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Abstract

The last few decades observed an increasing interest in development and application of 1-dimensional
(1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings
of residue-wise structural assignments. They cover a wide-range of structural aspects including
conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-
chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the
existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we
also describe, summarize and contrast over eighty computational models that are used to predict these
descriptors from the protein sequences. We show that the majority of the recent sequence-based
predictors utilize machine learning models, with the most popular being neural networks, support
vector machines, hidden Markov models, and support vector and linear regressions. These methods
provide high-throughput predictions and most of them are accessible to a non-expert user via web
servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based
predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set
based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over
80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation
Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6
(0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence
without the use of homology modeling is as good as the structure extracted from the 3D folds predicted
by top-performing template-based methods.

Introduction

Knowledge of protein structure and lack of structure (disorder in the structure) has important
implications in characterization, prediction and analysis of protein function and interactions with other
molecules. The last few decades observed development of a number of lower-level descriptors of
protein structure that provide an alternative and somehow complementary way to describe, analyze,
and predict protein structure and function when compared with the structure defined as a set of three-
dimensional atomic coordinates. These descriptors quantify certain structural properties of residues,
such as packing density, local (with respect to the sequence) structural arrangements, and their position
with respect to the protein surface, and they provide interesting insights into sequence-structure-
function relationships. Importantly, they already found a wide-range of useful applications, including
tertiary structure prediction [1-3] assessment of the quality of structural models [4], sequence to
structure alignment [5], characterization of folding dynamics[6], prediction and characterization of
binding residues [7] and target selection for structural genomics [8, 9], to name just a few.

We refer to these descriptors as 1-dimensional (1D) descriptors since they project 3D structural
features onto 1D strings of residue-wise structural assignments. Examples of 1D structural descriptors
include secondary structure, solvent accessibility and annotation of transmembrane helices [10].
Besides the structural descriptors, recent years also observed research into development, analysis and



prediction of 1D functional descriptors. Examples include annotation of residues that participate in
protein-protein interactions [11], DNA and RNA binding [12-14], and annotation of catalytic residues
[15, 16] and signal peptides [17].

To date, the majority of the structural descriptors were proposed, analyzed and reviewed individually.
While some of them, such as secondary structure, are relatively well popularized, others, like residue
depth, are less well-known, although we believe that the insights they provide and the applications that
they enable merit their introduction to a wider community. Moreover, a number of these descriptors
are related with each other and they share certain characteristics that can be exploited for instance in
building more effective models for their prediction. We perform first-of-its-kind comprehensive
comparative review of existing 1D structural descriptors. We define, review and categorize ten
structural descriptors and we also describe, summarize and contrast computational models that are used
to predict these descriptors from the protein sequences. Our study extends prior review works that
concerned individual descriptors, including secondary structure [10, 18-20], disorder [21-23], solvent
accessibility and transmembrane helices [10, 19], as well as a recent review that focuses on the
relevant prediction servers [24].

1D structural descriptors

Categorization of descriptors

The 1D descriptors of protein structure can be grouped based on the type of information they provide

and the way they encode it. We categorize these descriptors into four following classes that describe

similar structural properties:

1. Backbone conformation descriptors, which describe relative spatial position of residues along the
protein chain. We consider three of these descriptors including torsion angles, secondary structure,
and annotation of transmembrane helices. Other examples of the 1D backbone conformation
descriptors include annotation of certain secondary and supersecondary conformations such as
beta-, gamma-, alpha- and pi-turns [25-29], beta barrels [30, 31], and coiled coils [32, 33].
Information concerning the backbone conformation could be aggregated in a local neighborhood
and several studies were devoted to the development and prediction of frequent local backbone
structures/motifs which are referred to as structural alphabets [34].

2. Descriptors of buriedness that quantify the degree of the exposure of residues to the solvent when
they are located on the protein surface and their burying depth when they are positioned in the core
of the native fold. We review two of these descriptors, solvent accessibility and residue depth. We
note that buriedness can be also described using a recently proposed half sphere exposure
descriptor [35, 36].

3. Inter-chain contacts descriptors, which represent information concerning connectivity/density of
residues in the native fold; they are usually quantified as the number of contacts between residues
that are close by in the structure. We introduce three contact-based descriptors including contact
number, absolute contact number, and residue-wise contact order. These 1D descriptors are related
to the 2D contact map descriptor [37], which is out of scope of this review.

4. Descriptors of flexibility that characterize the degree to which the spatial position of a given residue
fluctuates. The extreme manifestation of these fluctuations is a lack of stable structure, which is
referred to as disorder. These descriptors of the lack/flexibility of protein structure are motivated by
the fact that flexible/disordered residues are implicated in various cellular processes such as
regulation, recognition, signaling and control [38, 39]. We overview two flexibility descriptors
including B-factors and the annotations of the disordered residues.

The possible encodings of the above 1D descriptors are based on nominal, real (floating point), binary,
and integer values. The binary encoding denotes presence/absence of a certain structural property for a



given residue in the protein chain, e.g., annotation of residues that form or do not form trans-membrane
helices. Nominal values explicitly denote specific states of a given property in case when multiple
states are possible, e.g., annotation of the secondary structure states, while usage of integer values
additionally signifies a particular ordering of these states, e.g., contact number. Real-numbers are used
when the property follows a continuous scale which is not discretized into states, e.g., solvent
accessibility, B-factors and torsion angles.

