment evaluated the 
quality of predictions using popular metrics including F1 to assess the binary predictions and 
AUC (area under the ROC curve) for the putative propensities (Necci et al., 2021). 

F1, which is the harmonic mean of precision and recall, is defined as (Eqn. 1): 

𝐹1 ൌ 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑟𝑒𝑐𝑎𝑙𝑙

ൌ
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 

where TP (true positives) is the number of correctly predicted disorder residues, FN (false 
negatives) is the number of disorder residues predicted as structured, FP (false positives) is the 



number of structured residues predicted as disordered, and TN (true negatives) is the number of 
correctly predicted structured residues. F1 ranges between 0 and 1, where larger values 
correspond to a better predictive performance. 

AUC assesses predicted propensity scores by quantifying the area under the receiver 
operating characteristic (ROC) curve. ROC curve is defined as a relation between true positive 
rate, TPR = TP/(TP + FN), and false positive rate, FPR = FP (FP + TN). The curve is composed 
of multiple points that correspond to the TPR and FPR values computed at different thresholds 
imposed over the propensity scores, where the amino acids with the propensity scores above 
(below) the threshold are assumed to be predicted as disordered (structured). AUC values range 
between 0.5 (i.e., a random predictor) and 1 (i.e., perfect prediction). 

CAID also quantifies runtime. This was motivated by the fact that the participating 
predictors were made available to the CAID organizers who in turn run them on the same 
computer system. They quantified the runtime per-protein and measured it in seconds. We use the 
results from CAID to perform side-by-side comparison of the four methods that secured the 
highest F1 and/or AUC values: flDPnn, SPOT-Disorder2, rawMSA, and ESpritz-DisProt. We 
summarize predictive quality, runtime and availability for the resulting four predictors in Figure 
2.  

The method that secures the highest predictive performance, quantified by both F1 and 
AUC metrics, is flDPnn (Figure 2). The fastest predictor among the four accurate methods is 
ESpritz-DisProt, which predicts a median size protein sequence in about 8 seconds. To compare, 
flDPnn computes the prediction for about 20 seconds, rawMSA needs about 5 minutes and 
SPOT-Disorder2 requires 40 minutes. The runtime differences are very substantial, with over 3 
orders of magnitude change between the fastest and the slowest tools. We also highlight a 
recently published platform for extremely fast prediction of disorder, RIDAO (Dayhoff & 
Uversky, 2022). This tool predicts a single protein in about 2.5 milliseconds, which is 3 orders of 
magnitude faster than ESpritz-DisProt. Moreover, flDPnn, ESpritz-DisProt and SPOT-Disorder2 
are conveniently available as both webservers and source code, while rawMSA does not offer the 
webserver option. Altogether, results from CAID suggest that the arguably best option to predict 
disorder is flDPnn. This analysis is in line with a commentary article for the CAID experiment 
where the authors conclude (Lang & Babu, 2021): “SPOT-Disorder2 and fIDPnn, followed by 
RawMSA and AUCpreD, are consistently good. However, fIDPnn is at least an order of 
magnitude faster than its competitors, and it succeeded on all sequences, whereas SPOT-
Disorder2 skipped 5% of sequences as a result of a length limitation. This might make fIDPnn the 
overall winner of CAID”. The skipping is due to the fact that SPOT-Disorder2 cannot predict 
sequences that are over 750 amino acids long. However, scenarios where predictions are needed 
for very large datasets of dozens of thousands or millions of proteins may require using faster 
methods, such as RIDAO. 

DATABASES OF INTRINSIC DISORDER PREDICTIONS 

Users can also employ databases that provide fast and convenient access to pre-computed 
predictions of intrinsic disorder, typically generated by multiple methods. These databases are 
particularly useful when collecting predictions for larger datasets of protein, like protein families 
and proteomes, and when collecting results from multiple predictors. Using predictors directly 
requires substantially more time and effort since predictions can be computationally costly and 
results from multiple methods have to be collected one at the time and may need to be re-
formatted to combine them together. However, databases are limited to a specific list of proteins 



that they include, whereas predictors generate putative disorder for any sequence provided by a 
user, including novel sequences. 

