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Abstract 

The rapid growth of the number of protein sequences greatly exceeds the pace of efforts to 
functionally and structurally annotate these proteins. The closing of the ensuing large and 
growing gap in the amino acid (AA)-level annotations of protein structure and function can be 
facilitated using accurate and fast computational predictors. Hundreds of sequence-based 
predictors of the AA-level annotations have been developed, making it challenging for the 
end users to identify suitable/good predictors and collect their results. One convenient 
solution is to obtain pre-computed predictions from large-scale databases, which include 
MobiDB, D2P2 and DescribePROT. These databases provide access to a diverse set of 
structural and functional characteristics, such as domains, secondary structures, solvent 
accessibility, intrinsic disorder, posttranslational modifications (PTMs), protein/DNA/RNA-
binding AAs, disordered linkers and signal peptides. We motivate and introduce these 
databases, discuss and compare their contents, and comment on their applications and 
limitations. We find that these databases provide complementary scope and services, with 
D2P2 delivering comprehensive annotations of domains and PTMs, MobiDB focusing on the 
intrinsic disorder and being highly-connected to other resources, and DescribePROT covering 
the most diverse set of structural and functional features. We briefly examine practical 
applications for some of the structural predictions covered by these databases. We also 
concisely discuss modern predictive webservers that can be used when users need to collect 
the AA-level annotations for proteins that are not included in these databases. 

1 Introduction 

We face an enormous challenge to functionally and structurally characterize hundreds of 
millions of protein sequences [1, 2]. The current 2021_04 version UniProt includes 225.01 
million of proteins and has more than tripled in size compared to the version 2016_04 from 
just 5 years ago that featured 63.69 million proteins [2, 3]. These annotations are done at three 
levels: atomic, amino acid (AA) and whole protein. The arguably most popular atomic-level 
database, Protein Data Bank (PDB) [4], covers 185 thousand protein structures. The most 
popular protein-level database, UniProt, has 565 thousand manually curated proteins (Swiss-
Prot) and close to 225 million proteins with alignment-generated/predicted annotations 
(TrEMBL) [2]. The AA-level annotations bridge the gap between the atomic and protein-level 
annotations. They are computed from the PDB files and extracted from a sparsely populated 



2 
 

subset of the UniProt records. However, only a small fraction of AAs was annotated so far. 
Computational methods that predict the AA-level annotations from protein sequences (i.e., 
sequence-based predictors), many of which are described in this book, are widely used to 
assist with closing the huge and rapidly growing gap in the AA-level annotations.  

The sequence-based predictors output AA-level annotations using predictive models trained 
and validated/tested using the ground truth generated by experimental methods, typically 
collected from PDB or related/derived databases, such as BioLip [5] or DisProt [6]. They 
often rely on models produced by machine learning (ML) algorithms. ML algorithms utilize 
experimentally annotated training datasets to parametrize models to “optimally” differentiate 
between AAs that have a given function/structure and the remaining non-functional/non-
structural AAs. The training sets are two orders of magnitude larger than the corresponding 
set of training proteins since they concern AAs; average protein sequence has around 300 
AAs [7]. Consequently, the amount of the experimentally annotated training data is sufficient 
to train and test accurate predictive models using sophisticated ML algorithms, such as deep 
neural networks. We stress that these models are optimized to provide accurate predictions for 
proteins that share low levels of similarity/homology with the proteins in the training dataset, 
typically < 30% similarity. In essence, the sequence-based ab initio methods can be used to 
make AA-level predictions for any of the 225 million of the sequenced proteins. 

