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Abstract 

The last few decades observed an increasing interest in development and application of 1-dimensional 
(1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings 
of residue-wise structural assignments. They cover a wide-range of structural aspects including 
conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-
chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the 
existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we 
also describe, summarize and contrast over eighty computational models that are used to predict these 
descriptors from the protein sequences. We show that the majority of the recent sequence-based 
predictors utilize machine learning models, with the most popular being neural networks, support 
vector machines, hidden Markov models, and support vector and linear regressions. These methods 
provide high-throughput predictions and most of them are accessible to a non-expert user via web 
servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based 
predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set 
based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 
80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation 
Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 
(0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence 
without the use of homology modeling is as good as the structure extracted from the 3D folds predicted 
by top-performing template-based methods. 

Introduction 
Knowledge of protein structure and lack of structure (disorder in the structure) has important 
implications in characterization, prediction and analysis of protein function and interactions with other 
molecules. The last few decades observed development of a number of lower-level descriptors of 
protein structure that provide an alternative and somehow complementary way to describe, analyze, 
and predict protein structure and function when compared with the structure defined as a set of three-
dimensional atomic coordinates. These descriptors quantify certain structural properties of residues, 
such as packing density, local (with respect to the sequence) structural arrangements, and their position 
with respect to the protein surface, and they provide interesting insights into sequence-structure-
function relationships. Importantly, they already found a wide-range of useful applications, including 
tertiary structure prediction [1-3] assessment of the quality of structural models [4], sequence to 
structure alignment [5], characterization of folding dynamics[6], prediction and characterization of 
binding residues [7] and target selection for structural genomics [8, 9], to name just a few. 
 
We refer to these descriptors as 1-dimensional (1D) descriptors since they project 3D structural 
features onto 1D strings of residue-wise structural assignments. Examples of 1D structural descriptors 
include secondary structure, solvent accessibility and annotation of transmembrane helices [10]. 
Besides the structural descriptors, recent years also observed research into development, analysis and 



prediction of 1D functional descriptors. Examples include annotation of residues that participate in 
protein-protein interactions [11], DNA and RNA binding [12-14], and annotation of catalytic residues 
[15, 16] and signal peptides [17]. 
 
To date, the majority of the structural descriptors were proposed, analyzed and reviewed individually. 
While some of them, such as secondary structure, are relatively well popularized, others, like residue 
depth, are less well-known, although we believe that the insights they provide and the applications that 
they enable merit their introduction to a wider community. Moreover, a number of these descriptors 
are related with each other and they share certain characteristics that can be exploited for instance in 
building more effective models for their prediction. We perform first-of-its-kind comprehensive 
comparative review of existing 1D structural descriptors. We define, review and categorize ten 
structural descriptors and we also describe, summarize and contrast computational models that are used 
to predict these descriptors from the protein sequences. Our study extends prior review works that 
concerned individual descriptors, including secondary structure [10, 18-20], disorder [21-23], solvent 
accessibility and transmembrane helices [10, 19], as well as a recent review that focuses on the 
relevant prediction servers [24]. 

1D structural descriptors 
Categorization of descriptors 
The 1D descriptors of protein structure can be grouped based on the type of information they provide 
and the way they encode it. We categorize these descriptors into four following classes that describe 
similar structural properties: 
1. Backbone conformation descriptors, which describe relative spatial position of residues along the 

protein chain. We consider three of these descriptors including torsion angles, secondary structure, 
and annotation of transmembrane helices. Other examples of the 1D backbone conformation 
descriptors include annotation of certain secondary and supersecondary conformations such as 
beta-, gamma-, alpha- and pi-turns [25-29], beta barrels [30, 31], and coiled coils [32, 33]. 
Information concerning the backbone conformation could be aggregated in a local neighborhood 
and several studies were devoted to the development and prediction of frequent local backbone 
structures/motifs which are referred to as structural alphabets [34]. 

2. Descriptors of buriedness that quantify the degree of the exposure of residues to the solvent when 
they are located on the protein surface and their burying depth when they are positioned in the core 
of the native fold. We review two of these descriptors, solvent accessibility and residue depth. We 
note that buriedness can be also described using a recently proposed half sphere exposure 
descriptor [35, 36]. 

3. Inter-chain contacts descriptors, which represent information concerning connectivity/density of 
residues in the native fold; they are usually quantified as the number of contacts between residues 
that are close by in the structure. We introduce three contact-based descriptors including contact 
number, absolute contact number, and residue-wise contact order. These 1D descriptors are related 
to the 2D contact map descriptor [37], which is out of scope of this review. 

4. Descriptors of flexibility that characterize the degree to which the spatial position of a given residue 
fluctuates. The extreme manifestation of these fluctuations is a lack of stable structure, which is 
referred to as disorder. These descriptors of the lack/flexibility of protein structure are motivated by 
the fact that flexible/disordered residues are implicated in various cellular processes such as 
regulation, recognition, signaling and control [38, 39]. We overview two flexibility descriptors 
including B-factors and the annotations of the disordered residues. 

 
The possible encodings of the above 1D descriptors are based on nominal, real (floating point), binary, 
and integer values. The binary encoding denotes presence/absence of a certain structural property for a 



given residue in the protein chain, e.g., annotation of residues that form or do not form trans-membrane 
helices. Nominal values explicitly denote specific states of a given property in case when multiple 
states are possible, e.g., annotation of the secondary structure states, while usage of integer values 
additionally signifies a particular ordering of these states, e.g., contact number. Real-numbers are used 
when the property follows a continuous scale which is not discretized into states, e.g., solvent 
accessibility, B-factors and torsion angles. 
Definitions 
Following we review the definitions of the considered descriptors. Although some of the 1D structural 
descriptors have a unique definition, a number of them have a few, usually slightly different and 
possibly complementary, definitions. 
Descriptors of the backbone conformation 

Secondary structure refers to local three-dimensional conformations of amino acid segments in the 
protein chain which are established through hydrogen bonds between N-H and C=O groups. A 
number of different systems for the assignment of secondary structure were developed over the 
last few decades. The first implementation of the secondary structure assignment method was 
done in late 1970s by Levitt and Greer [40]. This was followed by Kabsch and Sander who 
developed a method called DSSP [41]. This algorithm is based on the detection of hydrogen 
bonds defined by an electrostatic criterion. Other assignment methods include DEFINE [42], P-
CURVE [43], STRIDE [44], PSEA [45], XTLSSTR [46], SECSTR [47], and KAKSI [48]. 

