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Abstract: Selection of proper targets for the X-ray crystallography will benefit biological research community immensely. 
Several computational models were proposed to predict propensity of successful protein production and diffraction quality 
crystallization from protein sequences. We reviewed a comprehensive collection of 22 such predictors that were developed in 
the last decade. We found that almost all of these models are easily accessible as webservers and/or standalone software and 
we demonstrated that some of them are widely used by the research community. We empirically evaluated and compared the 
predictive performance of seven representative methods. The analysis suggests that these methods produce quite accurate 
propensities for the diffraction-quality crystallization. We also summarized results of the first study of the relation between 
these predictive propensities and the resolution of the crystallizable proteins. We found that the propensities predicted by 
several methods are significantly higher for proteins that have high resolution structures compared to those with the low 
resolution structures. Moreover, we tested a new meta-predictor, MetaXXC, which averages the propensities generated by the 
three most accurate predictors of the diffraction-quality crystallization. MetaXXC generates putative values of resolution that 
have modest levels of correlation with the experimental resolutions and it offers the lowest mean absolute error when 
compared to the seven considered methods. We conclude that protein sequences can be used to fairly accurately predict 
whether their corresponding protein structures can be solved using X-ray crystallography. Moreover, we also ascertain that 
sequences can be used to reasonably well predict the resolution of the resulting protein crystals.  

Keywords: X-ray crystallography; diffraction quality crystallization; protein production; resolution of protein crystals; meta 
prediction; protein structure; prediction. 

1. INTRODUCTION 

 The unique protein sequences are sequenced and 
accumulated at an exponentially increasing pace, as 
evidenced by the rapid growth and current size of resources 
such as UniProt (88.03 million as of July 2017) and RefSeq 
(88.39 million as of July 2017) [1]. Moreover, statistics from 
the UniProt as of July 2017 reveal that only about 86 
thousand non-redundant proteomes (sets of proteins 
expressed by an organism) have been completely sequenced 
and about 560 thousand organisms have the corresponding 
protein sequence data. These numbers suggest that the 
growth will continue in the foreseeable future, given that 
recent estimates suggest that the Earth is home to anywhere 

between 8.7 million [2] and 1 trillion [3] of organisms. More 
importantly, only a small fraction of these proteins have been 

functionally characterized to date. The latter number can be 
estimated based on the amount of proteins in the Swiss-Prot 
resource, which is at 0.56 million as of July 2017 [4]. 
Functions of new proteins are learnt by first producing them, 
i.e., they typically have to cloned, expressed, solubilized, and 
purified [5], and ultimately for some by acquiring their 
structures [6]. 

    The emergence of structural genomics (SG) in the early 
2000s [7] has resulted in rapid technological advances in 
protein production and structure determination by taking 
advantage of robotics, parallelization, new expression 
vectors, affinity tags, semi-automated purification and 
crystallization screening methods [5, 8]. Although there were 
a number of different protocols, a set of specific protocols 
were shown to be widely applicable to a large set of proteins, 
and this also suggested alternative strategies for non-
conforming proteins [5]. Many of the purified proteins are 
structurally solved since knowledge of structures is essential 
for understanding protein functions and related biological 
processes [9] and facilitates drug discovery efforts [10]. 
According to the worldwide repository of protein structures, 
Protein Data Bank (PDB) [11], slightly over 90% of the 
currently known protein structures (111 thousand out of 123 
thousand proteins structures as of July 2017) were 
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determined by X-ray crystallography. This is also the most 
commonly used methods by the SG centers and the focus of 
this article. However, the X-ray crystallography-based 
protein structure determination efforts are hampered by very 
low success rates due to the cumulative attrition along the 
protein production and crystallization pipelines. Studies 
show that the success rates range between 2 and 10% [12], 
depending on the source and time of the analysis. 
Importantly, failed attempts are estimated to account for over 
60% of the structure determination costs [12a, 13]. 

    Data originated from these protein production and 
structure determination experiments were deposited into the 
TargetTrack [14] database, which superseded the TargetDB 
[15] and PepcDB [16] databases. TargetTrack includes 
information about successful and failed protein production 
and crystallization trials for over 300 thousand protein 
targets that were provided by dozens of SG centers across 
the globe. These proteins span all kingdoms of life and cover 
a diverse range of protein structural and functional classes. 
The low success rates and availability of the large databases 
prompted efforts to characterize the determining factors of 
the amenability of proteins to the production and structure 
determination. Although the success rates depend on the 
experimental protocols used, the premise of these studies is 
that certain intrinsic characteristics of protein sequences 
generalize across protocols. Indeed, the results collected 
across many studies of the factors demonstrate that this is the 
case [17]. These results in turn motivate the development 
and widespread use of sequence-based target selection tools, 
developed based on computational methods that use protein 
sequences to accurately predict the propensity of these 
proteins to be successfully produced and structurally 
determined. While propensities for successful gene cloning 
experiments do not necessarily need to be predicted as they 
boast nearly 100% success rate, the other steps including 
protein expression, solubilization, purification, 
crystallization, and structure determination, require accurate 
predictive tools. The efforts to build these predictive models 
so far have been largely focused on the final structure 
determination step, resulting in the release of over a dozen of 
predictors [12d, 18]. This article reviews a comprehensive 
set of (to the best of our knowledge) all 22 currently 
available predictive models. These include computational 
models that predict propensity of several 
production/structure determination steps. To compare, 
another two most recent reviews on this subject have 
surveyed 18 [18a] and 10 tools [12d]. Moreover, we also 
comparatively assessed the predictive performance of several 
tools, and for the first time, we empirically analyzed the 
relationship between the predicted propensities for structural 
determination using X-ray crystallography and the 
diffraction resolution limits of the successfully solved 
protein structures. Such analysis could guide the selection of 
these tools, beyond the typical target choice, in terms of 
selecting proteins that may lead to higher resolutions of the 
crystal structures directly from their amino acid sequences. 

