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a b s t r a c t

One of the key features of intrinsically disordered regions (IDRs) is their ability to interact with a broad range 
of partner molecules. Multiple types of interacting IDRs were identified including molecular recognition 
fragments (MoRFs), short linear sequence motifs (SLiMs), and protein-, nucleic acids- and lipid-binding re-
gions. Prediction of binding IDRs in protein sequences is gaining momentum in recent years. We survey 38 
predictors of binding IDRs that target interactions with a diverse set of partners, such as peptides, proteins, 
RNA, DNA and lipids. We offer a historical perspective and highlight key events that fueled efforts to develop 
these methods. These tools rely on a diverse range of predictive architectures that include scoring functions, 
regular expressions, traditional and deep machine learning and meta-models. Recent efforts focus on the 
development of deep neural network-based architectures and extending coverage to RNA, DNA and lipid- 
binding IDRs. We analyze availability of these methods and show that providing implementations and 
webservers results in much higher rates of citations/use. We also make several recommendations to take 
advantage of modern deep network architectures, develop tools that bundle predictions of multiple and 
different types of binding IDRs, and work on algorithms that model structures of the resulting complexes.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/ 

licenses/by/4.0/).
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1. Introduction

Intrinsically disordered regions (IDRs) are segments in a protein 
sequence that lack stable structure under physiological conditions 
[1–4]. Intrinsically disordered proteins (IDPs) include one or more 
IDRs, and they could be fully disordered when an IDR covers the 
entire chain. IDPs are found across all domains of life, with a larger 
abundance in eukaryotic proteomes [5–8]. They play important roles 
in a plethora of cellular activities, complementing functions of the 
structured proteins and domains [9–11]. Examples include cellular 
signaling and its regulation, translation, transcription, and phase 
separation [12–22]. Being involved in key regulatory pathways, mis- 
regulation of IDPs and IDRs was shown to be associated with several 
human diseases [23–26]. Many of functions of IDPs involve inter-
actions with a broad spectrum of partner molecules, including 
proteins, nucleic acids, lipids, metals, ions, carbohydrates and small- 
molecules [19,21,27–31]. In that context, conformational plasticity of 
IDRs provides them with certain advantages compared to structured 
regions, such as ability of a single IDR to interact with multiple 
different partners, leading to an enrichment of IDPs among the hub 
proteins in the protein interaction networks [32–35]. Multiple types 
of interacting IDRs were categorized and characterized in the lit-
erature. Two of these types concern relative short sequences regions, 
molecular recognition fragments (MoRFs) and short linear sequence 
motifs (SLiMs). MoRFs are short IDRs that undergo disorder-to-order 
transition when interacting with proteins and peptides, i.e., they 
“morph” from disorder to order upon binding [36–38]. Their length 
range varies across studies, with some works limiting their length to 
between 10 and 70 residues [37,38], and other studies considering 
much shorter, 5–25 residues long, regions [36,39]. MoRFs are sub-
divided into multiple classes including α-MoRFs, β-MoRFs, γ-MoRFs 
and complex-MoRFs, based on the type of the secondary structure 
that they fold into upon binding, i.e., α -helix, β-sheet, irregular 
structures, and mixed secondary structures, respectively. SLiMs are 
relatively short sequence motifs represented by regular expressions 
that are found across multiple proteins [40–42]. Majority of SLiMs 
are between 3 and 15 residues in length and many of them are 
disordered. They are associated with a variety of molecular inter-
actions, primarily being involved in interactions with proteins and 
nucleic-acids [43]. Recent update of the ELM resource, a repository 
of eukaryotic linear motifs, reports over 3500 SLiMs that were cu-
rated from literature [40]. Moreover, human proteome was predicted 
to contain over 1 million binding motifs [44]. Another type of 
binding IDR called protean segments is defined by the IDEAL data-
base [45]. These are short segments that are disordered in an un-
bound form and undergo folding upon binding with a partner 
molecule. The protean segments overlap with MoRFs and SLiMs but 
they are not limited in length like MoRFs, and do not have to be 
defined by regular expressions like SLiMs. The above three classes of 
binding IDRs are defined by their sequence features (length and 
motifs), modes of interactions with the partner molecule (coupled 
binding and folding), and binding to specific types of partners 
(proteins, peptides and nucleic acids). However, some interacting 
IDRs can be long, may not involve motifs, and may bind a variety of 
other molecules [30,46]. For instance, IDRs longer than 30 residues 
that bind proteins and peptides were classified as protein-binding 
IDRs [47].

