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a b s t r a c t

We expand studies of AlphaFold2 (AF2) in the context of intrinsic disorder prediction by comparing it 
against a broad selection of 20 accurate, popular and recently released disorder predictors. We use 25% 
larger benchmark dataset with 646 proteins and cover protein-level predictions of disorder content and 
fully disordered proteins. AF2-based disorder predictions secure a relatively high Area Under receiver op-
erating characteristic Curve (AUC) of 0.77 and are statistically outperformed by several modern disorder 
predictors that secure AUCs around 0.8 with median runtime of about 20 s compared to 1200 s for AF2. 
Moreover, AF2 provides modestly accurate predictions of fully disordered proteins (F1 = 0.59 vs. 0.91 for the 
best disorder predictor) and disorder content (mean absolute error of 0.21 vs. 0.15). AF2 also generates 
statistically more accurate disorder predictions for about 20% of proteins that have relatively short se-
quences and a few disordered regions that tend to be located at the sequence termini, and which are absent 
of disordered protein-binding regions. Interestingly, AF2 and the most accurate disorder predictors rely on 
deep neural networks, suggesting that these models are useful for protein structure and disorder predic-
tions.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

Intrinsically disordered proteins (IDPs) include one or more in-
trinsically disordered region(s) (IDR) that are absent of a well-de-
fined equilibrium structure under physiological conditions [1–3]. 
Bioinformatics studies suggest that IDPs are relatively common in 
nature, with about a third of eukaryotic proteins that have long IDRs, 
which are defined as regions with over 30 consecutive amino acids 
[4–7]. IDPs contribute to many cellular functions, such as signaling, 
transcription, translation, molecular assembly, molecular recogni-
tion, cell cycle regulation, formation of membraneless organelles, 
and many others [8–15]. They are also found across several cellular 
compartments [16,17]. The sequences and amino acids that form 
IDRs have specific/intrinsic biases including depletion in aromatic 
and bulky hydrophobic amino acids, enrichment in polar and 
charged residues, and low compositional complexity [18–23]. These 
biases make intrinsic disorder predictable from protein sequences. 

Consequently, many sequence-based computational predictors of 
intrinsic disorder were developed over the last few decades, with the 
first method that was published in 1979 [24]. Well over 100 disorder 
predictors were developed so far [25–29]. The disorder prediction 
community recently organized and published a large-scale com-
parative assessment of predictors, the Critical Assessment of protein 
Intrinsic Disorder prediction (CAID) experiment [30]. It compara-
tively evaluated 43 methods concluding that some of the more re-
cently released tools produce relatively accurate results. In 
particular, CAID and a subsequent empirical analysis found that deep 
natural network-based methods produce the most accurate results 
and outperform other types of predictive models [31].

Parallel to these efforts, significant work has been done to de-
velop and advance methods that predict protein structure from se-
quences. Arguably the key event that measures progress in the 
structure prediction field is the biennial Critical Assessment of 
techniques for protein Structure Prediction (CASP) experiment. 
CASP14, which is the most current published edition, showed that 
AlphaFold2 (AF2) provides a breakthrough by generating high 
quality structure predictions [32,33]. This tool relies on a 
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sophisticated deep network architecture that takes advantage of 
multiple sequence alignments [34,35]. The impact of AF2 was fur-
ther amplified by the release of the database of AlphaFold2-pre-
dicted structures, AlphaFoldDB [36,37]. The most recent version of 
this resource provides access to the structure predictions for over 
214 million proteins, covering nearly the entire UniProt repository 
[38]. Interestingly, there are several databases of the intrinsic dis-
order predictions that also include millions of proteins [39], such as 
Database of Disorder Protein Predictions (D2P2) [40], MobiDB [41], 
and DescribePROT [42].

A recent commentary uses a popular movie analogy to char-
acterize the AF2 predictions as “the good, the bad and the ugly”, 
which correspond to the majority of accurate predictions, some poor 
quality predictions, and the ugly predictions for the sequences of 
IDRs, respectively [43]. While AF2 cannot reliably predict “struc-
tures” of IDRs since they are devoid of well-defined structures, an 
interesting question is whether it can accurately identify where the 
disordered regions are in an input protein sequence, which is the 
objective of the disorder predictors. A few studies looked into this 
question and two alternative approaches were devised to produce 
scores that can be used to predict IDRs using outputs generated by 
AF2. The first approach was proposed in the AF2 article and it relies 
on predicted local distance difference test (pLDDT) values, the per- 
amino acids confidence scores output directly by AF2 [35]. The 
second way takes advantage of a previously made observation that 
the disordered regions have substantially larger surface area com-
pared to the structured regions [44]. Consequently, a few subsequent 
works use relative solvent accessibility (RSA) generated from the 
AF2-predicted structure to identify IDRs [45–47].

We summarize three studies that quantify predictive quality of 
the AF2-derived scores for the disorder prediction in Table 1. The 
first study applied AF2 to predict disorder and for several other tasks 
including prediction of ligand binding sites and structures of protein 
complexes [45]. The authors showed that the AF2-based disorder 
predictions are better than the results from a popular disorder 
predictor, IUPred2, but they did not include other more accurate 
disorder predictors [30]. Two subsequent studies performed broader 
analyses [46,47]. They used the main test dataset from the recent 
CAID experiment [46], which was collected from the DisProt data-
base [48], and compared AF2 to 8 and 10 disorder predictors that 
secured accurate results in CAID. Both studies concluded that AF2- 
based disorder predictions are relatively accurate, however, some 
disorder predictors outperform the AF2-generated results.

While the three studies listed in Table 1 provide useful ob-
servations, they also share a number of drawbacks that we address. 
We compare AF2 against a much larger collection of 20 disorder 
predictors that include the best tools based on the CAID experi-
ment [30], which were also included in the past studies [45–47], 
several popular/highly-cited approaches, and a selection of recent 
methods that were published after CAID ended. We consider both 
the RSA-based and the pLDDT-based disorder predictions for AF2 
while one of the past studies did not utilize the RSA-based ap-
proach [46] that was shown to outperform the pLDDT-based dis-
order predictions [47]. Moreover, we extend scope of the three 
published articles that focused on the residue-level disorder pre-
dictions by additionally covering protein-level predictions of dis-
order content (i.e., the overall fraction of disordered residues in the 
protein sequence) and fully disordered proteins. The latter two 
aspects are commonly evaluated in the disorder prediction field 
[30,49–51]. Furthermore, we investigate several other practical 
aspects, such as runtime and predictive performance for specific 
types of IDPs including those with short IDRs, long IDRs, and 
binding IDRs. We also formulate criteria that identify proteins for 
which AF2 predicts disorder more accurately vs. proteins where 
current disorder predictors excel.
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2. Materials and methods

