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Knowledge of protein-protein interactions facilitates annotation of protein 
functions and drug development efforts. Computational prediction of protein-
protein interactions is motivated by a growing gap between the number of known 
and the number of functionally annotated protein sequences. We focus on 
sequence-based predictors of protein-binding residues (PBRs). They rely on 
predictive models that were developed from training data where the native 
annotations of PBRs were collected either from structures of protein-protein 
complexes (structure-annotated predictors) or which are found in the intrinsically 
disordered/unstructured regions (disorder-annotated predictors). This is the first 
overview that considers both groups of methods. We survey a comprehensive set 
of 36 predictors including 19 structure-annotated and 17 disorder-annotated tools. 
The fact that six new methods were published in 2018 alone suggests that this is 
still an active research area. We discuss their availability, impact, predictive 
architectures and outputs. These predictors rely on different combinations of five 
main types of inputs and typically utilize machine learning-derived predictive 
models. Methods with webservers are the most highly cited, with the average 
citation count of 104, compared to the overall average of 74. We note lack of 
solutions that combine structure-annotated and disorder-annotated data to 
accurately predict PBRs in both structured and disordered regions.  

1.   Introduction 

Proteins interact with nucleic acids, lipids, a variety of small ligands and proteins, 
prompting development of computational predictors of these interactions [1-10]. 
Understanding protein-protein interactions (PPIs) is important for a variety of 
applications, such as annotation of protein functions [11], drug discovery [12-14] 
study of disease mechanisms [15, 16], and the development of PPI networks [17, 
18]. Several publicly available data repositories and resources that archive PPI data 
at the molecule (protein) and molecular (residue or atomic) levels have been 
developed. Examples includes the Mentha resource that integrates data about PPIs 
at the protein level [19], BioLip that annotates protein-binding residues [20] and 
Protein Data Bank (PDB) which provides access to detailed atomic-level structures 
of protein-protein complexes [21-23]. However, the scope of these resources is 
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very limited given the large number of already sequenced proteins, which has 
recently reached over 137 million (source: UniProt [24, 25] as of January 14, 
2019). To compare, mentha offers access to only 741 thousand interactions (as of 
Jan 13, 2014), BioLip to 21.5 thousand residue-level interaction sites (as of Jan 4, 
2019), and PDB to close to 27 thousand complexes (as of Jan 14, 2019). The very 
wide gap between the expected and annotated number of interactions motivates the 
development of fast and cost-effective computational predictors of PPIs [8, 26-32] 
which can be used to support more tedious, labor intensive and relatively expensive 
experimental techniques [33-35].   
 

 

Figure 1. Prediction of PBRs for the nucleoplasmin protein from Xenopus (UniProt ID: P05221). 
Native annotation of PBRs, which were obtained from DisProt database (DisProt ID: DP00217), are 
shown with black and red horizontal bars at the bottom of the figure. The putative annotations 
generated with the DisoRDPbind method are shown with a thin blue line (for the putative numeric 
propensities) and with blue horizontal bars (for the putative binary predictions).  

 
Numerous computational methods for the prediction of PPIs have been 

developed [8, 26-32]. They can be broadly classified into two categories based on 
the input: structure-based and sequence-based [8, 31]. The structure-based 
methods are limited in scope to a relatively small set of proteins that have structure 
and proteins for which structure can be accurately predicted. The sequence-based 
methods require only protein sequences as input and thus they can be applied to 
make predictions for any of the millions of the currently sequenced proteins. They 
predict PPIs at either the whole protein-level (whether or not a given protein 



   

interacts with another protein) or at the residue-level (whether particular amino 
acids in the protein sequence interact with proteins). Prediction of interactions at 
the residue level arguably provides more insight/more detailed information and 
hence we focus on these methods. The residue-level methods predict protein 
binding residues (PBRs) either using a single protein sequence or a pair of 
sequences. This chapter surveys and describes a large collection of predictors that 
require a single protein sequence as input. These methods predict PBRs for every 
residue in the input protein chain. Discussion concerning a relatively small set of 
protein-pair-based methods [36-40] can be found in [8]. These methods find PBRs 
for a pair of protein sequences that are presumably interacting with each other. 

