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A B S T R A C T

Intrinsic disorder prediction is an active area that has developed over 100 predictors. We identify and investigate
a recent trend towards the development of deep neural network (DNN)-based methods. The first DNN-based
method was released in 2013 and since 2019 deep learners account for majority of the new disorder predictors.
We find that the 13 currently available DNN-based predictors are diverse in their topologies, sizes of their net-
works and the inputs that they utilize. We empirically show that the deep learners are statistically more accurate
than other types of disorder predictors using the blind test dataset from the recent community assessment of in-
trinsic disorder predictions (CAID). We also identify several well-rounded DNN-based predictors that are accu-
rate, fast and/or conveniently available. The popularity, favorable predictive performance and architectural flex-
ibility suggest that deep networks are likely to fuel the development of future disordered predictors. Novel hy-
brid designs of deep networks could be used to adequately accommodate for diversity of types and flavors of in-
trinsic disorder. We also discuss scarcity of the DNN-based methods for the prediction of disordered binding re-
gions and the need to develop more accurate methods for this prediction.

© 20XX

1. Introduction

Intrinsic disorder in proteins is defined by lack of stable tertiary struc-
ture under physiological conditions [1–4]. Intrinsically disordered pro-
teins (IDPs) include one or more intrinsically disordered regions (IDRs)
in their sequences. Recent bioinformatics investigations conclude that
IDPs are highly abundant in eukaryotic organisms [5–7] and enriched
in multiple cellular compartments [8,9]. Numerous studies of IDPs re-
veal that they are crucial for a wide spectrum of cellular functions that
include signaling, molecular recognition and assembly, cell cycle regu-
lation, transcription, translation and phase separation [10–19]. More-
over, given their functional importance and prevalence in the human
diseasome [12,20–22], they serve as promising and currently underuti-
lized leads for rational drug design efforts [23–27].

Experimentally characterized IDPs and IDRs can be collected from
several databases, such as DisProt [28], PDB [29], IDEAL [30], DIBS
[31], and MFIB [32]. However, these resources cover only a small frac-
tion of IDPs, with the largest DisProt and PDB databases currently in-

IDP, Intrinsically disordered protein; IDR, Intrinsically disordered region;
DNN, Deep neural network; CASP, Critical Assessment of Structure Prediction;
CAID, Critical Assessment of Intrinsic Protein Disorder; FFNN, Feed forward
neural networks; BRNN, Bidirectional recurrent neural networks; CNN,
Convolutional neural networks
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cluding about 2 thousand and 25 thousand IDPs, respectively [28,33].
Compared to over 225 million protein sequences that are available in
the newest 2021_04 release of UniProt [34], we have a long way to go
to comprehensively identify and annotate IDPs and IDRs. Computa-
tional methods that accurately predict intrinsic disorder can be used to
facilitate efforts to close this huge and growing knowledge gap. Compu-
tational predictors already made large impact on the intrinsic disorder
field, by powering a rapid acceleration in the research on IDPs and IDRs
[35]. They are also used across many areas including rational drug de-
sign [23–26], structural genomics [36–38], and medicine [39,40].

Development of computational predictors of disorder is a long-
standing research problem. A recent survey has identified 103 disorder
predictors that were developed over the last four decades [41]. Current
surveys point to the long history of the disorder prediction area, provid-
ing invaluable insights concerning architectures of these methods, their
availability, trends in their development efforts and approaches to com-
paratively evaluate their predictive performance [40–48]. Moreover,
users and developers benefit from empirical studies that comparatively
assess predictive quality of disorder predictors [33,49–59]. These com-
parative studies include several community assessments, such as Criti-
cal Assessment of Structure Prediction (CASP) between CASP5 to
CASP10 [53–58] and Critical Assessment of Intrinsic Protein Disorder
(CAID) [52]. The community assessments involve evaluation of predic-
tors on blind test datasets (i.e., datasets that were not available to the
authors of the predictors) by independent assessors who do not take
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part in the competitions utilizing tests and metrics that are widely ac-
cepted by the community.

