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Abstract 

Protein-nucleic acids drive many key cellular functions, such as regulation of gene 
expression, transcription and translation. Experimental characterization of the 
molecular-level details of these interactions is relatively expensive and time 
consuming since it requires application of complex methods, such as X-ray 
crystallography and/or NMR. Given the relatively low coverage of the experimental 
molecular-level data on the protein-nucleic acids interactions, many computational 
methods that predict these interactions from the readily available protein sequences 
were developed. We introduce and describe a comprehensive collection of 51 methods 
that predict nucleic acid interacting amino acids in protein sequences. These methods 
include 20 DNA-binding predictors, 20 RNA-binding predictors and 11 methods that 
predict both DNA- and RNA-binding residues. We briefly summarize their inputs, 
predictive architectures, outputs and availability. We find that most of these methods 
were trained using protein-nucleic acids structures, compared to a more limited 
number of methods that predict these interactions in the intrinsically disordered 
regions. We observe that these methods rely almost exclusively on classical/shallow 
machine learning and deep learning algorithms. Finally, we endorse five recent, 
readily available and arguably more useful predictors. 

1 Introduction 

Proteins carry out their cellular functions by interacting with nucleic acids [1-12], 
proteins [13-17] and a variety of other ligands including small molecules and lipids 
[18-20]. The protein-nucleic acid interactions are instrumental for a wide spectrum of 
cellular functions, such as regulation of gene expression, transcription, and 
translation, to name but a few. Molecular-level knowledge of these interactions is 
largely derived from structural studies of protein-nucleic acid complexes, which are 
often sourced from the Protein Data Bank database [21]. The structural data are used 
to categorize the protein-nucleic acids interactions, characterize the underlying 
physics, and decipher patterns that define molecular recognition and specificity of 
interactions [22-25]. Moreover, recent studies reveal that the protein-DNA and 
protein-RNA interactions are also a common function of intrinsically disordered 



regions (IDRs) [11, 26-30], which are defined as sequence segments that lack a stable 
equilibrium structure under physiological conditions [31-33]. 

The experimental methods to study these interactions are relatively time-consuming 
and labor-intensive, and consequently they cannot keep up with the rapid 
accumulation of protein sequences. One solution is to use the available experimental 
data on the protein-nucleic acids interactions to devise computational models that 
accurately predict these interactions from protein sequences [6, 34-42]. These 
computational methods can be classified into two categories: protein-level vs. residue-
level. The protein-level methods identify whether a given protein sequence binds 
DNA and/or RNA, while residue-level methods predict whether and which residues in 
a given protein sequence interact with DNA and/or RNA. We focus on the residue-
level methods that provide a higher level of details. The sequence-based predictors of 
nucleic-acid binding residues require only a protein sequence as the input and thus are 
able to provide predictions for the over 200 million of currently available protein 
sequences [43].  

 
Figure 1. Prediction of the DNA binding and RNA-binding residues generated by 
DeepDISObind for the silent information regulator Sir3p from yeast (DisProt: DP00533; 
UniProt: P06701). The prediction was generated using the DeepDISObind’s webserver 
located at https://www.csuligroup.com/DeepDISOBind/. 

We survey and describe over 50 sequence-based predictors of the DNA and/or RNA 
binding residues. We identify these methods by scanning past surveys [6, 35, 37-40, 
42, 44, 45] supplemented with a manual literature search. These methods output 
binary predictions and numeric propensities for each residue in an input protein 
sequence. The binary predictions denote whether a given residue interacts with DNA 
and/or RNA (0 for non-binding residue vs. 1 means for a DNA and/or RNA binding 
residue) while the propensities express likelihood of these interactions. Figure 1 
shows an example result generated by DeepDISOBind, one of the most recent 
methods that predict DNA and RNA interactions in IDRs [46], for the silent 
information regulator Sir3p from budding yeast (DisProt: DP00533; UniProt: 
P06701). This protein is instrumental for modulating chromatin [47, 48]. It includes 



disordered DNA-binding region (positions 216 to 549) that is flanked by structured 
segments that extend to both sequence termini, as shown based on the experimental 
annotations available in the DisProt database [49]. The blue and red plots in Figure 1 
represent the predicted propensities for interactions with DNA and RNA partners, 
respectively. The binary predictions are shown underneath using horizontal color-
coded bars. This example illustrates the format and value of the sequence-based 
predictions. In this particular case, DeepDISOBind identifies DNA-binding residues 
in the segments between positions 190 and 500, which is in good agreement with the 
location of the experimentally identified DNA-binding IDR (positions 216 to 549). At 
the same time, the RNA-binding prediction generated by DeepDISOBind suggests a 
much smaller likelihood of interactions with RNA for this protein, i.e., the 
propensities shown in red are relatively low. 