2.1. Datasets

We benchmark AF2 and disorder predictors on the complete 
main test dataset from the CAID experiment with 646 proteins that 
relies on the disorder annotations from DisProt [30]. We down-
loaded the disorder annotations from https://idpcentral.org/caid/ 
data/1/reference/disprot-disorder.txt and the disordered binding 
annotations from https://idpcentral.org/caid/data/1/reference/dis-
prot-binding.txt; we use the latter to identify binding IDRs. Two 
most recent evaluations of AF2-based disorder predictions also 
sourced their test data from the CAID assessment [46,47]. However, 
one of them utilized 475 of the 646 test proteins (74%) while the 
second is limited to 489 of 646 test proteins (76%). We use 646 
protein sequences with 336,595 residues, among which there are 
831 IDRs that are composed of 54,604 disordered residues, and 255 
binding IDRs containing 21,294 disordered binding residues.

We apply these data to create a few additional datasets that in-
clude IDPs with specific types of IDRs selected based on their size, 
location, and function. We separate IDRs by size into long regions 
(> 30 consecutive residues) vs. short regions (≤30). This threshold 
was used in past works [4,49], and it roughly divides IDRs into those 
that are long enough to correspond to protein domains [52] vs. 
shorter region that may serve as linkers or loops in folded proteins 
[49]. We also consider location of IDRs in the sequence, in particular 
separating IDRs that are at the sequence termini vs. those inside the 

protein chain, given their different functional roles [53]. Moreover, 
we identify a functional subclass of IDRs that are involved in binding 
to partner molecules, which is often accompanied by binding in-
duced folding [54–56]. Correspondingly, we develop four datasets 
that include IDPs that have: 1) only short IDRs (shortIDR); 2) at least 
one long IDR (longIDR); 3) at least one binding IDR (bindingIDR); 
and 4) no IDRs at the sequence termini (non-terminusIDR). The 
binding IDRs are annotated at the region level, which means that an 
entire IDR is annotated as binding even if only some of its residues 
interact with a ligand. This is consistent with the annotations in 
DisProt and the CAID experiment [30,48]. We illustrate a few ex-
amples that represent these four types of disordered proteins in 
Fig. 1. We also establish collections of fully disordered proteins 
(FDPs) following the approach from the CAID experiment [30], i.e., 
assuming that proteins with a high disorder content set at few dif-
ferent cut-offs (99%, 90%, and 80%) are fully disordered (i.e., FDP99, 
FDP90, and FDP80 datasets, respectively). We summarize the re-
sulting datasets in Table 2.

2.2. Disorder predictions

We compare predictions generated by AF2 with 20 disorder 
predictors that we identified in three complementary ways. First, we 
include the top 10 disorder predictors from the CAID experiment 
[30] (in alphabetical order): AUCpreD [57], AUCpreD-np[57], Dis-
oMine[58], EspritzD[59], flDPlr[60], flDPnn[60], RawMSA[61], SPOT- 
Disorder1[62], SPOT-Disorder2[63], and Single-Disorder-Single[64]. 

Fig. 1. Illustrative examples of proteins that represent the four types of intrinsically disordered proteins: shortIDR (i.e., have only short IDRs), longIDR (have at least one long IDR), 
bindingIDR (have at least one binding IDR); and non-terminusIDR (do not have IDRs at the sequence termini). We identify proteins by their DisProt and UniProt identifiers. We 
draw IDRs as brown (for non-binding) and purple (for binding) segments.
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Second, we include six most cited predictors based on the citation 
analysis from [65] (in alphabetical order): DisEMBL-465[66], Dis-
EMBL-HL[66], DISOPRED3[67], IUPred-short[68], IUPred-long[68], 
and VSL2B[69]. Third, we include four predictors that were released 
after CAID experiment was completed: ODiNPred [70], IDPseq2seq 
[71], Metapredict [72], and RFPR[73]. We collected predictions of the 
top 10 predictors and the six most cited predictors directly from the 
CAID assessment data at https://idpcentral.org/caid/data/1/predic-
tions/. We used webservers and standalone programs provided by 
the authors to collect predictions of the four most recent tools.

2.3. AlphaFold2 predictions

The two published studies relied on the pre-computed AF2′s 
predictions from the AlphaFoldDB database, which caused their 
partial coverage at about 75% of the CAID dataset [46,47]. We col-
lected prediction directly by using the standalone AF2 software. This 
allowed us to improve the coverage and measure the AF2 runtime. 
We were able to make predictions for 632 proteins out of the 646 
proteins in the CAID dataset (98% coverage). As we discuss in the 
introduction, there are two ways to use the AF2′s predicted structure 
to compute residue-level scores that can be used for the disorder 
prediction. The original approach introduced by the authors of AF2 is 
to use the pLDDT values. Correspondingly, we define AF2-pLDDT 
disorder prediction as pLDDT1 /100. The other way, which we call 
AF2-RSA, relies on the RSA values computed from the putative 
structure that are processed using a sliding window of size 25 [47]. 
The RSA is calculated by normalizing the DSSP calculated solvent 
accessibility using the maximum accessibility of a fully extended 
Gly-X-Gly peptide [74]. We use the implementation from https:// 
github.com/BioComputingUP/AlphaFold-disorder to generate AF2- 
RSA disorder prediction.

The outputs of AF2 include five ranked structure predictions. We 
consider two scenarios: the default scenario where we use the top- 
ranked prediction vs. the optimized-rank scenario where we use one 
of the five structure models that produces the most accurate dis-
order prediction. The second scenario simulates a hypothetical 
prediction where the AF2′s models would be optimally re-ranked to 
maximize quality of the disorder predictions.

The experimental annotations of disorder from CAID, the AF2- 
pLDDT and AF2-RSA disorder predictions, and the results produced 
by the 20 disorder predictors are available in Supplementary 
Dataset S1.