The predictive architectures used to develop disorder predictors are
typically divided into three categories [42,43,46,47]: (1) sequence
scoring functions; (2) machine learning models; and (3) meta-
predictors. The first category uses additive and/or weighted functions,
some of which are grounded in physical principles governing protein
folding, to process the input protein sequence and sequence-derived
structural and evolutionary information. Representative disorder pre-
dictors that fall into this category include FoldIndex [60], IUPred [61,
62], and IUPred3 [63]. The machine learning predictors apply models
that are trained from data using a variety of machine learning algo-
rithms, such as support vector machines [64–66], regression [67], con-
ditional random fields [68–70], radial basis function networks [71],
and shallow neural networks [36,72–76]. Example popular machine
learning predictors include DisEMBL [36], DISOPRED [75,76], PONDR
[73], and PrDOS [64]. The meta-predictors use multiple disorder pre-
dictions as inputs to re-predict disorder. The underlying rationale was
to exploit potential complementarity among the input disorder predic-
tions to generate a new prediction that would improve over the inputs.
These efforts were also fueled by the availability of diverse sequence-
scoring and machine learning predictors and studies that empirically
show that well-designed meta predictors indeed produce predictions
that outperform their inputs [77–79]. Representative example meta-
predictors of disorder include metaPrDOS [80], MFDp [65,81,82],
Cspritz [83], disCoP [77,84], and MobiDB-lite [78]. We observe that
some meta-predictors use machine learning algorithms (e.g., metaPr-
DOS [80] and MFDp [65]), which means that they can be cross-listed in
both categories.

Results of CASP10, the most recent CASP community assessment
that covers disorder prediction (i.e., subsequent CASP experiments do
not include disorder predictions), reveal that the top three predictors
belong to the machine learning (PrDOS and DISOPRED) and meta-
predictor (MFDp) categories [58]. However, a recent survey notes a
rapid influx of a new subfamily of machine learning methods that relies
on deep neural networks (DNNs) after the first DNN-based method was
released in 2013 [41]. DNNs differ from shallow neural networks,
which were commonly used to implement disorder predictors in early
2000 s [36,72–76], by use of multiple hidden layers and more sophisti-
cated types of neurons and connections. The shift to the deep network
models is motivated by their favorable levels of predictive performance
when compared with the other types of disorder predictors. In particu-
lar, we observe that the best performing methods from the just com-
pleted CAID experiment [85], which include flDPnn [86], SPOT-
Disorder2 [87], RawMSA [88] and AUCpred [89], rely on DNNs. Moti-
vated by their growing numbers and success, we provide the first re-
view of the DNN-based disorder predictors. We identify and summarize
13 DNN-based disorder predictors that were developed since 2013. We
analyze trends in the development of these predictors and empirically
compare predictive quality produced by the deep learners against the
other types of disorder predictors based on results produced on blind
test dataset from the CAID experiment. We also comment on future
prospects in the development of the DNN-based disorder predictors.

2. Prediction of intrinsic disorder using deep learning

Nowadays, deep learning is widely used to develop methods that
predict protein structure and function. Perhaps the most obvious exam-
ple is protein structure prediction where deep learning models, such as
AlphaFold, have deservedly dominated over other types of methods
[90–93]. Moreover, deep learning is utilized to predict other structural
aspects of proteins, such as contacts [94], secondary structure [95] and
torsional angles [96]. DNNs are also successfully applied to predict pro-
tein function [97–99], protein-drug interactions [100,101], and func-
tional sites [102–104].

The intrinsic disorder prediction field was not immune to the infu-
sion of the deep learning-based approaches. The first DNN-based disor-
der predictor, DNdisorder [105], was published in 2013. Table 1 sum-
marizes a comprehensive list of 36 disorder predictors that were pub-
lished since that time. This list contextualizes the efforts to develop
deep learning predictors in a broader setting of the entire disorder pre-
diction field. We identify the 36 predictors using a wide-ranging list of
sources including databases of disorder predictions: MobiDB [122],
D2P2 [123] and DescribePROT [124]; community assessments and sur-
veys that were published on or after 2013 [33,41–43,46,47,49,50,52,
58,59], and a manual search of relevant articles from PubMed that we
collect using the “(disorder[Title]) AND (prediction[Title]) AND pro-
tein” query. Table 1 reveals that 13 out of the 36 recent disorder predic-
tors use deep learning models. We find that it took two more years for
the second DNN-based predictor, DeepCNF-D, to be published in 2015
[112]. The following three years include similarly low numbers of new
deep learning tools, with two methods published in 2016, one in 2017,
and one more in 2018. Year 2019 marks a turning point in the efforts to
develop DNN-based disorder predictors, with two tools published in
2019, two in 2020, and four in 2021. Fig. 1 conveniently summarizes
the corresponding trends. It highlights the gradual shift to developing
predictors that rely on deep networks and the fact that these methods
constitute majority (58%) of the predictors that were published over
the last three years (green line in Fig. 1). We also note that the consis-
tent levels of the release of new methods that range between 11 and 13
per every three-years long interval.