2 Prediction of the protein-nucleic acid binding residues from 
sequence 

Majority of the sequence-based methods for the predictions of protein-nucleic binding 
residues rely on predictive models that are generated from training data using 
classical/shallow machine learning algorithms and deep learning algorithms. The 
training process employs the experimentally annotated data, which is typically 
collected from publicly available databases, such as PDB[21], BioLip [50] and 
DisProt [49, 51], to optimize the architectures and parameters of the machine 
learning-generated models. This is done by minimizing differences between the 
outputs of these models and the native annotations. After the training process is 
completed, the models can be used to predict the DNA-binding and/or RNA-binding 
residues for proteins sequences outside of the training set. 

 

Figure 2. Timeline of the sequence-based predictors of the protein-nucleic acid binding 
residues. The structure-trained predictors are in orange while the disorder-trained predictors 
are in blue. 

Figure 2 shows a timeline of the sequence-based predictors, which are categorized 
into methods that rely on training data collected from structured protein-RNA and 



protein-DNA complexes, typically collected from PDB [21, 52] or BioLip [50] (in 
orange) vs. those that use training data concerning interactions in IDRs, which are 
usually obtained from DisProt [49, 51]. The first predictors were developed around 
2004 [53, 54] and over 50 were published since. This results in the average rate of 3 
new methods per year. Figure 2 reveals that these development efforts are relatively 
even across the years. However, we note that only two predictors focus on the 
interactions in the disordered regions, DisoRDPbind that was released in 2015 [55-57] 
and DeepDISObind that was published in 2021 [46]. Interestingly, recent research that 
investigates structure-trained vs. disorder-trained methods for the prediction of the 
protein-binding residues shows that these two classes of methods produce 
complementary results [58]. Similar observations are expected in the case of the 
protein-nucleic acids interactions, highlighting the importance of developing both 
classes of predictors. 

2.1 Overview of the sequence-based predictors 

Table 1 summarizes key aspects of the 51 sequence-based predictors of the DNA 
and/or RNA binding residues including their predictive target (DNA binding, RNA 
binding, and DNA and RNA binding) and availability. This comprehensive table 
reveals several interesting insights. First, significant majority of these computational 
methods target prediction of either DNA-binding or RNA-binding residues. To be 
more exact, we find 20 methods that predict the DNA-binding residues and another 20 
predictors of the RNA-binding residues. However, we also identify 11 methods that 
concomitantly predict RNA-binding and DNA-binding residues, with the first one 
being BindN that was published in 2006 [59]. These methods are arguably more 
convenient to use since they provide both predictions, typically with a single 
execution, and since their use does not require sometimes painful conversions 
between different formats of input and outputs that the use of different individual 
methods often requires. Interestingly, 5 of these 11 predictors were released in the last 
three years including NucBind[60], ProNA2020 [61], NCBRPred [62], MTDsite [63] 
and DeepDISOBind [46]. Moreover, four methods simultaneously predict 
protein/peptide-binding, DNA-binding and RNA-binding residues: DisoRDPbind [55-
57], ProNA2020 [61], MTDsite [63], and DeepDISOBind [46], providing further 
advantages when compared to the other currently available options.  

Table 1 also lists the URLs where the 51 methods are available, as described in the 
original articles. Most of these predictors are provided as web servers or source code. 
Only 11 predictors did not provide web servers nor source code at the time of the 
publication. The web servers are arguably more convenient and primarily target users 
who are not programmers or computer experts. The predictions are performed on the 
web server side, which means that users do not need to install software or run the 
predictions on their local hardware. The users simply utilize a web browser to arrive 
at a given URL, input their proteins sequence(s), typically in the FASTA format, click 
start, and collect the resulting predictions after the web server completes the work. 
The results are returned via the web page and/or are sent back by email. However, one 
of the common limitations of web servers is the number of input protein sequences, 



which is often limited to one or a few for a single request. On the other hand, the 
source code is better suited for programmers or bioinformaticians. It has to be 
downloaded, installed and run on user’s hardware. This option is particularly 
attractive if the predictions must be done on a larger scale (large protein families or 
genomes) and when embedding these predictors into larger bioinformatics platforms. 
Table 1 reveals that source code is available for only five methods and three of them, 
iProDNA-CapsNet [64], ProNA2020 [61]  and NCBRPred [62], are also available as 
web servers. These three tools were released in the three years. We find that while 38 
of the 51 predictors provided web servers when they were originally published, only 
half of the URLs of these web servers were working as December 2021 when we 
tested them. We note that in some cases these methods could be moved to another 
URL, while we rely on the addresses provided in the original article. 