2.4. Metrics for the evaluation of disorder predictions

Disorder predictions include two values that are generated for 
each amino acid in an input protein sequence: real-valued propen-
sities and binary scores. The latter categorize residues as either 
disordered or ordered, and they are typically derived from the pro-
pensities using a cut-off, i.e., residues with propensities above the 
cut-off are predicted as disordered and otherwise they are predicted 

as ordered. We apply metrics that were utilized in recent disorder 
prediction assessments to evaluate predictions for both output types 
[27,30,31,47,75]. We assess the putative propensities with two 
popular metrics: area under receiver operating characteristic curve 
(AUC) and area under the precision-recall curve (AUPRC). We gen-
erate the binary predictions from the propensities produced by each 
predictor using a threshold that results in the correct number of 
disordered residues over the entire CAID dataset. This adequately 
calibrates the binary predictions between methods and facilitates 
direct comparisons. These thresholds are listed in Table 3. We 
evaluate binary predictions using several measures including Mat-
thew correlation coefficient (MCC), F1, and sensitivity:

F
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TP FP FN
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2*
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+ +
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TP TN FP FN

TP FP TP FN TN FP TN FN
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+

where TP and TN are the numbers of correctly predicted disordered 
and structured residues, respectively; FN is the number of dis-
ordered residues incorrectly predicted as structured residues; and FP 
is the number of structured residues incorrectly predicted as dis-
ordered residues. We use AUC, AUPRC, MCC and F1 to evaluate the 
residue-level disorder predictions.

We follow CAID and use the F1 and sensitivity metrics to evaluate 
the protein-level predictions of the fully disordered proteins, i.e., 
application of disorder predictors to identify whether a given se-
quence is fully disordered or not. The protein-level predictions of 
disorder content (% of disordered residues in the protein) require 
separate metrics since both the prediction and the native annotation 
are real-valued. We compute the native content values as the frac-
tion of the native disordered residues in a given protein chain. We 
calculate the predicted content values as the fraction of the binary 
predictions of disorder that are established using the calibration cut- 
off. We follow past research on the disorder and secondary structure 
content prediction [51,76,77] and use the Mean Squared Error (MAE) 
and the Spearman Correlation Coefficients (SCC) to quantify the 
accuracy of the disorder content predictions:

MAE
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where n is the number of proteins in the dataset, ai are the native 
content values, xi are the predicted content values, and di is the 
difference of ranks between the predicted and the native content 
values. We opt to apply SCC rather than the Person correlation 
coefficient since the latter is more susceptible to outliers.

2.5. Statistical analysis

We assess statistical significance of differences in predictive 
performance between disorder predictions generated by different 
methods. In particular, we compare all predictors against the top- 
ranked method, AF2-pLDDT and AF2-RSA. These tests aim to eval-
uate robustness of the differences over different datasets, which is 
why we compare results using several different subsets of the test 
datasets, which are either disjoint or have a small overlap. For the 
residue-level tests and the protein-level disorder content tests on 
the CAID, shortIDR, longIDR, bindingIDR, and non-terminusIDR da-
tasets we perform significance tests using 20 disjoint set of 5% 
proteins, selected at random. The protein-level assessment for the 

Table 2 
Datasets that we use in the comparative analysis. 

Dataset name Number of 
proteins

Number 
of IDRs

Number of 
disordered 
residues

Median 
IDR 
length

CAID 646 831 54,604 34
shortIDR 226 281 5062 17
longIDR 420 550 49,542 61
bindingIDR 231 285 23,366 54
non-terminusIDR 318 387 17,971 26
FDP99 45 45 7201 136
FDP90 49 49 8041 138
FDP80 56 57 8986 132
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prediction of fully disordered proteins has smaller number of posi-
tive samples (between 45 and 56 fully disordered proteins), which is 
why we use a larger sampling rate to be able to reliably estimate 
predictive quality. Thus, we use 20 sets of 20% proteins for the as-
sessments on the FDP99, FDP90, and FDP80 datasets. We perform 
paired t-test (using the same sampled datasets) if the underlying 
measurements are normal; otherwise, we use the Wilcoxon rank 
test. We test normality with the Anderson-Darling test at the p-value 
of 0.05.

3. Results and discussion

3.1. Comparative evaluation of the residue-level disorder predictions

This is a typical assessment scenario that was considered by the 
past studies that evaluated AF2 [46,47]. We compare AF2-pLDDT and 
AF2-RSA against the 20 disorder predictors that cover the best per-
formers in CAID, popular methods and recently published tools. 
Table 3 summarizes these results.

We observe that AF2-RSA performs significantly better that AF2- 
pLDDT across the four metrics (p-value < 0.05). Similar observation 
was made in ref. [47], although without assessing statistical sig-
nificance of the differences. The pLDDT scores estimate the degree of 
agreement between the predictions and the experimental structure 
and so they could indicate that prediction is poor because the cor-
responding part of the “structure space” is not accurately covered by 
the deep network model or because that part of the sequence is 
disordered. On the other hand, unusually high solvent accessibility 
implies lack of structure, which seems to be a better proxy for the 
intrinsic disorder.

The optimized rank version of AF2-pLDDT performs slightly 
better than the regular AF2-pLDDT with AUC = 0.737 vs. 0.722, but 
this improvement is not statistically significant (p-value > 0.05). The 
improvement for the AF2-RSA is a little bigger, with AUC = 0.785 for 
the optimized rank version vs. 0.768 for the regular AF2-RSA, and 
this difference is statistically significant (p-value < 0.05). This sug-
gests that AF-RSA based approach to the disorder prediction could be 

further improved by reranking the predicted models in a way that 
reflects their capability for the intrinsic disorder prediction.

The overall best disorder predictor is flDPnn, which agrees with 
the results in CAID [30,78]. We find that flDPnn’s predictions are 
statistically better than the AF2-RSA approach, with AUC = 0.814 vs. 
0.768 (p-value < 0.05) and F1 = 0.46 vs. 0.34 (p-value < 0.05). Overall, 
four disorder predictors perform better than AF2-RSA, including 
flDPnn, flDPlr (a version of flDPnn that uses a logistic regression 
model instead of the deep neural network), rawMSA, and Espritz-D. 
The results in ref. [47] are similar and show that AF2-RSA is ranked 
sixth after flDPnn, flDPlr, rawMSA, ESpritz-D and DisoMine. The 
slight difference stems from the fact that we use the entire CAID 
dataset while that study uses about 76% of the CAID proteins. The 
four methods that were published after CAID experiment was 
completed, IDPseq2seq [71], Metapredict [72], ODiNPred [70], and 
RFPR [73] perform modestly well with AUCs of 0.754, 0.746, 0.734, 
and 0.721, respectively. Using the AUC values, we find that AF2-RSA 
is statistically better than Metapredict, ODiNPred and RFPR (p- 
value < 0.05) while the overall best flDPnn outperforms the four 
tools (p-value < 0.05).