 

2. OVERVIEW OF PREDICTORS OF PROPENSITY 
FOR PROTEIN PRODUCTION AND STRUCTURE 
DETERMINATION 

     Sequence-based target selection tools are typically 
developed based on empirical fitting of predictive models 
using sequences that were annotated experimentally as either 
amenable or recalcitrant to a given production/structure 
determination step. The annotations of these proteins are 
usually collected from the public databases, such as 
TargetTrack, TargetDB and PepcDB. The predictive models 
are used to predict propensity of new protein sequences to 
undergo the successful completion of a given 
production/structure determination step. The predictors take 
a protein sequence as the input and generate numerical 
score(s) that denotes the likelihood (propensity) that this 
sequence will complete specific step(s) of the protein 
production and structure determination pipeline. The 
typically considered steps include gene cloning, protein 
production, purification, crystallization and crystallization to 
obtain diffraction-quality crystals; the latter is synonymous 
with the successful determination of the structure. 

The first predictors of propensity for X-ray 
crystallography-based protein structure determination, 
SECRET [19] and OB-Score [20], were developed in 2006. 
The development of these two methods happened shortly 
after the release of the TargetDB and PepcDB resources in 
2001 and 2004, respectively. Eight other methods that 
predict propensity for diffraction-quality crystallization were 
published between 2007 and 2010. In chronological order 
they are CRYSTALP [21], XtalPred [13, 22], ParCrys [23]; 
PXS [17d], CRYSTALP2 [24], MetaPPCP [25], SVMCrys 
[26], and MCSG-Z score [27]. The year 2011 marks the 
release of the first tool, PPCPred [28], that predicts both the 
propensity for the protein production and the propensity for 
the structure determination that was also addressed by 
previous methods. More specifically, PPCpred predicts the 
propensities for multiple steps including material production, 
purification, crystallization and diffraction-quality 
crystallization. Since 2011, three other tools that similarly 
cover multiple steps were developed: PPCinter [29] and 
PredPPCrys [30] in 2014 and Crysalis [31] in 2016. The 
latter two methods also generate the propensity for protein 
cloning in addition to the propensity for the four steps that 
are covered by PPCpred and PPCinter. Moreover, eight more 
tools that address the prediction of the propensity for the 
diffraction-quality crystallization were made available over 
the last six years: XANNpred [32], RFCRYS [33], 
CRYSPred [34], SCMCRYS [35], fDETECT [36], XtalPred-
RF [37], TargetCrys [38], and Crysf [18a]. In total, 22 
methods have been developed over the last decade. They are 
summarized in Table 1. 



Table 1. Summary of protein sequence-based predictors of the propensity for protein cloning, material production, purification, crystallization and structure determination using X-
ray crystallography (diffraction-quality crystallization). Bold font identifies methods that were used to perform empirical analysis. 
 
Method Year 

published 
Availability1 Batch prediction 

(max number of 
proteins allowed) 

Output2 SG center3 Number of 
citations4 

URL5

total annual 

OB-score 2006 SA No DCR SSPF 52 4.7 http://www.compbio.dundee.ac.uk/obscore/ 
SECRET 2006 WS Yes (25; 46<chain 

length<200) 
DCR  82 7.5 http://mips.helmholtz-muenchen.de/secret/secret.seam# 

CRYSTALP 2007 NA No DCR  69 6.9 NA 
XtalPred 2007 WS Yes (10)  DCR JCSG 158 15.8 http://ffas.burnham.org/XtalPred-cgi/xtal.pl 
ParCrys 2008 WS Yes (no limit) DCR  57 6.3 http://www.compbio.dundee.ac.uk/parcrys/cgi-bin/input.pl 
PXS 2009 WS No DCR NESG 115 12.7 http://nmr.cabm.rutgers.edu:8080/PXS/ 