While a huge number of binding IDRs occur in nature, only a 
relative handful of them has been annotated by biochemical ex-
periments. More specifically, a few hundred IDRs with binding in-
formation are available in the DisProt database, the largest 
repository of functionally annotated IDRs [30]. Computational 
methods can help with closing this annotation gap. The limited 
collection of annotated binding IDRs can be used to develop and 
evaluate computational predictors, which then can be utilized to 
predict these regions for the millions of protein sequences that 

remain unannotated. This approach relies on the fact that the dis-
ordered nature of IDRs is intrinsic (i.e., encoded) in their underlying 
sequences [4,48–50], making them predictable from the sequence. 
This has motivated development of numerous methods that accu-
rately predict IDRs from the protein sequence [51–61], with over 100 
methods that were developed to date [62]. Recent research has 
shifted from building disorder predictors to developing methods 
that predict binding IDRs. Similar to IDRs, recent study shows that 
binding IDRs also have compositional bias in their sequences [48], 
suggesting that they can be predicted directly from the sequence. 
Significance of these predictors is reflected by the inclusion of the 
assessment of the binding IDRs predictions in the recently com-
pleted community-organized Critical Assessment of Intrinsic dis-
order (CAID) experiment [63]. The CAID experiment evaluated 11 
predictors of disordered binding regions; we discuss further details 
later.

Predictors of intrinsic disorder have been comprehensively sur-
veyed and analyzed in a large number of studies [4,64–77]. They 
were evaluated in a several comparative assessments, most notably 
as part of the community-driven efforts including the Critical As-
sessment of techniques for protein Structure Prediction (CASP) ex-
periments [78–81] and more recently the CAID experiment [63]. 
Disorder prediction was part of CASP between CASP5 in 2002 that 
evaluated six methods [81] and CASP10 in 2012 which assessed 28 
predictors [78], compared to CAID that was performed in 2018 and 
compared 32 disorder predictors. In contrast, only a few reviews 
focus on prediction of binding IDRs while over three dozen of these 
methods were developed. A survey that covered 12 predictors of 
binding IDRs that were discussed together with over 30 disorder 
predictors was published in 2017 [82]. Two articles were published 
in 2019 [83,84]. The first overviews 20 predictors of binding IDRs 
that target MoRFs, SLiMs, and other protein-binding IDRs, while 
omitting methods that target other types of interactions [83]. The 
second is a book chapter that describes 22 predictors of MoRFs, 
SLiMs, protein and nucleic acid binding regions, largely overlapping 
in scope with the other study [84]. We note that prediction of dis-
ordered binding region is gaining momentum in recent years, with 
13 methods published since 2019. These factors motivate this sys-
tematic survey of predictors of binding IDRs. We provide a historical 
perspective, comprehensively enumerate current tools, categorize 
them based on architectures and their predictive targets, details 
predictive architectures for several tools that secured best results in 
the CAID experiment, highlight a few interesting observations con-
cerning availability and impact of these tools, and offer several re-
commendations. Moreover, we fill the gap created after the surveys 
from 2019 and cover 38 methods that target a diverse set of ligands 
including peptides, proteins, RNA, DNA and lipids.

2. Historical overview

We perform an exhaustive literature search to identify a com-
prehensive collection of predictors of binding IDRs. We consider 
three main sources: i) extraction of methods that are covered in 
articles that focus on the prediction of binding IDRs and disorder 
functions [82–84,124]; ii) manual search of citations to these 
methods; and iii) manual search of the results produced by a re-
levant and broad PubMed search: (((Intrinsically disordered pro-
teins) AND ((binding region) OR (binding residue)) AND 
(identification)), (((Intrinsic disorder) AND (binding region) AND 
(predictor)) OR ((MoRF) AND (prediction)), (((Intrinsic disorder) 
AND (short linear motif) AND (prediction)), ((Intrinsically disordered 
proteins) AND ((RNA binding) OR (DNA binding) OR (nucleotide 
binding))) AND ((binding region) OR (binding residue)) AND ((pre-
diction) OR (identification)), ((Intrinsically disordered proteins) AND 
(lipid binding)) AND ((binding region) OR (binding residue)) AND 
((prediction) OR (identification)). We combine results from these 
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sources and remove duplicates, which results in a list of 38 methods 
that were published between 2005 to June 2022 (Table 1) 
[36,39,85–123]. We first provide a historical overview of this area of 
research, which we follow by a discussion of several key aspects of 
these computational tools including their predictive models, popu-
larity and availability.

2.1. Historical progress in coverage of different types of interacting IDRs

We summarize historical overview in Fig. 1. The initial focus was 
primarily confined to the prediction of MoRFs and SLiMs, with 10 out 
of the 11 methods that were published before 2015 targeting these 
two types of binding IDRs. The very first method is α-MoRFpred that 
was developed by Keith Dunker’s group in 2005 [39]. It predicts α- 
helix-forming MoRFs by relying on the PONDR VL-XT-generated 
disorder predictions [58]. The main challenge at this point was lack 
of annotated MoRF regions, which had to be manually compiled 
from the data available in Protein Data Bank (PDB) [125,126]. The α- 
MoRFpred was developed using a small dataset of 14 MoRFs from 12 
proteins, which were unlikely to represent a broader population of 
MoRF regions. An improved version of this algorithm, α-MoRFpred- 
II, was published two years later [85]. This predictor utilized a larger 
training dataset (102 MoRF regions from 99 proteins) and a machine 
learning algorithm, a shallow feed-forward neural network. How-
ever, implementation of the resulting predictor was not released, 
limiting its potential applications. The year 2012 marks the release of 
MoRFpred [87,88], the first predictor that tackles prediction of 
generic MoRFs, irrespective of their type (as compared to α-MoRFs). 
This method has a more advanced design compared to the earlier 
tools. It uses a comprehensive sequence-derived input, which in-
cludes evolutionary profile and putative disorder, solvent accessi-
bility and B-factors, that is processed by a support vector machine 
model. The model was trained on a large dataset of over 400 proteins 
with MoRF regions and the resulting predictor was released as a 
publicly accessible webserver, which is operational to this date.