Hundreds of the sequence-based predictors of the AA-level annotations have been developed. 
They can be divided into two major groups: (1) methods that target prediction of functional 
AAs; and (2) methods that predict structural characteristics of AAs. The first group covers a 
broad spectrum of functions including prediction of AAs that interact with RNA, DNA, lipids 
and proteins, catalytic residues, cleavage and post-translational modification sites (PTMs), 
and intrinsic disorder. Selected, popular examples include DP-Bind [8, 9] and DBS-PSSM 
[10] that predict DNA-binding AAs; RNABindR [11-13] and Pprint [14] that identify putative 
RNA-binding residues; BindN+ [15], DRNApred [16] and NucBind [17] that predict DNA 
and RNA binding AAs; SPPIDER [18], PSIVER [19] and SCRIBER [20] that find putative 
protein-binding residues; DisoLipPred [21] that predicts lipid-binding AAs; PROSPERous 
[22] and DeepCleave [23] that generate putative cleavage sites; INTREPID [24, 25], PREvaIL 
[26] and CRpred [27] that produce putative catalytic residues; NetPhosK [28], SUMOsp [29, 
30] and UbPred [31] that find putative PTMs; SignalP [32-35] and ChloroP [36] that identify 
putative signal peptides; IUPred [37-40], DISOPRED [41, 42] and flDPnn [43] that predict 
intrinsic disorder; and DisoRDPbind [44-46] and DeepDISObind [47] that generate putative 
disordered residues that interact with DNA, RNA and proteins. The second category targets 
prediction of various structural features of the AAs including their secondary structure, 
torsion angles, solvent accessibility, flexibility and residue-residue contacts. Example popular 
predictors include PSIPRED [48, 49], PHD [50, 51] and JPRED [52-54] that predict 
secondary structure; PHDacc [55] and ACCpro [56] that predict solvent accessibility; 
PROFbval [57, 58] and FlexRP [59] that generate putative flexibility; and PSICOV [60], 
GREMLIN [61], ContactMap [62] and SVMcon [63] that produce putative residue-residue 
contacts. There are many more methods that target prediction of each of these structural and 
functional characteristics. For instance, there are over 100 predictors of intrinsic disorder [64-
67], over 60 tools for the prediction of secondary structure [68-71], close to 40 predictors of 
AAs that interact with DNA and/or RNA [72-74], over 30 that predict protein-binding AAs 
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[75, 76]. The sheer number and diversity of these methods make it rather challenging for the 
end users to select suitable/good predictors and collect their predictions. 

The predictive quality of the sequence-based predictors of the AA-level function and structure 
annotations is evaluated on benchmark datasets. While authors of individual predictors 
compare their methods to a selected collection of other tools, arguably more reliable 
information source are community-driven assessments. In the latter case, a large collection of 
methods competes in a blind prediction task on a common dataset (unknown to the authors of 
methods) under guidance of an independent group assessors (excluding authors). Examples 
include the Critical Assessment of Structure Prediction (CASP) [77-79], which evaluates the 
disorder and contact maps predictions [80, 81], the Critical Assessment of PRotein 
Interactions (CAPRI) [82-84], Critical Assessment of Intrinsic protein Disorder (CAID) [85], 
and the discontinued Critical Assessment of Fully Automated Structure Prediction (CAFASP) 
[86]. The AA-level predictions that do not have community assessments can be reliably 
compared utilizing large-scale comparative surveys. Recent examples can be found for the 
prediction of secondary structure [69] (which was discontinued in CASP after 2002), AAs 
that interact with RNA and DNA [72, 74, 87, 88], protein-binding AAs [75, 89], and 
disordered protein-binding AAs [76]. The community assessments and the comparative 
survey give useful guidance for the selection of well-performing predictors. 

The collection of predictions could be difficult and time consuming, particularly for less 
computer savvy users. Users interested in collecting several types of putative annotations have 
to navigate multiple websites and/or software, correspondingly adjust the format of the input 
protein sequences, and parse and standardize the diverse formats of outputs that different 
predictors use. One convenient alternative is to use platforms that provide multiple and 
diverse predictions. Several platforms that integrate predictions of multiple AA-level 
descriptors are currently available including PredictProtein [90], PSIPRED workbench [91], 
MULTICOM [92], Distill [93], and DEPICTER [94]. However, these platforms require a 
significant amount of runtime to collect results, particularly in scenarios when users require to 
predict a large number of proteins, and typically focus on a specific annotation type (structural 
vs. functional) and structural state (disordered vs. structured). Moreover, they are relatively 
inefficient since the same protein sequence that is being input by different users is typically 
predicted over and over again. 

An ultimate solution to these two prediction problems (selection and collection) are databases 
that offer convenient access to pre-computed AA-level predictions for a broad collection of 
predictors. This chapter describes, compares and analyzes these databases in the effort to 
disseminate and popularize their use.  