 
CRYSTALP2 2009 WS Yes (100) DCR  50 6.3 http://biomine.cs.vcu.edu/servers/CRYSTALP2/ 
MetaPPCP 2009 NA No DCR  27 3.4 NA 
SVMCrys 2010 SA No DCR  30 4.3 http://www3.ntu.edu.sg/home/EPNSugan/index_files/svmcrys.htm 
MCSG Z-score 2010 WS No DCR MCSG 

CSGID 
26 3.7 http://bioinformatics.anl.gov/cgi-bin/tools/pdpredictor/ 

PPCpred 2011 WS Yes (5) MP PF CR DCR  48 8.0 http://biomine.cs.vcu.edu/servers/PPCpred/ 
XANNpred 2011 WS Yes (5) DCR SSPF 17 2.8 http://www.compbio.dundee.ac.uk/xtal/cgi-bin/xannpred_in.pl 
RFCRYS 2012 NA No DCR  19 3.8 NA 
CRYSPred 2012 NA No DCR  17 3.4 NA 
SCMCRYS 2013 SA No DCR  21 5.3 http://iclab.life.nctu.edu.tw/SCMCRYS/ 
fDETECT 2014 WS Yes (1000) DCR  6 2.0 http://biomine-ws.ece.ualberta.ca/fDETECT/ 
PredPPCrys 2014 WS No CL MP PF CR 

DCR 
 8 2.7 http://www.structbioinfor.org/PredPPCrys/ 

PPCinter 2014 NA No MP PF CR DCR  5 1.7 NA 
XtalPred-RF 2014 WS Yes (10) DCR  20 6.7 http://ffas.burnham.org/XtalPred-cgi/xtal.pl 
Crysalis 2016 WS Yes (10000) CL MP PF CR 

DCR 
 6 6.0 http://nmrcen.xmu.edu.cn/crysalis/ 

TargetCrys 2016 WS Yes (no limit) DCR  3 3.0 http://csbio.njust.edu.cn:8080/TargetCrys/ 
Crysf 2017 WS Yes (10000) DCR  0 0.0 http://nmrcen.xmu.edu.cn/crysf/ 
 

1 Availability: webserver (WS); standalone application (SA); and implementation/webserver is not available (NA). 
2 Output: propensity for cloning (CL); propensity for material production (MP); propensity for purification (PF); propensity for crystallization (CR); and propensity for diffraction-quality crystallization (DCR). 
3 Structural genomics (SG) centers that use a given tool: Midwest Center for Structural Genomics (MCSG); Center for Structural Genomics of Infectious Diseases (CSGID); Joint Center for Structural Genomics (JCSG); 
Scottish Structural Proteomics Facility (SSPF); and NorthEast Structural Genomics consortium (NESG). 
4 The number of citations was collected using Google Scholar in May 2017. 
5 URL: The URL address of the developed method; Not available (NA) denotes that the implementation/webserver is not available. 
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The early methods, including SECRET, OB-Score and 
CRYSTALP, were built using relatively small datasets of 
proteins accompanied by low quality annotations of 
propensities for structure determination. Newer methods use 
well-annotated and larger datasets sourced from 
TargetTrack, TargetDB and PepcDB, and their predictive 
quality has improved over time [18a, 28]. These 
improvements were driven by the inclusion of a larger 
number of indicators/determining factors of amenability of 
proteins for the production and structure determination and 
implementation of more sophisticated predictive models. 
The predictive models utilized by recent predictors include 
neural network (XANNpred), random forest (XtalPred-RF 
and RFCRYS), support vector machine (PPCpred, 
CRYSPred, PredPPCrys, PPCinter, and TargetCrys) and 
support vector regression (Crysalis and Crysf). 

Several of these tools are used directly by SG centers: 
MCSG-Z score at the Midwest Center for SG (MCSG) and 
Center for SG of Infectious Diseases (CSGID), XtalPred at 
the Joint Center for SG (JCSG), XANNpred and OB-Score 
by the Scottish Structural Proteomics Facility (SSPF) and 
PXS by the NorthEast SG consortium (NESG). Many of 
these tools are made available as webservers or standalone 
applications to provide service to a wider structural biology 
community. Some of them enjoy relatively strong uptake by 
the community. Table 1 shows that SECRET, CRYSTALP, 
XtalPred, ParCrys, Pxs, CRYSTALP2, PPCpred, 
SCMCRYS, XtalPred-RF and Crysalis are cited on average 
at least five times per year since they were published. The 
top three most cited methods are XtalPred (16 citations per 
year), PXS (13 per year) and PPCpred (8 per year). We note 
that these citation counts should be interpreted with caution 
since some of the articles discuss other aspects beyond the 
methodology (e.g., articles that introduce the PXS and 
fDETECT methods) and some were published very recently 
and do not yet have sufficient citation record. 