Tools that extract/predict SLiMs were being developed in parallel 
to the efforts that target prediction of MoRFs. SLiMFinder, the first 
predictor of SLiMs, was published by Denis Shields’s lab in 2007 
[109]. This method utilizes the SLiMBuild algorithm that constructs 
motifs, ranks them by their probability, and estimates their statis-
tical significance. SLiMFinder offers options to restricts motif finding 
to specific regions of the protein sequence, such as IDRs that it 
predicts with the IUPred method [59], and is available in the form of 
a convenient webserver. Several other methods that produce SLiMs 
were developed subsequently, with majority of them including 
SLiMSearch 1.0 [110], SLiMSearch 2.0 [111], SLiMPred [112], SLiM-
Prints [113], PepBindPred [114] and SLiMSearch 4.0 [117] developed 
by the labs of Denis Shields and Norman Davey.

With growing interest in prediction of binding IDRs, the focus has 
gradually shifted towards prediction of IDRs that interact with spe-
cific ligands, such as proteins, RNA, DNA, and lipids. ANCHOR, which 
was published by Zsuzsanna Dosztanyi’s lab in 2009, is the first 
method that predicts protein-binding IDRs [105,106]. ANCHOR is 
based on a scoring function that was derived by comparing dis-
ordered binding residues between their bound and unbound states. 
The prediction process is very fast and this method is available as a 
source code and a webserver. These factors undoubtedly contribute 
to high levels of popularity of this tool. DisoRDPbind, which was 
released by Lukasz Kurgan’s lab in 2015, is the first method that 
predicts nucleic acid binding IDRs [118,119,127]. This tool relies on 
three relatively simple logistic regressions that are used to predict 
protein-binding, RNA-binding, and DNA-binding IDRs. The only 
other tools that target prediction of the nucleic acid-binding IDRs are 
flDPnn and DeepDISOBind that were released very recently 
[120,121]. They improve over the DisoRDPbind’s model by utilizing 
more sophisticated deep neural networks. The newest addition to 
the toolbox of predictors of binding IDRs are the two tools that 
predict lipid-binding IDRs, DisoLipPred [122] and MemDis [123], 
which were released in 2021. Interestingly, they complement each 
other since MemDis focuses on IDRs in trans-membrane proteins 

Fig. 1. Timeline of the development of predictors of binding IDRs. Color-coded bars denote different prediction targets including MoRFs (blue), protein-binding regions (red), 
SLiMs (yellow), protein/DNA/RNA-binding regions (grey) and lipid-binding (orange) regions. Dark green callouts show major events that drive the development of these pre-
dictors. Light green callouts identify the first predictor for each ligand type.
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while DisoLipPred predicts lipid-binding IDRs that specifically ex-
clude trans-membrane regions. Lastly, we note that there are no 
predictors for the protean regions.

2.2. Major events

The timeline in Fig. 1 can be divided into two distinct periods, a 
first-generation period before 2015 and a second-generation period 
that started in 2015. The first-generation period is characterized by a 
relatively slower pace of the development efforts, with on average 
1.1 new methods published per year, and focus on a small subset of 
the binding IDR types, such as MoRFs and SLiMs. The efforts in-
tensified in the second-generation period, with on average 3.4 
methods published per year and a broader coverage of binding IDR 
types, which include MoRFs, SLiMs, protein-binding, nucleic acid- 
binding, and lipid-binding IDRs. This increase results from an im-
proved availability of ground-truth annotations of binding IDRs. The 
early methods, such as α-MoRFpred, α-MoRFpred-II, MoRFpred, and 
MoRFCHiBi, primarily relied on parsing data from PDB, which is rather 
difficult since it requires processing atomic-level data, aggregation at 
residue level and comparing across multiple structures given that 
PDB files are redundant and often cover fragments of protein se-
quences. Moreover, these data are also limited since PDB centers on 
providing access to structured proteins and regions. The first data-
base of disordered proteins, DisProt, was established in 2005 
[128,129]. It started with a few hundred IDPs that were annotated 
based on published experimental data. It took several years before 
the annotations of binding were added and a sufficiently large 
number of these annotations was collected. By early 2010 s the 
amount of the accumulated binding IDRs was sufficient to develop 
and test predictive tools, and the second-generation tools, such as 
DisoRDPbind, flDPnn, DeepDISObind, DisoLipPred, and MemDis, rely 
on DisProt to source training and test datasets. These annotations are 
easier to collect compared to PDB data since they are reported at the 
residue level and mapped into full protein sequences. Moreover, 
they are more diverse, allowing to collect data to develop methods 
for more types of binding IDRs.

