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Abstract 
The intrinsic disorder is relatively common in proteins, plays important roles in numerous 
cellular activities, and its prevalence was implicated in various human diseases. However, 
annotations of the disorder lag behind the rapidly increasing number of known protein 
chains. Last decade observed development of a relatively large number of in-silico 
methods that predict the disorder using the protein sequence as their input. We perform a 
first-of-its kind comprehensive empirical evaluation of the disorder predictors which is 
characterized by three novel aspects, (1) we evaluate the quality of the disorder 
predictions at the residue, segment, and chain levels; (2) we consider a large number of 
published and accessible to the end user predictors that are evaluated on a relatively big 
dataset with close to 500 proteins; and (3) we assess statistical significance of differences 
between the considered methods. Our study reveals that there is no universally superior 
predictor and that the top-performing methods are complementary. We show that while 
recent consensus-based predictors outperform other considered methods for the residue-
level predictions, some older methods perform better for the prediction of the disordered 
segments. Our analysis indicates that certain predictors are biased to under-predict the 
disorder, while some other solutions tend to over-predict the number of the disordered 
residues. We also evaluate the utility of the predicted residue-level disorder for prediction 
of proteins with long disordered segments and prediction of the chain-level disorder 
content. Lastly, we provide recommendations concerning development of a new 
generation of consensus-based methods and specialized methods for improved prediction 
of the disorder content. 
 

Introduction 
The intrinsically disordered proteins (IDPs), also called rheomorphic, natively denatured, 
natively unfolded, intrinsically unstructured, mostly unstructured, and natively disordered 
[[1]], lack stable tertiary structure under physiological conditions in vitro. IDPs take form 
of dynamic structural ensembles that undergo non-cooperative conformational changes, 
which means that the positions of their atoms and backbone angles have no specific 
equilibrium states and they vary largely over time. They also encompass random coil-like 
regions and collapsed, i.e., partially folded or molten/pre-molten globule-like, domains 
with poorly packed side chains [[2],[3]]. The intrinsic disorder is relatively common. For 
instance, eukaryotic genomes, such as C. elegans, A. thaliana, Saccharomyces cerevisiae, 
and D. melanogaster, were estimated to have between 52% and 67% of their proteins 
with long, over 40 consecutive residues, disordered regions [[4]]. IDPs play important 
roles in transcriptional regulation, translation, and cellular signal transduction [[5]]. Their 
prevalence was implicated in various human diseases [[6],[7]] and they were suggested as 



important targets for drug discovery [[8]]. However, their functional role is not as well 
understood when compared with the structured proteins. Furthermore, the disorder 
annotations lag behind the rapidly accumulating number of known protein chains. The 
disorder is frequently observed in regions with low sequence complexity and with low 
content of hydrophobic amino acids and high net charge, which would often form a core 
of a folded globular protein, and is often associated with lack of secondary structure and 
unique evolutionary profiles [[9]-[13]]. These sequence characteristics imply that 
disorder is predictable from the protein sequence. To this end, the past decade has seen 
development of a number of computational models for the prediction of the disordered 
regions from protein chains. The disorder prediction was included in the biannual CASP 
experiments since 2002 [[14]-[17]]. Inclusion of this prediction category in the CASP 
resulted in a substantial increase in the number of disorder predictors, with a few dozens 
of methods that were developed and published by now. A comprehensive listing and 
summary of these methods are included in three recent reviews [1,[13],[18]], as well as at 
http://www.disprot.org/predictors.php, which in a part of the DisProt database [[19]]. The 
disorder predictors allow for high-throughput annotations of protein chains and therefore 
they provide a viable solution to close the annotation gap. They could be categorized into 
4 types:  
1. methods based on relative propensity of amino acids to form disorder/ordered regions 

which include GlobPlot [[20]], IUPred [[21]], FoldIndex [[22]], and Ucon [[23]];  
2. predictors built utilizing machine learning classifiers, such as DISOPRED [[24]], 

DisEMBL [[25]], DISOPRED2 [[26]], DISpro [[27]], RONN [[28]], Spritz [[29]], 
ProfBval [[30],[31]], PONDR family of predictors [[10],[32]-[36]], DisPSSMP 
[[37]], DisPSSMP2 [[38]],  POODLE family of predictors [[39],[40]], NORSnet 
[[41]], IUP [[42]], and OnD-CRFs [[43]]; 

3. methods based on a meta-approach which combines predictions from multiple base 
predictors including PreDisorder [[27],[44]], metaPrDOS [[45]], MD [[46]], and most 
recently PONDR-FIT [[47]] and MFDp [[48]] predictors;  

4. approaches based on analysis of predicted 3D structural models such as PrDOS [[49]] 
and DISOclust [[50]]. 