 
The single-sequence predictors of PBRs take a protein sequence as their input 

and provide output in either binary format (each residue in the input protein 
sequence is classified as either PBR or non-PBR) or in both numeric (propensity 
score that quantifies likelihood that a given residue is protein-binding) and binary 
formats. Figure 1 shows example predictions of PBRs for the nucleoplasmin 
protein from Xenopus (UniProt ID: P05221) that were generated with the 
DisoRDPbind predictor [41, 42]. A thin blue line at the top of the figure shows the 
putative propensity scores that are generated for each residue in this protein 
sequence. Higher values of these scores correspond to a higher likelihood that a 
given residue binds proteins. These propensities are also used to generate the 
binary predictions. Residues with scores > threshold (0.807) are assumed to 
interact with proteins, while the remaining residues are assumed not to interact. 
This threshold was pre-optimized on a benchmark dataset to ensure that 
DisoRDPbind generates a low false positive rate of 10% (rate of incorrectly 
predicted PBRs). The binary predictions that stretch between positions 113 and 
163 are represented by a thick blue horizontal line at the bottom of Figure 1. The 
native annotation of PBRs were obtained from the DisProt database [43, 44] and 
include intrinsically disordered protein-binding regions between positions 153 and 
171 [45] and between positions 121 and 200 [46]. The predictions are in general 
in good agreement with the native PBRs. While DisoRDPbind fails to generate 
correct binary predictions at the C-terminus that is annotated as protein binding 
(positions 164 to 200), it still provides relatively high propensity scores for this 
region that suggests high likelihood of protein binding. This example not only 
explains format and interpretation of a sample prediction but it also shows that the 
putative propensities can be used to effectively supplement the binary predictions.  

 
The single-sequence-based predictors of PBRs are being continually developed 

over the last couple of decades [8, 26-32]. We provide a comprehensive overview 
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of these predictors focusing on their availability, impact, predictive architectures, 
and outputs. 

2.   Computational prediction of protein binding residues from sequence 

The single-sequence-based predictors of PBRs are typically derived with machine 
learning (ML) algorithms [47, 48]. These algorithms compute predictive models 
from a training dataset that is annotated with native PBRs. The ML algorithms 
optimize the architecture and parameters of the models such that the disagreements 
between their outputs and the native annotations in the training dataset is 
minimized. After the training is completed, the resulting models can be used to 
accurately predict PBRs in sequences of proteins that are not included in the 
training dataset [8].  
 

The single-sequence-based predictors of PBRs are divided into two types based 
on the training datasets that they utilize: structure-annotated and disorder-
annotated. The structure-annotated methods rely on training datasets where the 
annotations of PBRs are derived from structures of protein-protein complexes, 
typically collected from PDB [21-23]. The disorder-annotated predictors are 
optimized based on training datasets with intrinsically disordered protein-binding 
regions. The intrinsically disordered regions (IDRs) lack a stable three dimensional 
structure and they typically materialize as ensembles of multiple conformational 
states [49-56]. They are highly abundant in nature, particularly among eukaryotic 
organisms [57-60]. The structural plasticity of IDRs facilitates efficient 
interactions with a variety of different molecules [61-71], including proteins [72-
76]. Many IDRs undergo disorder-to-structure transitions concomitant with their 
protein-binding activity [77-81], which means that some of these interactions are 
covered by the protein-protein complexes in PDB. Annotations of disordered 
PBRs can be collected from a variety of sources including PDB (based on regions 
with missing three dimensional structure) [82], DisProt [43, 44], and MobiDB [83, 
84]. Moreover, both structure-annotated and disorder-annotated methods can be 
broadly classified into two categories based on the format of outputs that they 
generate. As discussed in Figure 1, a given predictor can produce either binary 
scores or both binary and propensity scores. Figure 2 illustrates a classification of 
current single-sequence-based predictors of PBRs on basis of the annotations and 
outputs. The efforts directed toward development of these predictors are well-
balanced and include 19 structure-annotated methods and 17 disorder-annotated 
methods. However, while most of the disorder-annotated predictors provide 



   

arguably more useful set of both output types, about half of the structure-annotated 
methods provide only the binary outputs.  