There are three databases of disorder predictions (Zhao & Kurgan, 2023a):  

1. MobiDB (database of protein disorder and mobility annotations) (Di Domenico, Walsh, 
Martin, & Tosatto, 2012; Piovesan et al., 2023) that includes 219.74 million proteins from 
UniProt and is available online at https://mobidb.bio.unipd.it/ 

2. D2P2 (Database of Disorder Protein Predictions) (Oates et al., 2013) that covers 10.43 million 
proteins from 1,256 organisms and is available online at https://d2p2.pro/ 

3. DescribePROT (Database of structure and function residue-based predictions of PROTeins) 
(Zhao, Katuwawala, Oldfield, Dunker, et al., 2021) that has 2.26 million proteins from 273 
popular/model organisms and can be accessed online at 
http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/ 

These three databases provide access to predictions for individual proteins in two 
formats: a text format that can be parsed and in an interactive graphical format. They also offer 
convenient options to download predictions for whole proteomes. MobiDB and D2P2 facilitate 
instantaneous retrieval of results produced by 10 and 9 disorder predictors, respectively. One 
drawback of the MobiDB resource is that it provides only the binary predictions, with no 
propensity scores, while D2P2 and DescribePROT provide both types of prediction outputs. 
Furthermore, MobiDB includes experimental annotations of disorder from a large selection of 
relevant databases, such as DisProt, PDB, IDEAL, FuzDB (Hatos, Monzon, Tosatto, Piovesan, & 
Fuxreiter, 2022), MFIB (Ficho, Remenyi, Simon, & Meszaros, 2017), ELM (Kumar et al., 2020), 
DIBS (Schad et al., 2018), and PhaSepDB (Hou et al., 2023), while D2P2 is linked to the 
experimental disorder data from DisProt and IDEAL (Fukuchi et al., 2014). While covering the 
smallest number of proteins, DescribePROT delivers predictions for a wide variety of structural 
and functional aspects of proteins. Besides the disorder predictions, it stores predictions of 
solvent accessibility, secondary structure, disordered linkers, DNA binding, RNA binding, 
protein binding, signal peptides, and pre-computed multiple sequence alignment profiles. In total, 
DescribePROT provides 13.5 billion amino acid level predictions. 

CONSENSUS-BASED DISORDER PREDICTIONS 

How should users interpret disorder prediction results that are produced by different 
methods and that may disagree? We suggest a consensus approach, where the final prediction is 
determined by a majority of the results generated by the applied methods. The consensus binary 
prediction can be computed as a simple majority vote, i.e., a given amino acid is assumed 
disordered if most methods predict it as disordered, otherwise it is predicted as structured. If the 
binary prediction for a given residue is disordered (or structured), the consensus-based propensity 
can be computed by averaging normalized propensities from methods that predict the residue as 
disordered (or structured). The consensus approach incurs a higher cost since it requires running 
multiple tools but it typically results in a higher predictive performance when compared to using 
methods individually, especially if methods used in the consensus perform well individually. This 
is supported by a number of studies that empirically demonstrate that consensus-based predictors 
obtain higher predictive quality (Fan & Kurgan, 2014; Necci et al., 2017; Z. Peng & L. Kurgan, 
2012). One relatively low-cost option is to collect multiple predictions from the above databases. 
We note that in fact both databases that offer access to multiple disorder predictions, D2P2 and 
MobiDB, generate a consensus prediction. MobiDB computes this consensus using the MobiDB-



lite algorithm (Necci et al., 2017) while D2P2 applies the 75% consensus approach, i.e., an amino 
acid is predicted as disordered if at least 75% of methods predicts it as disordered. 

 

 

Figure 3 Visualization of native disorder annotations and disorder predictions generated by flDPnn, SPOT-
Disorder2, ESpritz-DisProt, and MobiDB-lite methods for the nucleoprotein from the SARS-CoV-2 virus; UniProt ID: 
P0DTC9. The x-axis denotes the protein sequence. The black horizontal bars on the x-axis show the native IDRs that 
were collected from DisProt; DisProt ID: DP03212. Plots above the x-axis show the propensity scores; higher 
propensity values indicate higher likelihood for disorder. Propensities generated by flDPnn, SPOT-Disorder2, and 
ESpritz-DisProt are shown using dark grey, grey and light grey lines, respectively. The dotted horizontal lines 
represent the thresholds that these three tools use to generate binary predictions (0.509 for ESpritz-DisProt; 0.37 for 
SPOT-Disorder2; 0.31 for flDPnn), i.e., amino acids with propensities above the threshold are categorized as 
disordered while the remaining residues are assumed to be structured. Horizontal bars below the x-axis show the 
binary disorder predictions using the same colors as the propensity lines. The green horizontal bar represents a 
consensus binary prediction computed from the binary predictions of flDPnn, SPOT-Disorder2, and ESpritz-DisProt. 
This consensus prediction is based on a majority vote, i.e., residues are assumed disordered if most methods predict 
them as disordered, otherwise they are predicted as structured. The blue horizontal bar at the bottom is the 
consensus binary prediction generated by MobiDB-lite method from the MobiDB database. This prediction does not 
include the propensity scores. 