 
Prior works show that the assignment of the disordered regions performed using different 
experimental methods could be inconsistent [[32]]. Disorder predictors that were 
developed using regions identified by one experimental method could be less accurate for 
prediction of disorder characterized by other methods [[41]]. To date, there is no golden 
standard for the assignment of the disordered regions. In the past CASP experiments the 
disordered regions were defined as residues that lack coordinates in structures solved by 
X-ray crystallography and as residues that exhibit high variability within the structural 
ensembles or are annotated as disordered in REMARK 465 by experimentalists for the 
structures solved by NMR [[16],[17]]. Another commonly used source of the disorder 
annotations is the manually curated DisProt database [[19]], which includes annotations 
of experimentally verified and biologically relevant unstructured regions. We use both 
types of annotations to build our benchmark dataset, which contrasts our work with the 
evaluations performed at the CASP experiment. Although CASP experiments provide a 
useful forum to evaluate the state-of-the-art in disorder prediction and to compare various 
methods, they have a few drawbacks. They allow for submission of predictions from 



methods that are unpublished and inaccessible to the practitioners and researchers, they 
perform evaluations on relatively small datasets with up to 150 chains, and they 
concentrate on evaluation of the disorder predictions only at the residue level.  
 
To this end, we perform a first-of-its kind comprehensive empirical evaluation of 
disorder predictors that (1) considers a large number of published and accessible to the 
end user, either as a standalone program or a web server, predictors; (2) comprehensively 
evaluates statistical significance of differences between all pairs of the considered 
methods; (3) utilizes a relatively large dataset with close to 500 chains; and (4) evaluates 
disorder predictions at the residues, segment, and chain levels. More specifically, we 
evaluate the disorder predictions for individual residues, including both the real-valued 
(probability of disorder) and the binary (assignment as either ordered or disordered) 
predictions; for segments of disordered residues, which is analogous to the segment-
based evaluations performed for the secondary structure predictors [[51]]; and for the 
predicted amount and inclusion of long disordered segments in the entire protein chain. 
The segment-level evaluation is motivated by the fact that disordered residues are 
clustered together in the sequence forming segments. We quantify the amount of overlap 
between the predicted and the native disordered segments. We also evaluate whether the 
exiting methods accurately predict the overall amount of disorder, i.e., disorder content, 
in the protein chain. This is stimulated by the observation that the disorder content, which 
is computed from the per-residue disorder predictions, was extensively used to estimate 
the abundance of intrinsic disorder in protein databases [[52],[53]], protein families and 
classes [[54]-[62]], and in complete proteomes [4,[26],[63],[64]]. The content was also 
utilized to analyze intrinsic disorder-related protein functions [[65]-[67]]. Finally, we also 
investigate the quality the prediction applied to find proteins with long, ≥ 30 consecutive 
residues, disordered regions. This binary per-chain prediction is encouraged by the fact 
that this information is useful for target selection [[68],[69]] and protein-protein 
recognition [[70]]. The latter type of the evaluation was also performed on a smaller scale 
for the MD [[46]] and MFDp [[48]] predictors. 
 

Materials and Methods 
 
Considered prediction methods 
The primary selection criteria were that each of the included methods has to be accessible 
to the end user as either standalone software or a web server and that it has to be 
published in a reputable peer-reviewed scientific venue. Our assessment considers sixteen 
disorder predictors that cover the fours types of the methods, including four relative 
propensity-based methods including GlobPlot [[20]], IUPred [[21]], FoldIndex [[22]], 
and Ucon [[23]]; eight machine learning-based solutions such as DisEMBL [[25]], 
DISOPRED2 [[26]], DISpro [[27]], RONN [[28]], Spritz [[29]], ProfBval [[30],[31]], 
VSL2B [[36]], NORSnet [[41]]; three most recent consensus-based methods including 
MD [[46]], PONDR-FIT [[47]] and MFDp [[48]]; and the most recent 3D-prediction 
based DISOclust [[50]]. The IUPred was used in both of its modes, one for prediction of 
short disordered segments, IUPredS, and the other for long segments, IUPredL. The 
DisEMBL method consists of three predictors, DisEMBL-H designed to detect hot-loop, 
DisEMBL-C that finds coils and loops, and DisEMBL-R that predicts residues annotated 



with REMARK 465. As a result, including two versions of IUPred and three versions of 
DisEMBL, we test total of 19 methods. These methods are summarized in Table 1. We 
include information concerning their inputs, the predictive models that they utilize, and 
their availability. We observe a few trends of how the methods have progressed over the 
time by analyzing the table in the bottom-up fashion. The newer methods include more 
inputs, they rely more on machine-learning algorithms to implement the predictive 
model, and the most recent method are based on an ensemble of multiple disorder 
predictors. The most commonly used inputs include various propensities of the amino 
acids, evolutionary profiles in the form of the position specific scoring matrix (PSSM) 
and multiple alignments, predicted secondary structure, solvent accessibility, and 
flexibility, and most recently predicted globular domains and torsion angles. The two 
dominant machine-learning algorithms that are utilized are neural networks and support 
vector machines. 
 
 



T
a
b
le
 1
.    
S
u
m
m
a
ry
 o
f 
th
e
 c
o
n
s
id
e
re
d
 d
is
o
rd
e
r 
p
re
d
ic
to
rs
. 
T
h
e
 p
re
d
ic
ti
o
n
 m
e
th
o
d
s
 a
re
 s
o
rt
e
d
 b
y
 t
h
e
 y
e
a
r 
o
f 
p
u
b
lic
a
ti
o
n
 i
n
 t
h
e
 d
e
s
c
e
n
d
in
g
 o
rd
e
r.
  