 

 
Figure 2. Classification of single-sequence-based predictors of PBRs based on the type of 
annotations used to generate the underlying predictive models and the outputs that they produce.  

 
Several surveys of the single-sequence-based predictors of PBRs have been 

published [8, 26-32]. The main drawback of these articles is that they focus 
specifically on only the disorder-annotated [32] or structure-annotated [8, 26-31] 
methods. This is the first article that bridges that divide and discussed both types 
of computational predictors. 

Single-sequence predictors of 
protein-binding residue

Structure-annotated 
predictors 

Disorder-annotated 
predictors

Methods with only 
binary output 
ISIS (2007) 
Chen et al. (2010) 
HomPPI (2011) 
Wang et al. (2014) 
LORIS (2014) 
SPRINGS (2014) 
Geng et al. (2015) 
PPIS (2016)  
Tahir et al. (2017) 
Guo et al. (2018) 

Methods with binary and 
propensities output 
SPPIDER (2007) 
Du et al. (2009) 
Chen et al. (2009)  
PSIVER (2010)  
CRF-PPI (2015)  
iPPBS-Opt (2016)  
SPRINT (2016)  
SSWRF (2016) 
EL-SMURF (2018)

Methods with only 
binary output 
retro-MoRFs (2010)

Methods with binary and 
propensities output 
alpha-MoRFpred (2007) 
ANCHOR (2009) 
SLiMPred (2012) 
MoRFpred (2012) 
MFSPSSMpred (2013) 
PepBindPred (2013) 
disoRDPbind (2015) 
MoRFCHiBi (2015) 
DISOPRED3 (2015)  
fMoRFpred (2015) 
MoRFCHiBiWeb (2016) 
Wang et al. (2017) 
MoRFPred-plus (2018) 
OPAL (2018) 
OPAL+ (2018) 
Fang et al. (2018) 
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Figure 3. Historical timeline of the development of the single-sequence predictors of PBRs. The 
numbers inside the bars represent the number of predictors developed in the corresponding years.  

2.1.   Overview of sequence based predictors of protein binding residues 

Well over 30 single-sequence predictors of PBRs have been developed. Figure 3 
depicts a historical timeline of these efforts. The structure-annotated methods are 
represented using black bars (total of 19) while disordered-annotated methods are 
shown with white bars (total of 17). The first two methods, the structure-annotated 
ISIS [85] and the disorder-annotated alpha-MoRFpred [86, 87] were released in 
2007. We observe that while initially the structure-annotated predictors were 
dominant (6 structure-annotated vs. 3 disorder-annotated methods were published 
between 2007 and 2010), recent years have observed a substantial shift towards 
the development of the disorder-annotated methods (10 disorder-annotated vs. 9 
structure-annotated methods were released between 2015 and 2018). The fact that 
2018 alone has seen six new methods [88-93] suggests that this is still an active 
research area.  

 
Table 1 provides references and information about the year of publication, 

availability and citation counts for the 36 predictors. We provide URLs (Uniform 
Resource Locators) for the implementations that are currently (as of January 7, 
2019) available for 24 of the 36 predictors. The implementations can be provided 
in two ways: as webservers and/or standalone code. The webservers are 
comparatively easier to use and primarily target less computer savvy users who 
want to perform ad hoc predictions. The computations are performed on the server 
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side, and the end user only need access to Internet and a web browser to run the 
predictions. The predicted results are returned to the users typically via email 
or/and the web browser. Only 4 (21%) out of the 19 structure-annotated predictors 
provide webservers while 11 (65%) out of 17 of the disorder-annotated methods 
have webserver facilities. The source code is helpful for users who want to run the 
predictions on their hardware, which could be because they need to predict a large 
dataset of proteins or embed a given predictor into a larger bioinformatics pipeline. 
About 37% (7 out of 19) of the structure-annotated methods and 41% (7 out 17) of 
the disorder-annotated methods provide this option. Finally, five disorder-
annotated predictors including ANCHOR [94-96], MFSPSSM [97], MoRFChiBi 
[98], DISOPRED3 [99], and MoRFCHiBiWeb [100] as available as both 
webserver and source code. Moreover, 12 predictors were either never made 
available to the community (10 methods) or the support was discontinued after 
they were made available at the time of publication. The latter include the predictor 
by Chen et al. [101] and SSWRF [102].  