Definitions

Following we review the definitions of the considered descriptors. Although some of the 1D structural
descriptors have a unique definition, a number of them have a few, usually slightly different and
possibly complementary, definitions.

Descriptors of the backbone conformation

Secondary structure refers to local three-dimensional conformations of amino acid segments in the
protein chain which are established through hydrogen bonds between N-H and C=O groups. A
number of different systems for the assignment of secondary structure were developed over the
last few decades. The first implementation of the secondary structure assignment method was
done in late 1970s by Levitt and Greer [40]. This was followed by Kabsch and Sander who
developed a method called DSSP [41]. This algorithm is based on the detection of hydrogen
bonds defined by an electrostatic criterion. Other assignment methods include DEFINE [42], P-
CURVE [43], STRIDE [44], PSEA [45], XTLSSTR [46], SECSTR [47], and KAKSI [48].

Here, we briefly introduce the assignment defined by DSSP since this method is often assumed to be
the golden standard and it remains to be the most widely-used program for the secondary structure
assignment [48]. Overall, the secondary structures are determined based on the patterns of hydrogen
bonds and they are categorized into three major states, helices, sheets, and regions with irregular
secondary structure. The DSSP method assigns one of the following eight secondary structure types for
each of the structured residues (residues that have three-dimensional coordinates) in the protein
sequence:

— G: 3-turn helix (also referred to as 3¢ helix). In this secondary structure the carboxyl group of a
given amino acid forms a hydrogen bond with amid group of the amino acid three positions down in
the sequence forming a tight, right-handed helical structure with only three residues per turn.

— H: 4-turn helix (also refereed to as a-helix). This structure is similar to the 3-turn helix, however, the
hydrogen bonds are formed between consecutive amino acids that are four positions away in the
protein chain. This is the most prevalent helix type.

— I: 5-turn helix (also refereed to as m-helix). In this type of the helix the hydrogen bonding occurs
between residues spaced five positions away from each other and which also results in a right-
handed helical structure; left-handed n-helices are relatively rare.

— E: extended strand in parallel or anti-parallel sheet conformation. Two or more strands are
connected laterally by at least two hydrogen bonds forming a pleated sheet.

— B: residue in an isolated beta-bridge, which is a single residue pair sheet formed based on the
hydrogen bond.

— T: hydrogen bonded turn. A turn in the protein chain in which a single hydrogen bond is formed
between residues spaced 3, 4, or 5 positions away in the protein chain.

— S: bend, which denotes a fragment of Erotein chain with high curvature where the angle between the
vector from C% to C%:, (C* atoms at i and i+2h positions) and the vector from C%, to C% is< 70°;
this is the only non-hydrogen bond-based regular secondary structure type.

— — @ irregular secondary structure (also referred to as loops and random coils), which corresponds to
the remaining conformations.

The above eight types are often mapped into three states as follows



— H: o-helix. This secondary structure state encompasses right or left handed cylindrical/helical
conformations that include G, H, and I types.

— E: B-strand. This state corresponds to pleated sheet structures and it includes E and B secondary
structure types.

— C: coil. This state represent the remaining types of the local confirmations and it includes S, T,
and — types.

Transmembrane helices (TMHs) are helices that are embedded into the lipid bilayer of membranes;
they are characteristic to a-helical transmembrane proteins. These proteins constitute about 30% of the
proteins encoded in a typical genome and are involved in a wide variety of important processes such as
cell signaling, transport of membrane-impermeable molecules and cell recognition [49]. TMHs are
typically apolar 12 to 35 residues long helical amino acid segments that are oriented perpendicularly to
the surface of the membrane. Transmembrane proteins include several TMHs which are usually
approximately parallel to each other and which are packed close to each other in the membrane.
TMPDB (Transmembrane Protein Database) [50] provides convenient access to annotation of
transmembrane helices.

Torsion angles are the rotational angles that define placement of the backbone atoms in the protein
chain. The three rotational angles include ® which is defined about the C—N bond, ¢ about the C*-N
bond and y about the C*~C bond. The value of ® is fixed at 180° or 0° and thus the protein backbone is
described by the remaining two torsion angles. Different secondary structure states have their
characteristic torsion angles that can be visualized using the Ramachandran plot [51]. An improved
view of the sparseness of the allowed torsion angles, in particular for multiple consecutive angles, can
be obtained using representation described in [52].

Descriptors of the buriedness

Solvent-accessible area of a protein molecule was first defined by Lee and Richards in early 1970s [53]
as the area traced out by the center of a virtual probe sphere representing a solvent molecule as it is
rolled over the protein surface. In the follow up definition [54], the solvent-accessible area consists of
the part of the van der Waals surface of the atoms that are accessible to the probe sphere. The
accessible surfaces of atoms are connected to each other by a network of concave and saddle-shaped
surfaces that smoothes over the crevices and pits between the atoms. The 1D descriptor of the solvent
accessibility (also referred to as the relative solvent accessibility) is defined as the ratio between the
solvent exposed surface area of a given residue observed in a given protein structure (i.e., the
corresponding part of the solvent-accessible area of this protein) and the maximum obtainable value of
the solvent-exposed surface area for this amino acid [55]. The ratio is used to normalize between
different residue types. The values for the accessible surface area are often calculated using the DSSP
program [41]. The maximum obtainable values of the solvent exposed surface area correspond to the
surface exposed area of a given residue type observed in an extended tripeptide conformation flanked
with either glycine [56] or alanine [57] residues. The relative solvent accessibility ranges between 0%,
for fully buried residues, and 100%, for fully solvent accessible residues. All residues with 0%
relatively solvent accessibility are categorized as fully buried, although their burying depth, with
respect to the core of the protein molecule, can be different. This observation motivates the residue
depth descriptor.