 
Here, we briefly introduce the assignment defined by DSSP since this method is often assumed to be 
the golden standard and it remains to be the most widely-used program for the secondary structure 
assignment [48]. Overall, the secondary structures are determined based on the patterns of hydrogen 
bonds and they are categorized into three major states, helices, sheets, and regions with irregular 
secondary structure. The DSSP method assigns one of the following eight secondary structure types for 
each of the structured residues (residues that have three-dimensional coordinates) in the protein 
sequence: 
− G: 3-turn helix (also referred to as 310 helix). In this secondary structure the carboxyl group of a 

given amino acid forms a hydrogen bond with amid group of the amino acid three positions down in 
the sequence forming a tight, right-handed helical structure with only three residues per turn.  

− H: 4-turn helix (also refereed to as α-helix). This structure is similar to the 3-turn helix, however, the 
hydrogen bonds are formed between consecutive amino acids that are four positions away in the 
protein chain. This is the most prevalent helix type. 

− I: 5-turn helix (also refereed to as π-helix). In this type of the helix the hydrogen bonding occurs 
between residues spaced five positions away from each other and which also results in a right-
handed helical structure; left-handed π-helices are relatively rare. 

− E:  extended strand in parallel or anti-parallel sheet conformation. Two or more strands are 
connected laterally by at least two hydrogen bonds forming a pleated sheet. 

− B:  residue in an isolated beta-bridge, which is a single residue pair sheet formed based on the 
hydrogen bond. 

− T: hydrogen bonded turn. A turn in the protein chain in which a single hydrogen bond is formed 
between residues spaced 3, 4, or 5 positions away in the protein chain.  

− S: bend, which denotes a fragment of protein chain with high curvature where the angle between the 
vector from Cα

i to Cα
i+2 (C

α atoms at ith and i+2th positions) and the vector from Cα
i-2 to Cα

i  is< 70°; 
this is the only non-hydrogen bond-based regular secondary structure type. 

− – : irregular secondary structure (also referred to as loops and random coils), which corresponds to 
the remaining conformations. 

The above eight types are often mapped into three states as follows 



− H: α-helix. This secondary structure state encompasses right or left handed cylindrical/helical 
conformations that include G, H, and I types. 

− E: β-strand. This state corresponds to pleated sheet structures and it includes E and B secondary 
structure types. 

− C: coil. This state represent the remaining types of the local confirmations and it includes S, T, 
and – types. 

 

Transmembrane helices (TMHs) are helices that are embedded into the lipid bilayer of membranes; 
they are characteristic to α-helical transmembrane proteins. These proteins constitute about 30% of the 
proteins encoded in a typical genome and are involved in a wide variety of important processes such as 
cell signaling, transport of membrane-impermeable molecules and cell recognition [49]. TMHs are 
typically apolar 12 to 35 residues long helical amino acid segments that are oriented perpendicularly to 
the surface of the membrane. Transmembrane proteins include several TMHs which are usually 
approximately parallel to each other and which are packed close to each other in the membrane. 
TMPDB (Transmembrane Protein Database) [50] provides convenient access to annotation of 
transmembrane helices. 
 
Torsion angles are the rotational angles that define placement of the backbone atoms in the protein 
chain. The three rotational angles include ω which is defined about the C–N bond, φ about the Cα–N 
bond and ψ about the Cα–C bond. The value of ω is fixed at 180° or 0° and thus the protein backbone is 
described by the remaining two torsion angles. Different secondary structure states have their 
characteristic torsion angles that can be visualized using the Ramachandran plot [51]. An improved 
view of the sparseness of the allowed torsion angles, in particular for multiple consecutive angles, can 
be obtained using representation described in [52]. 
Descriptors of the buriedness 

Solvent-accessible area of a protein molecule was first defined by Lee and Richards in early 1970s [53] 
as the area traced out by the center of a virtual probe sphere representing a solvent molecule as it is 
rolled over the protein surface. In the follow up definition [54], the solvent-accessible area consists of 
the part of the van der Waals surface of the atoms that are accessible to the probe sphere. The 
accessible surfaces of atoms are connected to each other by a network of concave and saddle-shaped 
surfaces that smoothes over the crevices and pits between the atoms. The 1D descriptor of the solvent 
accessibility (also referred to as the relative solvent accessibility) is defined as the ratio between the 
solvent exposed surface area of a given residue observed in a given protein structure (i.e., the 
corresponding part of the solvent-accessible area of this protein) and the maximum obtainable value of 
the solvent-exposed surface area for this amino acid [55]. The ratio is used to normalize between 
different residue types. The values for the accessible surface area are often calculated using the DSSP 
program [41]. The maximum obtainable values of the solvent exposed surface area correspond to the 
surface exposed area of a given residue type observed in an extended tripeptide conformation flanked 
with either glycine [56] or alanine [57] residues. The relative solvent accessibility ranges between 0%, 
for fully buried residues, and 100%, for fully solvent accessible residues. All residues with 0% 
relatively solvent accessibility are categorized as fully buried, although their burying depth, with 
respect to the core of the protein molecule, can be different. This observation motivates the residue 
depth descriptor. 
 

The residue depth is the average atom depth of all atoms, except the hydrogen atoms, that make up a 
given residue [58]. Several definitions of atom depth have been proposed, including distance [58-60] 
and volume-based [61]. The depth of an atom could be defined as the distance of this atom from the 
nearest surface water molecule; the corresponding calculations use Monte Carlo simulations of water 



molecules surrounding the protein [58]. The DPX algorithm [60] defines the depth as the distance of a 
given atom from the closest solvent accessible atom. The DPX-based depth equals zero for solvent 
accessible atoms and is greater that zero for atoms buried in the protein interior. The volume-based 
atom depth is defined as 