 
P
re
di
ct
io
n 
m
et
ho
d 

In
pu
t 
in
fo
rm
at
io
n 

P
re
di
ct
io
n 
m
et
ho
d 

na
m
e 

Y
ea
r 
of
 

pu
bl
ic
at
io
n 

A
m
in
o 
ac
id
 

ty
pe
, p
ro
pe
ns
it
y 

or
 p
os
it
io
n 

P
S
S
M
 

pr
of
il
e 

S
ec
on
da
ry
 

st
ru
ct
ur
e 

pr
ed
ic
ti
on
 

S
ol
ve
nt
 

ac
ce
ss
ib
il
it
y 

pr
ed
ic
ti
on
 

O
th
er
 i
np
ut
s 

A
lg
or
it
hm
 u
se
d 

M
et
a 

pr
ed
ic
ti
on
 

st
an
da
lo
ne
 

pr
og
ra
m
 (
S
P
);
 

w
eb
 s
er
ve
r 

(W
S
);
 u
po
n 

re
qu
es
t 
(U
R
) 

U
R
L
 o
f 
th
e 
w
eb
 s
er
ve
r 
or
 s
ta
nd
al
on
e 
im
pl
em
en
ta
ti
on
 

M
F
D
p 

20
10
 

X
 

X
 

X
 

X
 

P
re
di
ct
ed
 f
le
xi
bi
li
ty
, g
lo
bu
la
r 

do
m
ai
ns
, t
or
si
on
 a
ng
le
s,
 a
nd
 d
is
or
de
r 

S
up
po
rt
 v
ec
to
r 

m
ac
hi
ne

 
X
 

W
S
 

ht
tp
:/
/b
io
m
in
e-
w
s.
ec
e.
ua
lb
er
ta
.c
a/
M
F
D
p.
ht
m
l 

P
O
N
D
R
-F
IT
 

20
10
 

 
 

 
 

P
re
di
ct
ed
 d
is
or
de
r 

N
eu
ra
l n
et
w
or
k 

X
 

U
R
 

ht
tp
:/
/w
w
w
.d
is
pr
ot
.o
rg
/p
re
di
ct
or
s.
ph
p 

M
D
 

20
09
 

X
 

X
 

X
 

X
 

C
ha
in
 l
en
gt
h,
 p
re
di
ct
ed
 d
is
or
de
r 

N
eu
ra
l n
et
w
or
k 

X
 

S
P
+
W
S
 

ht
tp
:/
/w
w
w
.r
os
tl
ab
.o
rg
/s
er
vi
ce
s/
m
d/
 

D
IS
O
C
L
U
S
T
 

20
08
 

 
 

 
 

A
li
gn
m
en
t 
of
 p
re
di
ct
ed
 f
ol
ds
 

S
co
ri
ng
 f
un
ct
io
n 

 
S
P
+
W
S
 

ht
tp
:/
/w
w
w
.r
ea
di
ng
.a
c.
uk
/b
io
in
f/
D
IS
O
cl
us
t/
 

N
or
sn
et
 

20
07
 

X
 

X
 

X
 

X
 

P
re
di
ct
ed
 f
le
xi
bi
li
ty
 

N
eu
ra
l n
et
w
or
k 

 
S
P
+
W
S
 

ht
tp
:/
/c
ub
ic
.b
io
c.
co
lu
m
bi
a.
ed
u/
ne
w
w
eb
si
te
/s
er
vi
ce
s/
N
O
R
S
p/
 

U
co
n 

20
07
 

 
 

 
 

P
re
di
ct
ed
 r
es
id
ue
-r
es
id
ue
 c
on
ta
ct
s 

S
co
ri
ng
 f
un
ct
io
n 

 
W
S
 

ht
tp
:/
/c
ub
ic
.b
io
c.
co
lu
m
bi
a.
ed
u/
se
rv
ic
es
/u
co
n/
 

P
ro
fB
va
l 

20
06
 

X
 

X
 

X
 

X
 

C
ha
in
 l
en
gt
h 

N
eu
ra
l n
et
w
or
k 

 
S
P
+
W
S
 

ht
tp
:/
/c
ub
ic
.b
io
c.
co
lu
m
bi
a.
ed
u/
se
rv
ic
es
/p
ro
fb
va
l/
 

S
pr
it
z 

20
06
 

 
X
 

X
 

 
 

S
up
po
rt
 v
ec
to
r 

m
ac
hi
ne

 
 

W
S
 

ht
tp
:/
/d
is
ti
ll
.u
cd
.i
e/
sp
ri
tz
/ 

V
S
L
2B
 

20
06
 

X
 

 
 

 
 

S
up
po
rt
 v
ec
to
r 

m
ac
hi
ne

 
 