The top five predictors of disorder (flDPnn, flDPlr, rawMSA, 
ESpritz-D and AF2-RSA) are characterized by a wide spectrum of 
runtime values. CAID evaluated the runtime and the corresponding 
median per-protein values range between 8 s for ESpritz-D, 20 s for 
flDPnn and flDPlr, and about 300 s for rawMSA [47]. We measured 
the per-protein runtime for AF2-RSA, which has the median value of 
1270 s, with 5th and 95th percentile runtimes of 980 and 3850 s, 
respectively. This includes the median time of about 980 s to pro-
duce multiple alignment (5th percentile of 810 s and 95th percentile 
of 1870 s) with the remaining runtime spent on encoding the net-
work inputs from the alignment and processing these inputs 
through the deep network. While we use a different hardware ar-
chitecture than CAID, which means that our estimate should not be 
directly compared to the CAID’s results, the magnitudes of the dif-
ferences are so substantial that we argue that AF2-RSA is at least 50 
times slower than the better performing flDPnn and ESpritz-D 
methods. However, we note that pre-computed AF2 predictions are 
available for millions of proteins [36], which effectively nullifies the 

Table 3 
Comparative assessment for the residue-level disorder predictions on the CAID dataset. We sort predictors by the area under receiver operating characteristic curve (AUC) values. 
The “Threshold” column provides the cut-off values that we use to convert the real-valued propensities into the binary scores. We assess statistical significance of the differences 
when compared with the top-ranked flDPnn, AF2-RSA, and AF2-pLDDT, which we highlight using bold font; we show results next to the measured metric using the x|y|z format, 
where x denotes that flDPnn is significantly better (+), worse (-), and not different (=) than the results from a given predictor at p-value = 0.05; y compares against AF2-RSA; and z 
compares against AF2-pLDDT. Acronyms: area under the precision-recall curve (AUPRC) and Matthew correlation coefficient (MCC). 

Predictor Threshold Coverage (%) AUC AUPRC MCC F1

flDPnn 0.337 100 0.814 /-/- 0.475 /-/- 0.358 /-/- 0.462 /-/-
flDPlr 0.417 100 0.793 + /-/- 0.422 + /-/- 0.323 + /- /- 0.433 + /-/-
AF2-RSAoptimized-rank 0.857 98 0.785 + /-/- 0.357 + /-/- 0.248 + /= /- 0.380 + /= /-
RawMSA 0.683 100 0.780 + /= /- 0.414 + /-/- 0.288 + /= /- 0.404 + /-/-
Espritz-D 0.477 100 0.774 + /= /- 0.410 + /-/- 0.289 + /-/- 0.406 + /-/-
AF2-RSA 0.847 98 0.768 + / /- 0.325 + / /- 0.203 + / /- 0.343 + / /-
DisoMine 0.563 100 0.765 + /= /- 0.388 + /- /- 0.244 + /= /- 0.367 + /= /-
SPOT-Disorder2 0.824 94 0.760 + /= /- 0.340 + /= /- 0.200 + /= /- 0.351 + /= /-
AUCpred 1.000 100 0.757 + /= /- 0.479 = /-/- 0.258 + /= /- 0.399 + /-/-
SPOT-Disorder-Single 0.764 100 0.757 + /= /- 0.318 + /= /- 0.221 + /= /- 0.348 + /= /-
IDPseq2seq 0.976 100 0.754 + /= /- 0.322 + /= /- 0.209 + /= /- 0.339 + /= /-
AUCpred-np 1.000 100 0.751 + /+ /- 0.428 + /-/- 0.226 + /= /- 0.349 + /= /-
Metapredict 0.615 100 0.746 + /+ /- 0.340 + /= /- 0.241 + /= /- 0.365 + /= /-
SPOT-Disorder1 0.945 100 0.744 + /+ /- 0.268 + /+ /= 0.143 + /+ /= 0.284 + /= /=
IUPred-short 0.613 100 0.739 + /+ /= 0.311 + /= /- 0.221 + /= /= 0.349 + /= /-
AF2-pLDDToptimized-rank 0.657 99 0.737 + /+ /= 0.289 + /= /= 0.160 + /= /= 0.290 + /= /=
IUPred-long 0.719 100 0.737 + /+ /= 0.298 + /= /= 0.218 + /= /- 0.346 + /= /-
ODiNPred 0.996 100 0.734 + /+ /= 0.314 + /+ /= 0.207 + /= /- 0.330 + /= /-
VSL2B 0.905 100 0.732 + /+ /= 0.301 + /= /- 0.203 + /= /- 0.333 + /= /-
AF2-pLDDT 0.628 99 0.722 + /+ / 0.272 + /+ / 0.137 + /+ / 0.278 + /+ /
RFPR 1.000 100 0.721 + /+ /= 0.338 + /= /- 0.109 + /+ /= 0.219 + /+ /+
DISOPRED3 0.965 100 0.701 + /+ /+ 0.290 + /= /= 0.122 + /+ /= 0.263 + /+ /=
DisEMBL-465 0.533 100 0.685 + /+ /+ 0.283 + /+ /= 0.196 + /+ /- 0.328 + /= /-
DisEMBL-HL 0.131 100 0.654 + /+ /+ 0.274 + /+ /= 0.170 + /+ /= 0.302 + /= /=
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runtime constrains as long as the protein of interest is included in 
the corresponding database.

Moreover, Table 3 provides coverage values that quantify how 
many proteins from the CAID datasets were successfully predicted 
by a given tool, rounded to a nearest percentage point. AF2-RSA 
failed to produce predictions for about 2% of the test proteins, 
compared to flDPnn, flDPlr, rawMSA and ESpritz-D that secure the 
100% coverage. The lowest coverage of about 94% is for SPOT-Dis-
order2, which is limited to predicting proteins with sequences 
shorter than 750 amino acids. This aspect again gives a slight ad-
vantage to the modern disorder predictors that provide higher levels 
of coverage.

Altogether, our analysis suggests that the best disorder predictors 
outperform the AF2-based disorder predictions by a substantial 
margin, are substantially faster, and provide a slightly higher cov-
erage.

3.2. Comparative evaluation of the residue-level disorder predictions for 
different types of disordered proteins

We investigate whether predictive quality varies across different 
types of disordered proteins including those that have only short 
IDRs (shortIDR dataset), that have at least one long IDR (longIDR 
dataset); that do not have IDRs at the sequence termini (non- 
terminusIDR dataset), and disordered proteins with binding IDRs 
(bindingIDR dataset). Table 4 summarizes these results while using 
AUC values to quantify the predictive performance.