The webservers, which are provided for 14 out of 22 
tools, appeal to less computer savvy end users that require 
predictions in an ad hoc manner. To use a webserver, a user 
needs to arrive at a specific URL (see Table 1) using any of 
the major web browsers, enter their protein sequence(s) and 
request the prediction. The prediction is performed on the 
server side, using a fully automated and free service that 
delivers the results into a browser window and/or via email. 
Moreover, several of these webservers allow for batch 
predictions of multiple proteins. They include SECRET, 
XtalPred, ParCrys, CRYSTALP2, PPCpred, XANNpred, 
fDETECT, XtalPred-RF, Crysalis, TargetCrys, and Crysf. 
Table 1 provides the upper limit of the size of the protein 
sets that can be predicted with these methods. In contrast to 
the webservers, the standalone applications are geared 
towards users who need to use these tools more frequently. 
In this case, a given predictor must be installed and run on 
the user’s computer. Three tools (OB-score, SVMcrys and 

SCMCRYS) offer this option. Moreover, five of the 22 tools 
were not made publically available by the authors. 

We have recently empirically demonstrated that the use of 
these tools leads to a substantial improvement in the quality 
of the selection of proteins for structure determination when 
compared with an ad hoc target selection [36]. For example, 
currently about 14% of modeling families of human proteins 
have structures; the modeling family is a group of proteins 
for which accurate structures can be obtained through 
computational modeling if at least one of the proteins in that 
group has known structure. We estimated that this coverage 
can be substantially improved to 49% assuming that all 
human proteins that can be crystallized, based on their 
putative propensities, will be solved. Moreover, we showed 
that solving the structures of the same number of human 
proteins selected at random would lead to an estimated 
coverage of 5%, which is significantly lower than the current 
coverage. 

3. EMPIRICAL EVALUATION OF SELECTED 
PREDICTORS OF PROTEIN CRYSTALLIZATION 

We evaluated and compared the predictive quality of 
seven representative predictors of the propensity for 
diffraction-quality crystallization on a new benchmark 
dataset. We also performed first-of-its-kind large-scale 
evaluation of the relation between these propensities and the 
resolution of proteins that are successfully crystalized. 

3.1. Setup of the empirical evaluation 

 The benchmark dataset includes an equal number of 
proteins that were successfully solved using X-ray 
crystallography and proteins for which attempts to obtain 
diffraction-quality crystals failed, which we collected in July 
2016. We balanced the size of these two protein sets to 
ensure that the corresponding empirical assessment, 
including statistical analysis, is straightforward and reliable. 
We limited to the dataset size to about 500 proteins to ease 
the burden of collecting the prediction outputs of the seven 
predictors that we considered. The set of 267 proteins that 
could not be crystallized was obtained from the TargetTrack 
database (http://sbkb.org/). They include an equal number of 
randomly chosen proteins that fail the three main steps of the 
crystallization pipeline: 89 proteins that fail protein 
production step, 89 that fail purification step and 89 that fail 
to form crystals. The annotation of these step was made 
using the trial stop statuses available in TargetTrack as 
follows: sequencing failed, cloning failed and expression 
failed stop statuses were used to annotate proteins that failed 
material production; purification failed stop status to denote 
the failure to purify; and crystallization failed and poor 
diffraction stop statuses to annotate proteins that fail to form 
crystals. We matched this set of 267 proteins with the other 
266 proteins that were crystalized and for which the 
resolution of these crystals is uniform, i.e., we have 
sufficient and similar numbers of proteins over the entire 
range of the resolution. To derive this set of crystallizable 
proteins, we first downloaded the protein structures that were 
deposited between July 2006 and July 2016 in PDB [39]. We 



filtered the corresponding 204,440 protein chains based on 
five following steps. First, we removed peptides, i.e., protein 
chains with ≤ 30 amino acids (194,674 chains remain). 
Second, we deleted chains which contain over 1% of the 
non-standard amino acid X in the sequence (193,902 chains 
remain). Third, we eliminated sequences that cannot be 
matched with proteins in the UniProt (41,120 chains are 
left); this is necessary to ensure that we do not use multiples 
of the same protein in the dataset and that we can select the 
structure with the highest resolution to represent a given 
protein. Correspondingly, in the fourth step we clustered the 
remaining sequences using BLASTCLUST [40] with the 
coverage 100% (-L 1) and identity score (-S 100) for one of 
the sequences (-b F); for each resulting cluster, the sequence 
with maximal length and the highest resolution was selected 
to represent the cluster (7,254 chains are left). Fifth, we 
randomly chosen 19 proteins for each of the following 14 
resolution bins defined in ref. [36]: below 1.19Å, [1.19Å, 
1.22Å), [1.22Å, 1.26Å), [1.26Å, 1.30Å), [1.30Å, 1.36Å), 
[1.36Å, 1.42 Å), [1.42Å, 1.49Å), [1.49Å, 1.59Å), [1.5 Å, 
1.71Å), [1.71Å, 1.88Å), [1.88Å, 2.15Å), [2.15Å, 2.71Å), 
[2.71Å, 3.50Å], and over 3.50Å. This ensures that the 
resolution of the selected proteins is distributed over a wide 
resolution range, which is important for testing the relation 
between putative propensities for the structural 
determination and the diffraction resolution. The final 
dataset includes 533 proteins and is provided in the 
Supplementary Table S1. 