 
Table 1 also quantifies citations, arguably one of the most important aspects of 

impact generated by these predictors. We note that we use only one reference, the 
one with the highest citation counts, for the few methods that were published in 
multiple articles to avoid duplicate counting when measuring these values. We 
quantify the total and the annual number of citations collected from Google 
Scholar. Overall, the 36 predictors were cited 2649 times, with an impressive 
average of 74 citations per method and median of 31 citations per method. The 
average and median increase to 104 and 54 for the 15 methods that offer 
webservers. The annual citation counts are more suitable for direct comparisons 
between methods and they reveal that the most-cited methods include 
DISOPRED3 [99], iPPBS-Opt [103], ANCHOR [94-96], alpha-MoRFpred [86, 
87] and MoRFpred [104, 105], all of which secure over 30 citations annually. 
Interestingly, the availability of these predictors is directly correlated with their 
citations. Predictors that are not available and those that are available as only 
standalone code have the average annual citations of 10.3 and 5.2, respectively. 
The methods that are available as only webservers secure on average 17.3 citations 
per year while the five predictors that are provided as both standalone code and 
webserver have accumulated an average of 27.8 citations annually. This agrees 
with common sense since computational methods that are not made available or 
that have to be installed locally are less likely to be utilized by the end users, and 
thus less likely to be cited. 

 



 

Table 1. Overview of the single-sequence-based predictors of PBRs. The methods divided into two groups: 19 structure-annotated and 17 disorder-annotated, and sorted by the publication year in the 
ascending order within each group. The ‘Type’ column indicates whether a given method is available as the online webserver (WS) and/or standalone source code (SC); NA means that neither webserver 
nor source code is available. The ‘URL’ column gives the page where the method can be found as of January 7, 2019, where NLA means that the method is ‘no longer available’ while the published article 
claims that it was originally available. The ‘Total citations’ column gives the number of citations collected from Google Scholar on January 7, 2019. To avoid duplicate counting of citations for methods 
that are published in multiple articles, we use the one with the highest number of citations. The ‘annual citations’ column gives an average number of citations per year since a given method was published. 
 

Type Method Ref. Year 
published 

Availability Citations 
Type URL Total Annual

Structure-annotated 
predictors 

ISIS [85] 2007 NA NA 244 22
SPPIDER [106] 2007 WS http://sppider.cchmc.org/ 272 25
Du et al. [107] 2009 NA NA 11 1
Chen et al. [101] 2009 SC NLA 126 14
PSIVER [108] 2010 WS http://mizuguchilab.org/PSIVER/ 114 14
Chen et al. [109] 2010 SC http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm 39 5
HomPPI [110] 2011 WS http://ailab1.ist.psu.edu/PSHOMPPIv1.2/index.html 55 8
Wang et al. [111] 2014 NA NA 50 13
LORIS [112] 2014 SC https://sites.google.com/site/sukantamondal/software 24 6
SPRINGS [113] 2014 SC https://sites.google.com/site/predppis/ 12 3
CRF-PPI [114] 2015 SC http://csbio.njust.edu.cn/bioinf/CRF-PPI 6 2
Geng et al. [115] 2015 NA NA 10 3
iPPBS-Opt [103] 2016 WS http://www.jci-bioinfo.cn/iPPBS-Opt 94 47
PPIS [116] 2016 SC http://csbio.njust.edu.cn/bioinf/PPIS 13 7
SPRINT [117] 2016 SC http://sparks-lab.org/server/SPRINT/ 32 16
SSWRF [102] 2016 SC  NLA 30 15
Tahir et al [118] 2017 NA NA 4 4
Guo et al [91] 2018 NA NA 6 6
EL-SMURF [92] 2018 SC http://github.com/QUST-AIBBDRC/EL-SMURF/ 0 0