Besides the development and growth of DisProt, the other sig-
nificant event that stimulates efforts to develop predictors of binding 
IDRs is the CAID experiment, which was held in 2018 and included 
evaluation of the these predictors [63]. CAID is the first community- 
driven evaluation of accuracy of predictions of binding IDRs, which 
suggests growing interest in this area. Several best-performing 
methods secured area under the ROC curve (AUC) values >  0.7, in-
cluding ANCHOR2 [107] with AUC = 0.742, DisoRDPbind’s model for 
the protein-binding IDRs [118] with AUC = 0.729, MoRFCHiBi_Light [93]
with AUC = 0.720, and MoRFCHiBi_Web [92] with AUC = 0.702. Overall, 
among the 11 methods which participated in the CAID’s binding IDR 
prediction assessment, five perform above a baseline level: AN-
CHOR2, DisoRDPbind, the two versions of MoRFCHiBi, and OPAL [97]. 
We refrain from reporting predictive performance of individual 
methods based on their respective publications since these results 
should not be directly compared due to differences in the datasets, 
metrics and test procedures used. We also note several drawbacks of 
CAID. It performs evaluation of binding predictions in a ligand ag-
nostic way, i.e., different types of binding IDRs were clumped to-
gether. We note that the five above-baseline methods target 
prediction of protein-binding IDRs, benefitting from the fact that 72% 
of the binding annotations in the CAID dataset are protein-binding. 
Overall, this challenge shows substantial potential for future im-
provements. Interestingly, some of these limitations are being ad-
dressed in the currently pending CAID2 experiment (https:// 
idpcentral.org/caid). CAID2 expands the assessment of predictions of 
binding IDRs by introducing assessment of ligand-specific prediction 
that cover protein-binding and nucleic-acid binding. This will likely 

result in a further growth in the efforts to generate more diverse and 
more accurate methods.

3. Predictors of disordered binding regions

Table 1 covers several important aspects of the 38 predictors of 
binding IDRs, such as their predictive architectures, modes of 
availability, and popularity quantified with citations. We categorize 
these methods into five groups based on the target of their predic-
tions: MoRFs, SLiMs, protein-binding regions, lipid binding regions, 
and protein/DNA/RNA-binding regions. The methods in the latter 
category identify three types of binding IDRs, those that interact 
with proteins, with DNA, and with RNA.

3.1. Predictors of MoRFs

The largest group of predictors of binding IDRs focuses on the 
MoRF regions, with 21 out of the 38 methods (55%) in this category 
(Table 1). The defining feature of MoRFs is their ability to transition 
to structured conformation upon binding to proteins and peptides, 
which implies that the underlying interaction-dependent structure 
differentiates them from other binding IDRs. While the first MoRF 
predictor targeted α-MoRFs, majority of the subsequent tools were 
designed to target all types of MoRFs, irrespective of how they fold 
upon binding.

The most popular (i.e., based on annual number of citations listed 
in Table 1) and available to the end users MoRF predictors include 
MoRFpred [87], MoRFCHiBi [90], DISOPRED3 [91], fMoRFpred [36] and 
OPAL [97]. We briefly summarize MoRFpred in Section 2.1. MoRFCHiBi 

was first published in 2015 and has been successively improved by 
the same authors [90,92,93], ultimately resulting in the MoRFCHiBi 

SYSTEM that is composed of three predictors: MoRFCHiBi, 
MoRFCHiBi_Light and MoRFCHiBi_Web [93]. MoRFCHiBi_Light and 
MoRFCHiBi_Web rely on predictions from MoRFCHiBi, but MoRFCHiBi_Light 

does not utilize computationally expensive PSSM profiles, which 
makes it much faster than MoRFCHiBi_Web. Thus, users of the 
MoRFCHiBi SYSTEM have an option to apply a fast MoRFCHiBi_Light 

version or slower and more accurate MoRFCHiBi_Web version.
DISOPRED3 is a popular predictor of disorder that includes an 

option to predict MoRF regions [91]. The disorder predictor uses a 
small neural network to combine SVM-based DISOPRED2 model 
[130], neural network specialized to predict long IDRs, and a nearest 
neighbor-based classifier that takes advantage of similarity to an-
notations in a training dataset. DISOPRED3 applies a separate SVM- 
based model that uses information extracted from the input se-
quence and its PSSM profile to predict MoRFs.

Another popular MoRFs predictor is OPAL [97]. This is a meta- 
predictor that averages results produced by two MoRF predictors: 
MoRFCHiBi and a relatively slow PROMIS [97]. The fMoRFpred tool 
represent an opposite approach, with a simpler architecture and fast 
runtime [36]. This method utilizes a basic SVM-based model that 
relies on fast-to-compute putative disorder predicted with IUPred 
[131] and putative secondary structure generated with the fast 
single-sequence version of PSIPRED [132].