     We selected a set of representative methods for the 
prediction of propensity for structure determination to be 
included in this empirical analysis. We focused on modern 
and popular methods that are implemented as webservers 
and we used these webservers to collect their predictions. 
We also required that the considered methods output real-
valued propensities, in contrast to methods that generate only 
binary outcomes (crystallizable vs. non-crystallizable 
protein). The real-valued score is necessary to analyze the 
relation between the putative propensities and the resolution 
of protein structures. We included all methods that were 
published after 2013 that offer webservers (Table 1), such as 
fDETECT, PredPPCrys, XtalPred-RF, Crysalis and 
TargetCrys. We could not include Crysf since this method 
uses extra inputs, beyond the protein sequence that is used 
by all other methods, in the form of a functional TrEMBL 
profile. Consequently, Crysf can be applied to a subset of 
proteins that have sufficiently complete set of annotations in 
TrEMBL, which excludes some of the proteins in our 
benchmark dataset. In addition, we supplemented the five 
new predictors with two older and commonly cited methods 
which are available as webservers that offer batch 
predictions: XtalPred (published in 2007; 16 citations per 
year) and PPCpred (published in 2011; 8 citations per year). 
The availability of the batch prediction option has eased the 
efforts of securing predictions for our benchmark dataset. To 
sum up, we included seven methods in our empirical study. 

 

 

 

 

 

 

 

 

 

3.2. Assessment of the prediction of propensity for 
diffraction-quality crystallization 

    The seven predictors were used to predict propensity for 
crystallization for the proteins from the benchmark dataset 
and these predictions were compared with the experimental 
annotations. Fig. 1 summarizes the differences in the values 
of propensities generated by each of the seven predictors 
between the proteins that were crystallized and those that 
could not be crystallized. We also assessed the statistical 
significance of the differences between these two sets of 
propensities by performing the Wilcoxon rank sum test. We 
used this non-parametric test since the values of propensities 
are not normal, which we verified using the Anderson-
Darling test at the 0.05 significance.  Fig. 1 shows that the 
values of putative propensities for obtaining diffraction-
quality crystals are significantly different (p-value < 0.05) 
between crystallizable vs. non-crystallizable proteins for six 
out of the seven predictors on our benchmark dataset. This is 
expected given that these tools were designed specifically to 
differentiate between these two classes of proteins. 

Fig. 1. Values of putative propensity for diffraction-quality 
crystallization generated by the seven considered predictors 
for crystallizable and non-crystallizable proteins. The 
distributions of the values of propensities are represented 
using median and 25th and 75th centiles (error bars). The top 
of the plot summarizes the significance of the differences 
between the propensities for the crystallizable and non-
crystallizable proteins generated by the same predictor. 
Significance was quantified with the Wilcoxon rank sum 
test: ** when p-value<0.001, * when p-value<0.05. Values 
generated by XtalPred (XtalPred-RF), which are integers 
between 1 and 5 (1 and 11), were divided by 5 (11) to fit 
into the [0, 1] range. 
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Table 2. Predictive performance of protein sequence-based predictors of the propensity for diffraction-quality crystallization. The first row gives AUC values when 
the propensities are used to predict crystalizable vs. non-crystallizable proteins. The second and third rows provide AUC values when the propensities are used to 
predict crystallizable proteins with above average (<2.2) resolution and crystallizable proteins with high (<1.6) resolution from other crystallizable and non-
crystallizable proteins. The last two rows provide the values of Pearson correlation coefficient (PCC) between the putative propensity and resolution of crystallizable 
proteins, and the mean absolute error (MAE) measured between the putative propensity and resolution. When computing MAE we converted the values of putative 
propensities to fit them into the distribution of resolutions for proteins deposited in PDB. Bold font identifies methods that are used to implement the MetaXXC 
predictor. 
 
Type of analysis Metric TargetCrys PredPPCrys XtalPred XtalPred-RF PPCpred Crysalis fDETECT MetaXXC

Prediction of crystalizable vs. non-crystallizable proteins AUC 0.50 0.56 0.59 0.60 0.61 0.62 0.64 0.61 
Prediction of crystallizable proteins with above average  
resolution (<2.2 Å) vs. other proteins 

AUC 0.53 0.57 0.62 0.63 0.62 0.63 0.62 0.65 

Prediction of crystallizable proteins with high resolution 
(<1.6 Å) vs. other proteins 