Table 1 provides a few additional insights. We manually check
websites of the corresponding methods and find that 23 out of 36 pre-
dictors (over 60%) are available to the end users as either standalone
software (5 methods), webserver (10 methods) or in both modalities
(10 methods). Interestingly, all DNN-based predictors that were pub-
lished after 2016, except for flDPlr, are among the publicly available
tools. This rate of availability is substantially better compared to re-
lated areas including prediction of protein-binding and RNA-binding
residues where the availability is at around 40% [103,125]. The web-
servers are a convenient option to less programming savvy end users,
such as some biochemists or structural biologists. In this case, predic-
tions are performed on the webserver end and users are not required
to install and run the software on their hardware. However, the main
drawbacks of webservers are that they depend on the uninterrupted
availability of Internet, limit the size of individual jobs (i.e., number of
proteins can be predicted), and their results could be delayed when
their workload is heavy. On the other hand, the standalone software
option is best suited for skilled programmers and bioinformaticians.
The software must be installed and executed locally. This facilitates
running larger jobs and allows embedding a given disorder predictor
into other bioinformatics pipelines. For instance, putative disorder
generated by the popular IUPred [61,62,120] was used to predict
DNA-binding residues [126], B-cell epitopes [127], and quality of pro-
tein structures [128].

Table 2 details the 13 deep learning-based disorder predictors.
We summarize inputs, topologies, predictive performance, and run-
time of these methods. The inputs cover a broad range of relevant
information including the input sequence itself and several sequence-
derived characteristics, such as evolutionary information (e.g., posi-
tion-specific scoring matrix (PSSM) and residue-level conservation),
putative structural features (e.g., secondary structure and solvent ac-
cessibility), and physiochemical characteristics that are typically
quantified at the amino acid level (e.g., polarizability, hydrophobic-
ity, and isoelectric point). We define topologies based on two key as-
pects: type of the deep network and its size/depth. The network
types include classical deep feed forward neural networks (FFNNs)
and more sophisticated restricted Boltzmann machines (RBM), con-
volutional neural networks (CNNs) and bidirectional recurrent neural
networks (BRNNs). We grade the network sizes by the number of
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Table 1
Summary of intrinsic disorder predictors that were developed since 2013 when the first deep learning-based method was released. The predictors are sorted in
the chronological order of their year of publications. “*” denotes predictors that are used in Fig. 3.
Predictor name Year published Reference1 Applies DNN Availability2 URL