Figure 3 visualizes the disorder predictions that we collected using webservers of flDPnn, 
SPOT-Disorder2 and ESpritz-DisProt using sequence of the nucleoprotein, which we showcase in 
Figure 1. We did not include predictions from rawMSA since it does not have the webserver. The 
top of Figure 3 shows putative propensities using solid gray lines and the corresponding 
thresholds using dotted horizontal lines. These thresholds are used to convert the propensities into 
the binary predictions (amino acids with propensities greater than threshold are predicted as 
disordered) that are shown at the bottom of the figure using the gray horizontal bars. They denote 
putative IDRs produced by the three predictors. Using the black horizontal bars on the x-axis of 
Figure 3, we annotate the three native IDRs that we collect from the DisProt database. By 
comparing the native and the predicted disordered regions, we find that flDPnn identifies all three 



native IDRs but also overpredicts disorder near the native IDR1 and IDR2. SPOT-Disorder2 also 
finds the three native IDRs but slightly underpredicts sizes of IDR1 and IDR2. ESpritz-DisProt 
more substantially underpredicts disorder by entirely missing the native IDR2. Correspondingly, 
their predictive quality quantified with F1 is 0.66 for ESpritz-DisProt, 0.80 for flDPnn, and 0.85 
for SPOT-Disorder2. These values and our observations suggest that the three methods produce 
reasonably accurate predictions from the sequence, which would allow users to identify the 
location of the majority of native disordered residues.  

We also compute a simple majority-based consensus of the putative binary predictions 
generated by flDPnn, SPOT-Disorder2 and ESpritz-DisProt. This consensus is shown using the 
green horizontal bar at the bottom of Figure 3. This result provides a reasonable balance between 
the overpredictions produced by flDPnn and the underpredictions generated by the other two 
methods. We compare this consensus-based prediction against the consensus prediction generated 
by MobiDB-lite that we collected from the MobiDB database; blue horizontal bar at the bottom 
of Figure 3. The F1 scores for the green and blue consensuses are 0.88 and 0.80, respectively, 
demonstrating that both alternatives provide rather accurate predictions. The two consensus-based 
predictions are largely in agreement, with an exception of the C-terminus where the MobiDB’s 
consensus misses disorder, which is why it secures a slightly lower F1 value. When compared to 
the three best methods based on the CAID results that we include in Figure 3, the blue MobiDB’s 
consensus matches the predictive quality of flDPnn and is somewhat outperformed by SPOT-
Disorder2 while the green majority-based consensus provides a modest improvement (i.e., 
F1=0.88 vs. F1=0.85 for the most accurate individual predictor). This can be explained by the fact 
that the green consensus relies on the three most accurate methods while the blue consensus 
utilizes an assortment of 10 fast and popular predictors, which might not necessarily be as 
accurate individually. Our observations that rely on one protein are supported by studies that 
compare consensus-based approaches against their input predictors using large datasets of 
proteins. For instance, the MobiDB-lite consensus was shown to secure F1=0.34 when compared 
to the disorder predictors that it uses as inputs that obtain F1 values ranging between 0.08 and 
0.24 (Necci et al., 2017). More broadly, this example demonstrates how to understand and 
potentially combine multiple disorder predictions, conveying the richness and utility of the 
information that can be obtained from the disorder predictions. 