AUC 0.50 0.58 0.60 0.61 0.65 0.65 0.62 0.63 

Relation between putative propensity and resolution of 
crystallizable proteins 

PCC -0.18 -0.06 -0.23 -0.25 -0.14 -0.09 0.02 -0.29 

MAE [Å] 0.79 0.84 1.66 1.46 0.78 0.82 0.89 0.77 
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Similar to recent articles [18a, 28-32, 34, 36], we 
measured the predictive performance of these predictors with 
the area under the receiver operating characteristic (ROC) 
curve (AUC). The AUC values range between 0.5 (for a 
random predictor) and 1 (for a perfect predictor) and are 
used to assess the real-valued propensities against the 
experimental annotations of crystallizable vs. non-
crystallizable proteins. The first row in Table 2 summarizes 
these results. Since these methods use protein sequence as 
the only input they achieve relatively modest values of AUC. 
The most accurate methods that obtain AUC ≥ 0.6 are 
XtalPred-RF, PPCpred, Crysalis and fDETECT. This is in 
agreement with Fig. 1 where the distributions of the 
propensities generated by these four methods are the most 
different between the crystallizable and non-crystallizable 
proteins. As expected XtalPred-RF is better than XtalPred, 
given that both were developed by the same group and the 
former superseded the latter. We note that these predictions 
are considered as reasonably accurate and can be used in a 
practical context, given the fact that the overall success rates 
of the X-ray crystallography are below 10% [12]. 

3.3. Application of the putative propensity for the 
diffraction-quality crystallization to predict resolution of 
protein crystals 

    The resolution quantifies the quality of the data collected 
from the crystal. If proteins in the crystal are perfectly 
aligned, then they will all scatter X-rays the same way and 
the diffraction pattern will show fine details of the protein 
structure. Higher quality structures have higher resolution 
but lower values of resolution. The resolution of the 
structures derived with X-ray crystallography typically 
ranges between about 0.5 Å and several Å. The average 
resolution of protein structures equals to 2.2 Å with the 
standard deviation of 1.2 Å (source: www.rcsb.org/). 
Roughly speaking, high quality structures (resolution < 1.2 
Å) provide accurate structural information for all atoms and 
amino acids, and are generally error-free. Good quality 
structures (resolution between 1.2 Å and 2.2 Å) may include 
inaccurate rotamers for some amino acids but the overall 
structure is typically correct. Acceptable-quality structures 
(resolution between 2.2 Å and 3.4 Å) have some amino acids 
with incorrect rotamer information and usually structure of 
parts of the protein surface is inaccurate. Low-quality 
structures (resolution above 3.4 Å) frequently have incorrect 
rotamer information and their surface is largely inaccurate. 
At over 4 Å resolution the secondary structure of the protein 
cannot be determined and as a result the 3-D structure is 
inaccurate. Apart from the observable impact on the quality 
of the structure, at least good quality is desirable when 
modeling with the protein structure, for instance for rational 
drug design [41] and to computationally model protein-
protein interactions [42].  

    Interestingly, a couple of recent works hypothesize that 
the putative propensities for diffraction-quality 
crystallization can be also used to predict the resolution of 
the resulting solved protein structures [18a, 36]. In 2014, the 
authors of ref. [36] observed that proteins that have higher 
resolution structures also on average have higher values of 
putative propensity generated with fDETECT. A similar 

conclusion was reached in 2016 for the predictions that 
combine results from Crysf and Crysalis [18a]. We followed 
up on these findings by evaluating and combining multiple 
predictors of propensities for structural determination. 

     Fig. 2 summarizes the differences in the values of 
propensities generated by each of the seven predictors 
between the crystallizable proteins that have high resolution 
(38 proteins with the highest resolution < 1.22 Å) and low 
resolution (38 proteins with the lowest resolution > 2.71 Å) 
in our benchmark dataset. We also assessed the significance 
of the differences between these two sets of propensities 
using the Wilcoxon rank sum test (the distributions of the 
propensity values are not normal). We note that three 
methods, namely XtalPred, XtalPred-RF and Crysalis, 
produce propensities that are significantly higher (p-
value<0.05) for proteins that have high resolution structures 
when compared to the proteins that have low resolution 
structures. We combined the outputs of these three methods 
using a simple average to devise a meta predictor, 
MetaXXC. As expected, the differences in the propensity 
values between high and low resolution proteins that are 
produced by MetaXXC are significant with p-value = 0.003 
(Fig. 2). This p-value is lower than the p-values for the base 
(input) predictors; p-value = 0.007 for Crysalis, 0.009 for 
XtalPred, and 0.015 for XtalPred-RF. Expectedly, this is in 
agreement with Fig. 2 where the distributions of the 
propensities generated by MetaXXC are the most different 
between the high resolution and low resolution structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

  Next, we investigated whether the putative propensity for 
the diffraction-quality crystallization generated by the seven 