 
 



Table 1. Summary of the 51 sequence-based predictors of the protein-nucleic acid binding residue. The table considers the prediction target DNA binding, 
RNA binding, and DNA and RNA binding) and availability. The availability indicates whether the published predictors are provided as web servers, source 
code or in both modes. The URL provides the location of the implementation/web server that was published in the original article. The “accessible” column 
indicates whether the URL was available as 15 December 2021. N/A means that a given predictor did not provide web server and source codes information 
when it was published. 

Method Ref Predictive 
Target 

Availability 
Type URL Accessible 

DBS-pred [54] DNA web server http://www.abren.net/dbs-pred/ NO 
Jeong et al. 2004 [53] RNA N/A N/A N/A 
DBS-PSSM [65] DNA web server http://dbspssm.netasa.org NO 
BindN [59] DNA and RNA web server http://bioinfo.ggc.org/bindn/ NO 
DNABindR [66] DNA web server http://turing.cs.iastate.edu/PredDNA/index.html NO 
Jeong et al. 2006 [67] RNA N/A N/A N/A 
Ho et al. [68] DNA N/A N/A N/A 
DP-Bind [69] DNA web server http://lcg.rit.albany.edu/dp-bind YES 
DISIS [70] DNA web server http://cubic.bioc.columbia.edu/services/disis NO 
PRINTR [71] RNA web server http://210.42.106.80/printr/ NO 
RISP [72] RNA web server http://grc.seu.edu.cn/RISP NO 
Pprint [73] RNA web server http://www.imtech.res.in/raghava/pprint/  YES 
RNAProB [74] RNA N/A N/A N/A 
BindN-RF [75] DNA web server http://bioinfo.ggc.org/bindn-rf/ NO 
DBindR [76] DNA web server http://www.cbi.seu.edu.cn/DBindR/DBindR.htm NO 
DBD-Threader [77] DNA web server http://cssb.biology.gatech.edu/skolnick/webservice/DBD-Threader/index.html NO 
BindN+ [78] DNA and RNA web server http://bioinfo.ggc.org/bindn+/ NO 
NAPS [79] DNA and RNA web server http://proteomics.bioengr.uic.edu/NAPS/ NO 
PiRaNhA [80] RNA web server http://www.bioinformatics.sussex.ac.uk/PIRANHA NO 
ProteRNA [81] RNA N/A N/A N/A 
RBRpred [10] RNA N/A N/A N/A 

PRNA [82] RNA source code http://www.aporc.org/doc/wiki/PRNA 
http://www.sysbio.ac.cn/datatools.asp  

NO 

Wang et al. [83] RNA N/A N/A N/A 
PRBR [84] RNA web server http://www.cbi.seu.edu.cn/PRBR/ NO 
Choi et al. [85] RNA N/A N/A N/A 



RNABindR [86] RNA web server http://einstein.cs.iastate.edu/RNABindR/ NO 
DNABR [87] DNA web server http://www.cbi.seu.edu.cn/DNABR/ NO 
Dey et al. [88] DNA N/A N/A N/A 
DNABind [89] DNA web server http://mleg.cse.sc.edu/DNABind/ YES 
RNABindRPlus [90] RNA web server http://einstein.cs.iastate.edu/RNABindRPlus/ NO 
SPOT-Seq (DNA) [91] DNA web server http://sparks-lab.org YES 
aaRNA [92] RNA web server http://sysimm.ifrec.osaka-u.ac.jp/aarna/ YES 
SNBRFinder [93] DNA and RNA web server http://ibi.hzau.edu.cn/SNBRFinder NO 
DisoRDPbind [57] DNA and RNA web server http://biomine.ece.ualberta.ca/DisoRDPbind/ YES 
Ren et al. [94] RNA N/A N/A N/A 
PRIdictor [95] RNA web server http://bclab.inha.ac.kr/pridictor YES 
RNAProSite [96] RNA web server http://lilab.ecust.edu.cn/NABind YES 
PDNAsite [97] DNA web server http://hlt.hitsz.edu.cn:8080/PDNAsite/ NO 
DRNApred [98] DNA and RNA web server http://biomine.cs.vcu.edu/servers/DRNApred/ YES 
TargetDNA [99] DNA web server http://csbio.njust.edu.cn/bioinf/TargetDNA/ YES 
PredRBR [100] RNA N/A N/A N/A 
NucBind [60] DNA and RNA web server http://yanglab.nankai.edu.cn/NucBind YES 
DNAPred [101] DNA web server http://csbio.njust.edu.cn/bioinf/dnapred/ YES 