3.2. Predictors of SLiMs

Majority of predictors that target SLiMs rely on regular expres-
sions to identify these motifs in protein sequences. This is the second 
most populous category of predictors, with 9 methods published to 
date (Table 1). The most popular and available to the end users SLiMs 
predictors include SLiMFinder [109], which we described in Section 
2.1, and SLiMSearch 4.0 [117]. The latter tool is a successor of the 
SLiMSearch 1.0 [110] and SLiMSearch 2.0 [111] methods. SLiMSearch 
4.0 is an advanced framework that identifies SLiMs using likelihood- 
based scoring of motifs, sequence conservation, functional 
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enrichment analysis using Gene Ontology (GO) terms, and filters 
that consider putative disorder generated with IUPred, surface ac-
cessibility when structure is available, and overlap with Pfam do-
mains [117]. Moreover, SLiMSearch 4.0 identifies SLiMs in a 
taxonomy-aware manner, focusing on around 70 model species that 
include human, yeast, mouse, fruit fly, C. elegans, and A. thaliana. We 
also note a recently released SLiMSuite package [133], which pro-
vides convenient access to multiple tools for discovery and char-
acterization of SLiMs: SLiMProb [110](also known as SLiMSearch 
1.0), SLiMFinder [109] and QSLiMFinder [115]. Besides these regular 
expression-based tools, there are two methods that utilize machine- 
learning models to predict SLiMs: SLiMPred [112] and PepBindPred 
[114]. Both methods apply bidirectional recurrent neural network 
models and rely on information extracted from sequence-derived 
predictions of secondary structure, intrinsic disorder and solvent 
accessibility. PepBindPred additionally performs docking between 
the interacting molecules.

3.3. Predictors of protein, RNA, DNA and lipid-binding regions

There are three predictors which target protein-binding IDRs: 
ANCHOR [105,106], which we discussed in Section 2.1, ANCHOR2 
[107] and IDRBind [108]. The two ANCHOR methods are arguably the 
most popular predictors of binding IDRs. ANCHOR2 improves over 
ANCHOR by extending its scoring function with additional terms, 
which results in a more accurate model.

Recent years observed the push to develop methods that predict 
IDRs that interact with nucleic acids and lipids. There are three tools 
that predict DNA/RNA/protein-binding IDRs: DisoRDPbind [118,119], 
flDPnn [120], and DeepDisoBind [121], and two tools that predict 
lipid-binding IDRs: DisoLipPred [122] and MemDis [123]. These 
methods, with the exception of DisoRDPbind, apply state-of-the-art 
deep learning models that we explore in Section 3.4.

3.4. Predictive architectures

We identify five categories of predictive architectures that are 
used to implement predictors of binding IDRs: scoring functions 
(SF), regular expressions (regex), shallow machine learning (ML) 
algorithms, deep-learning (DL) algorithms and meta-predictors; see 
“predictive architecture” column in Table 1. These categories are in 
line with similar analyses for the disorder predictors [67,71,72,74].

The SF-based models use pre-defined functions to combine 
evolutionary and biochemical features that are estimated from 
protein sequences. Key characteristics of these functions are that 
they utilize relatively few parameters and rely on explicit formulas 
that are typically derived from biophysical principles underlying 
interactions. Examples include retro-MoRF [86] and SLiMPrints [113]
that utilize scoring functions based on the conservation extracted 
from multiple sequence alignments, and ANCHOR and ANCHOR2 
that use interaction energy-based features [105,107].

Regex-based models are exclusively used for the prediction of 
SLiMs [109–111,115,117]. Regex is a sequential combination of sym-
bols and characters that represents a pattern for a short string that 
can be efficiently searched in a longer string (i.e., amino acid se-
quence). Using regex, prediction of SLiMs boils down to search for 
short motifs in a given protein sequence, followed by ranking to find 
statistically significant hits, and filtering to identify motifs in a 
specific part of the sequence, e.g., disordered region. Prominent ex-
amples of the regex-based predictors include SLiMFinder [109] and 
SLiMSearch 4.0 [117].

ML and DL, the two most numerous categories, utilize machine 
learning algorithms to generate predictive models from training 
datasets. There are 28 of them in total including 9 DL models and 
19 ML models. These algorithms depend on the quality and size of 
the training datasets since they utilize the ground truth from these 