Fig. 2. Values of putative propensity for diffraction-quality 
crystallization generated by the seven considered predictors 
for crystallizable proteins with high resolution (< 1.22 Å) 
and low resolution (> 2.71 Å). The distributions of the 
values of propensities are represented using the median and 
25th and 75th centiles (error bars). The top of the plot 
indicates the significance of the differences between 
propensities for the high and low resolution proteins 
generated by the same predictor. The significance was 
quantified with the Wilcoxon rank sum test: ** when p-
value<0.001, * when p-value<0.05. The integers values 
between 1 and 5 (1 and 11) generated by XtalPred 
(XtalPred-RF) were transformed to 1, 0.75, 0.5, 0.25, 0 (1, 
0.9, 0.8, …, 0.1, 0) to fit into the [0, 1] range.
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predictors and MetaXXC can be used to predict proteins 
with high resolution (<1.6 Å) and above average (<2.2 Å) 
resolution. The 1.6 Å cutoff is computed as the average 
resolution of structures in PDB, which equals 2.2 Å, minus 
0.5*standard_deviation of the resolution of proteins in PDB, 
which is 1.2 Å. The second and third rows in Table 2 
summarize these results. These AUC values are for the 
prediction of the crystallizable proteins with above average 
or with high resolution from other crystallizable and non-
crystallizable proteins. We observed that several methods, 
such as Crysalis, XtalPred-RF, PPCpred, XtalPred, and 
fDETECT, can relatively accurately (AUC > 0.6) predict 
proteins that have structures with the above average 
resolutions. The same five methods have AUC > 0.60 for the 
prediction of proteins with the high resolution structures. 
Moreover, MetaXXC secures the highest AUC = 0.65 for the 
former prediction and the third highest AUC = 0.63 for the 
latter prediction. These results suggest that targeting proteins 
which score high putative propensities for obtaining 
diffraction-quality crystals generated by these methods is 
likely to result in high-resolution structures. 

    To further investigate this point, we studied a relation 
between the propensities and the resolution of the structures 
of the 266 crystallizable proteins in our benchmark dataset. 
We computed the Pearson correlation coefficient (PCC) 
between the propensities and resolution (the fourth row in 
Table 2). The PCC values of all methods, except for 
fDETECT that secures near zero PCC, are negative. This 
reveals that higher propensities are characteristic of proteins 
with lower values of the resolution (i.e., proteins with higher 
resolution structures). The highest PCC = -0.29 is secured by 
MetaXXC, suggesting a modest degree of correlation 
between propensities and resolution. Moreover, propensities 
produced by three other methods, XtalPred-RF, XtalPred and 
TargetCrys, have correlation near or below -0.2. Next, we 
computed the mean absolute error (MAE) between the 
predicted and experimentally determined resolutions. The 
predicted resolution was computed from the putative 
propensities output by each of the eight methods, including 
MetaXXC, by normalizing it to the range of values of the 
experimental resolutions. The calculation process is as 
follows. First, propensities generated by each method are 
scaled to the unit range using the min-max normalization. 
Second, the score is inverted by subtracting the normalized 
value from 1; this results in a score that has a positive 
correlation with the resolution. Lastly, the resulting scores 
for a given predictor are fit into the distribution of 
resolutions of structures in PDB 
(http://www.rcsb.org/pdb/statistics/histogram.do?mdcat 
=refine&mditem=ls_d_res_high&minLabel=0&maxLabel=7
.01&numOfbars=700&name=Resolution). We fit the 
distribution using discrete intervals of size 0.01 Å to cover 
the range of resolution of the proteins in our benchmark 
dataset, which is between 0.48 and 7.01 Å. The last row in 
Table 2 summarizes these results. The MAE values range 
from 0.77 Å (for MetaXXC predictor) to 1.66 Å (for 
XtalPred method). Overall, we observe that the meta 
predictor secures the lowest value of MAE and the highest 
PCC. The higher values of MAE for XtalPred and XtalPred-
RF can be explained by the fact that these methods output 

only a small set of 5 and 11 possible values, respectively. 
Besides being impractical given that the resolution is a real 
number, this results in larger errors compared to methods 
that generate the real-valued outputs. The errors in the 0.8 Å 
range seem to be reasonably low given that the range of 
values of resolution in our benchmark dataset is about 6.5 Å 
and that the standard deviation of resolutions of protein 
structures in PDB 1.2 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 3 offers a closer look at the relation between the 
experimentally determined resolution and the resolution 
predicted by the best performing meta-predictor MetaXXC 
for our benchmark proteins. The shaded diagonal areas 
represent the space where the prediction error is smaller than 
half of the standard deviation of resolution of proteins 
structures in PDB (0.6 Å, dark shade) and smaller than the 
standard deviation (1.2 Å, light shade). The figure reveals 
that about 50% of predictions are within half of the standard 
deviation from the experimentally determined resolution and 
about 80% are within the standard deviation.  