The residue depth is the average atom depth of all atoms, except the hydrogen atoms, that make up a
given residue [58]. Several definitions of atom depth have been proposed, including distance [58-60]
and volume-based [61]. The depth of an atom could be defined as the distance of this atom from the
nearest surface water molecule; the corresponding calculations use Monte Carlo simulations of water



molecules surrounding the protein [58]. The DPX algorithm [60] defines the depth as the distance of a

given atom from the closest solvent accessible atom. The DPX-based depth equals zero for solvent

accessible atoms and is greater that zero for atoms buried in the protein interior. The volume-based
atom depth is defined as
Dir =2 Vn/ VOr

where i is the atom index, V, is the solvent exposed volume of a sphere with radius » centered on atom

i, and Vy, is the volume of the same sphere centered on an isolated atom. In contrast to the above

definitions that compute an average over all atoms, following Verazzo et al. [61] the residue depth is

defined using only the C* atoms and » = 9A. We note that distance- and volume-based depth values are
negatively correlated.

The depth values are usually normalized using mean and standard deviation of the depth values in a

large, pre-defined protein dataset as follows [62, 63]

normalized depth = (depth — mean_depth) / standard deviation of depth

Details concerning calculation of various residue depth definitions are given in [63].

Descriptors of the inter-chain contacts

The contact number (also referred to as the coordination number or the Ooi number) is the number of

residues making a “contact” with a given residue in a native protein fold. More specifically, this

descriptor is defined as the number of C* atoms within the sphere of a predefined radius » centered on
the C* atom of a given residue. A few variants of this definition were proposed over the last 30 years:

— The contact number is defined as the number of C* atoms, excluding the two adjacent residues in the
sequence, within a sphere with » = 8A centered at the C* atom of a given residue [64].

— The same as above but with a larger » = 14A [65]

— Recently, Pollastri et al. proposed coordination number which is a binarized contact number [66]. A
given residue is assigned value of 0 if the contact number computed using the sphere with radius 7 is
lower than the average contact number for a given amino acid type; otherwise the residue is assigned
1. The authors used different values of » = 6, 8, 10, and 12A and they counted all C* atoms in the
sphere, including the two residues adjacent in the sequence.

The absolute contact number, which is a variant of the contact number, uses C” atoms, except for
glycine where C* atoms are used, and the boundary of the sphere is smoothed using a sigmoid function
[67]. The absolute contact number of the i" residue in a protein chain is defined as
> o(ry)
iz| j—i>2
where r;;1s the distance between C? atoms of /™ and jth residue, the two residues adjacent to the i"
position are disregarded in the sum, o (r;) =1/(1+ el 7d“]) , w determines the smoothness of the

boundary (by default w =3), and d. = 12 is a free parameter which is used as a cutoff to find
contacting residues. The sigmoid function o (7;) is approximately equal 1 when r;; <d. and it is close
to 0 when r;; > d.. The absolute contact number is a continuous (floating-point) extension of the
discrete (integer) contact number.

The residue-wise contact order of the i"™ residue, which is expressed as the sum of linear distances in
the protein sequence between all pairs of contacting residues, excluding the two neighbors on each side
of the i residue, is defined as [68]:

N

>,

j=1,]j-il<3
Two residues are assumed to be in contact if the distance between their C* atoms (C* atoms for
glycine) is < 12 A.



A related sequence level descriptor called relative contact order, which possibly motivated the
development of the abovementioned residue level contact descriptors, is defined as the average linear
distance in the protein sequence between all pairs of contacting residues normalized by the sequence
length [69].
Descriptors of flexibility
The B-factor (also called temperature-factor or Debye-Waller factor) describes the degree to which the
electron density of a given atom (or a group of atoms) in the X-ray scattering of the crystal structure of
a protein is spread out. The B-factor values quantify mobility of an atom and they are computed as
82U

where U7 is the mean square displacement of the i"™ atom which is averaged over the lattice. Since B-
factors depend on several characteristics of the structure determination protocol, such as experimental
resolution, crystal contacts, and refinement procedures, they should be normalized to allow
comparisons between different structures. Following [70-73] the B-factors of given residues are
expressed using the B-factors of C* atoms that are normalized using average and standard deviation of
the B-factors in a given chain as follows

normalized Byycior= (Bfactor— mean_ Bygyctor) / standard deviation of Bgagror

While the abovementioned descriptors have relatively well-defined and consistent definitions, the
annotations of the disordered residues (also referred to as intrinsically disordered, intrinsically
unstructured, natively unfolded, natively disordered, and highly flexible) that are performed using
different experimental methods is not always consistent [74]. Protein disorder is indirectly observed
using a diverse set of experimental methods including spectroscopic and NMR-based approaches [75].
To date, there is no golden standard for the assignment of the disordered regions, i.e., segments of
disordered residues in the protein chain. In the past CASP (Critical Assessment of techniques for
protein Structure Prediction) experiments the disordered regions were defined as residues that lack
coordinates in structures solved by X-ray crystallography and as residues that exhibit high variability
within structure ensemble or are annotated as disordered in REMARK 465 by experimentalists for the
structures solved by NMR [76, 77]. Another source of high-quality disorder annotation is a manually
curated DisProt database (Database of Disordered Proteins) [78], which is the main and centralized
source of the experimentally validated disordered regions.