The predictive quality varies rather considerably between these 
different types of IDPs. Proteins with long IDRs are the easiest to 
predicts, where an average AUC of the top four disorder predictors is 
0.807, AF2-RSA’s AUC is 0.793 and the average AUC across all 
methods that exclude the optimized rank versions of AF2 is 0.763. 
We speculate that a potential explanation for that is that AF2-RSA 
and disorder predictors, which utilize a sliding window approach 
(i.e., disordered status of the residue in the middle of a sequence 
segment/window is predicted using information about all residues 
in that window), benefit from a strong signal that long IDRs provide. 
In other words, for long IDRs many/majority of residues in a window 

are disordered, allowing predictive models to more easily differ-
entiate such window from a window that covers structured residues. 
The IDPs with binding IDRs are the second easiest to predict, with 
the corresponding AUCs of 0.758 (the top 4 average), 0.721 (AF2- 
RSA), and 0.690 (all average), respectively. The binding IDRs typically 
fold upon binding, and some can fold into multiple different con-
formation depending on the particular ligand that they interact with 
[79,80]. This arguably makes them more similar to structured re-
gions when compared to IDRs that do not fold, which in turn should 
make binding IDRs harder to predict. One plausible explanation why 
proteins with binding IDRs are predicted with relatively high accu-
racy is that these IDRs are also rather long (Table 2). This is in 
contrast with the other two classes of IDPs, which include much 
shorter IDRs (Table 2) and which are substantially more difficult to 
predict accurately, with AUCs mostly below 0.7 (Table 4). More 
specifically, AUC for the IDPs that lack IDRs at the termini are 0.703 
(top 4 average), 0.690 (AF2-RSA), and 0.669 (all average); and for 
IDPs with short IDRs they are 0.701, 0.653, and 0.652, respectively. 
We note that these trends are consistent across the AF2-based pre-
dictions and the results generated by the disorder predictors. The 
most accurate predictions across all four types of IDPs are secured by 
flDPnn, which is consistently statistically better than all other tools 
(p-value < 0.05). The flDPnn’s AUCs range between 0.824 for IDPs 
with the long IDRs and 0.744 for the IDP with the non-ter-
minus IDRs.

3.3. Comparative evaluation of the protein-level disorder content 
predictions

We study accuracy of the disorder predictors and AF2 in the 
context of estimating the per-protein disorder content (Table 5). We 
find that the mean absolute errors (MAEs) and Spearmen correlation 
coefficients (SCCs) vary considerably between the predictors. The 
best results are produced by flDPnn, with MAE = 0.152 and relatively 
high correlation of 0.59. These predictions are statistically better 
than the result of all other methods (p-value < 0.05), except for 
DisEMBL that produces only slightly higher MAE of 0.161. Interest-
ingly, both versions of DisEMBL and IUPred-short obtain low values 

Table 4 
Comparative assessment of the AUC values for the residue-level disorder predictions for datasets that consider short IDRs (shortIDR), long IDRs (longIDR), binding IDRs 
(bindingIDR), and proteins with no IDRs at the sequence termini (non-terminusIDR). We sort predictors by their area under receiver operating characteristic curve (AUC) values on 
the CAID dataset (Table 3). We assess statistical significance of the differences when compared with the top-ranked flDPnn, AF2-RSA, and AF2-pLDDT, which we highlight using 
bold font; we show results next to the measured metric using the x|y|z format where x denotes that flDPnn is significantly better (+), worse (-), and not different (=) than the 
results from a given predictor at p-value = 0.05; y compares against AF2-RSA; and z compares against AF2-pLDDT. 

Predictor longIDR shortIDR bindingIDR non-terminusIDR

flDPnn 0.824 /-/- 0.755 /-/- 0.795 /-/- 0.744 /-/-
flDPlr 0.805 + /-/- 0.728 + /-/- 0.767 + /- /- 0.724 + /= /-
AF2-RSAoptimized-rank 0.807 + /-/- 0.669 + /-/- 0.739 + /-/- 0.710 + /= /-
RawMSA 0.805 + /-/- 0.660 + /= /- 0.731 + /-/- 0.687 + /= /=
Espritz-D 0.795 + /= /- 0.661 + /-/- 0.739 + /-/- 0.655 + /= /=
AF2-RSA 0.793 + / /- 0.653 + / /- 0.721 + / /- 0.690 + / /-
DisoMine 0.784 + /+ /- 0.676 + /-/- 0.721 + /= /- 0.652 + /= /=
SPOT-Disorder2 0.782 + /+ /- 0.658 + /= /- 0.707 + /+ /- 0.660 + /= /=
AUCpred 0.768 + /+ /- 0.681 + /-/- 0.688 + /+ /- 0.684 + /= /=
SPOT-Disorder-Single 0.774 + /+ /- 0.641 + /+ /- 0.689 + /+ /- 0.677 + /= /=
IDPseq2seq 0.773 + /+ /- 0.644 + /+ /- 0.676 + /+ /- 0.669 + /= /=
AUCpred-np 0.766 + /+ /- 0.668 + /-/- 0.683 + /+ /- 0.673 + /= /=
Metapredict 0.761 + /+ /- 0.664 + /-/- 0.690 + /+ /- 0.675 + /= /=
SPOT-Disorder1 0.765 + /+ /- 0.628 + /+ /= 0.662 + /+ /- 0.663 + /= /=
IUPred-short 0.755 + /+ /- 0.666 + /-/- 0.702 + /+ /- 0.679 + /= /=
AF2-pLDDToptimized-rank 0.753 + /+ /- 0.655 + /= /- 0.663 + /+ /- 0.689 + /= /-
IUPred-long 0.759 + /+ /- 0.603 + /+ /+ 0.701 + /+ /- 0.673 + /= /=
ODiNPred 0.758 + /+ /- 0.622 + /+ /+ 0.690 + /+ /- 0.669 + /= /=
VSL2B 0.750 + /+ /- 0.619 + /+ /+ 0.673 + /+ /- 0.676 + /= /=
AF2-pLDDT 0.739 + /+ / 0.638 + /+ / 0.642 + /+ / 0.664 + /= /=
RFPR 0.750 + /+ /- 0.558 + /+ /+ 0.632 + /+ /+ 0.645 + /= /+
DISOPRED3 0.722 + /+ /+ 0.580 + /+ /+ 0.620 + /+ /+ 0.634 + /+ /+
DisEMBL-465 0.698 + /+ /+ 0.643 + /+ /- 0.637 + /+ /= 0.632 + /+ /+
DisEMBL-HL 0.659 + /+ /+ 0.676 + /-/- 0.608 + /+ /+ 0.592 + /+ /+
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of MAE and relatively high values of SCC. This is consistent with 
observations in ref. [49] where authors applied a different dataset. 
Moreover, we observe that both AF2-RSA and AF2-pLDDT under-
perform relative to their residue-level predictions. In particular, AF2- 