S
P
+
W
S
 

ht
tp
:/
/w
w
w
.i
st
.t
em
pl
e.
ed
u/
di
sp
ro
t/
P
re
di
ct
or
s.
ht
m
l 

D
IS
pr
o 

20
05
 

 
X
 

X
 

X
 

 
N
eu
ra
l n
et
w
or
k 

 
S
P
+
W
S
 

ht
tp
:/
/s
cr
at
ch
.p
ro
te
om
ic
s.
ic
s.
uc
i.
ed
u/
 

F
ol
dI
nd
ex
 

20
05
 

X
 

 
 

 
 

S
co
ri
ng
 f
un
ct
io
n 

 
W
S
 

ht
tp
:/
/b
io
po
rt
al
.w
ei
zm
an
n.
ac
.i
l/
fl
db
in
/f
in
de
x 

IU
P
re
d 

20
05
 

X
 

 
 

 
In
te
ra
ct
io
n 
en
er
gy
 

S
co
ri
ng
 f
un
ct
io
n 

 
S
P
+
W
S
 

ht
tp
:/
/i
up
re
d.
en
zi
m
.h
u/
 

R
O
N
N
 

20
05
 

 
 

 
 

S
eq
ue
nc
e 
al
ig
nm
en
t 

N
eu
ra
l n
et
w
or
k 

 
S
P
+
W
S
 

ht
tp
:/
/w
w
w
.s
tr
ub
i.
ox
.a
c.
uk
/R
O
N
N
 

D
IS
O
P
R
E
D
2 

20
04
 

X
 

X
 

 
 

 
S
up
po
rt
 v
ec
to
r 

m
ac
hi
ne

 
 

S
P
+
W
S
 

ht
tp
:/
/b
io
in
f.
cs
.u
cl
.a
c.
uk
/d
is
op
re
d/
 

D
is
E
M
B
L
 

20
03
 

X
 

 
 

 
 

N
eu
ra
l n
et
w
or
k 

 
S
P
+
W
S
 

ht
tp
:/
/d
is
.e
m
bl
.d
e/
 

G
lo
bP
lo
t 

20
03
 

X
 

 
 

 
 

S
co
ri
ng
 f
un
ct
io
n 

 
S
P
+
W
S
 

ht
tp
:/
/g
lo
bp
lo
t.
em
bl
.d
e/
 



Benchmark dataset and prediction protocol 
We test the considered methods on a large dataset that combines the CASP-like and 
the DisProt disorder annotations. This dataset was originally developed to validate the 
MFDp meta-predictor [[48]]. The sequences were obtained from the PDB and the 
DisProt databases. The PDB sequences were filtered using the culled PDB list [[71]] 
to extract a high-quality and low sequence identity subset. We selected sequences that 
have structures with R-factor < 0.2 and resolution < 2.0Å, and that are characterized 
by sequence identity < 25%. Since most protein chains in PDB are completely ordered 
we kept randomly selected 20% of the fully structured proteins. We extracted the 
entire set of 523 proteins from the release 4.9 of the DisProt and we merged them with 
the PDB chains. The combined set was filtered at 25% sequence identity as follows. 
For a given pair of sequences that share >25% identity, we remove the chain that has 
fewer disordered residues (a less complete annotation). Among the remaining 514 
chains we removed 20 for which some of the considered methods failed to produce 
predictions. Specifically, MD predictor could not produce results for chains 15, 177, 
531, and 277 from the DisProt, and Dispro does not predict chains with over 1500 
residues, which resulted in excluding proteins 81, 102, 122, 181, 228, 238, 269, 348, 
440, 467, 517, 519, 557, 560, 573, and 591 from the DisProt. The resulting dataset 
includes 289 chains from DisProt and 205 from PDB, among which 248 have long 
segments with 30 or more consecutive disordered residues and 246 are without such 
segments. The original dataset with the 514 chains is freely available at 
http://biomine.ece.ualberta.ca/MFDp.html. 
 
All considered methods, except MFDp, were tested on the entire benchmark dataset, 
i.e., we supplied the protein chains, one by one, into their web servers or we predicted 
them using the standalone program. The MFDp’s predictions were performed using 
five-fold cross validation on this benchmark set, i.e., they were taken directly from 
[[48]]. This means that in the case of MFDp the training chains (chains that were used 
to compute the predictive model) share below 25% identity with the test sequences, 
while the other methods likely use more similar chains in their training datasets. 
 
Evaluation criteria  
The assessment of the per-residue predictions uses the same criteria as in the CASP 
experiments [[16],[17]]. The same as in the CASP8, we discard the native disordered 
regions with 3 or fewer residues (private correspondence with authors) [[17]], i.e., 
these residues are ignored when computing the quality measures. These predictions 
take two forms: 1) the binary value that defines whether a given residue is disordered 
or not; and 2) the real value that quantifies probability of disorder. The binary 
predictions were assessed using four measures: 