Summary

The considered ten 1D structural descriptors are summarized in Table 1. Some of them were originally
proposed over half a century ago, including B-factor which was investigated by Debye and Waller in
early 1900s [79] and secondary structure which was first proposed by Pauling and Corey in early

1950s [80, 81] and later formalized in 1970s [40]. Although structural properties described by most of
these descriptors characterize individual residues, in a few cases, such as the secondary structure and
disorder, these properties can be extended over segments of consecutive residues in the protein chain.
For instance, helices are formed by stretches of at least 3 consecutive residues. As mentioned above,
the 1D descriptors are encoded using several formats including nominal values and binary, integer, and
real numbers. The original encoding is sometimes converted into a reduced representation. This
includes the binarized version of the integer-valued contact number [66], and the real-valued relative
solvent accessibility which is often converted into a binary descriptor by setting a threshold to
differentiate between exposed and buried residues. In this case a given residue is defined as solvent
exposed when it’s relative solvent accessibility > 0.25, and otherwise it is assumed to be buried [73,
82-85]. The computation of the descriptor values most often includes processing of the tertiary
structures that are deposited in the Protein Data Bank (PDB) [86] in some cases other databases such

as DisProt [78] and TMPDB [50] are also used.



Sequence-based prediction of 1D structural descriptors

The values of the 1D structural descriptors can be either computed from the known protein structures
(or experimental annotations of disorder) or predicted from the knowledge of the input protein
sequence. The latter is based on the (mostly true) premise that sequence determines native structure for
small globular protein [87]. We overview the existing sequence-based predictors of the 1D structural
descriptors and present an empirical study that compares selected secondary structure, disorder, and
solvent accessibility predictors. The novel aspects of our analysis include the comparison of the quality
of the secondary structure predictions with the quality of the secondary structure in the predicted
tertiary structure, inclusion of a wide-range of evaluation measures, and per-segment (explained
below) evaluation of the disorder predictions.

Overview of existing predictors

The available methods for the sequence-based prediction of the considered descriptors are summarized
in Table 2. We provide information concerning publication that introduces a given predictor and the
subsequent publications that describe extensions and improvements to this method, details of the
prediction model including its inputs and algorithms used, and we comment on the availability of the
web server and/or a standalone program that implement this method. As one of the potential measures
of the popularity of these predictors we provide the citation counts, both total and per year since
publication, which were collected in July 2010 using the IST Web of Science database. For methods
with more than one publication we provide the average per year across all publications. We include the
secondary structure predictors that were developed after 1999 and we refer the reader to other recent
reviews [10, 18] to learn about older methods. Similarly, for the transmembrane helix prediction
methods we primarily concentrate on methods published after mid 1990s; older methods are reviewed
in [88, 89]. We exclude the predictors of disorder since they were recently and comprehensively
reviewed in several works including [21, 22, 90, 91].

Most of the existing predictors use the sequence profiles or multiple alignments computed using PSI-
BLAST [92] as their inputs. Other popular inputs to predict the 1D descriptors include secondary
structure and solvent accessibility that are predicted from the sequence. The selection of the predictive
method/algorithm mostly depends on the encoding of a given descriptor. We observe that most of the
recent predictors are based on so called machine learning methods. They include neural networks
which were used for all considered descriptors, hidden Markov models and support vector machines
which were used for nominal and binary descriptors, and support vector regression and multiple linear
regression that were applied to predict real-value and integer-based descriptors. We note that many
predictors for binary and nominal descriptors output probabilities associated with each prediction and
often use these probabilities to predict the descriptor values by setting a threshold. The advantage of
predicting probabilities instead of directly predicting the descriptor values is that these probabilities
can be used to indicate confidence in the predicted value.

Some predictors utilize homology modeling where they find similar sequences with known structure
and use them to perform predictions. There are several methods that are based on a consensus, in
which case outputs of multiple predictors of a given descriptor are combined together; some of the
consensus-based methods also utilize homology modeling. A number of the secondary structure,
transmembrane helix, and solvent accessibility predictors received several hundred citations, which
suggests is a relatively substantial interest in research and applications of these methods. Finally, we
observe that most of these predictors are provided as either standalone software or web servers (in
same cases both) to a wider structural biology community. These software are usually publicly
accessible and can be used free of charge for non-commercial purposes. The availability of these
programs allows for a relatively easy, without any coding and usually user-friendly access for a non-



expert to the predictions of these 1D descriptors from the protein sequence. This, in turn, is one of the
major reasons for the high citations / popularity of these prediction programs.
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Empirical comparison of secondary structure predictors

We compare seven recent secondary structure predictors, including PORTER H [113], SSpro [99,
100], SPINE [114], YASPIN [106], PSIPRED [95, 96], SABLE [105], and PROTEUS [111, 112].
These predictors offer publicly available standalone software and/or web servers that were used to
generate predictions. We used standalone versions of SSpro and PROTEUS without homology
modeling, and the web server version of PORTER H that applies homology modeling. The evaluation
is performed on the targets from the most recent completed CASP8 competition. We use the secondary
structure derived from the native folds using DSSP as the native descriptor values. The results of the
secondary structure predictors are also compared against the secondary structures extracted from the
tertiary structure predicted by the top-three performing template-based methods in the CASP8
competition [167], the ZHANG-server, RAPTOR and TASSER.