RSA obtains near zero correlation while AF2-pLDDT has a low ne-
gative correlation. These low correlations mean that the putative 
disorder is distributed across proteins in a way that does not cor-
relate with the amount of native disorder. This is in line with the 
observations from ref. [47], which observed that AF2-pLDDT under- 
predicts disorder while AF2-RSA over-predicts disorder. Overall, 
correlations between the quality of the binary residue-level pre-
dictions (F1 and MCC in Table 3) and the protein-level content 
predictions that are derived from these binary predictions (MAE and 
SCC in Table 5) over the considered predictors are modest, at around 
− 0.65 for MAE (i.e., negative since lower errors are better) and 0.55 
for SCC. This means that the best residue-level predictions not ne-
cessarily convert into the best content predictions. Examples include 
IUPred-short and DisEMBL that perform relatively poorly at the re-
sidue level while generating rather accurate content prediction vs. 
SPOT-Disorder2 and AF2-RSA that produce accurate residue-level 
predictions while securing relatively high MAE >  0.2 and low SCC <  
0.25 for the protein-level content predictions.

3.4. Comparative evaluation of the protein-level predictions of fully 
disordered proteins

Following the assessment in CAID [30], we consider protein-level 
prediction of the fully disordered proteins which are defined as IDPs 
with a very high disorder content. Since there are no well-defined 
cut-offs, we consider three scenarios where fully disordered proteins 
are defined based on the disorder content >  0.99, >  0.90 and >  0.80, 
similar to what was done in CAID. We summarize these results in 
Table 6. The best predictions are secured by flDPnn, which obtains F1 
of about 0.90 and sensitivity of 0.83 across the three scenarios. Its 
predictions are also statistically better than the results of all other 
tools (p-value < 0.05). Similar to the residue-level predictions of 
disorder (Table 3), four disorder predictors (flDPnn, flDPlr, rawMSA 
and ESpritz-D) are significantly better than AF-RSA across the three 
definitions of the fully disordered proteins and both metrics 
(p-value < 0.05). Moreover, AF2-RSA is statistically better than 
AF2-pLDDT (p-value < 0.05), where the latter predictor generates 

Table 5 
Comparative assessment of the protein-level disorder content predictions on the CAID 
dataset. We calculate the putative content values as the fraction of the binary predictions 
of disorder that are established using the threshold that calibrates predictions across 
methods, and which results in a correct number of predicted disordered residues over 
the entire CAID dataset. We sort predictors by their area under receiver operating 
characteristic curve (AUC) values on the CAID dataset (Table 3). We assess statistical 
significance of the differences when compared with the top-ranked flDPnn, AF2-RSA, and 
AF2-pLDDT, which we highlight using bold font; we show results next to the measured 
metric using the x|y|z format where x denotes that flDPnn is significantly better (+), 
worse (-), and not different (=) than the results from a given predictor at p-value = 0.05; y 
compares against AF2-RSA; and z compares against AF2-pLDDT. Acronyms: Mean 
Squared Error (MAE) and the Spearman Correlation Coefficients (SCC). 

Predictor MAE SCC

flDPnn 0.152 /-/- 0.589 /-/-
flDPlr 0.180 + /-/- 0.521 + /-/-
AF2-RSAoptimized-rank 0.211 + /= /- 0.092 + /= /-
RawMSA 0.186 + /-/- 0.230 + /-/-
Espritz-D 0.212 + /= /- 0.477 + /-/-
AF2-RSA 0.213 + / /- 0.084 + / /-
DisoMine 0.195 + /= /- 0.478 + /-/-
SPOT-Disorder2 0.206 + /= /- 0.242 + /-/-
AUCpred 0.195 + /= /- 0.242 + /-/-
SPOT-Disorder-Single 0.197 + /= /- 0.237 + /-/-
IDPseq2seq 0.211 + /= /- 0.173 + /= /-
AUCpred-np 0.188 + /-/- 0.234 + /-/-
Metapredict 0.181 + /-/- 0.300 + /-/-
SPOT-Disorder1 0.232 + /= /- 0.129 + /= /-
IUPred-short 0.172 + /-/- 0.350 + /-/-
AF2-pLDDToptimized-rank 0.252 + /+ /+ -0.339 + /+ /=
IUPred-long 0.197 + /= /- 0.205 + /-/-
ODiNPred 0.199 + /= /- 0.167 + /-/-
VSL2B 0.201 + /= /- 0.175 + /-/-
AF2-pLDDT 0.246 + /+ / -0.341 + /+ /
RFPR 0.244 + /= /= 0.100 + /-/-
DISOPRED3 0.240 + /= /= -0.088 + /+ /-
DisEMBL-465 0.161 = /-/- 0.414 + /+ /-
DisEMBL-HL 0.163 = /-/- 0.384 + /+ /-

Table 6 
Comparative assessment of the protein-level predictions of fully disordered proteins (FDPs) on the FDP99, FDP90, and FDP80 datasets. We sort predictors by their area under 
receiver operating characteristic curve (AUC) values on the CAID dataset (Table 3). We assess statistical significance of the differences when compared with the top-ranked flDPnn, 
AF2-RSA, and AF2-pLDDT, which we highlight using bold font; we show results next to the measured metric using the x|y|z format where x denotes that flDPnn is significantly 
better (+), worse (-), and not different (=) than the results from a given predictor at p-value = 0.05; y compares against AF2-RSA; and z compares against AF2-pLDDT. 