iProDNA-CapsNet [64] DNA 
web server 
and source 

code 

http://45.117.83.253/problem-iProDNA-CapsNet  
https://github.com/ngphubinh/iProDNA-CapsNet 

YES 

EL_LSTM [102] DNA source code http://hlt.hitsz.edu.cn/EL_LSTM/ NO 

ProNA2020 [61] DNA and RNA 
web server 
and source 

code 

https://github.com/Rostlab/ProNA2020.git 
http://www.predictprotein.org 

YES 

funDNApred [103] DNA web server http://biomine.cs.vcu.edu/servers/funDNApred/ YES 

NCBRPred [62]  DNA and RNA 
web server 
and source 

code 
http://bliulab.net/NCBRPred YES 

MTDsite [63] DNA and RNA web server http://biomed.nscc-gz.cn/server/MTDsite/ YES 
DNAgenie [104] DNA web server http://biomine.cs.vcu.edu/servers/DNAgenie/ YES 
DeepDISOBind [46]  DNA and RNA web server https://csuligroup.com/DeepDISOBind/ YES 



2.2 Architectures of the sequence-based predictors 

Table 2 provides further insights concerning the 51 sequence-based predictors of the 
DNA and/or RNA binding residues by summarizing and comparing their predictive 
architectures. This includes details about the predictive inputs that are produced from 
the protein sequence, predictive models, and the outputs that they produce. 

Based on a recent study [6], we identify several common types of inputs that these 
predictors use including the amino acid sequence (AAS) itself; the evolutionary 
information (EVO) that is derived from the sequence using multiple sequence 
alignment algorithms [105], such as PSI-BLAST [106] or HHblits [107]; and the 
secondary structure (SS) and relative solvent accessibility (RSA) that are predicted 
from the input sequence using third-party predictors, such as PSIPRED [108], 
ASAquick [109], SPINE X[110], SPOT-1D [111] and SPIDER [112]. Recent surveys 
of the sequence-based SS and RSA predictors provide a broader overview of these 
methods [113-120]. The AAS input is typically expressed using 1-hot encoding, where 
each amino acid is represented by 20-dimensional binary vector. We find that each of 
the 51 predictors utilizes at least one of these four input types, and virtually all of 
them use the AAS input. Furthermore, Table 2 reveals only 1 out of the 16 methods 
that were published until 2009 uses all of the four inputs [53, 54, 59, 65, 67-77]. In 
contrast, 10 out of the 13 methods that were published in the last 5 years (since 2017) 
utilize the four inputs [46, 60-64, 98-104]. This transition clearly demonstrates that 
these four inputs are very useful for the prediction of the protein-nucleic acid 
interactions.  

Interestingly, we note that nearly all of the 51 methods rely on machine learning 
algorithms to produce their predictive models. The only two exceptions are DBD-
Threader [77] and SPOT-Seq [91] that predict protein-DNA binding residues based on 
template-based/homology prediction. The most commonly used classical/shallow 
machine learning methods are support vector machines (24 predictors), neural 
networks (11 predictors), random forest (7 predictors) and logistic regression (3 
predictors). We also find that 10 methods utilize more than one machine learning 
algorithm. Moreover, several methods, including DNABind [89], SNBRFinder [93] 
and NucBind [60] combine a machine learning-generated model with the template-
based approach.  