We perform evaluations at the residue level (predictions are assessed for individual residues and the
results are aggregated over the entire dataset) and at the segment level (quality of the predictions is
quantified for each sequence and averaged over all chains in the dataset). In the latter case we provide
the average value and the corresponding standard deviation. We use the performance measurements
used in the EVA platform [168, 169] to quantify the quality. The residue-level measurements include
QHpred, QEpred and Qcpred Which quantify the fraction of correctly predicted secondary structures among all
predicted secondary structures of the same type, and Qpobs, Qrobs, and Qcops that correspond to the
fraction of correct secondary structure predictions among all native (observed) secondary structures of
the same type.
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where i, j € {helix H, strand E, coil C}, and N; stands for the number of residues in the native state of i
which has been predicted as state j. We include Qs that examines the total number of correct predictions
for the three secondary structure states and Qpqgerror that is defined as the number of strand residues
predicted as helices and vice versa dived by total number of residues in the dataset.
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where N denotes the number of all residues.
We also compute the residue level Matthews Correlation Coefficient (MCC)

MCC = (TP TN — FPx FN)/[(TP + FP)x (TP + FN)x (TN + FP)x (TN + FN)

where TP stands for true positive which is the number of correctly predicted positives (say, helix
residues when computing MCCy), FP stands for false positive which is the number of native positives
which are predicted as negatives (helix residues predicted as coil or strand residues), TN stands for true
negative which is the number of correctly predicted negative residues, and FN stands for false negative
and denotes the number of native negatives predicted as positives. The MCC values are computed for
prediction of helix (MCCp), strand (MCCg), and coil (MCC¢), and they range between -1 and 1 with
higher values corresponding to better prediction performance.

Finally, we include the segment-level segment overlap (SOV) measures [170]. The SOV quantifies the
amount of overlap between the native and the predicted segments; we compute it for both secondary
structure and disorder predictions. We measure SOV for helix segments (SOVy), strand segments
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(SOVp), coil segments (SOV¢), and SOV; which quantifies the overall segment overlap for all three
secondary structure states.

The results for the secondary structure prediction are summarized in Table 3. The best-performing
PORTER_H achieves 83.4% Q3 and 81.1 SOVj. The second best SSpro, which in contrast to
PORTER _H does not utilize homology modeling, obtains 80.4% Qs and 78.3 SOV;. The Qs values of
the considered secondary structure predictors range between 77% and 83% compared to the 76% to
81% range obtained by the best performing fold predictors. The SOV; values of three secondary
structure predictors, PORTER_ H, SSpro, and YASPIN are higher than the segment overlaps computed
for the three tertiary structure predictors. The predictions of helix residues and segments are
characterized (as expected) by higher quality than for the strands and coils. The SOVy and MCCy
values of two secondary structure predictors are at above 82 and above 0.77, respectively; these results
match the quality of the predictions generated by the ZHANG-server. The YASPIN and PORTER _H
provide high-quality predictions of the strand segments with SOVy at over 78 which equals to the
performance of the RAPTOR. We observe that YASPIN slightly over-predicts strand residues, i.e., it
has high Qgops and low Qgpred, When compared with the other methods. Interestingly, between 1.3% and
2.2% of all secondary structure predictions include helical residues confused for strand residues and
vice versa. These mistakes are less prevalent in the tertiary structure predictions where the
corresponding rates are at about 0.6%. Overall, we note that there is no clear-cut winner, i.e., none of
the methods obtains favorable prediction quality on all measures; a similar conclusion was drawn in a
recent evaluation of standalone secondary structure predictors [171]. Although PORTER H obtains the
highest overall Q3 and SOV3, the runner-up SSpro, SPINE and YASPIN provide relatively high-quality
predictions for helices and coils, coils, and strands, respectively. We also conclude that the secondary
structure in the protein folds predicted by the best-performing template-based methods is of comparable
quality to the secondary structure predicted by the modern secondary structure predictors that do not
utilize templates.

We also evaluate statistical significance of the differences between each pair of the considered
methods. We perform the evaluation at the residue and the sequence level. In the per residue case, we
follow the procedure from the evaluation of the disorder predictions in the CASP8 experiment [76]. We
compare 1000 paired results (two methods compared on the same datasets) obtained using the
bootstrapping with 80% of the targets from the CASP8 dataset, i.e., we compare the per-residue
evaluation on 1000 subsets of the entire benchmark set. For SOV and PCC measures that are calculated
per sequence, we compute their average over all sequence in a given subset. We also perform the per
sequence significance test in which case we compare paired results for each sequence over the entire
benchmark dataset. We verify whether the input measurements follow normal distribution, as tested
using Shapiro-Wilk test at the 0.05 significance. If both measurements are normal then we use paired-
test, otherwise we use Wilcoxon rank sum test. We assume that a given pair of methods is significantly
different if the corresponding p-value < 0.05.