EXPERIMENTAL MEANS FOR THE VALIDATION OF PREDICTED 
DISORDER 

A detailed structural and dynamic characterization of IDPs/IDRs cannot be typically 
provided by a single tool. This is due to the highly heterogeneous nature of the intrinsic disorder 
phenomenon, where IDPs can attain highly extended conformations or to remain globally 
collapsed, where different parts of a protein can be affected by disorder to different degree, with 
some regions being more (dis)ordered than others, and where disordered structures represent 
conformational ensembles containing highly dynamic structures interconverting on a number of 
timescales. This indicates that accurate descriptions of IDPs/IDRs must rely on a multiparametric 
approach that have to include a wide spectrum of biophysical methods capable of providing 
information on the overall compactness of IDPs, their conformational stability, shape, residual 
secondary structure, transient long-range contacts, regions of restricted or enhanced mobility 
(Schramm et al., 2019; V. N. Uversky, 2015a).  

Similar to the outputs of different predictors that either generate information on the 
overall disorder status of a whole protein molecule (i.e., disorder content predictors, such as 
DisCon (M. J. Mizianty et al., 2011), RAPID (Yan et al., 2013)) or that provide a per-residue 



disorder score (i.e., methods described in this unit), experimental techniques also describe the 
whole protein or give residue-level information. There are several reviews and books that 
describe nearly 70 experimental techniques that can be used to characterize intrinsic disorder in 
proteins (Daughdrill, Pielak, Uversky, Cortese, & Dunker, 2005; Eliezer, 2009; Receveur-
Brechot, Bourhis, Uversky, Canard, & Longhi, 2006; V. N. Uversky, 2015a; V.N. Uversky & 
A.K. Dunker, 2012a, 2012b; V. N. Uversky & A. K. Dunker, 2012; V.N. Uversky & Longhi, 
2010). Detailed description of these approaches is outside the scope of this overview. Here we 
summarize several key techniques: X-ray crystallography, NMR, Small-Angle Scattering (SAS) 
of X-rays (SAXS) or Neutrons (SANS), single molecule fluorescence resonance energy transfer 
(smFRET), limited proteolysis, hydrogen-deuterium exchange, ion mobility mass spectrometry 
(IM-MS), and high-speed atomic force microscopy (HS-AFM). From the viewpoint of natural 
propensity of an amino acid sequence for intrinsic disorder, these techniques are non-invasive, 
since their application does not require the introduction of amino acid substitutions, which can 
affect the predisposition of a protein for intrinsic disorder. 

Although X-ray crystallography is traditionally used to describe atomic-level structures 
of structured proteins, increased flexibility of atoms in structured regions results in high B-factor 
values (i.e., uncertainty), and high flexibility of atoms in disordered regions causes non-coherent 
X-ray scatter. As a consequence of the non-coherent X-ray scatter, the corresponding atoms 
become “invisible,” giving rise to missing electron density regions (Le Gall, Romero, Cortese, 
Uversky, & Dunker, 2007; Radivojac et al., 2004). Therefore, if a crystal structure of a protein is 
available, it can be used to validate predictions of disorder by looking for the presence of regions 
with missing electron density (remark 465) in the corresponding PDB entry. A recent study that 
analyzed prevalence and meaning of the regions with missing electron density shows that a 
missing regions represent only a weak indication of intrinsic disorder, and this uncertainty is 
further aggravated by the presence of ambiguous regions, where more than one structure of the 
same protein sequence "disagrees" in terms of the presence or absence of missing residues 
(DeForte & Uversky, 2016). These observations raised an important question on the nature of 
such ambiguous regions – are they real IDRs (i.e., represents regions with dynamic disorder was 
caused by continual motion in the protein region), or reflect the existence of static disorder (i.e., 
the presence of the multiple stable conformations or crystal packing imperfections) originating 
from experimental conditions and ensembles of structures, or domain wobbling that reflects 
cooperative movements of a structurally intact unit, which are typically facilitated by a small 
flexible hinge (DeForte & Uversky, 2016). This study revealed that such structural ambiguity 
mostly represents a natural consequence of many IDPs/IDRs crystallized under different 
conditions. Since it was also established that static disorder and wobbling domains are relatively 
rare, the authors concluded that structural ambiguity arises because many of the corresponding 
regions were conditionally or partially disordered (DeForte & Uversky, 2016). 