Dir = 2Vir/V0r 

where i is the atom index, Vir is the solvent exposed volume of a sphere with radius r centered on atom 
i, and V0r is the volume of the same sphere centered on an isolated atom. In contrast to the above 
definitions that compute an average over all atoms, following Verazzo et al. [61]  the residue depth is 
defined using only the Cα atoms and r = 9Å. We note that distance- and volume-based depth values are 
negatively correlated.  
The depth values are usually normalized using mean and standard deviation of the depth values in a 
large, pre-defined protein dataset as follows [62, 63] 

normalized_depth = (depth – mean_depth) / standard_deviation_of_depth 
Details concerning calculation of various residue depth definitions are given in [63]. 
Descriptors of the inter-chain contacts 
The contact number (also referred to as the coordination number or the Ooi number) is the number of 
residues making a “contact” with a given residue in a native protein fold. More specifically, this 
descriptor is defined as the number of Cα atoms within the sphere of a predefined radius r centered on 
the Cα atom of a given residue. A few variants of this definition were proposed over the last 30 years: 
− The contact number is defined as the number of Cα atoms, excluding the two adjacent residues in the 

sequence, within a sphere with r = 8Å centered at the Cα atom of a given residue [64]. 
− The same as above but with a larger r = 14Å [65] 
− Recently, Pollastri et al. proposed coordination number which is a binarized contact number [66]. A 

given residue is assigned value of 0 if the contact number computed using the sphere with radius r is 
lower than the average contact number for a given amino acid type; otherwise the residue is assigned 
1. The authors used different values of r = 6, 8, 10, and 12Å and they counted all Cα atoms in the 
sphere, including the two residues adjacent in the sequence. 

 
The absolute contact number, which is a variant of the contact number, uses Cβ atoms, except for 
glycine where Cα atoms are used, and the boundary of the sphere is smoothed using a sigmoid function 
[67]. The absolute contact number of the ith residue in a protein chain is defined as 

∑
>− 2|:|

)(
iji

ijrσ  

where rij is the distance between Cβ atoms of ith and jth residue, the two residues adjacent to the ith 

position are disregarded in the sum, )1/(1)(
][ cij drw

ij er
−

+=σ , w determines the smoothness of the 

boundary  (by default w = 3), and dc = 12 is a free parameter which is used as a cutoff to find 
contacting residues. The sigmoid function σ (rij)  is approximately equal 1 when rij <dc and it is close 
to 0 when rij > dc. The absolute contact number is a continuous (floating-point) extension of the 
discrete (integer) contact number. 
 
The residue-wise contact order of the ith residue, which is expressed as the sum of linear distances in 
the protein sequence between all pairs of contacting residues, excluding the two neighbors on each side 
of the ith residue, is defined as [68]: 

∑
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Two residues are assumed to be in contact if the distance between their Cβ atoms (Cα atoms for 
glycine) is < 12 Å. 



 
A related sequence level descriptor called relative contact order, which possibly motivated the 
development of the abovementioned residue level contact descriptors, is defined as the average linear 
distance in the protein sequence between all pairs of contacting residues normalized by the sequence 
length [69]. 
Descriptors of flexibility 

The B-factor (also called temperature-factor or Debye-Waller factor) describes the degree to which the 
electron density of a given atom (or a group of atoms) in the X-ray scattering of the crystal structure of 
a protein is spread out. The B-factor values quantify mobility of an atom and they are computed as 

8π2
Ui

2 

where Ui
2 is the mean square displacement of the ith atom which is averaged over the lattice. Since B-

factors depend on several characteristics of the structure determination protocol, such as experimental 
resolution, crystal contacts, and refinement procedures, they should be normalized to allow 
comparisons between different structures. Following [70-73] the B-factors of given residues are 
expressed using the B-factors of Cα atoms that are normalized using average and standard deviation of 
the B-factors in a given chain as follows 

normalized_Bfactor= (Bfactor– mean_Bfactor) / standard_deviation_of_Bfactor 
 
While the abovementioned descriptors have relatively well-defined and consistent definitions, the 
annotations of the disordered residues (also referred to as intrinsically disordered, intrinsically 
unstructured, natively unfolded, natively disordered, and highly flexible) that are performed using 
different experimental methods is not always consistent [74]. Protein disorder is indirectly observed 
using a diverse set of experimental methods including spectroscopic and NMR-based approaches [75]. 
To date, there is no golden standard for the assignment of the disordered regions, i.e., segments of 
disordered residues in the protein chain. In the past CASP (Critical Assessment of techniques for 
protein Structure Prediction) experiments the disordered regions were defined as residues that lack 
coordinates in structures solved by X-ray crystallography and as residues that exhibit high variability 
within structure ensemble or are annotated as disordered in REMARK 465 by experimentalists for the 
structures solved by NMR [76, 77]. Another source of high-quality disorder annotation is a manually 
curated DisProt database (Database of Disordered Proteins) [78], which is the main and centralized 
source of the experimentally validated disordered regions. 
Summary 
The considered ten 1D structural descriptors are summarized in Table 1. Some of them were originally 
proposed over half a century ago, including B-factor which was investigated by Debye and Waller in 
early 1900s [79] and secondary structure which was first proposed by Pauling and Corey in early 
1950s [80, 81] and later formalized in 1970s [40]. Although structural properties described by most of 
these descriptors characterize individual residues, in a few cases, such as the secondary structure and 
disorder, these properties can be extended over segments of consecutive residues in the protein chain. 
For instance, helices are formed by stretches of at least 3 consecutive residues. As mentioned above, 
the 1D descriptors are encoded using several formats including nominal values and binary, integer, and 
real numbers. The original encoding is sometimes converted into a reduced representation. This 
includes the binarized version of the integer-valued contact number [66], and the real-valued relative 
solvent accessibility which is often converted into a binary descriptor by setting a threshold to 
differentiate between exposed and buried residues. In this case a given residue is defined as solvent 
exposed when it’s relative solvent accessibility > 0.25, and otherwise it is assumed to be buried [73, 
82-85]. The computation of the descriptor values most often includes processing of the tertiary 
structures that are deposited in the Protein Data Bank (PDB) [86] in some cases other databases such 
as DisProt [78] and TMPDB [50] are also used. 