Table 4 summarizes the result of the significance tests for the predictions of the secondary structure that
are evaluated using the Qs (in the upper triangle) and SOV; (in the lower triangle) measures. The
“+7/*“~—* denote that the method in a given row performs better/worse, respectively, than the method in
the corresponding column with p-value < 0.05; “=" means that there is no significant difference in the
performance for a given pair of methods. The best performing PORTER H predictor significantly
outperforms the other considered secondary structure prediction methods for both quality measures,
which is likely a direct effect of the fact that this method utilizes homology modeling. The second best
SSpro, which does not use homology modeling, similarly significantly improves over the remaining 5
secondary structure predictors for Qs and SOV3, except for SPINE and YASPIN when considering the
per sequence comparison. We note that the per residue and the per sequence results are relatively



consistent for the considered pairs of the secondary structure prediction methods. This suggests that the
prediction quality does not vary much when evaluated for individual sequences and over a dataset of
sequences, i.¢., there are no methods that do well over a dataset but poorly for some sequences and vice
versa. Among the tertiary structure predictors, the Zhang-server significantly outperforms the other two
methods, except for RAPTOR which is equivalent to the Zhang-server for the per sequence evaluation.
Interestingly, we note that PORTER _H significantly improves over the Zhang-server and the other two
tertiary structure predictors when evaluated using both Qs and SOV;. The second best secondary
structure predictor SSpro is outperformed by Zhang-server and RAPTOR based on the per residue Qs
and, but it provides significantly better SOV; values.

Empirical comparison of disorder predictors

We contrast eight disorder predictors, including MFDp [172], MD [173], DISOclust [174], NORSnet
[175], Ucon [176], PROFbval [164], IUPred that predicts long (IUPredL) and short (IUPredS)
disordered regions [177] and DISOPRED?2 [178]. Standalone software or web servers of these methods
were used to generate predictions. We use the disorder annotations provided by the assessors of the
CASPS8 as the native descriptor values and we compare the results of the abovementioned disorder
predictors with the top-three predictors of the binary disorder annotations from the CASP8 [76]. These
three methods are identified by the group number in curly brackets (as registered for the CASPS
meeting) and the group name, and they include GS-MetaServer2 {153}, GeneSilicoMetaServer {297},
MULTICOM-CMFR {69} [179, 180], as well as MULTICOM {453} which is a human (expert-based)
meta-predictor. The GS-MetaServer2 and GeneSilicoMetaServer are unpublished but they offer a web
server at https://genesilico.pl/meta2/. We use a subset of 111 and 121 CASPS targets in the case of the
secondary structure and disorder evaluations, respectively, for which all considered methods were able
to provide predictions.

The same as in the CASPS8, we discard the native disordered regions with 3 or fewer residues [76]
(private correspondence with authors), i.e., these residues are ignored when computing the quality
measures. We use two residue-level measures that are specific to evaluation of disorder predictions that
were utilized at the recent CASP experiments [76, 77] including S,, and ACC, which is an average
between sensitivity and specificity.
ACC= [(TP / Ndisorder) + (TN / Norder)] /2
SW = (Wdisorder*TP - Worder*FP + Worder*TN - Wdisorder*FN) /
(Wdisorder* N, disorder T Worder* N, order)
where TP stands for true positive which is the number of correctly predicted disordered residues, FP
stands for false positive which is the number of natively ordered residues which are predicted as
disorder, TN stands for true negative which is the number of correctly predicted ordered residues, and
FN stands for false negative and denotes the number of natively disordered residues predicted as
ordered, Wyisorder and w4 are the fractions of ordered and disordered residues, respectively, and N,ger
and Nisorder are the total number of disordered and ordered residues, respectively. Similarly as for the
secondary structure, we measure Qoobs » Qopred> Qpobs, and Qppreq to evaluate the residue level
predictions and SOV, for the disordered segments. The former four measures quantify the fraction of
the correct predictions of ordered (O) and disordered (D) residues among all predicted and all native
ordered and disordered residues, respectively. The SOV denotes the segment overlap between the
predicted and the native disordered segments. We also compute residue level MCCyp and accuracy
Accuracy = (TP + TN) /(TP + TN + FP + FN)
We measure the area under the ROC (AUC) to evaluate the quality of the predicted real-value
probabilities of disorder that are outputted by all considered predictors. For each value of probability p
predicted by a given method (between 0 and 1), all the residues with probability equal or greater than p
are set as disordered, and all other residues are set as ordered. Next, the TP-rate = TP / (TP + FN) and
the FP-rate = FP / (FP + TN) are calculated and we use the area under the corresponding curve to
quantify the predictive quality.



Finally, we introduce and quantify four segment-level measures for the disorder predictions. They
quantify the fraction of the disordered segments that were missing (not predicted) among all segments
of a given size range, which include segment with >3 residues and with >10 residues. Our benchmark
set includes 170 native segments of 3 or more disordered residues and 86 segments with 10 or more
disordered residues. We consider two cut-offs to define a given segment as missing, when none of its
residues are predicted as disordered (MSeg-3 and MSeg-;o measures) and when <50% of its residues
are predicted as disordered (MSeg50%:-3 and MSeg50%:9 measures).