MFDp2 2013 [81] No WS https://biomine.cs.vcu.edu/servers/MFDp2/
DNdisorder 2013 [105] Yes N/A N/A
preDNdisorder 2013 [105] No N/A N/A
Ulg-GIGA 2013 [106] No N/A N/A
DisMeta 2014 [107] No WS https://montelionelab.chem.rpi.edu/dismeta/
disCoP 2014 [77,84] No WS https://biomine.cs.vcu.edu/servers/disCoP/
DynaMine 2014 [67,108] No SP + WS https://dynamine.ibsquare.be/
PON-Diso 2014 [109] No WS https://structure.bmc.lu.se/PON-Diso
DISOPRED3* 2015 [75] No SP + WS https://bioinf.cs.ucl.ac.uk/psipred/
s2D-1 2015 [110] No No N/A
s2D-2* 2015 [110] No No N/A
DisoMCS 2015 [111] No N/A N/A
DeepCNF-D 2015 [112] Yes SP https://home.ttic.edu/~wangsheng/software.html
AUCpreD* 2016 [89] Yes N/A N/A
AUCpreD-np* 2016 [89] Yes N/A N/A
DisPredict (DisPredict2)* 2016 [66] No SP https://github.com/tamjidul/DisPredict2_PSEE
MobiDB-lite* 2017 [78] No WS https://mobidb.bio.unipd.it/
SPOT-Disorder* 2017 [113] Yes SP + WS https://sparks-lab.org/server/spot-disorder/
IUpred2A-long* 2018 [114] No SP + WS https://iupred2a.elte.hu/
IUpred2A-short* 2018 [114] No SP + WS https://iupred2a.elte.hu/
pyHCA* 2018 No No SP https://github.com/T-B-F/pyHCA
SPOT-Disorder-Single* 2018 [115] Yes SP + WS https://sparks-lab.org/server/spot-disorder-single/
Predictor by Zhao and Xue 2018 [116] No No N/A
IDP-CRF 2018 [69] No No N/A
rawMSA* 2019 [88] Yes SP https://bitbucket.org/clami66/rawmsa/src/master/
SPOT-Disorder2* 2019 [87] Yes SP + WS https://sparks-lab.org/server/spot-disorder2/
Spark-IDPP 2019 [117] No No N/A
IDP-FSP 2019 [70] No No N/A
DisoMine* 2020 No Yes WS https://www.bio2byte.be/b2btools/disomine/
ODiNPred 2020 [118] No WS https://st-protein.chem.au.dk/odinpred
IDP-Seq2Seq* 2020 [119] Yes WS https://bliulab.net/IDP-Seq2Seq/
flDPnn* 2021 [86] Yes SP + WS https://biomine.cs.vcu.edu/servers/flDPnn/
flDPlr* 2021 [86] No No N/A
IUPred3 2021 [63] No SP + WS https://iupred3.elte.hu/
RFPR-IDP* 2021 [120] Yes WS https://bliulab.net/RFPR-IDP/server
Metapredict* 2021 [121] Yes SP + WS https://github.com/idptools/metapredict
1 “No” means that a given predictor was not published in a peer-reviewed journal but was included based on participation in the CASP and/or CAID assessment.
2 Availability: released as “SP” (standalone program), “WS” (web server). “No” not released as either SP (standalone program) or WS (web server), and “N/A” (not

available) SP and/or WS were released at the time of publication (i.e. URL was provided in the original article) but they were not available as of February 2022 when
the access was tested.

Fig. 1. Development of disorder predictors since 2013 when the first deep learning-based predictor was released. The left/right y-axis gives the number/fraction of
predictors in a given time period. The predictors are color-coded where green represents deep neural network-based methods and blue represents other types of
predictors.

https://biomine.cs.vcu.edu/servers/MFDp2/
https://montelionelab.chem.rpi.edu/dismeta/
https://biomine.cs.vcu.edu/servers/disCoP/
https://dynamine.ibsquare.be/
https://structure.bmc.lu.se/PON-Diso
https://bioinf.cs.ucl.ac.uk/psipred/
https://home.ttic.edu/%7ewangsheng/software.html
https://github.com/tamjidul/DisPredict2_PSEE
https://mobidb.bio.unipd.it/
https://sparks-lab.org/server/spot-disorder/
https://iupred2a.elte.hu/
https://iupred2a.elte.hu/
https://github.com/T-B-F/pyHCA
https://sparks-lab.org/server/spot-disorder-single/
https://bitbucket.org/clami66/rawmsa/src/master/
https://sparks-lab.org/server/spot-disorder2/
https://www.bio2byte.be/b2btools/disomine/
https://st-protein.chem.au.dk/odinpred
https://bliulab.net/IDP-Seq2Seq/
https://biomine.cs.vcu.edu/servers/flDPnn/
https://iupred3.elte.hu/
https://bliulab.net/RFPR-IDP/server
https://github.com/idptools/metapredict
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Table 2
Summary of intrinsic disorder predictors that use deep neural network models. The predictors are sorted in the chronological order of their year of publica-
tions. X marks inputs that are used by a given predictor. “*” denotes predictors that are used in Fig. 3.
Predictor name Year

