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Abstract 

Posttranslational modifications (PTMs) have vital roles in a myriad of biological processes, 
such as metabolism, DNA damage response, transcriptional regulation, protein-protein 
interactions, cell death, immune response, signaling pathways and aging. Identification of 
PTM sites is a crucial first step for biochemical, pathological and pharmaceutical studies 
associated with the functional characterization of proteins. However, experimental 
approaches for identifying PTM sites are relatively expensive, labor-intensive and time-
consuming, partly due to the dynamics and reversibility of PTMs. In this context, 
computational methods that accurately predict PTMs serve as a useful alternative, especially 
when targeting large-scale whole-proteome annotations. We briefly summarize and review 
existing predictors of PTM sites in protein sequences. Moreover, we introduce the iLearnPlus 
platform that facilitates development of new predictive methods and apply it to generate a 
new PTM predictor. We elaborate a detailed procedure for the development of predictive 
models, particularly focusing on the deep learning (DL) techniques. We assess predictive 
performance of the developed DL model and demonstrate how to compare it against other 
machine learning algorithms. While we use iLearnPlus in the context of the PTM prediction, 
we emphasize that this platform can be used to design predictive systems for a broad 
spectrum of other related problems that cover prediction of structural and functional 
characteristics of proteins and nucleic acids. 
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1 Introduction 

Posttranslational modifications refer to the reversible or irreversible chemical changes that 
some proteins undergo after translation [1]. PTMs play vital roles in a broad array of cellular 
processes, such as metabolism, signal transduction, stability, structural state, and localization 
of proteins [2-8]. For example, phosphorylation is implicated in orchestrating signal 
transduction, cytoskeleton rearrangement, and cell cycle progression [9, 10]. Moreover, 
ubiquitination mediates protein degradation by the Ub-proteasome system in eukaryotic cells 
[11] while malonylation plays vital roles for metabolic reprogramming in determining the 
function of immune cells [12]. To date, advances in experimental techniques have 
significantly assisted biologists in identifying various types of PTMs. Currently, over 680 
types of PTMs have been characterized experimentally (see 
http://www.uniprot.org/docs/ptmlist.txt).  

Given the prevalence and importance of PTMs, aberrant modifications are shown to be 
associated with various human diseases [4, 5, 13-16]. Systematic identification of different 
types of PTM substrates and PTM sites in proteomic data is becoming an urgent issue. To 
date, numerous efforts have been dedicated to the investigation of cellular mechanisms that 
underly PTMs, which is based on accurate identification of corresponding PTM substrates 
and sites. Advances in the PTM research benefit from computational studies that accurately 
predict PTM sites, significantly reducing the time and effort involved in the experimental 
identification. Compared with the labor-intensive and time-consuming experimental 
characterization of PTMs, computational prediction of PTMs in proteins provides a valuable 
and complementary approach to shortlist likely candidates for subsequent experimental 
validation. Thus, a variety of computational methods for PTM identification have been 
developed using various protein sequence features and state-of-the-art machine learning (ML) 
techniques [17-21]. These methods predict new PTM sites by learning features of the 
sequence context of experimentally verified PTM sites primarily using ML algorithms. We 
briefly overview existing computational predictors of PTM sites.  

We describe an innovative and comprehensive platform for the development of new 
predictive methods, iLearnPlus [22], and we apply it to generate a new PTM predictor for 
lysine malonylation. We detail the procedure for development of predictive models based on 
iLearnPlus, focusing on the DL techniques. This includes benchmark dataset preparation, 
feature extraction, model construction and performance evaluation. In particular, we compare 
the results produced by the DL model against other ML algorithms.  

While here we apply iLearnPlus for the lysine malonylation prediction, this software can be 
used to design, implement and comparatively validate predictive systems for many other 
related problems. These application areas broadly cover prediction of structural and 
functional characteristics of proteins and nucleic acids, such as secondary structure, intrinsic 
disorder, protein-ligand and nucleic acid-ligand binding, and many others. 

2 Brief review of computational PTM site prediction 

Recent years have witnessed the development and proliferation of computational approaches 
for the prediction of PTM and cleavage sites [17, 18, 20, 21, 23-39]. These methods differ in 
a variety of aspects, including the dataset collection and preprocessing, feature descriptors 
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and feature selection techniques employed, classification algorithms used, and performance 
evaluation strategies utilized.  