Three recent methods utilize deep learning [46, 62, 63]. The deep learning algorithms 
produce neural networks with multiple/many hidden layers which often rely on 
sophisticated network topologies that include recurrent, convolutional and transformer 
modules. Deep learners are nowadays used to develop predictors of numerous aspects 
of protein structure and function. Examples include the state-of-the-art protein 
structure predictor, AlphaFold [121, 122], methods that predict residue-residue 
contacts [123], secondary structure [111, 124-126] protein function [127-129], 
protein-drug interactions [130, 131], and functional sites [58, 132]. The introduction 
of the deep learning into the prediction of the nucleic-acid binding residues stems 
from the recent popularity of these models, as shown above, but also from the fact that 
recent works find them to produce more accurate models when compared to the 
shallow/classical machine learning algorithms [46, 62]. 



Table 2. Summary of predictive models, inputs and outputs of the 51 sequence-based predictors of the protein-nucleic acid binding residues. The inputs 
include amino acid sequence (AAS), secondary structure (SS) predicted from sequence, solvent accessibility (RSA) predicted from sequence and evolutionary 
information (EVO) computed from multiple-sequence alignment. The predictive models are divided into two categories: classical/shallow machine learning 
(ML) and deep learning (DL). Specific ML algorithms include logistic regression (LR), neural network (NN), support vector machine (SVM), and random 
forest (RF). N/A in the outputs means that the information could not be checked since the implementation is not available.  

Method Ref 
Inputs 

Predictive model 
Outputs 

AAS EVO SS  RSA  Binary prediction Predictive propensity 
DBS-pred [54] √ × × × ML(NN) N/A N/A 
Jeong et al. 2004 [53] √ × √ × ML(NN) N/A N/A 
DBS-PSSM [65] √ √ × × ML(NN) √ √ 
BindN [59] √ × × × ML(SVM) √ √ 
DNABindR [66] √ × × × ML(Naïve Bayes) √ × 
Jeong et al. 2006 [67] √ × × × ML(NN) N/A N/A 
Ho et al. [68] √ √ × × ML(SVM) N/A N/A 
DP-Bind [69] √ √ × × ML(ensemble learning) √ √ 
DISIS [70] √ √ √ √ ML(SVM, NN) N/A N/A 
PRINTR [71] √ × √ × ML(SVM) N/A N/A 
RISP [72] √ √ × × ML(NN) N/A N/A 
Pprint [73] √ √ × × ML(SVM) √ √ 
RNAProB [74] √ √ × × ML(SVM) N/A N/A 
BindN-RF [75] √ √ × × ML(RF) N/A N/A 
DBindR [76] √ √ √ × ML(RF) N/A N/A 
DBD-Threader [77] √ × × × Template-based √ × 
BindN+ [78] √ √ × × ML(SVM) √ √ 
NAPS [79] √ √ × × ML(C4.5 ) N/A N/A 
PiRaNhA [80] √ √ × √ ML(SVM) N/A N/A 
ProteRNA [81] √ √ √ × ML(SVM) N/A N/A 
RBRpred [10] √ √ √ √ ML(SVM) N/A N/A 
PRNA [82] √ × √ × ML(RF) √ √ 
Wang et al. [83] √ √ × √ ML(SVM) N/A N/A 



PRBR [84] √ √ √ × ML(RF) √ √ 
Choi et al. [85] √ √ × × ML(SVM), Homology-Based √ √ 
RNABindR [86] √ × √ × ML(SVM) √ × 
DNABR [87] √ √ × × ML(SVM) √ √ 
Dey et al. [88] √ √ × × ML(RF) N/A N/A 
DNABind [89] √ √ √ × ML(SVM) N/A N/A 
RNABindRPlus [90] √ √ √ √ ML, Template-based √ √ 
SPOT-Seq (DNA) [91] √ × × × Template-based √ √ 
aaRNA [92] √ √ √ √ ML(NN) √ √ 
SNBRFinder [93] √ √ √ √ ML(HMM,SVM), Template-based N/A N/A 
DisoRDPbind [57] √ × √ √ ML(LR) √ √ 
Ren et al. [94] × √ × × ML(ensemble learning) N/A N/A 
PRIdictor [95] √ × × × ML(SVM) √ √ 
RNAProSite [96] √ √ √ √ ML(RF) √ √ 
PDNAsite [97] √ √ √ √ ML(ensemble learning) N/A N/A 
DRNApred [98] √ √ √ √ ML(ensemble learning) √ √ 
TargetDNA [99] √ √ √ √ ML(SVM) √ √ 
PredRBR [100] √ √ √ √ ML(Gradient Boosting) √ √ 
NucBind [60] √ √ √ × ML(SVM), homologous templates √ √ 
DNAPred [101] √ √ √ √ ML(SVM) √ √ 
iProDNA-CapsNet [64] √ √ × × ML(NN) √ √ 
EL_LSTM [102] √ √ √ √ ML(NN, Bagging) √ √ 
ProNA2020 [61] √ √ √ √ ML(SVM, NN) √ √ 
funDNApred [103] √ √ √ √ ML(FCM) × √ 
NCBRPred [62]  √ √ √ √ DL √ √ 
MTDsite [63] √ √ × × DL √ √ 
DNAgenie [104] √ √ √ √ ML(SVM) √ √ 
DeepDISOBind [46]  √ √ √ √ DL √ √ 