published
Inputs Network architecture AUC Runtime7

Sequence1 Evolutionary
features2

Predicted structural
feature3

Physicochemical
properties4

Type5 Size6

DNdisorder 2013 X X RBM Moderately
deep

N/A N/A

DeepCNF-D 2015 X X X CNN Moderately
deep

N/A N/A

AUCpreD* 2016 X X X X CNN Moderately
deep

0.757 7.0

AUCpreD-np* 2016 X X X CNN Moderately
deep

0.751 <0.5

SPOT-Disorder* 2017 X X X BRNN Moderately
deep

0.744 5.0

SPOT-Disorder-
Single*

2018 X X X BRNN + CNN Deep 0.757 0.8–1.0

rawMSA* 2019 X X BRNN + CNN Very deep 0.780 >10.0
SPOT-Disorder2* 2019 X X X BRNN + CNN Very deep 0.760 >10.0
DisoMine* 2020 X BRNN Moderately

deep
0.765 <0.5

IDP-Seq2Seq* 2020 X X X BRNN Very deep 0.754 12.0
flDPnn* 2021 X X X FFNN Moderately

deep
0.814 0.5–1.0

RFPR-IDP* 2021 X X BRNN + CNN Moderately
deep

0.722 <0.5

Metapredict* 2021 X BRNN Moderately
deep

0.746 <0.5

1 The input sequence was encoded and directly used as predictive input.
2 Evolutional features computed from the input sequence including position-specific scoring matrix (PSSM), entropy-based conservation, and multiple sequence

alignment.
3 Structural features predicted from the input sequence, such as putative secondary structure, solvent accessibility, and half-sphere exposures.
4 Physicochemical properties of the amino acids in the input sequence including polarizability, hydrophobicity, and isoelectric point.
5 Type of the deep learning neural network used: “RBM” (Restricted Boltzmann Machine); “CNN” (Convolutional Neural Network); “BRNN” (Bidirectional

Recurrent Neural Network); and “FFNN” (Feed Forward Neural Network).
6 The number of hidden layers: moderately deep with 2 to 3 layers; deep with 4 to 5 layers; and very deep with over 5 layers.
7 The average runtime in minutes to predict one amino acid sequence. N/A denotes that the results could not be collected since a working implementation of the

corresponding predictor is not available.

hidden layers into three categories: moderately deep with between 2
and 3 hidden layers; deep with 4 to 5 hidden layers; and very deep
with over 5 hidden layers. We observe a few interesting patterns.
First, majority of the predictors rely on multiple input types, with
the two most popular options being evolutionary and putative struc-
tural data. These methods take advantages of the deep neural net-
work’s ability to combine diverse types of inputs including numeric
data, such as conservation and relative solvent accessibility, nominal
data, such as secondary structure, and binary data, such as one-hot
encoding of amino acid types, to produce high-quality latent feature
space. Second, these disorder predictors rely on a diverse collection
of network types, including hybrid designs that combine convolu-
tional and bidirectional recurrent topologies. Third, they utilize de-
signs with widely varying network sizes including nine moderately
deep, one deep and three very deep networks. Altogether, this analy-
sis reveals that the current designs broadly explore the input and
network topology spaces.

The recently completed CAID experiment reveals that some of the
DNN-based solutions provide favorable predictive performance when
compared to other types of disorder predictors [52]. This conclusion is
perhaps best captured with the following quote: “The SPOT-Disorder2
and flDPnn, followed by RawMSA and AUCpreD, are consistently good.
However, flDPnn is at least an order of magnitude faster than its competi-
tors, and it succeeded on all sequences, whereas SPOT-Disorder2 skipped
5% of sequences as a result of a length limitation.” [85]. While these four
best predictors rely on deep learning, they implement the underlying
predictive models using very different designs. More specifically,
flDPnn relies on moderately deep FFNN architecture [86], SPOT-
Disorder2 and RawMSA are very deep hybrids of CNN and BRNN [87,

88], while AUCpreD utilizes moderately deep CNN topology [89]. This
observation suggests that accurate disorder prediction can be accom-
plished using different types of deep learners.