Generally, the current models for the PTM sites prediction could be divided into three main 
categories based on the adopted techniques. The first category is based on peptide similarity. 
Methods in this group usually calculate a similarity score between the peptide that is being 
predicted and peptides with experimentally annotated PTM sites [38, 40]. The similarities are 
computed using a number of measures, such as the BLOcks SUbstitution Matrix 
(BLOSUM62) matrix [41] and position-specific scoring matrix (PSSM) [42]. Representative 
methods in this category include the Group-based Prediction System (GPS) series approaches 
for predicting phosphorylation [43], methylation [44], sumoylation [45], as well as the 
acetylation set enrichment-based (ASEB) approach [46] for the acetylation sites prediction 
[47].  

The secondary category relies on conventional ML algorithms using sequence-derived 
features. Here, ML algorithms are used to derive predictive models from experimentally 
annotated training data. Authors of these methods manually develop an approach to transform 
the input sequences into a fixed-size numeric feature set that is subsequently input into the 
ML model. The fixed-size feature vector is required by these types of models. Fortunately, 
development of these feature sets from biological sequences (i.e., protein and nucleic acid 
sequences) is supported by a variety of convenient tools, such as ProtrWeb [48], iFeature 
[49], BioSeq-Analysis [50], iLearn [51] and iLearnPlus [22]. Conventional ML algorithms 
(i.e., ML algorithms that exclude deep learners) are employed to use the extracted features to 
build an accurate predictive model. Conventional ML algorithms that are commonly used to 
predict PTMs include support vector machine [18, 52, 53], random forest [54-56], shallow 
artificial neural network [57, 58], k-nearest neighbors [59, 60], logistic regression [32], and 
their ensembles [31].  

The third category covers end-to-end approaches that rely on deep learning techniques. For 
the end-to-end approaches, the protein sequence is not encoded into a feature vector but 
rather used directly as an input to a deep neural network. These deep learners extract latent 
features by themselves. Many of the recent PTM predictors belong to this category. Examples 
include DeepNitro [34], CapsNet_PTM [30], DeepPTM [28], DeepSuccinylSite [35], 
MusiteDeep [29], DeepPPSite [36], MultiLyGAN [37], and nhKcr [39]. 

As described above, dozens of computational methods have been developed for the 
prediction of various types of PTM sites. However, dedicated predictors are missing for 
numerous PTM types, and the rapid accumulation of the experimental data motivate the need 
to develop many more predictors in a near future. We use the iLearnPlus platform to 
demonstrate how easy and convenient it is to design, develop and validate a new PTM 
predictor, focusing on the recently popular deep learning/end-to-end methods. 

3 Design of novel predictive methods using iLearnPlus 

3.1 iLearnPlus 

iLearnPlus is an advanced software package that provides a comprehensive platform to 
analyze various structural and functional characteristics of the DNA, RNA and protein 
sequences and to efficiently conceptualize, design, implement and comparatively evaluate 
ML-based solutions for prediction of these characteristics [22]. This platform includes four 
modules: 
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 iLearnPlus-Basic for analysis and prediction using feature-based representation of 
protein/RNA/DNA sequences and a selected ML classifier; 

 iLearnPlus-Estimator that facilitates comprehensive feature extraction from protein and 
nucleic acid sequences; 

 iLearnPlus-AutoML that provides automated benchmarking and optimization of 
predictive accuracy by considering different ML algorithms and features; and  

 iLearnPlus-LoadModel that enables uploading, deploying and testing models on user’s 
own data. 

Altogether, iLearnPlus supports a broad spectrum of activities including feature extraction 
and analysis, rational design of ML models, training and empirical assessment of ML 
classifiers, comparative statistical analysis of classifiers, and visualisation of data and 
predictive results. As a highlight, iLearnPlus covers 21 ML algorithms including 7 types of 
popular and modern deep learners.  

iLearnPlus can be utilized by users with limited bioinformatics expertise, such as biologists 
and biochemists, who can take advantage of the easy and convenient to use webserver 
version at http://ilearnplus.erc.monash.edu/. All activities, including generation of models and 
testing are performed on the server side. More experienced bioinformaticians should use the 
command line and/or GUI (Graphical User Interface) versions that can be downloaded from 
https://github.com/Superzchen/iLearnPlus/.  

Here, we illustrate how to use this platform to conceptualize, design and test a deep-learning 
based predictor of protein lysine malonylation sites. 