datasets to optimize predictive models, such that they minimize 
differences between predictions and the corresponding grounds 
truth. Shallow ML algorithm are the traditional classifiers that in 
general produce smaller models and require less training data than 
the deep learning algorithms. Over a half of the shallow ML 
methods (i.e., 10 out of 19) utilize models produced with the sup-
port vector machine (SVM) algorithm [36,87,89–91,94–98]. Other 
algorithms include linear regression [118,119], naïve Bayes [92,93], 
XGBoost [108], minimax probability machine [100], and shallow 
neural networks [39,85,112,114]. The DL algorithms are neural net-
works with topologies that include multiple/many hidden layers 
and which also typically use more sophisticated types of neurons 
and utilize modern types of architectures, such as convolutional and 
recurrent networks. These models usually involve a large number of 
parameters (i.e., weights associated with the connections between 
neurons in the network) and thus they need large datasets to 
properly train these parameters. The DL-based predictors of binding 
IDRs apply a variety of architectures including convolutional 
[99,101,104,121], bidirectional recurrent [122], recurrent Long 
Short-Term Memory (LSTM) [103], hybrid of convolutional and re-
current LSTM [123], as well as deep fully-connected perceptron 
network [102,120]. We note that methods developed since 2020 
exclusively utilize the DL models. Part of the reason why these 
models could be developed is that a sufficient amount of training 
data has become available in recent years, driven mostly by the 
substantial growth of the DisProt database. When a sufficient 
amount of training data became available and given the break-
throughs in the designs of deep network architectures in the past 
decade and the resulting high-levels of their predictive perfor-
mance, unsurprisingly, researchers in this field have shifted to adopt 
DL algorithms instead of traditional ML. This is likely also motivated 
by the recent influx and success of DL-based predictors of intrinsic 
disorder. Notably, the top-performing disorder predictors in CAID 
[134] include flDPnn [51], SPOT-Disorder2 [52], rawMSA [53] and 
AUCpred [54], all of which rely on the DL models. Furthermore, 
recent empirical study finds that the DL models in general produce 
more accurate disorder predictions when compared to the shallow 
ML models [64], which provides a strong justification to develop 
these models for prediction of binding IDRs.

Finally, there are several meta-predictors which are defined as 
methods that combine predictions of binding IDRs produced by 
multiple predictors. The underlying objective is to provide more 
accurate results when compared to the results produced by the input 
predictors. This approach was used to develop several popular and 
accurate disorder predictors [135–141]. We identify four meta-pre-
dictors, all of which predict MoRFs, including MoRFCHiBi_Web, 
MoRFCHiBi SYSTEM, OPAL and OPAL+ [90,93,97,98]. The focus on 
MoRFs can be explained by the fact that the most and large number 
of predictors target this category of binding IDRs, providing a deep 
pool of input predictions for the meta-method.

Lastly, we detail predictive models of the five methods that 
performed well in the CAID experiment [63]: ANCHOR2, Dis-
oRDPbind, two versions of MoRFCHiBi method, and OPAL. ANCHOR2 
[107] is the SF-based model that improves over its predecessor, 
ANCHOR [105,106]. ANCHOR implements SF that quantifies differ-
ences in basic biophysical properties of disorder binding residues 
between their bound and unbound state. It combines the putative 
disorder information generated by IUPred with estimates of pairwise 
interaction energy of disordered residues with globular proteins and 
local disordered sequence segments. ANCHOR2 uses a computa-
tionally efficient linear function to combine the interaction energy 
estimation from ANCHOR with two new terms that estimate energy 
for interaction with binding surface of globular proteins and pre-
sence of a disordered sequence. This results in a more accurate 
model that still retains the small computational footprint of 
ANCHOR.
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DisoRDPbind [118] is a shallow ML method that utilizes three 
logistic regression models to predict RNA-binding, DNA-binding and 
protein-binding propensities, one regression for each ligand type. 
These regressions use a common input profile generated from the 
sequence that includes information about hydrophobicity and net 
charge, putative disorder produced with IUPred [59], putative sec-
ondary structure generated by a single-sequence version of PSIPRED 
[142], and sequence complexity computed by the SEG algorithm 
[143]. This profile is processed to generate inputs for the regressions 
using sliding-windows with sizes that are optimized for specific li-
gand types.

MoRFCHiBi SYSTEM [93] is also a shallow ML predictor but it 
features a multi-layer architecture. The bottom layer implements the 
base MoRFCHiBi model that uses a Bayes rule to combine MoRF 
predictions from two SVM models, one that is trained directly on 
sequences and the other that relies on similarities between se-
quences. The second layer implements the MoRFCHiBi_Light prediction 
[93] by using a Bayesian model to fuse predictions from the base 
MoRFCHiBi with the predictions of disorder from ESpritz-DisProt [55]. 
The third layer implements the MoRFCHiBi_Web prediction [93] that 
again uses a Bayesian model to combine the base MoRFCHiBi, the 
ESpritz-DisProt predictions and the conservation derived from the 
sequence using PSI-BLAST [144]. Benchmarking done by the authors 
suggests that MoRFCHiBi_Light produces more accurate predictions 
than the base MoRFCHiBi, while MoRFCHiBi_Web further increases ac-
curacy but at substantially higher computational cost due to the 
calculation of the conservation [93].

OPAL [97] is a meta-predictor that averages results produced by 
the base MoRFCHiBi model and PROMIS, a relatively slow MoRF pre-
dictor developed by the authors of OPAL. PROMIS predicts MoRFs 
using an SVM model based on putative solvent accessibility, sec-
ondary structure and torsional angles predicted from the input se-
quence with SPIDER2 [145] and a PSSM profile generated from the 
sequence with PSI-BLAST. The need to compute the PSSM profiles 
results in a relatively long runtime.