Sequence-based prediction of 1D structural descriptors 
The values of the 1D structural descriptors can be either computed from the known protein structures 
(or experimental annotations of disorder) or predicted from the knowledge of the input protein 
sequence. The latter is based on the (mostly true) premise that sequence determines native structure for 
small globular protein [87]. We overview the existing sequence-based predictors of the 1D structural 
descriptors and present an empirical study that compares selected secondary structure, disorder, and 
solvent accessibility predictors. The novel aspects of our analysis include the comparison of the quality 
of the secondary structure predictions with the quality of the secondary structure in the predicted 
tertiary structure, inclusion of a wide-range of evaluation measures, and per-segment (explained 
below) evaluation of the disorder predictions. 
Overview of existing predictors 
The available methods for the sequence-based prediction of the considered descriptors are summarized 
in Table 2. We provide information concerning publication that introduces a given predictor and the 
subsequent publications that describe extensions and improvements to this method, details of the 
prediction model including its inputs and algorithms used, and we comment on the availability of the 
web server and/or a standalone program that implement this method. As one of the potential measures 
of the popularity of these predictors we provide the citation counts, both total and per year since 
publication, which were collected in July 2010 using the ISI Web of Science database. For methods 
with more than one publication we provide the average per year across all publications. We include the 
secondary structure predictors that were developed after 1999 and we refer the reader to other recent 
reviews [10, 18] to learn about older methods. Similarly, for the transmembrane helix prediction 
methods we primarily concentrate on methods published after mid 1990s; older methods are reviewed 
in [88, 89]. We exclude the predictors of disorder since they were recently and comprehensively 
reviewed in several works including [21, 22, 90, 91]. 
Most of the existing predictors use the sequence profiles or multiple alignments computed using PSI-
BLAST [92] as their inputs. Other popular inputs to predict the 1D descriptors include secondary 
structure and solvent accessibility that are predicted from the sequence. The selection of the predictive 
method/algorithm mostly depends on the encoding of a given descriptor. We observe that most of the 
recent predictors are based on so called machine learning methods. They include neural networks 
which were used for all considered descriptors, hidden Markov models and support vector machines 
which were used for nominal and binary descriptors, and support vector regression and multiple linear 
regression that were applied to predict real-value and integer-based descriptors. We note that many 
predictors for binary and nominal descriptors output probabilities associated with each prediction and 
often use these probabilities to predict the descriptor values by setting a threshold. The advantage of 
predicting probabilities instead of directly predicting the descriptor values is that these probabilities 
can be used to indicate confidence in the predicted value.  
 
Some predictors utilize homology modeling where they find similar sequences with known structure 
and use them to perform predictions. There are several methods that are based on a consensus, in 
which case outputs of multiple predictors of a given descriptor are combined together; some of the 
consensus-based methods also utilize homology modeling. A number of the secondary structure, 
transmembrane helix, and solvent accessibility predictors received several hundred citations, which 
suggests is a relatively substantial interest in research and applications of these methods. Finally, we 
observe that most of these predictors are provided as either standalone software or web servers (in 
same cases both) to a wider structural biology community. These software are usually publicly 
accessible and can be used free of charge for non-commercial purposes. The availability of these 
programs allows for a relatively easy, without any coding and usually user-friendly access for a non-



expert to the predictions of these 1D descriptors from the protein sequence. This, in turn, is one of the 
major reasons for the high citations / popularity of these prediction programs. 
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 d
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 c
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 d
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e
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s
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h
a
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v
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e
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u
b
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v
a
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b
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e
b
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s
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n
d
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n
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 p
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g
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n
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e
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o
u
r 
b
e
s
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p
e
rf
o
rm
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g
 d
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o
rd
e
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p
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d
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to
rs
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n
 t
h
e
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A
S
P
8
 c
o
m
p
e
ti
ti
o
n
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w
h
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h
 a
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d
e
n
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fi
e
d
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y
 t
h
e
 c
o
rr
e
s
p
o
n
d
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g
 g
ro
u
p
 n
u
m
b
e
r 
in
 t
h
e
 c
u
rl
y
 b
ra
c
k
e
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h
e
 m
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th
o
d
s
 w
e
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s
te
d
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n
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A
S
P
8
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a
rg
e
ts
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T
h
e
 t
a
b
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 l
is
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 p
e
r-
re
s
id
u
e
 m

e
a
s
u
re
s
 i
n
c
lu
d
in
g
 A
U
C
 (
w
h
ic
h
 e
v
a
lu
a
te
s
 r
e
a
l-
v
a
lu
e
 p
re
d
ic
ti
o
n
s
 o
f 
p
ro
b
a
b
ili
ty
 o
f 
d
is
o
rd
e
r)
, 
S
W
, 
M
C
C
, 
a
c
c
u
ra
c
y,
 

A
C
C
 (
a
v
e
ra
g
e
 o
f 
s
e
n
s
it
iv
it
y
 a
n
d
 s
p
e
c
if
ic
it
y
),
 a
n
d
 Q

 v
a
lu
e
s
. 
T
h
e
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a
s
t 
fi
v
e
 c
o
lu
m
n
s
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v
id
e
 p
e
r-
s
e
g
m
e
n
t 
e
v
a
lu
a
ti
o
n
s
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n
c
lu
d
in
g
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O
V
D
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n
d
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h
e
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u
m
b
e
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o
f 
m
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s
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g
 d
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o
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e
re
d
 

s
e
g
m
e
n
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 w

it
h
 m

in
im
a
l 
le
n
g
th
 >
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 a
n
d
 >
1
0
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a
 n
a
ti
v
e
 d
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o
rd
e
re
d
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e
g
m
e
n
t 
is
 d
e
e
m
e
d
 m

is
s
in
g
 i
f 
n
o
n
e
 o
f 
it
s
 r
e
s
id
u
e
s
 a
re
 p
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d
ic
te
d
 (
M
S
e
g
) 
o
r 
≤
5
0
%
 o
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it
s
 r
e
s
id
u
e
s
 a
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p
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d
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M
S
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g
5
0
%
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C
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n
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n
 t
h
e
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p
p
e
r 
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ia
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g
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a
n
d
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C
C
D
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w
n
 i
n
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h
e
 l
o
w
e
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n
g
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fo
r 
d
is
o
rd
e
r 
p
re
d
ic
ti
o
n
s
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ro
m
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a
b
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 4
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W
e
 

p
e
rf
o
rm

e
d
 t
w
o
 t
y
p
e
s
 o
f 
te
s
ts
, 
p
e
r 
re
s
id
u
e
 (
d
e
n
o
te
d
 a
s
 “
re
s
”)
 a
n
d
 p
e
r 
s
e
q
u
e
n
c
e
 (
d
e
n
o
te
d
 a
s
 “
s
e
q
”)
. 
In
 c
a
s
e
 o
f 
th
e
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e
r 
re
s
id
u
e
 e
v
a
lu
a
ti
o
n
, 
th
e
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e
s
t 
w
a
s
 d
o
n
e
 b
y
 b
o
o
ts
tr
a
p
p
in
g
 