The quality of the disorder predictions is analyzed in Table 5. Seven predictors, including the four
CASPS participants, MFDp, DISOPRED2, and DISOclust achieve AUC > 0.85 and S, of about 0.6 or
higher. The ROCs for these predictors are shown in Figure 1. We constrain the FP-rate range to 0-0.2
since the disordered residues constitute only 11% of all residues in our dataset, i.e., higher FP-rates
would lead to a substantial over-prediction of the disordered residues. We observe that MULTICOM
outperforms all other considered methods, and among the published predictors, MD works well for FP-
rates < 0.085 and MFDp provides favorable TP-rates for FP-rates > 0.1.We note that some of the
prediction methods tend to over-predict the disordered residues as their Qppreq are relatively low and
Qpobs are relatively high, which was also observed in [181]. For instance, GS-MetaServer2,
GeneSilicoMetaServer, MULTICOM-CMFR, DISOclust, MD, and PROFbval have Qpprq at about 50
or below (with Qpe,s> 71), which means that most of the disordered residues that they predict are in
fact annotated as structured. These methods can still obtain high (including the highest) S, values; this
measure favors over-prediction of the disorder considering that there are only 11% of disordered
residues in our dataset (i.e., Woruer = 0.11 and wyisorger = 0.89). The two highest MCCp values are
achieved by MULTICOM-CMFR and MFDp and these methods also have one of the highest accuracy
and AUC values. The segment-level evaluations reveal that when excluding the methods that over-
predict disorder (GS-MetaServer2, GeneSilicoMetaServer, MULTICOM-CMFR, DISOclust, MD, and
PROFbval) between 27% (for DISOPRED2) and 74% (for NORSnet) of disordered segments are
completely missed (none of their residues are predicted), and less than a half of the disordered residues
are predicted for between 43% (for MULTICOM) and 91% (for NORSnet) segments. Even when
considering only longer disordered segments with at least 10 residues, these rates are relatively high,
i.e., 15% to 59% are completely missed and 41% to 87% are predicted with less than a half residues.
The segment overlap values for the disordered segments range between 39% and 77%. To compare, the
highest SOV values for coils, strand and helix segments, which were achieved by PORTER H, are
slightly higher and they equal 78%, 79%, and 83%, respectively.
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Figure 1.The ROCs of the eight best considered disorder prediction methods, including four CASP4 participants (shown
using thin lines) and four public web servers (shown using thick lines). The x-axis is the TP-rate, which is constrained to 0-0.2
range, and y-axis is the FP-rate.

Table 6 shows the results of the evaluation of the statistical significance of the differences for all pairs
of the considered disorder predictors; the setup follows the significance tests for the secondary structure
and the methods are sorted by their Sy, values from Table 5. Table 6 presents the results for AUC which
is used to validate real-value predictions (in the upper triangle) and MCCp, for the binary predictions (in
the lower triangle). The best performing MULTICOM significantly outperforms all the other methods
in terms of AUC and MCCp, except only for the GS-MetaServer2 which provides equivalent per
sequence MCCp. The best predictor among the remaining methods with respect to MCCp, is MFDp, see
Table 5, and this method significantly improves over the other 11 methods for the per residue MCCp.
In case of the AUC based evaluation, the second best GS-MetaServer2 also outperforms the other 11
predictors for the per residues AUC. We note several results where the per residue and the per sequence
tests lead to opposing conclusions, i.e., where a given method that performs significantly better than the
other method in the per residue case performs significantly worse in the per sequence case, and vice
versa. Examples of such methods are I[UPredL, NORSnet, Ucon, PROFbval, DISOPRED2, and MFDp
when considering the evaluations based on the MCCp. We observe that [UPredL, NORSnet, Ucon, and
PROFbval are characterized by a substantial difference in magnitude of MCCyp, values between the per
residue and per sequence evaluations. For example, the [UPredL (MCCp = 0.54) performs better than
both MD (MCCp = 0.42) and DISOclust (MCCp = 0.42) in the per residue test, while for the per
sequence test the average (over the benchmark dataset) MCCp of IUPredL drops to 0.20, when
compared with MCCp of MD and DISOclust that equal 0.31 and 0.32, respectively. This suggests that
while these four methods (IUPredL, NORSnet, Ucon, and PROFbval) are characterized by good quality
predictions on the entire benchmark dataset, they perform relatively poorly on some sequences. We
note that although differences in magnitude of MCCp between the per residue and the per sequence
tests for the DISOPRED2 and MFDp are relatively small, these two methods still drop significantly
below the GS-MetaServer2 and GeneSilicoMetaServer in the per sequence evaluation. We also observe
several differences between the per residue and the per sequence comparison for the AUC-based
significance tests. For example, comparing MFDp and DISOPRED2 with MD, we note that the former
two methods are significantly better in the per residue test, but they are significantly worse for the per



sequence test. This is once again caused by the lower per sequence AUC of the MFDp and DISOPRED
when compared with the per residue AUC; our analysis shows that these differences have relatively
small magnitude.
Empirical comparison of solvent accessibility predictors
We empirically contrast seven solvent accessibility predictors, PaleAle [113], NetSurfP [152], INET
[84], ACCpro version 4.03 [100], SABLE [55], SARpred [147], and Real-SPINE3 [82, 83]. These
methods provide publicly available standalone software and/or web servers that were used to generate
predictions. We used standalone versions of Real-SPINE3 and ACCpro 4.03 without homology
modeling. The evaluation utilizes a subset of 113 targets from the CASP8 experiment for which all
seven methods generated predictions. The above methods predict relative solvent accessibility (RSA).
We use the absolute solvent accessibility (ASA) values derived from the native folds using DSSP to
compute the native relative solvent accessibility (RSA) as follows:

RSA, = ASAZ / MSA,
where i is a residue index and MSA,; is the maximum obtainable solvent accessibility for the
corresponding amino acid type. The MSA, is used to normalize the corresponding ASA; value with
respect to the overall size of a given amino acid type. There are several ways to quantify the MSA
values, with two most prevalent that are based on the solvent accessibility of residue X in an extended
Ala-X-Ala [82] and Gly-X-Gly [56] tripeptides. We normalize the ASA values generated by the DSSP
using the same MSA values as were applied in the assessed predictors. Specifically, we used
normalization factors from [82] for NetSurfP and SARpred, from [56] for SABLE, from [182] for
JNET, from [57] for REAL-Spine3, and the values provided by Dr. Pollastri (personal communication)
for PaleAle and ACCpro. Similarly as in [73, 82-85, 108, 113, 152] we converted the RSA values to
binary classes using threshold of 0.25, i.e., residues with RSA >0.25 were considered as exposed, and
with RSA <0.25 as buried.

We compute four performance measures including MCC and accuracy for the binary predictions, and
Pearson’s correlation coefficient (PCC) and mean absolute error (MAE) to evaluate the predicted RSA
values. Only the NetSurfP, SABLE, SARpred, and Real-SPINE3 generate RSA values (and
consequently binary predictions that are obtained from the RSA values), while the other methods
generate only the binary predictions.

The results are summarized in Table 7. The PaleAle achieves MCC equal 0.86 and outperforms the
other methods by a wide margin. The second best NetSurfP obtains MCC = 0.59 and three other
methods have MCC around 0.56. The reason for this gap is the fact that PaleAle uses homology
modeling with a template library that likely includes some of the considered here CASP8 targets.
Interestingly, we observe that high quality of the RSA predictions is not necessarily coupled with high
quality of the binary predictions, and vice versa. For instance, the NetSurfP which obtains the highest
MCC when compared with the other three methods that generate RSA values has higher (worse) MAE
value than the Real-SPINE3 which obtains the lowest MCC of 0.12. A potential reason is that some of
the considered methods could be optimized to maximize the predictive performance using a different
cut-off to define the binary classes.

Table 8 summarizes the results of statistical significance test for the solvent accessibility and it
considers the evaluations based on the MCC (in the upper triangle) and PCC (in the lower triangle)
measures; the setup follows the significance tests for the secondary structure predictions. The PCC
could not be computed for PaleAle, INET, ACCpro since these methods do not output the RSA; the
corresponding cells in the Table 8 are denoted as “not applicable” (N/A). The best performing with
respects to MCC PaleAle significantly outperforms all other methods for this quality measure. The
second best NetSurfP also provides significantly higher MCC when compared with the remaining five
methods. Similarly, NetSurfP that obtains the highest PCC (see Table 7) significantly outperforms



SABLE, SARpred, and Real-SPINE3 when considering correlation between the predicted and the
native RSA. The second best Real-SPINE provides significantly improved PCC when compared with
the SABLE and SAPpred. We observe that the per residue and the per sequence results are relatively
consistent for all pairs of methods.

Conclusions

The 1D descriptors of protein structure cover a wide-range of structural aspects including conformation
of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-
residue contacts. These descriptors are widely used to characterize and analyze protein folds and to
predict various structural and functional characteristics of proteins. They can be either computed from
the know structure or predicted from the primary sequence. The last two decades observed substantial
efforts in the development of accurate sequence-based predictors. Our overview of a several dozens of
the most recent predictors shows that they are based on a common architecture in which the protein
sequence is represented as a feature vector using evolutionary profiles and, in some cases, predictions
of a few related 1D descriptors, which is fed into a machine learning-based prediction model. The most
popular models include neural networks, support vector machines, hidden Markov models, and support
vector and multiple linear regressions. Our empirical evaluation of the quality of the sequence-based
prediction of secondary structure, disorder, and solvent accessibility descriptors shows that these
machine learning models generate high-quality results. For instance, the secondary structure can be
predicted with over 80% accuracy and segment overlap, the disorder with over 0.9 AUC, 0.6 MCC, and
75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is
used). We caution the reader that these results are based on a relatively small, although representative
(according to the CASP8 organizers), dataset and thus our conclusions may not generalize to other,
larger or more specialized, e.g. constrained to specific types of protein folds, protein sets. The utility of
the considered prediction methods is further strengthened by the fact that most of them are accessible to
a non-expert user via web servers or standalone software packages. We anticipate that the 1D structural
protein descriptors will play a significant role in various related fields such as high-throughput protein
structure and function annotation, characterization and prediction of protein-ligand and protein-protein
interactions, and rational drug design, to name a few.
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