We highlight the fact that these models are rather diverse. They 
utilize a variety of predictive architectures and different inputs that 
are derived from the sequence. They also vary in terms of their 
runtime. The CAID experiment reports that ANCHOR2 and 
DisoRDPbind take around 1 second to predict one protein, 
MoRFCHiBi_Light takes a few seconds, and the other two methods re-
quire two order of magnitude more runtime due to the use of PSI- 
BLAST, i.e., about 100 seconds for MoRFCHiBi_Web and over 500 sec-
onds for OPAL [63].

3.5. Availability and impact

Availability of these predictors to a broad scientific user-group is 
an important factor to facilitate research on binding IDRs. Table 1
provides details on implementations and whether they are currently 
available, i.e., as of July 2022 when we collected these data. There are 
two types of implementations: webserver (WS) and source code 
(SC). WS is available online via a web browser or programmable 
interface, typically does not require installation of any software, and 
performs all computations on the server side. While webservers are 
usually accessed via webpages, in a few cases (e.g., SLiMPred, 
SLiMPrints and QSLiMFinder) the access is based on the re-
presentational state transfer (REST) interface. SC have to be down-
loaded, installed/compiled and run on user’s hardware. While WSs 
are easier to use, they are typically limited to prediction of a single or 
a few proteins at the time and could be difficult to embed into other 
bioinformatics platforms if they lack programmable interface. On the 
other hand, SC usually can be setup to perform predictions on a 
larger scale and is easier to incorporate into other bioinformatics 
software, but it can be challenging to install and requires hardware 
to run. We collect the location of these WS and SC resources as per 

information given in the respective publications and check their 
availability. We find 27 methods that have working WS and/or SC 
implementations. Among them 13 methods are available solely as 
WS, 3 as SC and 11 as both WS and SC. There are 4 methods which 
were once functional but as of July 2022 did not work, and 7 
methods that were never implemented for public use. The corre-
sponding 71% rate of availability (27 out of 38 methods) is relatively 
high, higher than the 65% availability rate for disorder predictors 
[62], and much higher than the approximately 40% rate for other 
related predictors of protein-binding and nucleic acid binding re-
sidues [146,147].

We analyze impact/use of these methods, which we quantify in 
using citations collected from Google Scholar as of July 2022 
(Table 1). We provide total number of citations as well as an annual 
count, where the latter is a better metric to compare impact/use of 
different methods. The predictors published from 2020 onwards are 
too new to reliably measure their citation data, hence, we exclude 
them from the below analysis. We find that methods which offer WS 
and/or SC implementation are cited much more often (median an-
nual citations = 12), compared to methods which were never made 
available (median annual citations = 3). Moreover, among the 
methods which are currently functional, the tools that provide both 
WS and SC are cited more (median annual citations = 16) compared 
to the methods that provide only WS (median annual citations = 12) 
and only SC (median annual citations = 4). The higher popularity of 
predictors implemented as WSs is because they are arguably more 
convenient for majority of users who have limited computational 
resources and are less computer savvy to be able to install and run 
software locally. Methods with no implementations suffer low ci-
tations, revealing that availability directly influences the level of use 
and impact. These observations suggest that future methods should 
be made available as both WS and SC to maximize impact. Moreover, 
we find that among the methods which have/had WS and/or SC 
implementations, the ones which are currently non-functional re-
ceive median annual citations of 4, which is 4 times lower than the 
functional methods. This means that it is vitally important to 
maintain availability after methods are released.

We briefly discuss impact/use of individual tools. Predictor of 
protein-binding IDRs, ANCHOR2, is the most highly cited method, 
both in terms of annual citations (189) and total citations (754). We 
note that ANCHOR2′s publication also introduces a popular disorder 
predictor, IUPred2, which likely inflates the above number; this is 
also why we use median annual citations to compare groups of tools. 
There are 9 predictors that were cited over 100 times and 4 of them 
were cited over 500 times. These observations should be considered 
with a pinch of salt, since these tools were published in 2016 or 
earlier and had more time to accumulate citations when compared 
to newer methods. However, this reveals a significant amount of 
interest in using these methods.

4. Summary and outlook

IDRs interact with many different molecular partners including 
proteins, DNA, RNA, lipids, small molecules, carbohydrates, and 
metals. The knowledge of these interactions is rather limited, which 
motivates development of computations tools that predicts them 
from the readily available protein sequences. This comprehensive 
survey of sequence-based predictors of binding IDRs covers a wide 
range of interacting partners. We identify and summarize a large 
collection of 38 predictors that consider 5 different types of inter-
acting IDRs. The MoRF predictors are the largest category with 21 
methods, followed by 9 SLiM predictors, 3 predictors of protein- 
binding IDRs, 3 methods that predict protein/DNA/RNA binding IDRs 
and 2 predictors of lipid-binding IDRs. We find that these methods 
rely on a diverse range of predictive architectures that include 
scoring functions, regular expressions, machine learning models and 
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meta-predictors, where about three-quarters of them utilize ma-
chine learning algorithms. We observe a couple of recent trends to 
develop deep network-based models and to extend coverage to new 
types of interacting IDRs, such as RNA, DNA and lipid binding re-
gions. We also note a high rate of availability of these methods, with 
over 70% that are provided to the end users as either webservers 
and/or standalone code. Furthermore, we analyze relation between 
availability and impact/use of these methods. We find that methods 
which are more broadly available, as both webserver and source 
code, are substantially more cited/used when compared to those 
that are available in either format, while methods that do not offer a 
publicly available implementation suffer low use/citations. 
Moreover, we also find that the availability should be maintained 
since tools that were originally made available and are currently not 
functional observe a large drop in the use/citations. The latter ob-
servations strongly suggest that future predictors should be made 
available in both formats upon publication and should be main-
tained after publication.