)(*)(*)(*)(

**

FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

++++

−
=  

Sensitivity = SENS = TP / (TP + FN) = TP / Ndisorder 

Specificity = SPEC = TN / (TN + FP) = TN / Norder 

Sw =  (Wdisorder*TP – Worder*FP + Worder*TN – Wdisorder*FN) / 
 (Wdisorder* Ndisorder + Worder* Norder) 
where TP is the number of true positives (number of correctly predicted disordered 
residues), FP denotes false positives (number of ordered residues that were predicted 
as disordered), TN denotes true negatives (number of correctly predicted ordered 
residues), FN stands for false negatives (number of disordered residues that were 



predicted ordered), Wdisorder is the percentage of ordered residues, Worder is the 
percentage of disordered residues, and Norder and Ndisorder are the total number of 
ordered and disordered residues, respectively. The Sw and MCC values range between 
-1 and 1 and they are equal zero when all residues are predicted to be ordered or 
disordered. Higher values of the above four measures indicate better predictions. The 
receiver operating characteristic (ROC) curve was used to examine the predicted 
probabilities. For each value of probability p achieved by a given method (between 0 
and 1), all the residues with probability equal or greater than p are set as disordered, 
and all other residues are set as ordered. Next, the TP-rate = TP / (TP + FN) and the 
FP-rate = FP / (FP + TN) are calculated and we use the area under the curve (AUC) to 
quantify the predictive quality. We note that four of the considered predictors, namely 
FoldIndex, Spritz, DisEMBL, and GlobPlot do not provide the probabilities (their 
outputs is only binary, or in case of the GlobPlot there are too few probability values, 
i.e., it only outputs probability equal 0, 0.5, and 1), and thus we were unable to 
compute their AUC values. 
 
The segment-level evaluation uses the segment overlap (SOV) measure that was 
originally developed to quantify the quality of the prediction of secondary structure 
segments [[51]]. We compute the SOV values to compare the amount of overlap 
between the segments formed by the binary per-residue predictions and the native 
disorder segments; we note that the native segments are at least 4 residues long.  
 
The sequence-level evaluations concern two predictive objectives, prediction of 
proteins with the long disordered segments and prediction of the disorder content. We 
compute the MCC, sensitivity, specificity and AUC to evaluate predictions of proteins 
with long disordered segments. Similarly as in [[46], [48]], each protein is categorized 
into one of two classes, protein with or without at least one long disordered segment 
that has at least 30 consecutive disordered residues. These sequence-level annotations, 
which are generated using the binary residue-level predictions, are compared against 
the sequence-level annotations computed from the native disorder. In the case of the 
AUC measure, we threshold the residue-level predictions to re-compute the sequence-
level annotations. 
 
The prediction of the disorder content compares the normalized amount of the 
disordered residues in the protein chain, i.e., number of disordered residues divided by 
the number of all residues in the chain, between the predicted and the native disorder 
annotations. Following studies on the prediction of the content of secondary structures 
[[72]-[74]], the disorder content predictions are evaluated using three measures: 
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where n is the total number of chains, and yi  and xi are the native and the predicted 
disorder content for the ith protein chain, respectively. The higher values of PCC and 
the lower values of MSE and MAE correspond to better predictions.  
 
Statistical significance 
We also evaluate statistical significance of the differences between each pair of the 
considered predictors. We performed these tests for the SW and MCC measures for the 
binary predictions, the AUC measure for the predicted probabilities, the SOV for the 
segment-level evaluations, the MCC and AUC for the prediction of chains with long 
disordered segments, and MAE and PCC for the prediction of disorder content. We 
contrast a given pair of methods by comparing their results over 100 datasets with 100 
chains each that were selected at random from the benchmark dataset; the same 
randomized datasets were used to compare all pairs of methods. We first evaluate 
whether these 100 values computed for a given predictor follow normal distribution, 
as tested using Shapiro-Wilk test [[75]] at the 0.05 significance. If the values are 
normal for both of the being compared predictors then we utilize the paired t-test (we 
compare results of the two methods on the same datasets); otherwise we use the non-
parametric Wilcoxon rank sum test [[76]]. We annotate the significance of the 
differences at the 0.05 and the 0.001 levels. A pair of methods for which the p-value is 
greater that 0.05 is assumed to be equivalent, i.e., the difference between these two 
methods is not significant. 
 

Results and Discussion 
The results for the 19 considered disorder predictors, including two versions of 
IUPred and three versions of DisEMBL, on the benchmark datasets with 494 proteins 
are summarized in Table 2.  
 
Evaluation of residue and segment level predictions 
The values of the Sw measure, which was used as the main residue-level evaluation 
criterion during the most recent completed CASP8 experiment [[17]], vary between 
0.17 and 0.52. Several of the methods with the lower scores are designed to target 
specific types of disorder, like DisEMBL that has three versions that specifically 
address prediction of hot-loops, coils and loops, and REMARK 465 based annotations 
of disorder, and NORSnet that targets unstructured loops, which explains their lower 
overall performance when applied to predict all types of disorder. The GlobPlot and 
FoldIndex use simple scoring functions that are based on propensities of residues to 
be in random coil conformation and based on hydrophobicity and charge of residues, 
respectively, which is the likely reason for their relatively low predictive quality. The 
ProfBval [[30]] is designed to predict flexibility, expressed as B-factors, rather than 
disorder, which may explain why this method obtains relatively low Sw. Both, 
ProfBval and DisEMBL-C over-predict the disorder, which results in the low 
specificity and high sensitivity. We hypothesize that the moderate quality of 
predictions of Ucon stems from the fact that it uses only the information about the 
density of the predicted residue-residue contacts. The top-performing methods, which 
obtain the Sw > 0.45, MCC > 0.41, and AUC > 0.79 include MFDp, MD, and 
PONDR-FIT. These are the most recent predictors and the likely explanation for their 
superior predictive quality is the fact that they are based on a consensus of multiple 
disorder predictors. This is also in agreement with the results of the recent CASP 
experiments that show that consensus-based solutions generate favorable quality of 
the predictions [[17]]. We also note the high quality of the predictions generated by an 