3.2 Data collection and preprocessing 

Lysine malonylation (Kmal) is a recently discovered PTM type [61] that is associated with 
several important cellular processes [62-65]. Only a few methods can predict the Kmal sites 
[31, 66-69]. Experimental data on the lysine-malonylated proteins are retrieved from mice 
and humans in two proteomic assays [70, 71]. Based on work in [69], the following data 
preprocessing steps are used to derive datasets needed for the development of predictive 
models: 

1) Kmal-containing proteins are retrieved from the UniProt database [72], and protein 
sequences with sequence identities greater than 30% are removed using the CD-HIT tool 
[73]; 

2) The annotated Kmal sites are considered as positive samples, and the remaining lysine 
residues on the same proteins are considered as negative samples; 

3) 31-residue long peptides (-15 to + 15) with the lysine site in the center are extracted for 
each sample. If the positive peptides are identical to the negative peptides then the 
negative peptides are removed; 

4) All the samples are randomly divided into two parts. About 80% of all samples are 
subjected to five-fold cross-validation, and the remaining are used as an independent test 
dataset (i.e., dataset excluded from the classifier training procedure). The finalized 
version of the training dataset contains 4,242 positive peptides and 71,809 negative 
peptides, while the independent test dataset has 1,046 positive peptides and 16,827 
negative peptides. 
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Figure 1. The main interface of iLearnPlus. 

3.3 Model construction and performance evaluation 

The iLearnPlus platform is used to construct the model and assess the model performance. 
Figure 1 shows the main GIU interface of iLearnPlus. The predictive model is built using the 
following sequence of nine steps: 

1) Transform the positive and negative peptides into FASTA format. The FASTA header 
consists of three parts: part 1, part 2 and part 3, which are separated by the “|” symbol 
(Figure 2). Part 1 is the sequence name. Part 2 is the sample category information, which 
can be filled with any integer. For instance, users may use “1” to indicate the positive 
samples and “0” to represent the negative samples for a binary classification task, or use 
“0, 1, 2, …” to represent different classes in a multiclass classification task. Part 3 
indicates the role of the sample, where for instance “training” would indicate that the 
corresponding sequence would be used as part of the training set in the k-fold cross-
validation test, and “testing” that the sequence would be used as part of the independent 
test dataset; 

2) Click “iLearnPlus Basic” (Figure 1) to launch the iLearnPlus-Basic module that is shown 
in Figure 2; This module facilitates generation of features from the sequences. 

 
Figure 2. An example of extracting feature descriptors using the iLearnPlus-Basic module. 
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3) Click the “Open” button in the “Descriptor” panel, and select the file with the protein 
sequences. The biological sequence type (i.e. DNA, RNA or protein) is automatically 
detected based on the input sequences. Click the “Save” button to save the feature 
descriptors to a file named “binary.csv”; 

4) Click the “binary” descriptor. We use the default parameters here; 
5) Click the “Start” button to calculate the descriptor. This initiates a procedure to compute 

numeric features from the input peptide sequences, which is needed to subsequently use 
the ML algorithm. The feature encoding and graphical presentation are displayed in the 
“Data” and “Data distribution” areas, respectively; 

6) Switch to the “Machine Learning” panel and load data through the “Select” button 
(Figure 3). Select “Descriptor data” in the data selection dialog box and click the “OK” 
button; This step moves the process to the production of the ML model from the already 
prepared feature-based dataset. 

 
Figure 3. Load data using the data selection explorer. 

7) Select “Net_1_CNN” and set the “Input channels” as 20 (Figure 4). This denotes that we 
select a modern deep convolutional neural network (CNN) model. The default values are 
used for the remaining parameters; 

 
Figure 4. An example of parameter setting for the deep convolutional neural network (CNN) 
algorithm. 

8) Set the K number as 5; This sets up the test procedure as the 5-fold cross validation. 
9) Click the “Start” button to start the modelling. This starts the process of generating the 

CNN model using the training dataset in the 5-fold cross-validation setting. The resulting 
prediction score, performance evaluation metrics for the cross-validation and independent 
test and the Receiver Operating Characteristic (ROC) curves are displayed in Figure 5; 
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Figure 5. An example of prediction model construction using the CNN algorithm. 

We observe that iLearnPlus produces a relatively accurate predictor of the Kmal sites, with 
the average AUROC (area under the ROC curve) over the 5 cross-validation folds of about 
0.78 (Figure 5). This model achieves a similar AUROC of 0.80 on the independent test 
dataset, which suggests that the trained model is robust and did not overfit the cross-
validation experiment. 