1
0
0
0
 r
e
p
e
ti
ti
o
n
s
 o
f 
8
0
%
 o
f 
th
e
 c
h
a
in
s
; 
th
e
 s
a
m
e
 d
a
ta
s
e
ts
 w
e
re
 u
s
e
d
 f
o
r 
a
ll 
m
e
th
o
d
s
 a
n
d
 t
h
e
 r
e
s
u
lt
s
 o
n
 t
h
e
 c
o
rr
e
s
p
o
n
d
in
g
 1
0
0
0
 d
a
ta
s
e
ts
 w
e
re
 c
o
m
p
a
re
d
 f
o
r 
a
 g
iv
e
n
 p
a
ir
 o
f 

m
e
th
o
d
s
. 
In
 t
h
e
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e
r 
s
e
q
u
e
n
c
e
 c
a
s
e
, 
w
e
 c
o
m
p
a
re
d
 t
h
e
 p
re
d
ic
ti
o
n
 q
u
a
lit
y
 w

it
h
o
u
t 
b
o
o
ts
tr
a
p
p
in
g
 c
o
m
p
u
te
d
 f
o
r 
e
a
c
h
 o
f 
th
e
 1
2
1
-1
7
=
1
0
4
 s
e
q
u
e
n
c
e
; 
w
e
 e
x
c
lu
d
e
d
 1
7
 f
u
lly
 

o
rd
e
re
d
/d
is
o
rd
e
re
d
 c
h
a
in
s
 s
in
c
e
 i
n
 t
h
e
s
e
 c
a
s
e
s
 p
e
r 
c
h
a
in
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u
a
lit
y
 m

e
a
s
u
re
s
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o
u
ld
 n
o
t 
b
e
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o
m
p
u
te
d
 T
h
e
 d
if
fe
re
n
c
e
s
 b
e
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e
e
n
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a
c
h
 p
a
ir
 o
f 
m
e
th
o
d
s
 w
e
re
 t
e
s
te
d
 u
s
in
g
 p
a
ir
e
d
 

t-
te
s
t 
(i
f 
s
a
m
p
le
s
 a
re
 n
o
rm

a
l)
 o
r 
W
ilc
o
x
o
n
 r
a
n
k
 s
u
m
 t
e
s
t 
(i
f 
th
e
y
 a
re
 n
o
t 
n
o
rm

a
l)
; 
n
o
rm

a
lit
y
 w
a
s
 v
a
lid
a
te
d
 u
s
in
g
 S
h
a
p
ir
o
-W

ilk
 t
e
s
t.
 F
o
r 
e
a
c
h
 p
a
ir
 o
f 
m
e
th
o
d
s
, 
“+
”/
“–
” 
m
e
a
n
 t
h
a
t 

a
 m

e
th
o
d
 i
n
 t
h
e
 c
o
rr
e
s
p
o
n
d
in
g
 r
o
w
 p
e
rf
o
rm

s
 b
e
tt
e
r/
w
o
rs
e
, 
re
s
p
e
c
ti
v
e
ly
, 
th
a
n
 t
h
e
 m

e
th
o
d
 i
n
 t
h
e
 c
o
rr
e
s
p
o
n
d
in
g
 c
o
lu
m
n
 w
it
h
 p
-v
a
lu
e
 <
 0
.0
5
; 
“=
” 
d
e
n
o
te
s
 t
h
a
t 
th
e
 r
e
s
u
lt
s
 a
re
 

n
o
t 
s
ig
n
if
ic
a
n
tl
y
 d
if
fe
re
n
t.
 M
e
th
o
d
s
 a
re
 s
o
rt
e
d
 i
n
 t
h
e
 s
a
m
e
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rd
e
r 
a
s
 i
n
 T
a
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Empirical comparison of secondary structure predictors 
We compare seven recent secondary structure predictors, including PORTER_H [113], SSpro [99, 
100], SPINE [114], YASPIN [106], PSIPRED [95, 96], SABLE [105], and PROTEUS [111, 112]. 
These predictors offer publicly available standalone software and/or web servers that were used to 
generate predictions. We used standalone versions of SSpro and PROTEUS without homology 
modeling, and the web server version of PORTER_H that applies homology modeling. The evaluation 
is performed on the targets from the most recent completed CASP8 competition. We use the secondary 
structure derived from the native folds using DSSP as the native descriptor values. The results of the 
secondary structure predictors are also compared against the secondary structures extracted from the 
tertiary structure predicted by the top-three performing template-based methods in the CASP8 
competition [167], the ZHANG-server, RAPTOR and TASSER.  
 
We perform evaluations at the residue level (predictions are assessed for individual residues and the 
results are aggregated over the entire dataset) and at the segment level (quality of the predictions is 
quantified for each sequence and averaged over all chains in the dataset). In the latter case we provide 
the average value and the corresponding standard deviation. We use the performance measurements 
used in the EVA platform [168, 169] to quantify the quality. The residue-level measurements include 
QHpred, QEpred and QCpred which quantify the fraction of correctly predicted secondary structures among all 
predicted secondary structures of the same type, and QHobs, QEobs, and QCobs that correspond to the 
fraction of correct secondary structure predictions among all native (observed) secondary structures of 
the same type.  

100

},,{

×=
∑

∈ CEHi

iH

HH
Hpred

N

N
Q , 100

},,{

×=
∑

∈ CEHi

iE

EE
Epred

N

N
Q , 100

},,{

×=
∑

∈ CEHi

iC

CC

Cpred
N

N
Q  

100

},,{

×=
∑

∈ CEHj

Hj

HH
Hobs

N

N
Q , 100

},,{

×=
∑

∈ CEHj

Ej

EE
Eobs

N

N
Q , 100

},,{

×=
∑

∈ CEHj

Cj

CC

Cobs
N

N
Q  

 
where i, j ∈ {helix H, strand E, coil C}, and Nij stands for the number of residues in the native state of i 
which has been predicted as state j. We include Q3 that examines the total number of correct predictions 
for the three secondary structure states and QHEerror that is defined as the number of strand residues 
predicted as helices and vice versa dived by total number of residues in the dataset. 
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where N denotes the number of all residues. 
We also compute the residue level Matthews Correlation Coefficient (MCC) 

)()()()(/)( FNTNFPTNFNTPFPTPFNFPTNTPMCC +×+×+×+×−×=  

where TP stands for true positive which is the number of correctly predicted positives (say, helix 
residues when computing MCCH), FP stands for false positive which is the number of native positives 
which are predicted as negatives (helix residues predicted as coil or strand residues), TN stands for true 
negative which is the number of correctly predicted negative residues, and FN stands for false negative 
and denotes the number of native negatives predicted as positives. The MCC values are computed for 
prediction of helix (MCCH), strand (MCCE), and coil (MCCC), and they range between -1 and 1 with 
higher values corresponding to better prediction performance. 
Finally, we include the segment-level segment overlap (SOV) measures [170]. The SOV quantifies the 
amount of overlap between the native and the predicted segments; we compute it for both secondary 
structure and disorder predictions. We measure SOV for helix segments (SOVH), strand segments 



(SOVE), coil segments (SOVC), and SOV3 which quantifies the overall segment overlap for all three 
secondary structure states. 
 