older VSL2B method, which obtains high Sw and AUC, and moderately high MCC. 
The downside of this approach is the fact that it has relatively low specificity, which 
means that it moderately over-predicts the disorder. The ROC curves for the VSL2B 
and the three methods with the highest AUC (MFDp, MD, and PONDR-FIT) are 
shown in Figure 1A. They reveal that MD provides the highest TP-rates for the low 
FP-rates up to about 0.13, while MFDp outperforms the other methods for the larger 
values of the FP-rates and for the TP-rates of above 0.6. The above suggests that these 
two top-performing solutions complement each other. Although they are both based 
on a consensus, they utilize a different set of the base disorder predictors and different 
architectures and prediction algorithms (see Table 1), which could result in 
complementarity. 

Table 2．Summary of the results for predictions performed with the 19 considered disorder 
predictors, including two versions of IUPred and three versions of DisEMBL, on the 
benchmark datasets with 494 proteins. The results include the per-residue evaluations 
(columns 2 to 6), per-segment evaluation (column 7), and per-sequence evaluation of 

prediction of proteins with long, ≥ 30 consecutive residues, disordered segments (columns 8 
to 11), and prediction of disorder content (columns 12 to 14). The methods are sorted in the 
descending order by their per residue Sw values and the best result, for each quality index, is 
shown in bold font. The N/A in the two AUC columns means that the corresponding method 
does not output the real-value disorder probability and thus AUC could not be computed. 

Disorder prediction per-residue 
Disorder 
prediction 
per-segment 

Prediction of proteins with 
long disordered segments 

Prediction of disorder 
content Predictor 

Sw AUC SENS SPEC MCC SOV MCC SENS SPEC AUC MSE MAE PCC 
MFDp 0.515 0.821 0.746 0.768 0.451 60.974 0.525 0.815 0.707 0.853 0.069 0.167 0.622 
MD 0.486 0.821 0.673 0.813 0.444 45.055 0.484 0.661 0.817 0.796 0.086 0.193 0.606 
VSL2B 0.473 0.793 0.774 0.698 0.401 62.982 0.589 0.883 0.695 0.869 0.076 0.207 0.611 
PONDR-FIT 0.452 0.790 0.631 0.821 0.419 54.520 0.565 0.706 0.854 0.851 0.058 0.155 0.619 
DISOPRED2 0.447 0.781 0.647 0.800 0.406 49.892 0.506 0.690 0.813 0.811 0.071 0.164 0.543 
IUPredL 0.422 0.784 0.581 0.841 0.405 33.322 0.500 0.581 0.894 0.821 0.073 0.166 0.551 
RONN 0.418 0.764 0.664 0.754 0.368 50.544 0.525 0.810 0.711 0.828 0.068 0.184 0.559 
DISOCLUST 0.411 0.775 0.779 0.632 0.344 59.517 0.463 0.831 0.622 0.811 0.105 0.257 0.529 
IUPredS 0.387 0.781 0.522 0.866 0.389 46.159 0.508 0.617 0.874 0.819 0.063 0.151 0.585 
NORSnet 0.361 0.738 0.532 0.829 0.347 20.882 0.477 0.500 0.931 0.791 0.097 0.192 0.461 
Ucon 0.340 0.741 0.554 0.787 0.313 26.522 0.521 0.512 0.955 0.842 0.057 0.163 0.617 
FoldIndex 0.319 N/A 0.602 0.717 0.278 36.745 0.346 0.867 0.447 N/A 0.089 0.225 0.504 
Spritz 0.307 N/A 0.494 0.812 0.293 36.968 0.394 0.411 0.927 N/A 0.096 0.187 0.279 
DisEMBL-R 0.252 N/A 0.316 0.936 0.323 35.144 0.377 0.351 0.951 N/A 0.088 0.172 0.516 
DISpro 0.243 0.775 0.303 0.940 0.318 31.660 0.402 0.371 0.955 0.833 0.092 0.179 0.499 
DisEMBL-H 0.227 N/A 0.435 0.792 0.216 44.483 0.366 0.601 0.760 N/A 0.074 0.198 0.453 
ProfBval 0.222 0.697 0.835 0.387 0.196 48.895 0.377 0.718 0.659 0.753 0.227 0.437 0.346 
GlobPlot 0.179 N/A 0.353 0.826 0.182 33.242 0.338 0.452 0.858 N/A 0.090 0.198 0.291 
DisEMBL-C 0.174 N/A 0.760 0.414 0.150 54.219 0.135 0.927 0.159 N/A 0.223 0.428 0.222 

 
The correlation between the values of two measures for the binary prediction, Sw and 
MCC, obtained across the results of the tested predictors, see Table 2, is relatively 
high and equals 0.94. This suggests that these two measures are closely related. On 
the other hand, the correlations between the AUC that evaluates the predicted 
probabilities and Sw and MCC are 0.81 and 0.91, respectively. This shows that MCC 
better captures the relation between the binary and real-valued predictions when 
compared with Sw. This is perhaps due to the fact that Sw is designed to concentrate 
on the prediction of native disordered residues, while putting substantially smaller 
emphasis on the correct prediction of the ordered residues. This is evidenced through 
the use of the Wdisorder and Worder weights and the fact that they differ by close to an 
order of magnitude. 