NMR spectroscopy is the technique of choice for providing high-resolution, residue-level 
structural information on intrinsically disordered proteins. In fact, heteronuclear multidimensional 
NMR can generate precise structural information on IDPs/IDRs via assignment of their 
resonances, and they can directly measure the mobility of IDRs (Angyan & Gaspari, 2013; Bax & 
Clore, 2019; B. Brutscher et al., 2015; Camacho-Zarco et al., 2022; Daughdrill et al., 2005; A. K. 
Dunker & Oldfield, 2015; Dyson & Wright, 2021; Eliezer, 2009; Felli & Pierattelli, 2012, 2014; 
Gibbs, Cook, & Showalter, 2017; Grudziaz, Zawadzka-Kazimierczuk, & Kozminski, 2018; 
Jensen et al., 2009; Jensen, Ruigrok, & Blackledge, 2013; Jensen, Salmon, Nodet, & Blackledge, 
2010; Jensen, Zweckstetter, Huang, & Blackledge, 2014; Kosol, Contreras-Martos, Cedeno, & 
Tompa, 2013; Kragelj, Blackledge, & Jensen, 2015; Kragelj, Ozenne, Blackledge, & Jensen, 
2013; Milles, Salvi, Blackledge, & Jensen, 2018; Mittag & Forman-Kay, 2007; Murthy & Fawzi, 
2020; Nodet et al., 2009; Novacek, Zidek, & Sklenar, 2014; Salmon et al., 2010; Schneider et al., 
2012). Recent years evidenced a systematic increase in the number of NMR-based approaches for 



the structural characterization of IDPs/IDRs allowing one to look into structures and dynamics of 
IDPs of increasing size and complexity (Felli & Pierattelli, 2012). This includes the possibility to 
completely assign the heteronuclear protein resonances by protonless NMR spectroscopy utilizing 
multidimensional NMR experiments based on 13C direct detection (W. Bermel et al., 2005; 
Wolfgang Bermel, Bertini, Felli, Piccioli, & Pierattelli, 2006; Bertini, Felli, Gonnelli, Kumar, & 
Pierattelli, 2011; Felli & Pierattelli, 2012, 2014). Since in comparison with NMR spectra of 
structured proteins those of IDPs are typically very crowded, a better peak separation can be 
achieved using high-dimensional NMR experiments, allowing accurate analysis of the study of 
structure, dynamics, and interactions of IDPs (Bernhard Brutscher et al., 2015; Grudziaz et al., 
2018; Kazimierczuk, Stanek, Zawadzka-Kazimierczuk, & Kozminski, 2013). Some additional 
NMR-based approaches suitable for structural and dynamical characterization of IDPs and IDRs 
include: 1) solvent paramagnetic relaxation enhancement (sPRE) experiments that provide 
quantitative experimental information on solvent accessibility of NMR-active nuclei that 
characterizes structure and dynamics of biomolecular systems (Hocking, Zangger, & Madl, 2013; 
Lenard, Mulder, & Madl, 2022); 2) the use of the NMR spin relaxation that delivers information-
rich, site-specific data reporting on conformational fluctuations occurring throughout the 
molecule, thereby representing an important means for gaining atomic resolution conformational 
dynamics of IDPs (Abyzov et al., 2016; Salmon et al., 2010; Salvi, Abyzov, & Blackledge, 2017); 
3) the use of the hyperpolarized water as universal sensitivity booster in biomolecular NMR 
(Hilty, Kurzbach, & Frydman, 2022; Konig et al., 2019); and 4) utilization of the recent advances 
in solid-state NMR (Siemer, 2020).  

Another important development in the utilization of NMR for the structural 
characterization of IDPs is representation of the dynamic nature of IDPs in a form of 
conformational ensembles. In fact, generating atomic level visualization of the interconverting 
species that captures the conformations explored and their physico-chemical properties  
represents the most accurate approach for showing residual structure of IDPs, which is commonly 
described as transient/dynamic or expressed in terms of fractional populations (Fu & 
Vendruscolo, 2015; Kragelj et al., 2015; Kurzbach, Kontaxis, Coudevylle, & Konrat, 2015). One 
more crucial recent development in this field is in-cell NMR spectroscopy, which offers the 
possibility to analyze proteins and other biomolecules at the atomic resolution directly in cells 
(Freedberg & Selenko, 2014; Hansel, Luh, Corbeski, Trantirek, & Dotsch, 2014; Milles et al., 
2018; Plitzko, Schuler, & Selenko, 2017; Sciolino, Burz, & Shekhtman, 2019; Selenko, 2019; 
Theillet et al., 2014). 