The results for the secondary structure prediction are summarized in Table 3. The best-performing 
PORTER_H achieves 83.4% Q3 and 81.1 SOV3. The second best SSpro, which in contrast to 
PORTER_H does not utilize homology modeling, obtains 80.4% Q3 and 78.3 SOV3. The Q3 values of 
the considered secondary structure predictors range between 77% and 83% compared to the 76% to 
81% range obtained by the best performing fold predictors. The SOV3 values of three secondary 
structure predictors, PORTER_H, SSpro, and YASPIN are higher than the segment overlaps computed 
for the three tertiary structure predictors. The predictions of helix residues and segments are 
characterized (as expected) by higher quality than for the strands and coils. The SOVH and MCCH 
values of two secondary structure predictors are at above 82 and above 0.77, respectively; these results 
match the quality of the predictions generated by the ZHANG-server. The YASPIN and PORTER_H 
provide high-quality predictions of the strand segments with SOVE at over 78 which equals to the 
performance of the RAPTOR. We observe that YASPIN slightly over-predicts strand residues, i.e., it 
has high QEobs and low QEpred, when compared with the other methods. Interestingly, between 1.3% and 
2.2% of all secondary structure predictions include helical residues confused for strand residues and 
vice versa. These mistakes are less prevalent in the tertiary structure predictions where the 
corresponding rates are at about 0.6%. Overall, we note that there is no clear-cut winner, i.e., none of 
the methods obtains favorable prediction quality on all measures; a similar conclusion was drawn in a 
recent evaluation of standalone secondary structure predictors [171]. Although PORTER_H obtains the 
highest overall Q3 and SOV3, the runner-up SSpro, SPINE and YASPIN provide relatively high-quality 
predictions for helices and coils, coils, and strands, respectively. We also conclude that the secondary 
structure in the protein folds predicted by the best-performing template-based methods is of comparable 
quality to the secondary structure predicted by the modern secondary structure predictors that do not 
utilize templates. 
 
We also evaluate statistical significance of the differences between each pair of the considered 
methods. We perform the evaluation at the residue and the sequence level. In the per residue case, we 
follow the procedure from the evaluation of the disorder predictions in the CASP8 experiment [76]. We 
compare 1000 paired results (two methods compared on the same datasets) obtained using the 
bootstrapping with 80% of the targets from the CASP8 dataset, i.e., we compare the per-residue 
evaluation on 1000 subsets of the entire benchmark set. For SOV and PCC measures that are calculated 
per sequence, we compute their average over all sequence in a given subset. We also perform the per 
sequence significance test in which case we compare paired results for each sequence over the entire 
benchmark dataset. We verify whether the input measurements follow normal distribution, as tested 
using Shapiro-Wilk test at the 0.05 significance. If both measurements are normal then we use paired-
test, otherwise we use Wilcoxon rank sum test. We assume that a given pair of methods is significantly 
different if the corresponding p-value < 0.05.  
 
Table 4 summarizes the result of the significance tests for the predictions of the secondary structure that 
are evaluated using the Q3 (in the upper triangle) and SOV3 (in the lower triangle) measures. The 
“+”/“–“ denote that the method in a given row performs better/worse, respectively, than the method in 
the corresponding column with p-value < 0.05; “=” means that there is no significant difference in the 
performance for a given pair of methods. The best performing PORTER_H predictor significantly 
outperforms the other considered secondary structure prediction methods for both quality measures, 
which is likely a direct effect of the fact that this method utilizes homology modeling. The second best 
SSpro, which does not use homology modeling, similarly significantly improves over the remaining 5 
secondary structure predictors for Q3 and SOV3, except for SPINE and YASPIN when considering the 
per sequence comparison. We note that the per residue and the per sequence results are relatively 



consistent for the considered pairs of the secondary structure prediction methods. This suggests that the 
prediction quality does not vary much when evaluated for individual sequences and over a dataset of 
sequences, i.e., there are no methods that do well over a dataset but poorly for some sequences and vice 
versa. Among the tertiary structure predictors, the Zhang-server significantly outperforms the other two 
methods, except for RAPTOR which is equivalent to the Zhang-server for the per sequence evaluation. 
Interestingly, we note that PORTER_H significantly improves over the Zhang-server and the other two 
tertiary structure predictors when evaluated using both Q3 and SOV3. The second best secondary 
structure predictor SSpro is outperformed by Zhang-server and RAPTOR based on the per residue Q3 
and, but it provides significantly better SOV3 values. 
Empirical comparison of disorder predictors 
We contrast eight disorder predictors, including MFDp [172], MD [173], DISOclust [174], NORSnet 
[175], Ucon [176], PROFbval [164], IUPred that predicts long (IUPredL) and short (IUPredS) 
disordered regions [177] and DISOPRED2 [178]. Standalone software or web servers of these methods 
were used to generate predictions. We use the disorder annotations provided by the assessors of the 
CASP8 as the native descriptor values and we compare the results of the abovementioned disorder 
predictors with the top-three predictors of the binary disorder annotations from the CASP8 [76]. These 
three methods are identified by the group number in curly brackets (as registered for the CASP8 
meeting) and the group name, and they include GS-MetaServer2 {153}, GeneSilicoMetaServer {297}, 
MULTICOM-CMFR {69} [179, 180], as well as MULTICOM {453} which is a human (expert-based) 
meta-predictor. The GS-MetaServer2 and GeneSilicoMetaServer are unpublished but they offer a web 
server at https://genesilico.pl/meta2/. We use a subset of 111 and 121 CASP8 targets in the case of the 
secondary structure and disorder evaluations, respectively, for which all considered methods were able 
to provide predictions. 
 
The same as in the CASP8, we discard the native disordered regions with 3 or fewer residues [76] 
(private correspondence with authors), i.e., these residues are ignored when computing the quality 
measures. We use two residue-level measures that are specific to evaluation of disorder predictions that 
were utilized at the recent CASP experiments [76, 77] including Sw and ACC, which is an average 
between sensitivity and specificity.  