While IDPs interact with a broad range of molecular partners, we 
show that the current predictors are largely focused on two types of 
binding IDRs, MoRFs and SLiMs. A particularly acute situation con-
cerns prediction of nucleic acid and lipid-binding IDRs, where only a 
handful of methods are available. The prediction of small molecules-, 
carbohydrates-, and metal-binding IDRs is not feasible at the mo-
ment, given a very small amount of ground truth data. The need to 
develop new predictors of DNA and RNA binding regions is further 
motivated by the inclusion of this prediction category in the pending 
CAID2 experiment. Consequently, one of the key future directions 
would be to diversify the development efforts to more uniformly 
cover different types of binding IDRs.

Results of the recently completed CAID assessment show that 
predictors of binding IDRs offer modest levels of predictive perfor-
mance [63], suggesting that there is a large room for improvement. 
We observe that none of the methods that participated in this eva-
luation use deep learning models. The recent influx of the deep 
learning-based predictors of binding IDRs will likely result in im-
proved predictive quality. This claim stems from a recent study that 
empirically demonstrates that deep learning-based predictors of 
intrinsic disorder significantly outperform other types of models 
[64]. The drive to use deep learning models is also motivated by the 
growing and successful use of these models in related areas of 
bioinformatics [148], such as prediction of protein-protein interac-
tions [149–151] and protein function [152–154]. We envision that 
majority of future predictors of binding IDRs will likely rely on deep 
neural networks. We encourage the developers to consider modern 
network topologies, such as the recently developed transformers 
[155], that were used to very accurately predict protein struc-
tures [156].

Some IDPs include IDRs that interact with different types of li-
gands and yet most of the current methods cover a single ligand 
type. Consequently, users are forced to use multiple methods and 
convert between different output formats to obtain a complete 
prediction. These difficulties could be alleviated with solutions that 
bundle multiple predictors, however, the only such solution to date 
is the DEPICTER webserver [157]. Moreover, there are only a handful 
of methods that predict IDRs that bind to multiple ligand types, such 
as DisoRDPbind, flDPnn and DeepDISObind, that target protein, RNA 
and DNA-binding IDRs. Consequently, we advocate for the devel-
opment of new tools that address predictions of multiple and many 
different types of binding IDRs. Furthermore, some IDRs can bind 
multiple partner types, which corresponds to multi-label (multi- 
output) learning. Prediction of such multifunctional IDRs is possible 
with the DMRpred method, although this tool does not provide 
types of binding partners [158]. Thus, new tools that would cast this 
prediction as multi-labels problem should be developed. We note 
that multi-labels predictors are widely used in related areas, such as 

prediction of subcellular localization [159–162], nucleic acid binding 
proteins [163], enzymatic functions [164], and ion channel 
types [165].

Prediction of the binding IDRs in protein sequences should be 
followed by modelling structures of the corresponding complexes 
(i.e., IDRs fold upon binding). While computational protein docking 
has been extensively pursued over the past several years [166], 
studies that investigate docking with IDPs are lagging behind since 
IDPs are difficult to model. Daisuke Kihara’s lab developed a pio-
neering approach for IDP-protein docking, IDP-LZerD [167,168]. This 
method produces a docking model from the 3D structure of the 
receptor and the sequence of interacting IDP. Docking an IDP is 
conceptually similar to protein-small peptide docking, but techni-
cally more challenging because conformation of the IDP on the re-
ceptor’s surface has to be predicted. In IDP-LZerD, this is done by 
docking and stitching short protein fragments taken from the 
binding IDR. Moreover, a recent benchmark study that evaluates 
three methods capable of docking with IDPs, IDP-LZerD [167,168], 
CABS-Dock [169] and AlphaFold-Multimer [170], shows that they 
accurately identify location of the binding site but struggle with 
atomic-levels details of the structure [171], suggesting that further 
research is needed.

Lastly, databases like D2P2 [172], MobiDB [173–176] and De-
scribePROT [177] provide convenient access to pre-computed pre-
dictions of disorder for millions of proteins. However, they typically 
contain a limited number of binding IDR predictions, with De-
scribePROT covering the most diverse range that includes putative 
protein, RNA and DNA-binding IDRs. This coverage should be ex-
tended in the future as more methods that cover a broader range of 
binding IDRs will be developed. In turn, this effort motivates the 
development of runtime-efficient predictors that can be used to 
perform predictions on such large scale. Examples of current fast 
tools include ANCHOR2, DisoRDPbind and fMoRFpred, that were 
shown to produce predictions in about 1 second per protein in the 
CAID experiment [63].
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