We provide a wider comparison of the predictive performance of
deep learners. We cover 11 DNN-based methods that exclude only the
two oldest methods, DNdisorder and DeepCNF-D. DNdisorder is not
available to the end users (Table 1) while the standalone version of
DeepCNF-D requires specific feature encoding of the sequence that we
could not reproduce. We compare predictive performance of the re-
maining 11 deep learners using the annotated CAID dataset from
https://idpcentral.org/caid/data/1/ and https://idpcentral.org/caid/
data/1/reference/disprot-disorder.txt. This dataset includes 652 pro-
tein sequences and 337,908 amino acids, with 838 disordered regions
and 54,820 disordered residues. For the 8 of the 11 predictors that were
evaluated in CAID (i.e., AUCpred [89], AUCpred-np [89], DisoMine
[129], flDPnn [86], rawMSA [88], SPOT-Disorder [113], SPOT-
Disorder-Single [115] and SPOT-Disorder2 [87]), we parse their CAID
predictions from https://idpcentral.org/caid/data/1/predictions/. We
collect results for the other three methods (IDP-Seq2Seq [119], RFPR-
IDP [120], and Metapredict [121]) using the webservers and stand-
alone programs provided by the authors. Table 2 shows that the predic-
tive quality of deep learners measured with the area under the ROC
curve (AUC) ranges between 0.722 for RFPR-IDP and 0.814 for flDPnn.

We further evaluate whether differences in the AUCs of the 11 pre-
dictors are robust across different datasets by comparing results across
20 randomly selected disjoint sets of 5% of proteins from the CAID
dataset. We assess significance of differences in AUCs between the best-
performing flDPnn and the other methods. We use the t-test if the un-
derlying data are normal; otherwise, we use the Wilcoxon signed-rank

https://idpcentral.org/caid/data/1/
https://idpcentral.org/caid/data/1/reference/disprot-disorder.txt
https://idpcentral.org/caid/data/1/reference/disprot-disorder.txt
https://idpcentral.org/caid/data/1/predictions/
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test; we test normality with the Anderson-Darling test at the 0.05 signif-
icance. We find that flDPnn and RawMSA are not statistically different
(p-value ≥ 0.05) but flDPnn is statistically better than the other 9 meth-
ods (p-value < 0.05). We similarly quantify significance of differences
between RFPR-IDP that has the lowest AUC and the other 10 predictors.
This analysis reveals that SPOT-Disorder, Metapredict, AUCpreD-np
and IDP-Seq2Seq produce predictions that are not statistically better
than RFPR-IDP (p-value ≥ 0.05). The remaining 4 predictors that in-
clude AUCpreD, SPOT-Disorder-Single, SPOT-Disorder2, and DisoMine
are significantly better than RFPR-IDP (p-value < 0.05) and signifi-
cantly worse than flDPnn (p-value < 0.05). Correspondingly, we iden-
tify 3 groups of the DNN-based predictors: 1) flDPnn and RawMSA that
secure the best results (AUC > 0.78); AUCpreD, SPOT-Disorder-Single,
SPOT-Disorder2, and DisoMine that obtain the second-best perfor-
mance (0.755 < AUC < 0.78); and RFPR-IDP, SPOT-Disorder,
Metapredict, AUCpreD-np and IDP-Seq2Seq that provide more modest
levels of predictive quality (0.720 < AUC < 0.755).

We also analyze an average per-protein runtime for the predictors
from Table 2. Similar to the analysis of the predictive performance, we
could not perform this analysis for DNdisorder and DeepCNF-D that do
not provide working implementations. We extract the runtime data
from the CAID results for the eight methods that participated in this ex-
periment [52], and we estimate it for the other three methods (IDP-
Seq2Seq, RFPR-IDP and Metapredict) based on the implementations
provided by the authors. We find that the runtime of the 11 predictors
varies widely (Table 2), with the fastest predictors that produce results
in several seconds and the slowest that require over 10 min for the same
task.