ACC = [(TP / Ndisorder) + (TN / Norder)] / 2 
Sw = (wdisorder*TP – worder*FP + worder*TN – wdisorder*FN) / 

(wdisorder* Ndisorder + worder* Norder) 
where TP stands for true positive which is the number of correctly predicted disordered residues, FP 
stands for false positive which is the number of natively ordered residues which are predicted as 
disorder, TN stands for true negative which is the number of correctly predicted ordered residues, and 
FN stands for false negative and denotes the number of natively disordered residues predicted as 
ordered, wdisorder and worder are the fractions of ordered and disordered residues, respectively,  and Norder 
and Ndisorder are the total number of disordered and ordered residues, respectively. Similarly as for the 
secondary structure, we measure QOobs , QOpred, QDobs, and QDpred to evaluate the residue level 
predictions and SOVD for the disordered segments. The former four measures quantify the fraction of 
the correct predictions of ordered (O) and disordered (D) residues among all predicted and all native 
ordered and disordered residues, respectively. The SOVD denotes the segment overlap between the 
predicted and the native disordered segments. We also compute residue level MCCD and accuracy 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
We measure the area under the ROC (AUC) to evaluate the quality of the predicted real-value 
probabilities of disorder that are outputted by all considered predictors. For each value of probability p 
predicted by a given method (between 0 and 1), all the residues with probability equal or greater than p 
are set as disordered, and all other residues are set as ordered. Next, the TP-rate = TP / (TP + FN) and 
the FP-rate = FP / (FP + TN) are calculated and we use the area under the corresponding curve to 
quantify the predictive quality.  



Finally, we introduce and quantify four segment-level measures for the disorder predictions. They 
quantify the fraction of the disordered segments that were missing (not predicted) among all segments 
of a given size range, which include segment with >3 residues and with >10 residues. Our benchmark 
set includes 170 native segments of 3 or more disordered residues and 86 segments with 10 or more 
disordered residues. We consider two cut-offs to define a given segment as missing, when none of its 
residues are predicted as disordered (MSeg>3 and MSeg>10 measures) and when ≤50% of its residues 
are predicted as disordered (MSeg50%>3 and MSeg50%>10 measures). 
 
The quality of the disorder predictions is analyzed in Table 5. Seven predictors, including the four 
CASP8 participants, MFDp, DISOPRED2, and DISOclust achieve AUC > 0.85 and Sw of about 0.6 or 
higher. The ROCs for these predictors are shown in Figure 1. We constrain the FP-rate range to 0-0.2 
since the disordered residues constitute only 11% of all residues in our dataset, i.e., higher FP-rates 
would lead to a substantial over-prediction of the disordered residues. We observe that MULTICOM 
outperforms all other considered methods, and among the published predictors, MD works well for FP-
rates < 0.085 and MFDp provides favorable TP-rates for FP-rates > 0.1.We note that some of the 
prediction methods tend to over-predict the disordered residues as their QDpred are relatively low and 
QDobs are relatively high, which was also observed in [181]. For instance, GS-MetaServer2, 
GeneSilicoMetaServer, MULTICOM-CMFR, DISOclust, MD, and PROFbval have QDpred at about 50 
or below (with QDobs> 71), which means that most of the disordered residues that they predict are in 
fact annotated as structured. These methods can still obtain high (including the highest) Sw values; this 
measure favors over-prediction of the disorder considering that there are only 11% of disordered 
residues in our dataset (i.e., worder = 0.11 and wdisorder = 0.89). The two highest MCCD values are 
achieved by MULTICOM-CMFR and MFDp and these methods also have one of the highest accuracy 
and AUC values. The segment-level evaluations reveal that when excluding the methods that over-
predict disorder (GS-MetaServer2, GeneSilicoMetaServer, MULTICOM-CMFR, DISOclust, MD, and 
PROFbval) between 27% (for DISOPRED2) and 74% (for NORSnet) of disordered segments are 
completely missed (none of their residues are predicted), and less than a half of the disordered residues 
are predicted for between 43% (for MULTICOM) and 91% (for NORSnet) segments. Even when 
considering only longer disordered segments with at least 10 residues, these rates are relatively high, 
i.e., 15% to 59% are completely missed and 41% to 87% are predicted with less than a half residues. 
The segment overlap values for the disordered segments range between 39% and 77%. To compare, the 
highest SOV values for coils, strand and helix segments, which were achieved by PORTER_H, are 
slightly higher and they equal 78%, 79%, and 83%, respectively. 
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Figure 1.The ROCs of the eight best considered disorder prediction methods, including four CASP4 participants (shown 
using thin lines) and four public web servers (shown using thick lines). The x-axis is the TP-rate, which is constrained to 0-0.2 
range, and y-axis is the FP-rate.  

 
Table 6 shows the results of the evaluation of the statistical significance of the differences for all pairs 
of the considered disorder predictors; the setup follows the significance tests for the secondary structure 
and the methods are sorted by their Sw values from Table 5. Table 6 presents the results for AUC which 
is used to validate real-value predictions (in the upper triangle) and MCCD for the binary predictions (in 
the lower triangle). The best performing MULTICOM significantly outperforms all the other methods 
in terms of AUC and MCCD, except only for the GS-MetaServer2 which provides equivalent per 
sequence MCCD. The best predictor among the remaining methods with respect to MCCD is MFDp, see 
Table 5, and this method significantly improves over the other 11 methods for the per residue MCCD. 
In case of the AUC based evaluation, the second best GS-MetaServer2 also outperforms the other 11 
predictors for the per residues AUC. We note several results where the per residue and the per sequence 
tests lead to opposing conclusions, i.e., where a given method that performs significantly better than the 
other method in the per residue case performs significantly worse in the per sequence case, and vice 
versa. Examples of such methods are IUPredL, NORSnet, Ucon, PROFbval, DISOPRED2, and MFDp 
when considering the evaluations based on the MCCD. We observe that IUPredL, NORSnet, Ucon, and 
PROFbval are characterized by a substantial difference in magnitude of MCCD values between the per 
residue and per sequence evaluations. For example, the IUPredL (MCCD = 0.54) performs better than 
both MD (MCCD = 0.42) and DISOclust (MCCD = 0.42) in the per residue test, while for the per 
sequence test the average (over the benchmark dataset) MCCD of IUPredL drops to 0.20, when 
compared with MCCD of MD and DISOclust that equal 0.31 and 0.32, respectively. This suggests that 
while these four methods (IUPredL, NORSnet, Ucon, and PROFbval) are characterized by good quality 
predictions on the entire benchmark dataset, they perform relatively poorly on some sequences. We 
note that although differences in magnitude of MCCD between the per residue and the per sequence 
tests for the DISOPRED2 and MFDp are relatively small, these two methods still drop significantly 
below the GS-MetaServer2 and GeneSilicoMetaServer in the per sequence evaluation. We also observe 
several differences between the per residue and the per sequence comparison for the AUC-based 
significance tests. For example, comparing MFDp and DISOPRED2 with MD, we note that the former 
two methods are significantly better in the per residue test, but they are significantly worse for the per 