The structure and dynamics of biomolecules (including IDPs) in solution at low 
resolution can be probed by SAXS and SANS (Bernado & Svergun, 2012; Cordeiro et al., 2017; 
Kachala, Valentini, & Svergun, 2015; Kikhney & Svergun, 2015; Receveur-Brechot & Durand, 
2012). SAS provides useful information on the size and shape of individual macromolecules or 
their complexes, can detect structural changes upon the environmental perturbations, such as 
interactions with other molecules, and can also provide information on the biomolecular 
dynamics (Bernado & Svergun, 2012). For example, an Ensemble Optimization Method (EOM) 
considers the co-existence of multiple protein conformations in solution compatible with the 
scattering data, with the analysis of the selected ensembles providing quantitative information 
about structural features and flexibility (Bernado & Svergun, 2012). Furthermore, being 
combined with the high resolution methods of X-ray crystallography and NMR, SAXS, due to its 
ability to report on the three-dimensional space sampled by disordered states and thereby 
complement the local information provided by NMR, represents a powerful tool for the 
quantitative analysis of flexible systems, including IDPs (Bernado & Svergun, 2012; Cordeiro et 
al., 2017; Kachala et al., 2015; Kikhney & Svergun, 2015; Rodriguez-Zamora, 2020; Sibille & 
Bernado, 2012).  



Another set of techniques uniquely suited for the analysis of the structural flexibility of 
highly disordered systems is given by single-molecule fluorescence spectroscopy techniques, 
including smFRET, which are capable of measuring conformations without ensemble averaging 
(Gomes & Gradinaru, 2017). When combined with computational methods and polymer physics 
models, smFRET can be used to infer global dimension parameters of IDPs (Gomes & Gradinaru, 
2017). Furthermore, the integration of smFRET with the complementary experimental data from 
NMR and SAXS provides important constraints for molecular simulations and leads to a more 
complete structural representations of disordered proteins (Gomes & Gradinaru, 2017; Naudi-
Fabra, Blackledge, & Milles, 2021). 

Both limited proteolysis and hydrogen-deuterium exchange are based on the solvent 
accessibility of corresponding target sites. A high solvent accessibility of the potential cleavage 
sites makes non-folded proteins highly susceptible to proteolytic degradation in vitro (Fontana et 
al., 2004). Limited proteolysis can therefore be used to indirectly confirm the increased 
conformational flexibility of IDPs and IDRs (Fontana, de Laureto, Spolaore, & Frare, 2012), and 
thereby confirm the results of a disorder prediction. Similarly, structural information and detailed 
description of the dynamics of a protein chain can be obtained by measuring the efficiency and 
rates of incorporation of deuterium into a protein’s backbone amide. This is achieved via 
monitoring hydrogen/deuterium exchange in proteins by mass spectrometry combined with the 
high performance liquid chromatography (Smith, Deng, & Zhang, 1997). The ability of this 
technique to distinguish between structured and disordered protein regions by their level of 
protection against hydrogen/deuterium exchange makes it suitable to detect intrinsic disorder and 
to validate predictions of disorder (Bobst & Kaltashov, 2012). Another useful mass spectrometry-
based tool for the analysis of IDPs/IDRs is IM-MS coupled with the application of electrospray 
ionization (Jurneczko et al., 2012; Stuchfield & Barran, 2018). This is because this approach can 
examine absolute conformation(s), populations of conformation(s), and also conformational 
change (Jurneczko et al., 2012). The spectrum of MS-based approaches is very broad and 
includes hydrogen/deuterium exchange, native MS, ion-mobility MS, protein footprinting, and 
chemical cross-linking/MS, which are being combined together to constitute structural MS that 
complements high resolution structural techniques, such as NMR spectroscopy and X-ray 
crystallography (Faini, Stengel, & Aebersold, 2016; Sinz, 2018). Chemical cross-linking/MS is of 
particular interest, since it can provide distance constraints that are imposed by the chemical 
cross-linker (which consists of two reactive groups separated by a “molecular ruler”; i.e., a spacer 
of a defined length) on the protein structure and that can serve as a basis for the subsequent 
computational modeling to derive structural models (Kahraman et al., 2013; Sinz, 2018). 

Finally, recent advances in HS-AFM provide a unique opportunity to directly visualize 
individual IDP molecules in dynamic motion at sub-molecular resolution without altering the 
dynamic structure of IDPs (Ando, 2022). Importantly, images generated by this technique can be 
used to estimate the number of amino acids contained in a fully disordered region (Ando, 2022). 