Table 2 also summarizes the outputs of the 51 predictors, which may include the 
binary score and/or numeric propensity, as we explain in the introduction. We cannot 
identify the outputs for 20 methods since we have no access to their implementations 
or web servers. Among the remaining predictors, over 80% (27 out of 31) produce 
both types of outputs. DNABindR [66], DBD-Threader [77] and the method by Choi 
et al. [85] output just the binary predictions. While funDNApred [103] provides only 
the propensities, user can utilize these scores to produce binary predictions, i.e., 
residues with propensity > a given threshold can be predicted in binary as binding. 
Altogether, we suggest that predictors should generate both types of outputs since the 
predictive propensities provide a useful context for the arguably easier to comprehend 
binary predictions. 

3  Summary  

This chapter summarizes a comprehensive collection of 51 sequence-based predictors 
of protein-nucleic acid binding residues. We find that while the early methods would 
typically target prediction of the DNA-binding or RNA-binding residues, five 
methods that were published in the last three years simultaneously predict DNA and 
RNA binding residues [46, 60-63]. Moreover, three of these methods, including 
ProNA2020, MTDsite [63] and DeepDISOBind [46], extend this scope by predicting 
protein/peptide-binding residues. This observation suggests a recent trend to develop 
tools that offer a wider scope of predictions.  

We observe that many methods do not have source code or web servers. Some are 
unavailable because the authors did not maintain the originally published URLs. This 
problem is especially acute for the methods published before 2016. To better serve the 
community, we encourage the authors to keep the web servers running and to provide 
source code for the end users. 

We also identify a shortage of methods that predict protein-nucleic acids interactions 
in intrinsically disordered regions, with only two currently available methods: 
DisoRDPbind [57] and DeepDISObind [46]. This is an important issue since recent 
work demonstrates that structure-trained and disorder-trained predictors of the 
protein-binding residues produce complementary results [58]. While a comparable 
study for the prediction of the nucleic acid binding residues is missing, we believe that 
similar conclusions would be drawn. 

Given the above observations, we endorse a few predictors, focusing on the methods 
that cover multiple types of ligands (DNA, RNA and proteins/peptides), are currently 
available, and which consider both structure- and disorder-annotated interactions. Our 
recommendations include NCBRPred [62], DisoRDPbind [55-57], MTDsite [63], 
ProNA2020 [61] and DeepDISOBind [46].  

We conclude this chapter with a brief discussion of future directions for this active 
research areas. We find that a few recent methods apply deep learners [46, 62, 63]. 
Given the recent empirical results which demonstrate that deep learners provide more 
accurate predictions compared to the shallow machine learning algorithms [46, 62], 
we anticipate that future methods will continue to utilize deep neural networks. We 
note that three of our recommended predictors, namely NCBRPred [62], MTDsite 
[63] and DeepDISOBind [46], use deep networks. The use of more sophisticated deep 
learners could help to combat the cross-prediction problem [60, 62, 98], which means 



that residues that are predicted to bind RNA in fact often interact with DNA, and vice 
versa. In other words, current methods relatively often mis-predict the type of the 
interacting ligand. The cross-predictions also happens between protein-binding and 
nucleic acids-binding residues [58, 133-135]. Lastly, the current predictors are 
agnostic to the DNA and RNA types, with one exception, DNAgenie [104]. 
DNAgenie is capable to accurately identify the type of the interacting DNA, covering 
A-DNA, B-DNA and single-stranded DNA. This means DNAgenie predicts which 
residues bind A-DNA, B-DNA vs. single stranded DNA, providing more details when 
compared to the other current tools. Tools that would provide RNA-type specific 
predictions would be a welcome addition. This is motivated by a recent study that 
finds that current RNA type-agnostic methods are deficient for the predictions of 
some RNA types, such as tRNA [42]. 
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