Predictor FDP99 dataset FDP90 dataset FDP80 dataset

F1 sensitivity F1 sensitivity F1 sensitivity

flDPnn 0.906 /-/- 0.829 /-/- 0.911 /-/- 0.839 /-/- 0.898 /-/- 0.827 /-/-
flDPlr 0.872 + /-/- 0.772 + /-/- 0.878 + /-/- 0.783 + /-/- 0.862 + /-/- 0.767 + /-/-
AF2-RSAoptimized-rank 0.518 + /+ /- 0.350 + /+ /- 0.555 + /+ /- 0.384 + /+ /- 0.534 + /+ /- 0.366 + /+ /-
RawMSA 0.799 + /-/- 0.666 + /-/- 0.804 + /-/- 0.672 + /-/- 0.762 + /-/- 0.619 + /-/-
Espritz-D 0.864 + /-/- 0.760 + /-/- 0.866 + /-/- 0.764 + /-/- 0.843 + /-/- 0.731 + /-/-
AF2_RSA 0.557 + / /- 0.386 + / /- 0.594 + / /- 0.423 + / /- 0.567 + / /- 0.398 + / /-
DisoMine 0.817 + /-/- 0.690 + /-/- 0.826 + /-/- 0.707 + /-/- 0.823 + /-/- 0.707 + /-/-
SPOT-Disorder2 0.665 + /-/- 0.498 + /-/- 0.681 + /-/- 0.517 + /-/- 0.662 + /-/- 0.498 + /-/-
AUCpred 0.706 + /-/- 0.546 + /-/- 0.711 + /-/- 0.555 + /-/- 0.692 + /-/- 0.537 + /-/-
SPOT-Disorder-Single 0.635 + /-/- 0.465 + /-/- 0.650 + /-/- 0.482 + /-/- 0.619 + /-/- 0.451 + /-/-
IDPseq2seq 0.627 + /-/- 0.457 + /-/- 0.640 + /-/- 0.470 + /-/- 0.616 + /-/- 0.445 + /-/-
AUCpred-np 0.579 + /= /- 0.408 + /= /- 0.585 + /= /- 0.415 + /= /- 0.567 + /= /- 0.399 + /= /-
Metapredict 0.657 + /-/- 0.489 + /-/- 0.672 + /-/- 0.506 + /-/- 0.645 + /-/- 0.479 + /-/-
SPOT-Disorder1 0.523 + /= /- 0.354 + /= /- 0.549 + /+ /- 0.378 + /+ /- 0.529 + /+ /- 0.362 + /+ /-
IUPred-short 0.605 + /-/- 0.434 + /-/- 0.624 + /-/- 0.454 + /-/- 0.609 + /-/- 0.441 + /+ /-
AF2-pLDDToptimized-rank 0.023 + /+ /- 0.012 + /+ /+ 0.028 + /+ /+ 0.014 + /+ /+ 0.027 + /+ /+ 0.014 + /+ /+
IUPred-long 0.645 + /-/- 0.477 + /-/- 0.662 + /-/- 0.495 + /-/- 0.641 + /-/- 0.474 + /+ /-
ODiNPred 0.524 + /= /- 0.354 + /= /- 0.518 + /+ /- 0.349 + /+ /- 0.509 + /+ /- 0.341 + /+ /-
VSL2B 0.607 + /-/- 0.436 + /-/- 0.619 + /-/- 0.448 + /-/- 0.590 + /= /- 0.419 + /= /-
AF2_pLDDT 0.069 + /+ / 0.036 + /+ / 0.069 + /+ / 0.036 + /+ / 0.063 + /+ / 0.033 + /+ /
RFPR 0.479 + /+ /- 0.315 + /+ /+ 0.505 + /+ /= 0.338 + /+ /- 0.467 + /+ /- 0.305 + /+ /-
DISOPRED3 0.347 + /+ /- 0.210 + /+ /+ 0.361 + /+ /- 0.220 + /+ /- 0.331 + /+ /- 0.198 + /+ /-
DisEMBL-465 0.614 + /+ /- 0.443 + /-/- 0.613 + /= /- 0.443 + /= /- 0.589 + /= /- 0.421 + /= /-
DisEMBL-HL 0.572 + /= /- 0.400 + /= /- 0.557 + /= /- 0.387 + /= /- 0.533 + /= /- 0.366 + /= /-
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results at a near random levels. Overall, the residue-level F1 values 
(Table 3) are highly correlated with the F1 values for the prediction 
of fully disorder proteins (Table 6), with correlations at about 0.76 
across the three scenarios. Moreover, results across the three fully 
disordered protein definitions are highly correlated when con-
sidering both F1 and sensitivity (correlations of 0.99). Altogether, we 
find that AF2-RSA provides modestly accurate predictions of fully 
disordered proteins, AF2-pLDDT should not be used to identify fully 
disordered proteins, and several disorder predictors outperform 
AF2-RSA.

3.5. Sequence-derived markers identify proteins for which AF2-RSA 
outperforms disorder predictors

Our results suggest that several disorder predictors are more 
accurate and faster than AF2-RSA when tested on large datasets of 
proteins. However, quality of disorder predictions varies widely 
across individual proteins [50], which motivated us to investigate 
whether AF2-RSA-based predictions could be competitive for certain 
types of disordered proteins. In other words, we attempt to identify 
sequence-derived markers that can be used to identify proteins for 
which AF2 predicts disorder as accurately or better than the best 
disorder predictors. We measure predictive performance with AUC 
and use the CAID dataset. We have to exclude 45 fully disordered 
proteins for which we cannot compute AUC since they do not in-
clude native structured residues. We use the sequence, disorder 

predicted from sequence with the most accurate flDPnn [60], pro-
tein-binding IDRs and coiled-coil regions predicted from sequence 
with popular ANCHOR [81] and DeepCoil [82] methods, respectively, 
to derive several diverse markers. The inclusion of the coiled-coils is 
motivated by an observation that they are often disordered and may 
transition into the structured state via intramolecular interactions 
[83]. We consider eight markers: 1) sequence length; 2) putative 
disorder content; 3) putative content of protein-binding IDRs; 4) 
number of putative IDRs; 5) maximal length of putative IDRs; 6) 
putative content of coiled-coil regions; 7) distance of putative IDRs 
to a closest terminus (proxy for presence of putative IDRs at the 
terminus); and 8) a composite score that considers distance to ter-
minus and content of the putative disorder. We calculate the com-
posite score as sum of the distances of putative disordered residues 
to the nearest terminus divided by the sequence length. Low values 
of this score indicate that the disorder content is low and/or disorder 
is located at the termini. We consider IDRs that are defined as se-
quence segments of at least 4 consecutive putative disordered re-
sidues. We divide the CAID dataset into two subsets: proteins for 
which AF2-RSA is competitive (i.e., it generates highly accurate 
predictions that are statistically as accurate as the results of the best 
disorder predictors vs. proteins for which AF2-RSA is statistically 
outperformed by disorder predictions or generates lower accuracy 
predictions. The first group includes 195 proteins for which AF2- 
RSA’s AUC > 0.814 (i.e., AUC is greater than an expected value of a 
highly accurate AUC that equals to the overall/dataset-level AUC of 

Fig. 2. Comparison of the sequence-derived markers between proteins for which AF2-RSA generates competitive predictions (blue box plots) vs. proteins for which AF2-RSA is 
statistically outperformed by disorder predictions or generates lower accuracy predictions (red box plots). The markers include: (panel a) sequence length; (panel b) putative 
content of binding IDRs; (panel c) number of putative IDRs; (panel d) composite score of distance to terminus and content of the putative disorder; (panel e) distance of putative 
IDRs to a closest terminus; (panel f) putative disorder content; (panel g) maximal length of putative IDRs; and (panel h) putative content of coiled-coils. Box plots represent 
distributions of the marker values in a given protein set where we show the 5th, 25th, 50th (median), 75th and 95th percentiles and where cross represents the average. Statistical 
significance of differences is annotated above the box plots: ns means difference is not significant; * means significant.
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the best performing flDPnn from Table 3) and for which protein- 
level AUC of AF2-RSA is within the 5% confidence interval of the 
AUCs of the considered 19 disorder predictors. This means that AF2- 
RSA generates competitive disorder predictions for about one-third 
of the IDPs from the CAID dataset. The remaining proteins constitute 
the second subset.