 

 

 

 

Fig. 3. Relation between the putative resolution values 
generated with the MetaXXC method and the experimental 
structure resolution values for the crystallizable proteins. 
Each point denotes a protein from the benchmark dataset. 
The putative resolution was computed by normalizing the 
putative propensities for obtaining the diffraction-quality 
crystals output by MetaXXC to the range of values of 
experimental resolutions in PDB. The shaded diagonal 
areas represent the space where the prediction error is 
smaller than half of the standard deviation of resolution of 
proteins structures in PDB (0.6 Å, dark shade) and smaller 
than the standard deviation of resolution of proteins 
structures in PDB (1.2 Å, light shade). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Interestingly, PDB includes multiple structures of certain 
protein chains. Often these proteins are complexed with 
different ligands (e.g., carbonic anhydrase II in structures 
2NNG, 2NNO, 3CYU, etc.; transthyretin in structures 3TCT, 
4QXV, 4IIZ, etc.) or part of multimer mutants where 
mutations are present in the other proteins involved in the 
complex (e.g., proteins in the 20S proteasome in structures 
5FG7, 4QV9, 4QV3, etc.). Consequently, although these 
structures are for the same proteins, they may have different 
resolutions. We collected clusters of structures of the same 
protein chains to investigate how well the putative 
propensity for the diffraction-quality crystallization 
generated for the same chain represent the distributions of 
the resolutions of these protein structure clusters. First, we 
collected and clustered all identical chains in PDB structures. 
Next, we selected clusters that include at least ten chains. 
Finally, for each cluster we computed an average number of 
chains in the PDB structures that include the corresponding 
chain (size of the protein assembly) and we removed clusters 
where this average number of chains > 4. The latter aims to 
exclude cases where the resolution of the protein chains in 
the cluster is heavily dependent on the many other chains in 
the PDB structure. Consequently, we collected 24 clusters of 
structures of identical protein chains, whose size ranges from 
16 structures (in the case of chaperone heat shock protein 90) 
to 355 structures (in the case of lysozyme C). The clusters 
are provided in the Supplementary Table S2. Fig. 4 shows 
the range of experimentally determined resolutions of the 
structures in each cluster, including the median value 
represented by the circles, together with the resolution 
predicted with the best performing MetaXXC method 
(denoted by cross shaped markers). Each cluster is 
accompanied by one prediction since all corresponding 
protein sequences are identical. The predicted resolution is 

within the range of experimentally determined resolution 
ranges of a given cluster for 87% of clusters (21 out of 24). 
The mean absolute difference between the putative 
resolution and the median resolution of the structures in 
clusters equals 0.43 Å and difference is below 1 Å for all but 
two clusters. For 16 out of 25 clusters, the difference is 
below 0.50 Å. Overall, we conclude that putative resolution 
produced by the meta method agrees with the range of 
experimentally determined resolutions, suggesting that the 
information extracted from the protein sequence can indeed 
be used to quantitatively characterize the resolution of 
protein crystals. 

4. CONCLUSIONS 

      We reviewed a comprehensive set of 22 computational 
methods that predict the propensity of successful completion 
of several protein production and structure determination 
steps solely from the protein sequences. We found that most 
of these models are easily accessible to the end users, as 
either webservers and/or standalone software, and that some 
methods are well cited, suggesting that they are being 
reasonably well utilized by the scientific community. An 
empirical analysis of the predictive performance of a 
selected set of seven representative predictors reveals that 
they output quite accurate values of propensity for the 
diffraction-quality crystallization. Using a new benchmark 
dataset, we found that six methods generated values that are 
significantly larger for the crystallizable proteins when 
compared to the proteins that could not be crystallized. 
Moreover, we summarized results of a first-of-its kind study 
of a relation between the putative propensities for the 
diffraction-quality crystallization and the resolution of the 
crystallizable proteins. We found that the Crysalis, XtalPred 
and XtalPred-RF methods produce propensities that are 
significantly higher for the proteins that have high resolution 
structures available in PDB compared to the low resolution 
structures. Based on this observation, we devised a meta 
predictor, MetaXXC, by averaging the propensities 
generated by these three methods. The propensities 
generated by each of the eight methods, including 
MetaXXC, can be converted into putative values of 
resolution by normalizing them to the range of 
experimentally determined values of resolution. Our 
empirical analysis demonstrates that the putative propensities 
computed from the output of MetaXXC have modest 
correlation with the experimentally determined resolutions 
and the mean absolute difference between the experimental 
and putative propensities equals 0.77 Å. We observed that 
the meta predictor offers the lowest value of MAE and the 
highest PCC when compared with the other seven considered 
methods. We also found that the resolutions predicted with 
MetaXXC agree well with the distributions of resolutions of 
multiple structures for identical protein chains that can be 
found in PDB. The putative resolution values are on average 
within 0.43 Å from the median resolution of the clusters of 
structures of identical protein chains. Altogether, we 
conclude that the information extracted from the protein 
sequences can be used to quite accurately predict whether the 
structure of a given protein sequence can be solved using X-

Fig. 4. Relation between the putative resolution values 
generated with the MetaXXC method and the range of 
experimentally determined resolutions for protein clusters 
collected from PDB. Each cluster includes the same protein 
chain that has multiple solved structures in PDB. The 
distributions of the values of experimentally determined 
resolutions are represented using the median (hollow circle 
marker) and maximum and minimum values (error bars). 
The number of protein structures in a given cluster is given 
below the error bars. Clusters are sorted in the ascending 
order according to the experimentally determined value of 
resolution. 
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ray crystallography and to predict resolution of the resulting 
protein crystals. 
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