Disorder-annotated 
predictors 

alpha-MoRFpred  [86, 87] 2007 NA NA 445 40
ANCHOR [94-96] 2009 WS + SC http://anchor.enzim.hu 386 43
retro-MoRFs [119] 2010 NA NA 27 3
SLiMPred [120] 2012 WS http://bioware.ucd.ie/~compass/biowareweb//Server_pages/slimpred.php 54 9
MoRFpred [104, 105] 2012 WS http://biomine.cs.vcu.edu/servers/MoRFpred/ 192 32
MFSPSSMpred [97] 2013 WS + SC http://webapp.yama.info.waseda.ac.jp/fang/MoRFs.php 33 7
PepBindPred [121] 2013 WS http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php 17 3
DisoRDPbind [41, 42] 2015 WS http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 44 15
MoRFCHiBi [98] 2015 WS + SC https://morf.msl.ubc.ca/index.xhtml 35 12
DISOPRED3 [99] 2015 WS + SC http://bioinf.cs.ucl.ac.uk/disopred 199 66
fMoRFpred [81] 2015 WS http://biomine.cs.vcu.edu/servers/fMoRFpred/ 35 12
MoRFCHiBiWeb [100] 2016 WS + SC http://morf.chibi.ubc.ca:8080/mcw/index.xhtml 22 11
Wang et al. [122] 2017 NA NA 2 2
MoRFPred-plus [93] 2018 SC https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus 8 8
OPAL [88] 2018 WS http://www.alok-ai-lab.com/tools/opal/ 8 8
OPAL+ [89] 2018 SC https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download 0 0
Fang et al. [90] 2018 NA NA 0 0

 
 



   

Table 2. Predictive architecture and outputs generated by the single-sequence-based predictors of PBRs. The methods divided into two groups: 19 structure-annotated and 17 disorder-annotated, and 
sorted by the publication year in the ascending order within each group. The ‘Input’ sub-columns include information extracted directly from the amino acid sequence (AAS); evolutionary information 
(EVO); and structural properties predicted from the sequence that include putative relative solvent accessibility (pRSA), putative secondary structure (pSS) and putative intrinsic disorder (pDIS). The √ 
means that a given input type is utilized as one of the inputs while blank cell indicates that it is not considered. The ‘Predictive model’ column categorizes the models into two groups: those generated 
with machine learning (ML) algorithms and those that rely on a scoring function (SF) generated either by an empirical formula or using an alignment score. The ML learning models include neural network 
(NN), K-nearest neighbor (KNN), probabilistic neural network (PNN), support vector machine (SVM), random forest (RF), naïve Bayes (NB), regularized logistic function (RLF), and LR (logistic 
regression). The √ in the ‘Outputs’ column means that a given type of output is generated by the predictor. 
 

Type Method Ref. 
Inputs

Predictive model 
Outputs

AAS EVO pRSA pSS pDIS Binary Propensity

Structure-annotated 
predictors 

ISIS [85] √ √ √ ML (NN) √
SPPIDER [106] √ √ √ ML (KNN) √ √
Du et al. [107] √ √ √ ML (SVM) √ √
Chen et al. [101] √ √ √ ML (RF) √ √
PSIVER [108] √ √ ML (NB) √ √
Chen et al. [109] √ √ √   ML (SVM) √  
HomPPI [110] √ √ √ SF √
Wang et al. [111] √ √ ML (SVM) √
LORIS [112] √ √ √ √ ML (RLF) √
SPRINGS [113] √ √ √ √  ML (NN) √  
CRF-PPI [114] √ √ √ ML (RF) √ √
Geng et al. [115] √ √ ML (NB) √
iPPBS-Opt [103] √ √ ML (KNN) √ √
PPIS [116] √ √ √ ML (RF) √
SPRINT [117] √ √ √ √ ML (SVM) √ √
SSWRF [102] √ √ √ ML (SVM, RF) √ √
Tahir et al. [118] √ √    ML (KNN, PNN, SVM) √  
Guo et al [91] √ √ √ ML (SVM) √
EL-SMURF [92] √ √ √ ML (RF) √ √