We compare values of the eight markers between the two pro-
tein sets in Fig. 2. We find that the putative disorder and coiled-coils 
content values, inclusion of long IDRs, and distance of IDRs to the 
termini (Fig. 2e, f, g and h) cannot be used to reliably identify IDPs 
for which AF2-RSA produces accurate results (p-values > 0.18). In-
terestingly, the composite score that combines putative disorder 
content and distance of disorder from termini (Fig. 2d) is statistically 
significant (p-value = 0.03). This marker reveals that AF2-RSA pro-
duces accurate predictions of disorder for IDPs that have relatively 
low disorder content and where this disorder is located at or close to 
the sequence termini. This can be explained by the fact that AF2 was 
trained using structures from PDB that have disorder which is often 
located at the termini and that have relatively low disorder content 
[84]. Three other markers are also statistically significant. AF-RSA is 
biased to generate accurate disorder predictions for IDPs that have 
short sequences (p-value < 0.001; Fig. 2a), that have relatively few 
putative IDRs (p-value = 0.005; Fig. 2c) and low (near-zero) content 
of protein-binding IDRs (p-value = 0.007; Fig. 2b). We think that the 
first two markers can be explained by the fact that PDB structures 
typically cover short protein chains and that these sequences typi-
cally have relatively few IDRs [66,85]. Moreover, the third marker is 
reinforced by a recent analysis that suggests that AF2′s predictions 
suffer substantially lower quality for multimers [86]. We use these 
four statistically significant markers to identify proteins for which 
AF2-RSA generates very accurate disorder predictions. We select 
proteins for which sequence length (Fig. 2a), content of protein 
binding IDRs (Fig. 2b), number of IDRs (Fig. 2c), and the composite 
score (Fig. 2d) are below the median values from the blue box plots. 
This dataset has 106 proteins, which corresponds to approximately 
20% of the IDPs in the benchmark dataset. We find that AF2-RSA 
secures AUC = 0.81 for these proteins, outperforming the best dis-
order predictors that are overall shown to be more accurate than 
AF2-RSA (Table 3), including flDPnn (AUC = 0.79), flDPlr (AUC = 0.78), 
rawMSA (AUC = 0.78), and Espritz-D (AUC = 0.77). The differences in 
the AUC values between the AF2-RSA predictions and the results of 
these best disorder predictors for this protein set are statistically 
significant (p-value < 0.01). Altogether, we conclude that AF2-RSA 
should be used to identify disorder for smaller proteins that lack 
protein-binding IDRs, and which have relatively few short IDRs that 
are located at the sequence termini. The other IDPs should be pre-
dicted using modern disorder predictors.

4. Summary and conclusions

Similar to the previous studies [46,47,87], we find that AF2-RSA 
outperforms AF2-pLDDT and that several modern disorder pre-
dictors outperform AF2-RSA by a statistically significant margin. 
Moreover, we empirically demonstrate that some of these accurate 
disorder predictors are also substantially faster and provide a 
slightly higher coverage. We also provide several new insights. Using 
the AF2-RSAoptimized-rank approach, we empirically observe that 
AF-RSA could be modestly improved by reranking the AF2 predicted 
models in a way that better reflects their potential for the disorder 
prediction. We find that several disorder predictors outperform AF2- 
RSA’s ability to predict fully disordered proteins and that AF2-pLDDT 
should not be used to predict these proteins. Both AF2-RSA and AF2- 
pLDDT provide poor predictions of disorder content while several 
disorder predictors, such as flDPnn, IUPred-short and DisEMBL ac-
curately predict the content values. Our empirical analysis that relies 
on several sequence-derived markers suggests that AF2-RSA 

outperforms disorder predictors for about 20% of IDPs that have 
short sequences absent of disordered protein-binding regions and 
which have relatively few IDRs that are preferably located at the 
sequence termini. We suggest that AF2 should be used to predict 
disorder for these proteins since these results can be produced as a 
byproduct of the structure predictions, incurring only a small addi-
tional computational cost. However, disorder predictors, such as 
flDPnn, flDPlr, rawMSA and Espritz-D, should be used to make dis-
order predictions for the other disordered proteins.

We also identify a substantial variability in the predictive quality 
across different types of disordered proteins. In particular, we ob-
serve that some IDPs are substantially harder to predict accurately 
for AF2-RSA, AF2-pLDDT and disorder predictors, including IDPs that 
lack IDRs at the sequence termini and those that have only short 
IDRs. Recent literature offers additional insights concerning limita-
tions of AF2. The use of AF2 could lead to misinterpretations of 
predicted “structures” of IDRs in the context of the sequence-en-
semble-function relationships that are characteristic for the inter-
actomes of disordered proteins [88]. Moreover, AF2′s predictions 
were also shown to have lower quality for the proteins with dynamic 
structures [89,90] and multimers [86].

In recent years, the disorder prediction field has moved towards 
prediction of functional types of IDRs [91–94]. The main focus is on 
the regions that interact with ligands that include peptides, proteins, 
DNA, RNA and lipids [91,92,95], however, some tools also predict 
disordered linkers [96,97]. There are over three dozen of predictors 
of binding IDRs, with majority of them targeting protein and peptide 
binding IDRs [91]. Example popular methods include ANCHOR 
[81,98,99], MoRFpred [100], MoRFchibi [101,102], and DISOPRED3 
[67] that predict protein and peptide binding IDRs; DisoRDPbind 
that predicts DNA, RNA and protein-binding IDRs; and SLiMFinder 
[103] and SLiMSearch [104–106] that predict short linear sequence 
motifs (SLiMs) that are often involved in the protein-protein and 
protein-nucleic acids interactions. We also note the two recently 
released tools that predict lipid binding IDRs: MemDis [107] and 
DisoLipPred [108], and the DEPICTER webserver that predicts mul-
tiple types of functional IDRs [109,110]. Interestingly, AF2, the most 
accurate disorder predictors [31], and some of the predictors of 
binding IDRs rely on the deep neural network models [108,111–115]. 
This suggests that deep networks are useful for both protein struc-
ture and intrinsic disorder predictions.
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