Using the above analysis, Fig. 2 compares the 11 available predic-
tors based on three key characteristics: predictive performance quanti-
fied with AUC, speed measured with runtime, and mode of availability.
We score each characteristic in the 0 to 2 range where higher number is
associated with darker shade and indicates better quality, i.e., higher
AUC, lower runtime and more ways to access a given predictor. The

Fig. 2. Heatmap that compares 11 available deep learners based on three key
characteristics: predictive performance quantified with AUC, speed measured
with runtime, and mode of availability. The predictors are sorted in the
chronological order of their year of publications. The color-coded scores rep-
resent quality where 2 (dark blue) is best, 1 (blue) is intermediate, and 0
(light blue) is worst. The AUC values are categorized into three groups using
statistical test that measures robustness of differences between predictors over
different protein sets; details are described in the text. Methods with AUCs
that are not statistically different (p-value ≥ 0.05) from the best (worst) per-
forming flDPnn (RFPR-IDP) are labeled with 2 (0), while the remaining pre-
dictors are labeled with 1. The runtime is divided into three ranges: < 1 min
(score of 2); between 1 and 10 min (score of 1); and ≥ 10 min (score of 0).
The availability score counts the number of modes where 2 means that both
SP (standalone program) or WS (web server) are available and 1 that either SP
or WS are available.

most well-rounded predictors include flDPnn (total score of 6), SPOT-
Disorder-Single (score of 5), DisoMine (score of 4) and Metapredict
(score of 4). When analyzing individual dimensions, the fastest methods
(i.e., per-protein runtime < 1 min) include AUCpreD-np, SPOT-
Disorder-Single, DisoMine, flDPnn, RFPR-IDP and Metapredict. The
most accurate methods are flDPnn and rawMSA and methods that are
available in two modes (webserver and standalone) include SPOT-
Disorder, SPOT-Disorder-Single, SPOT-Disorder2, flDPnn and Metapre-
dict.

3. Deep learning methods outperform other predictors of intrinsic
disorder

Motivated by the finding that the top performing predictors in CAID
are deep learners [52,85], we investigate whether this result can be ex-
tended more broadly to other DNN-based methods. More specifically,
we compare the results for the 11 available deep learning-based disor-
der predictors from Table 2 against the results of other types of methods
that we collect using the same CAID data. This analysis covers a com-
prehensive set of 29 disorder predictors including 11 deep learners that
are annotated with * in Table 2 and 18 methods that use the other types
of models. The latter group includes 12 machine learning predictors
(DisEMBL-465 [36], DisEMBL-HL [36], DISOPRED3 [75], DisPredict2
[66], Espritz-D [130], Espritz-N [130], Espritz-X [130], flDPlr [86],
PONDR VSL2B [131], PreDisorder [74], RONN [132], and s2D-2
[110]); 5 sequence scoring function-based methods (FoldUnfold [133],
IsUnstruct [134], IUpred2A-long [114], IUpred2A-short [114], and py-
HCA [135]) and one meta-predictor (MobiDB-lite [78]). We mark these
methods with * in Table 1, except for DisEMBL-465, DisEMBL-HL,
JRONN, FoldUnfold, PONDR VSL2B, PreDisorder, IsUnstruct, Espritz-
D, Espritz-N, and Espritz-X that were published before 2013. We quan-
tify the predictive performance using four popular metrics that are con-
sistent with the measures used in the most recent community assess-
ments [52,58], including AUC, area under the precision-recall curve
(AUPR), F1 and Matthews correlation coefficient (MCC). Finally, we
quantify statistical significance of differences in the predictive perfor-
mance between the results of the 11 deep learners and the 18 other
methods. We test normality of the measured scores with the Anderson-
Darling test and we apply the student t-test for normal data and the
Wilcoxon test otherwise.

Fig. 3 summarizes the corresponding empirical results. The median
AUC of the deep learners is 0.76 vs. 0.73 for the other tools. We ob-
serve similarly substantial magnitude of differences for the other met-
rics, with median AUPR of 0.35 vs. 0.31, median F1 of 0.42 vs. 0.39
and median MCC of 0.29 vs. 0.26. The statistical analysis reveals that
the DNN-based methods outperform the other disorder predictors by a
statistically significant margin across the four metrics (p-
value < 0.05). This consistent and statistically significant trend sug-
gests that the deep neural networks are the best choice to develop ac-
curate disorder predictors.