sequence test. This is once again caused by the lower per sequence AUC of the MFDp and DISOPRED 
when compared with the per residue AUC; our analysis shows that these differences have relatively 
small magnitude.  
Empirical comparison of solvent accessibility predictors 
We empirically contrast seven solvent accessibility predictors, PaleAle [113], NetSurfP [152], JNET 
[84], ACCpro version 4.03 [100], SABLE [55], SARpred [147], and Real-SPINE3 [82, 83]. These 
methods provide publicly available standalone software and/or web servers that were used to generate 
predictions. We used standalone versions of Real-SPINE3 and ACCpro 4.03 without homology 
modeling. The evaluation utilizes a subset of 113 targets from the CASP8 experiment for which all 
seven methods generated predictions. The above methods predict relative solvent accessibility (RSA). 
We use the absolute solvent accessibility (ASA) values derived from the native folds using DSSP to 
compute the native relative solvent accessibility (RSA) as follows:  

RSAi = ASAi / MSAi 

where i is a residue index and MSAi is the maximum obtainable solvent accessibility for the 
corresponding amino acid type. The MSAi is used to normalize the corresponding ASAi value with 
respect to the overall size of a given amino acid type. There are several ways to quantify the MSA 
values, with two most prevalent that are based on the solvent accessibility of residue X in an extended 
Ala-X-Ala [82] and Gly-X-Gly [56] tripeptides. We normalize the ASA values generated by the DSSP 
using the same MSA values as were applied in the assessed predictors. Specifically, we used 
normalization factors from [82] for NetSurfP and SARpred, from [56] for SABLE, from [182] for 
JNET, from [57] for REAL-Spine3, and the values provided by Dr. Pollastri (personal communication) 
for PaleAle and ACCpro. Similarly as in [73, 82-85, 108, 113, 152] we converted the RSA values to 
binary classes using threshold of 0.25, i.e., residues with RSA >0.25 were considered as exposed, and 
with RSA ≤ 0.25 as buried. 
 
We compute four performance measures including MCC and accuracy for the binary predictions, and 
Pearson’s correlation coefficient (PCC) and mean absolute error (MAE) to evaluate the predicted RSA 
values. Only the NetSurfP, SABLE, SARpred, and Real-SPINE3 generate RSA values (and 
consequently binary predictions that are obtained from the RSA values), while the other methods 
generate only the binary predictions.  
 
The results are summarized in Table 7. The PaleAle achieves MCC equal 0.86 and outperforms the 
other methods by a wide margin. The second best NetSurfP obtains MCC = 0.59 and three other 
methods have MCC around 0.56. The reason for this gap is the fact that PaleAle uses homology 
modeling with a template library that likely includes some of the considered here CASP8 targets. 
Interestingly, we observe that high quality of the RSA predictions is not necessarily coupled with high 
quality of the binary predictions, and vice versa. For instance, the NetSurfP which obtains the highest 
MCC when compared with the other three methods that generate RSA values has higher (worse) MAE 
value than the Real-SPINE3 which obtains the lowest MCC of 0.12. A potential reason is that some of 
the considered methods could be optimized to maximize the predictive performance using a different 
cut-off to define the binary classes. 
 
Table 8 summarizes the results of statistical significance test for the solvent accessibility and it 
considers the evaluations based on the MCC (in the upper triangle) and PCC (in the lower triangle) 
measures; the setup follows the significance tests for the secondary structure predictions. The PCC 
could not be computed for PaleAle, JNET, ACCpro since these methods do not output the RSA; the 
corresponding cells in the Table 8 are denoted as “not applicable” (N/A). The best performing with 
respects to MCC PaleAle significantly outperforms all other methods for this quality measure. The 
second best NetSurfP also provides significantly higher MCC when compared with the remaining five 
methods. Similarly, NetSurfP that obtains the highest PCC (see Table 7) significantly outperforms 



SABLE, SARpred, and Real-SPINE3 when considering correlation between the predicted and the 
native RSA. The second best Real-SPINE provides significantly improved PCC when compared with 
the SABLE and SAPpred. We observe that the per residue and the per sequence results are relatively 
consistent for all pairs of methods. 

Conclusions 
The 1D descriptors of protein structure cover a wide-range of structural aspects including conformation 
of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-
residue contacts. These descriptors are widely used to characterize and analyze protein folds and to 
predict various structural and functional characteristics of proteins. They can be either computed from 
the know structure or predicted from the primary sequence. The last two decades observed substantial 
efforts in the development of accurate sequence-based predictors. Our overview of a several dozens of 
the most recent predictors shows that they are based on a common architecture in which the protein 
sequence is represented as a feature vector using evolutionary profiles and, in some cases, predictions 
of a few related 1D descriptors, which is fed into a machine learning-based prediction model. The most 
popular models include neural networks, support vector machines, hidden Markov models, and support 
vector and multiple linear regressions. Our empirical evaluation of the quality of the sequence-based 
prediction of secondary structure, disorder, and solvent accessibility descriptors shows that these 
machine learning models generate high-quality results. For instance, the secondary structure can be 
predicted with over 80% accuracy and segment overlap, the disorder with over 0.9 AUC, 0.6 MCC, and 
75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is 
used). We caution the reader that these results are based on a relatively small, although representative 
(according to the CASP8 organizers), dataset and thus our conclusions may not generalize to other, 
larger or more specialized, e.g. constrained to specific types of protein folds, protein sets. The utility of 
the considered prediction methods is further strengthened by the fact that most of them are accessible to 
a non-expert user via web servers or standalone software packages. We anticipate that the 1D structural 
protein descriptors will play a significant role in various related fields such as high-throughput protein 
structure and function annotation, characterization and prediction of protein-ligand and protein-protein 
interactions, and rational drug design, to name a few. 
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