 
The statistical significance of the differences between all pairs of the considered 
predictors for the Sw and MCC measures is summarized in Table 3. We observe that 
MFDp generates the best and significantly better Sw values when compared with the 
other 18 predictors. The runner up and equivalent with each other MD and VSL2B 
have Sw values that significantly outperform the other 16 methods. The results based 
on the MCC measure indicate that MFDp and MD, which have comparable MCC, 
significantly improve over the remaining 17 methods. The runner up group of 
equivalent methods includes PONDR-FIT, DISOPRED2 and IUPredL, which are 
followed by VSL2B and IUPredS. The above seven predictors significantly 
outperform the other 12 methods when evaluated using the MCC. Table 4 shows the 
statistical significance of the differences for the predictions of probabilities that are 
scored using AUC. Once again, the MFDp and MD, which obtain very similar AUC 
of about 0.82 on the entire benchmark dataset, are shown not to be significantly 
different between each other and significantly better than the other 11 methods. Six 
methods including FoldIndex, Spritz, GlobPlot and DisEMBL-R, DisEMBL-H, and 
DisEMBL-C could not be evaluated since they produce only the binary predictions;  
GlobPlot also provides probabilities but they are limited to only three values, 0, 0.5, 
and 1. The second-best group of equivalent methods includes PONDR-FIT and 
VSL2B, and they significantly outperform the remaining 9 predictors, except for the 
IUPredL which is similar to PONDR-FIT. 
 
The segment level evaluation using SOV measure reveals that the average overlap 
between the predicted and the native disordered segments ranges between 21% and 
63%. The methods that that have the SOV > 50 include RONN, DisEMBL-C, 
PONDR-FIT, DISOCLUST, MFDp, and VSL2B. To compare, the SOV of recent 
secondary structure predictors (the average segment overlap for coils, strand, and 
helix segments) is around 0.8 [[77]]. This shows that the prediction of the disordered 
segments requires further work and should be considered when evaluating the current 
and future predictors. The statistical significance of the differences between all pairs 
of the 19 predictors that are evaluated utilizing SOV is provided in Table 4. The 
VSL2B method that achieves SOV = 63 is significantly better than the second best 
MFDp that has SOV = 61, which in turn significantly outperforms the remaining 17 
methods. The third best DISOCLUST is also shown to provide significantly higher 
SOV, which is close to 60, when compared with the lower ranked methods that obtain 
SOV < 55. 
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Figure 1. The ROC curves of the four predictors, MFDp (in blue), PONDR-FIT (in green), MD 
(in red), and VSL2B (in black) for the prediction of (A) disordered residues; and (B) proteins 
with long disorder segments. The x-axis and y-axis show the FP- and TP-rates, respectively. 
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Evaluation of the predictions of proteins with long disordered segments 
We evaluate whether the binary residue-level predictions could be used to accurately 
find proteins that include at least one long, with 30 or more consecutive residues, 
disordered segment. The results shown in Table 2 reveal that some of the methods, 
including VSL2B, PONDR-FIT, MFDp, RONN, Ucon, IUPredS, DISOPRED2, and 
IUPredL, provide high quality predictions with MCC > 0.5 and AUC > 0.81. Ucon 
has the best specificity of 0.96 with sensitivity equal 0.51. This means that is can 
correctly find 51% of the proteins with the long segments with a low false positive 
rate. On the other hand, VSL2B provides the second highest sensitivity of 0.88 
combined with moderate specificity of 0.71. This means that is accurately predicts 
88% of the chains with the long segments (219 out of 248 such chains) but as a trade-
off for misclassifying 75 proteins without the long segments. The DisEMBL-C which 
has the highest sensitivity also has the lowest specificity, which means that is predicts 
long disordered segments in almost all proteins. Potentially the best trade-off is 
achieved by PONDR-FIT that obtains 0.71 sensitivity, i.e., it correctly predicts 175 
out of 248 proteins with the long segments, combined with 0.85 specificity, i.e., it 
incorrectly classifies only 36 out of 246 proteins with no long segments. The ROC 
curves for the three predictors with the highest AUC values (VSL2B, MFDp, and 
PONDR-FIT) and the remaining consensus-based MD (for consistency with the 
Figure 1A) are shown in Figure 1B. They reveal that VSL2B provides favorable TP-
rates for virtually the entire range of the FP-rates and that the runner-up MFDp and 
PONDR-FIT have overlapping curves. Analysis of the statistical significance of the 
differences in AUC and MCC between all pairs of the considered predictors is given 
in Table 5. The VSL2B, which obtains the highest AUC = 0.87 and the highest MCC 
= 0.59 is shown to be significantly better than all other included methods. Based on 
the AUC values, the runner up methods, MFDp and PONDR-FIT, are not 
significantly deferent with each other and they significantly outperform the remaining 
predictors. Using the MCC values, the second best PONDR-FIT provides 
significantly improved predictions when compared with all methods, except for 
VSL2B; the third cluster of equivalent methods includes MFDp, RONN, Ucon and 
DISOPRED2.  
 