4. Summary and outlook

Disorder prediction is an active and well-establish research area
with over 40 years of history. The first DNN-based disorder predictor
was published in 2013 and 12 more deep learners were published since.
We find that majority of the disorder predictors that were developed in
the last three years utilize deep neural networks. The popularity of this
design is motivated by several factors. First, these models can be
molded into many different architectures that are flexible to use diverse
types of inputs. Our analysis of the 13 DNN-based disorder predictors
reveals that they rely on very diverse designs that explore different in-
puts, topologies and sizes. Second, our empirical results reveal that the
DNN-based predictors are in general statistically better when directly
compared against a representative collection of the other types of pre-
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Fig. 3. Comparison of predictive performance between disorder predictors that utilize deep neural networks (in red) and the other disorder predictors (in blue). The
predictive performance is quantified with AUC, AUPR, F1 and MCC. Results of individual predictors are denoted by dots. Distributions of these values are summa-
rized with the box plots. *** means that the predictive performance of the deep learners is significantly higher than the performance of the other methods (p-
value < 0.05).

dictive models. This conclusion is in line with the results of the recent
CAID experiment where the top four predictors are deep learners [52,
85]. Third, our multifaceted comparison of the deep learners provides
useful clues for the end users by identifying methods that are accurate,
fast and widely available. We identify several well-rounded predictors
that include flDPnn (very accurate, very fast, and available in multiple
ways), SPOT-Disorder-Single (accurate, very fast, and available in mul-
tiple ways), DisoMine (accurate and very fast) and Metapredict (very
fast and available in multiple ways). These results and accolades sup-
port conclusions of the a recent article that say “deep-learning-based
methods will likely continue to show the greatest potential for future im-
provement” [85].

Our analysis finds that the architectures of the current deep learners
are considerably diverse. This suggests that the optimal architecture is
yet to be identified. We reason that this should be a hybrid design to ac-
commodate for the underlying variety of different types/flavors of dis-
order [136–138]. For instance, IDRs cover a wide spectrum of sizes,
from short regions that are frequently localized at the sequence termini
to very long regions that span the entire protein sequence [139,140].
IDRs also vary in their conformational space, which is signified by their
classification into the native coils, native pre-molten globules and na-
tive molten globules [4,141]. Moreover, IDRs carry out many different
functions, and some of them are multifunctional (moonlighting) [142,
143], which results in many different biases in their sequences [4,137].
Interestingly, design of the recently published and well-rounded flDPnn
suggests that predictive quality can be improved by innovating inputs
that are fed into the deep networks [86]. The authors point to multiple
options including development of extended sequences profiles that
cover relevant sequence-derived protein characteristics beyond the
commonly-used inputs listed in Table 2, and construction of aggregate
features that quantify sequence bias at the region or whole sequence
level. These two future directions go hand in hand given the fact that
the hybrid deep learners are inherently capable of handling diverse and
large inputs.

While most of recently released predictors of intrinsic disorder uti-
lize DNNs, this is not necessarily the case for the methods that predict
binding IDRs. There are close to 20 predictors of disordered protein-
binding regions [144] and several methods that predict IDRs that inter-
act with nucleic acids and lipids [42,145]. Examples of the recently
published tools include FLIPPER [146], SPOT-MoRF [147], OPAL+
[148], DisoLipPred [149] and DeepDISObind [150]. The CAID experi-
ment evaluated close to a dozen of these predictors and concluded that
“disordered binding regions remain hard to predict” [52], motivating fur-
ther efforts in this area. One of the potential reasons for the low predic-
tive performance of these tools is a relatively low utilization of the deep
learning architectures. We identify only a handful of DNN-based predic-
tors of binding IDRs including SPOT-MoRF [147], MoRFPred_en [151],
en_DCNNMoRF [152], DeepDISObind [150], and DisoLipPred [149]. A

similar situation is true in the context of prediction of disordered linker
regions where neither of the two currently available methods, DFLpred
[153] and APOD [154], applies deep learning and their predictive per-
formance is relatively limited. Given the success of DNNs in the disor-
der prediction, we believe that this technology could be successfully ap-
plied to strengthen the quality of the predictors of binding IDRs and dis-
ordered linkers.
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