We conclude this section by illustrating an agreement between the four computational 
methods introduced in this chapter and corresponding experimental data using SARS-CoV-2 
nucleoprotein as an example. In a dedicated NMR study, the backbone assignment was reported 
for the two disordered regions of this protein, IDR1 and IDR2 that flank the NTD (Schiavina et 
al., 2021). This study utilized sequence-specific assignment of the resonances by combining the 
information available in the 2D 13C-detected spectra with that provided by two 3D experiments, 
the (H)CBCACON and the (H)CBCANCO, and revealed that residues 1-46 and 181-248 of the 
analyzed IDR1-NTD-IDR2 (residues 1–248) construct are indeed intrinsically disordered 
(Schiavina et al., 2021). In fact, 98% of the disordered fragment IDR1 (only the first methionine 
is missing) and 91% of the fragment IDR2 were assigned in a sequence-specific manner 
(Schiavina et al., 2021). Furthermore, NMR-based analysis of secondary structure confirmed the 



mostly disordered nature of both IDR1 and IDR2, with a moderate propensity of the leucine-rich 
region (218–232) to sample an α-helical conformation, which is in a good agreement with the 
bioinformatics analysis reported in Figure 3 showing a high extent of disorder for the two IDR 
regions and the presence of some structure in the region 216–232 (Schiavina et al., 2021).  

CONCLUSIONS 

The first predictor of intrinsic disorder was developed over 40 year ago (R. J. Williams, 
1979). With dozens of new predictors developed in recent years (Zhao & Kurgan, 2021, 2023b), 
their predictive performance and availability has substantially improved (Necci et al., 2021). 
Modern predictors are characterized by sophisticated designs that rely on state-of-the-art machine 
learning algorithms, such as deep neural networks (Bi Zhao & Lukasz Kurgan, 2022), and are 
widely available to the users as convenient webservers and standalone code. Their predictions are 
accurate, with AUC values near 0.80 (Necci et al., 2021). We describe and illustrate inputs, 
outputs, architectures, predictive performance, and runtimes of several popular and accurate 
disorder predictors. We recommend accurate and fast disorder predictors. We also discuss how to 
proceed when combining predictions of different methods and suggest several experimental 
methods that can be used to validate these predictions. Furthermore, we describe several 
databases that provide access to the native (determined by structural studies) and putative 
(determined by computational predictors) annotations of disordered residues.  

As these predictive methods and databases mature, research has recently shifted toward 
the prediction of various functions of disordered regions (Basu, Kihara, & Kurgan, 2023). These 
functions include protein and peptide binding (Hanson, Litfin, Paliwal, & Zhou, 2020; 
Katuwawala, Peng, Yang, & Kurgan, 2019; Meszaros et al., 2018; Monzon, Bonato, Necci, 
Tosatto, & Piovesan, 2021; Z. Peng, Li, Meng, Zhao, & Kurgan, 2023; Sharma, Sharma, Raicar, 
Tsunoda, & Patil, 2019); nucleic acid binding (Barik et al., 2020; Basu, Gsponer, & Kurgan, 
2023; Katuwawala & Kurgan, 2020; Z. Peng & Kurgan, 2015; F. Zhang, Zhao, Shi, Li, & 
Kurgan, 2022); lipid binding (Dobson & Tusnady, 2021; Katuwawala, Zhao, & Kurgan, 2021); 
and disordered linkers (Meng & Kurgan, 2016; Z. Peng, Xing, & Kurgan, 2020). This progress is 
reflected in the recent CAID experiment, which for the first time, included assessment of the 
predictions of disordered binding regions (Necci et al., 2021). 
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Piovesan, Del Conte, Clementel, Monzon, Bevilacqua, Aspromonte, … Tosatto, 2023. See above. 
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intrinsic disorder. 

 

Zhao, & Kurgan, 2021. See above. 

The most comprehensive to date survey of disorder predictors. 
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https://d2p2.pro/   

D2P2 database 

 

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/   

DescribePROT database 

 

http://old.protein.bio.unipd.it/espritz/ 

ESpritz‐DisProt’s webserver 

 

http://biomine.cs.vcu.edu/servers/flDPnn  

flDPnn’s webserver 

 

https://mobidb.bio.unipd.it/  

MobiDB database  

 

http://zhouyq‐lab.szbl.ac.cn/servers/ 

SPOT‐Disorder2 webserver 