Disorder-annotated 
predictors 

alpha-MoRFpred [86, 87] √ √ √ ML (NN) √ √
ANCHOR [94-96] √ SF √ √
retro-MoRFs [119] √ √ SF √
SLiMPred [120] √ √ √ √ ML (NN) √ √
MoRFpred [104, 105] √ √ √ √ ML (SVM) √ √
MFSPSSMpred [97] √ ML (SVM) √ √
PepBindPred [121] √ √ ML (NN) √ √
DisoRDPbind [41, 42] √ √ √ ML (LR) √ √
MoRFCHiBi [98] √ ML (SVM) √ √
DISOPRED3 [99] √ √ ML (SVM) √ √
fMoRFpred [81] √ √ √ ML (SVM) √ √
MoRFCHiBiWeb [100] √ √ √ ML (NB) √ √
Wang et al. [122] √ √ √ √ ML (SVM √ √
MoRFPred-plus [93] √ √ ML (SVM) √ √
OPAL [88] √ √ √ ML (SVM) √ √
OPAL+ [89] √ √ √ ML (SVM) √ √
Fang et al. [90] √ ML (SVM) √ √



 

2.2.   Architectures of the predictors of protein binding residues 

Table 2 provides details about the architectures of the 36 single-sequence 
predictors of PBRs. We deconstruct the architectures into three major parts: inputs, 
predictive models and outputs, and we discuss each of these individually.  
 

The five commonly used elements of the input are computed from the amino 
acid sequence (AAS), evolutionary information (EVO), and from three relevant 
predicted structural properties: putative relative solvent accessibility (pRSA), 
putative secondary structure (pSS) and putative intrinsic disorder (pDIS). AAS-
based input typically quantifies amino acid composition, residue-level 
physiochemical properties, and/or position of amino acids in the sequence. EVO 
is usually calculated from the position specific scoring matrix generated from the 
input protein chain with the PSI-BLAST algorithm [123]. While AA and EVO are 
calculated directly from the protein sequence, the other three input elements 
(pRSA, pSS, and pDIS) are predicted from the sequence with bioinformatics tools. 
RSA is a measure of residue-level solvent exposure which is calculated by dividing 
the predicted solvent accessible surface of a given residue in the input protein 
sequence by the maximum possible solvent accessible surface area of the same 
amino acid type. Virtually all structure-annotated methods, except for [118], use 
pRSA, compared to only 5 out of 17 disorder-annotated tools. This is expected 
since disordered protein-binding regions do not have a well-defined surface when 
compared to the structured protein-protein interfaces. The pSS is generated with 
one of the popular tools [124-127] that include PSIPRED [128], PROFphd [129], 
and Distill [130]. The pDIS is clearly relevant for the disorder-annotated predictors 
and there are many accurate algorithms that can be used to provide this input [131-
136]. Correspondingly, majority of the disorder-annotated predictors (9 out of 17) 
use this input, compared to only one structure-annotated method. Overall, we 
observe that none of the methods uses all five types of inputs, while majority of 
the methods (22 out of 36) use between 3 and 4 input types.  

 
Over 90% of methods (33 out of 36), which exclude just one structure-

annotated and two disorder-annotated predictors, apply machine learning (ML) 
algorithms to generate predictive models. Some of the frequently used ML models 
are support vector machines (used by 17 methods), neural networks (6 predictors), 
random forest (5 methods), and K-nearest neighbors (3 methods) and Naïve Bayes 
(3 methods). The three non-ML predictors rely on relatively simple predictive 
models in the form of an empirical formula or sequence alignment [94-96, 110, 
119].   