3.4 Comparison with other ML algorithms 

So far, we designed and evaluated a predictive model using the CNN algorithm. Now, we use 
the iLearnPlus-AutoML module to compare the predictive performance between different 
ML algorithms. This requires executing the following sequence of five steps: 

1) Open the “data.csv” file; 
2) Select ML algorithms. Here, we consider five ML algorithms including “RF” (random 

forest), “DecisionTree” (decision three), “LightGBM” (gradient boosted forest), “LR” 
(logistic regression), and “CNN” (deep convolutional neural network).  

3) Set the K number as 5; This defines the test procedure to be the 5-fold cross validation. 
4) Click the “Start” button to train the five models. For each of the selected ML algorithms, 

the program will build the predictive model automatically, one by one, and 
correspondingly test them via the cross-validation protocol. 

5) The results are displayed using four panels: 
 The evaluation metrics for the five classifiers are displayed in the table widget 

(Figure 6); 
 The correlation matrix of the five classifiers is displayed in the form of a heatmap 

(Figure 7); This heatmap quantifies the degree of similarity between the 
results/predictions produced by the five models. 

 Boxplots for the evaluation metrics (Figure 8); These plots quantify the spread of the 
values of the metrics over the five cross-validation folds. 

 ROC and precision-recall curve (PRC) curves (Figure 9). These curves quantify the 
quality of the putative scores produced by the five predictors. 
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Figure 6. Performance evaluation metrics for the five models. The metrics include sensitivity 
(Sn), specificity (Sp), precision (Pre), accuracy (Acc), Matthew's correlation coefficient 
(MCC), F1, AUROC, and AUPRC (area under the precision-recall curve). 

 
Figure 7. The correlation matrix generated by the iLearnPlus-AutoML module. 
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Figure 8. The boxplots generated by the iLearnPlus-AutoML module. 

 
Figure 9. ROC and PR curves generated by the iLearnPlus-AutoML module to evaluate the 
predictive performance of the five models. 

The five-step process automates numerous activities that include loading of the data, 
selection of ML algorithms, setting up test protocol, running training and test experiments 
across the five selected algorithms, and generation of a wide range of helpful metrics and 
plots that summarize and compare the corresponding results of the five ML algorithms. From 
Figure 7, we learn that the results generated by the various ML algorithms are highly 
correlated, with Pearson correlation coefficients ranging between 0.98 and 1. This is not 
surprising since these models solve the same problem using the same training dataset. While 
the five results are correlated, Figure 6 and Figure 9 reveal that the corresponding predictive 
performance is substantially different. The most accurate solution that relies on the CNN 
model achieves AUROC of 0.77, which agrees with the results in Figure 5. The other ML 
algorithms are not as accurate as the CNN model, with the second-best algorithm (i.e. the 
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gradient boosted forest) securing AUROC of 0.64 and the simplest decision tree obtaining 
AUROC of 0.51. This type of analysis allows the users to easily and conveniently compare 
different solutions, in this case by relying on different ML algorithms, to select the one that 
generates favorable levels of predictive quality. 

4 Summary 

Prediction of the PTM sites from the protein sequences is an active research area that requires 
the development of novel methods that would provide results for the many PTM types that 
lack predictors and that would take advantage of the newly released experimental data to 
improve over the current solutions. Generation of the predictive systems is a relatively 
complex process that involves collection of training and test data, various data conversions 
that include feature encoding, extraction and selection, modelling that covers setup and 
generation of predictive models using various ML algorithms, and comparative analysis to 
select the best solution. The execution of this entire process can be automated and facilitated 
with modern software platforms, such as iLearnPlus [22]. We use the example of the 
prediction of the lysine malonylation sites to demonstrate how to use iLearnPlus to develop 
accurate models and to perform comparative analysis. We find that predictors that rely on 
deep neural networks outperform more classical ML algorithms for this predictive task. 

Importantly, we highlight the fact that iLearnPlus can be utilized to conceptualize, design, 
test, and deploy predictive solutions for many other related problems that extend beyond the 
PTM predictions. These problems cover prediction of functional and structural annotations 
from the proteins and nucleic acid sequences. Examples include prediction of the protein 
secondary structure [74-78] and other structural features of proteins [79], RNA secondary 
structure [80, 81], protein-nucleic acids interactions [82-84], protein-protein interactions [85-
88], intrinsic disorder and its functions [89-97], cleavage sites [98], and many other 
annotations. 
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