Evaluation of the predictions of disorder content 
We also investigate whether the binary residue-level predictions could be used to 
estimate the overall, per-chain, amount of disorder. We measure the differences 
between the native and the predicted disorder content, using MAE and MSE, and the 
correlation between these two contents, see Table 2. Well-performing methods should 
be characterized by low differences and high correlations. We observe that the 
average, over the entire benchmark dataset, differences expressed using MAE range 
between 15.1% and 43.7%. The two methods that over-predict the residue-level 
disorder, namely ProfBval and DisEMBL-C, also obtain the largest errors for the 
prediction of the disorder content. The methods that obtain errors below 17% include 
IUPredS, PONDR-FIT, Ucon, DISOPRED2, IUPredL, and MFDp. The correlations 
also vary widely between 0.22 for DisEMBL-C and 0.62 for MFDp. The methods that 
obtain correlation > 0.6 include MFDp, PONDR-FIT, Ucon, VSL2B, and MD; 12 of 
out the 19 methods achieve correlation > 0.5. The statistical significance of the 
differences between different predictors is shown in Table 6. The IUPredS that 
obtains the lowest MAE is statistically equivalent to PODR-FIT, and the mean 
absolute errors of these two methods are significantly lower when compared with the 
other 17 predictors. The second-best group of methods with respect to their MAE 



values includes Ucon, DISOPRED2, IUPredL, and MFDp. The MFDp, PONDR-FIT, 
Ucon, VSL2B, and MD are shown to achieve the best and comparable correlations 
between their predictions and the native disorder content. The best-performing MFDp 
and PONDR-FIT have significantly higher PCC values when compared with the other 
14 methods, while the Ucon, VSL2B, and MD are comparable to IUPredS and they 
significantly outperform the remaining 13 methods.  
 

Conclusions 

Our empirical study that compares 19 disorder predictors on a dataset with close to 
500 chains points out to several interesting observations: 

- The top performing methods for the prediction of the residue-level disorder obtain 
Sw = 0.52, AUC = 0.82 and MCC = 0.45. While these results are substantially 
better than a random predictor, which would obtain Sw = 0, AUC = 0.5, and MCC 
= 0, there is a substantial margin for the future improvements. 

- The recent consensus-based predictors like MFDp, MD and PONDR-FIT 
outperform other methods for the residue-level predictions. Interestingly, an older 
VSL2B method also produces high quality residue-level predictions. 

- The VSL2B is shown to be superior to other methods for the prediction of the 
disordered segments, with the MFDp and DISOCLUST being the second- and 
third-best solutions. 

- The top performing predictions of chains with the long disordered segments are 
generated by the VSL2B, followed by MFDp and PONDR-FIT. 

- We also show that the disorder content computed by PONDR-FIT, MFDp and 
IUPredS significantly outperforms most of the other predictors.  

- Some of the predictors, such as DisEMBL-R, DisEMBL-H, GlobPlot, and DISpro 
under-predict the disorder, i.e., their sensitivity is relatively low and lower than 
0.45. 

- On the other hand, a few of the studied method, including ProfBval and 
DisEMBL-C over-predict the number of the disordered residues (their specificity 
is below 0.45) and the overall disorder content. 

The facts that there is no universally superior predictor and that the top-performing 
methods are complementary, as shown in Figure 1A and Table 2, support further work 
towards developing a new generation of consensus-based methods. We note that the 
existing and considered here consensus methods, including MFDp, PONDR-FIT and 
MD are shown to complement and outperform each other, depending on a given 
quality measure and the objective of the prediction. We believe that further progress 
requires a careful study that would investigate and quantify complementarity between 
existing predictors to perform an informed selection of the base methods to be 
included in the consensus. This is in contrast to the current developments that are 
based on a non-quantitative and sometimes ad-hock selection, e.g., based on 
availability, of the methods that are included in the ensemble. 

We also observe that the errors in the disorder content prediction are relatively high, 
between 15% and 44%. These error levels and the fact that the content is relatively 
widely used [[4],[26],[47],[52]-[67],[78]] call for the development of specialized 
methods that would improve the content prediction. These methods would predict 
content directly from the sequence using both residue-level inputs as well as inputs 



that are aggregated over the entire chain, e.g., the total predicted coil content or 
number of predicted secondary structure segments. We believe that chain-level 
aggregation could reveal certain biases of some proteins to be mostly or fully 
disordered. This cannot be accomplished with the current methods that focus on the 
residue-level predictions using information from a relatively small, when compared to 
the chain length, window centered over the residue of interest. 
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