   

 

The outputs of the predictors, which we explain in the ‘Introduction’ section, 
take two forms: binary values and propensity scores. While all predictors discussed 
here generate binary outputs, some of them do not provide the propensities. To be 
more precise, all but one disorder-annotated predictor provide both binary and 
propensity scores, while only 47% of the structure-annotated methods (9 out of 19 
methods) generate both outputs. This lack of propensities is a drawback since these 
values can be used to provide useful context for the binary predictions. For 
instance, propensities can be used to find missing putative PBRs (i.e, residue that 
are not predicted as PBRs in binary but which have relatively high propensities, 
which is illustrated in Figure 1) or to find lower quality predictions of PBRs (i.e., 
residues predicted as PBRs in binary but with relatively low propensity scores).  

 
Overall, our analysis reveals that the single-sequence predictors of PBRs are 

characterized by a wide range of architectures that rely on five major types of 
inputs and that use a variety of ML-derived predictive models. The fact that none 
of the current predictors applies all five input types opens an opportunity to 
develop more accurate models that would take advantage of all types of inputs. 

3.   Summary and recommendations 

The low coverage and importance of the current annotations of protein-protein 
interactions have stimulated the development of numerous single-sequence 
predictors of PBRs. We discuss two categories of these computational predictors 
that were trained using structure-annotated vs. disorder-annotated datasets. We 
show that recent development efforts have shifted towards the disorder-annotated 
predictors, with four methods that were released in 2018 alone. Most of these 
methods are made available to the community as either source code or webserver, 
with only a few that offer both options. Empirical analysis reveals that methods 
that include webservers are cited at much higher rates, with an average of 104 
citations. We also summarize the predictive architecture of the 36 predictors of 
PBRs. They rely on various combinations of five main types of inputs and use of 
a wide range of primarily ML-derived predictive models.  
 

Although most of the predictors are made available to the community as 
webservers and/or standalone programs, 1/3 (12 out of 36) were not released or 
their availability was discontinued. They are unlikely to be ever used and 
consequently they are cited substantially less often. We believe that methods that 
are not made available should not be published and that the subsequent support 
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should be guaranteed by the authors as part of the publication process. These 
standards are already imposed in some of the lead publication venues, such as 
Nucleic Acids Research where webserver articles are expected to be functional and 
maintained for at least five years after publication. We also stress the importance 
of the propensity outputs that provide a useful and effective context to the binary 
outputs, which we demonstrate in Figure 1. The designers of these methods should 
strive to provide the propensities, which unfortunately is not the case for about half 
of the structure-annotated methods.  

 
A perhaps surprising observation is the separation between the disorder-

annotated and the structure-annotated methods. There is not a single method that 
combines both types of training data to provide a more complete solution capable 
of predicting PBRs in both structured and disordered regions. Such cross-over 
solutions should be developed in the near future.  
 

A recent comparative review reveals that the structure-annotated predictors 
generate moderately accurate predictions of PBRs [8]. The binary outputs of the 
best structure-annotated predictors offer accuracies at about 80% (the high value 
is driven the large majority of easy to predict non-binding residues) and modest 
levels of correlation between the predicted and native PBRs, with the Matthews 
correlation coefficient of 0.21. The putative propensities that they produce are 
characterized by moderate AUC values in the 0.65 to 0.69 range, where the overall 
AUC values range between 0.5 and 1. We also emphasize a recent empirical 
observation that these methods heavily cross-predict residues that bind other 
ligands (RNA, DNA and a variety of small ligands) as PBRs. As many as 20 to 
40% of the residues that interact with these other ligands are predicted as PBRs, 
when compared to similar levels of sensitivity (rate of correct predictions for native 
PBRs) [8]. This means that the current methods predict PBRs at similar rates 
among the native PBRs as among the residues that bind the other ligands.  This 
likely stems from the fact that training datasets of these methods are solely use 
proteins with PBRs, lacking a sufficient population of proteins that interact with 
other ligands. This results in an inability to train the predictive models that could 
differentiate between PBRs and other types of ligand-binding residues. Thus, we 
propose that more accurate solutions that use better training datasets and that can 
more specifically target PBRs should be developed. 
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