2 Databases of the AA-level predictions 

Three databases of the sequence-based AA-level predictions were released to date: MobiDB 
[95-98], D2P2 [99], and DescribePROT [100]. They provide instantaneous access to results 
generated by several disorder predictors for large datasets of proteins ranging from 1.35 
million proteins in DescribePROT, through 10.43 million proteins in D2P2, to 219.74 million 
proteins in MobiDB. The first two databases focus on annotations associated with intrinsic 
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disorder while DescribePROT offers a more holistic collection of putative annotations. The 
disorder is defined by lack of stable structure under physiological conditions [101, 102]. It 
was bioinformatically shown to be common across all kingdoms of life [103-107] and 
distributed across cellular compartments [108, 109]. The focus on intrinsic disorder can be 
explained by its functional importance [110-117], association with human diseases [118] and 
defining contribution to poorly functionally/structurally characterized dark proteomes [119-
121]. The prediction that underly these three databases consists of a numeric propensity 
(higher value signifies higher likelihood for a given annotation) and a binary value (annotated 
vs. lacking a given annotation). The binary prediction is typically generated from the 
propensities, where AAs associated with the propensities higher than a threshold are classified 
as annotated with a given structural/functional characteristic. We summarize key 
characteristics of MobiDB, D2P2 and DescribePROT in Table 1. 
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Table 1. Summary of databases of the sequence-based AA-level predictions of protein structure and function. 

Database Refs 
Year 

released 

Size 
[millions of 
proteins] 

Predicted properties:  
structural (S) and functional (F) Predictors included Databases linked 

MobiDB 
version 4.1 

[95-98] 2012 219.74 Intrinsic disorder (S) 
Disordered protein-binding residues (F) 
Secondary structure (S) 
Low complexity regions (S) 
Domains (F) 

AlphaFold2 [122] 
ANCHOR [123] 
DisEMBL [124] 
DynaMine [125] 
ESpritz [126] 
FeSS [127] 
Gene3D [128] 
GlobPlot [129] 
IUPred2A [38] 
JRONN [130] 
MobiDB-lite [131] 
Pfilt [132] 
PONDR VSL2B [133, 134] 
SEG [135] 

CoDNaS [136] 
DIBS [137] 
DisProt [6] 
ELM [138] 
FuzDB [139] 
IDEAL [140] 
MFIB [141] 
PDBe [142] 
PhasePro [143] 
UniProt [2] 

D2P2 
version 1.0 

[99] 2013 10.43 Intrinsic disorder (S) 
Disordered protein-binding residues (F) 
Domains (F) 
 

PONDR VL-XT [144] 
PONDR VSL2B [133, 134] 
PrDOS [145] 
PV2 [146] 
ESpritz [126] 
IUPred [40] 
SUPERFAMILY [147] 

IDEAL [140] 
DisProt [6] 
PhosphoSitePlus 
[148] 

DescribePROT 
version 1.4 

[100] 2021 1.37 Solvent accessibility (S) 
Secondary structure (S) 
Disordered and structured protein-binding (F) 
Disordered and structured RNA-binding (F) 
Disordered and structured DNA-binding (F) 
Intrinsic disorder (S) 
Disordered linkers (F) 
Signal peptides (F) 

ASAquick [149]  
DFLpred [150] 
DRNApred [16] 
DisoRDPbind [44-46] 
MoRFChibi [151] 
PONDR VSL2B [133, 134] 
PSIPRED [48, 152] 
SCRIBER [20, 75] 
SignalP [34, 153] 

UniProt [2] 
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2.1 MobiDB 

MobiDB was developed by the Silvio Tosatto’s group at the University of Padua. It was first 
released around 2012 [95], and continues to advance and expand along the years, with version 
2 published around 2015 [98], version 3 in 2017 [97], and version 4 in 2020 [96]. 

Availability: https://mobidb.bio.unipd.it/ [95-98] 

Advantages: This is by far the largest database that aims to cover the UniProt-size collection 
of proteins, which currently totals to 219.7 million. Another key highlight is its linkage to 10 
external databases (Table 1) and inclusion of experimental data that was collected from these 
databases. MobiDB features results generated by 14 predictors, including 8 methods that 
predict intrinsic disorder. The primary annotation of putative disorder is produced using a 
meta/consensus method, MobiDB-lite [131]. The meta-predictors input multiple disorder 
predictions to produce a new disorder prediction that improves over the input predictions. 
This approach is motivated by empirical works that conclude that well-designed meta-
methods in fact produce predictions with favorable accuracy [154, 155]. 

Disadvantages: MobiDB is almost exclusively focuses on annotations of intrinsic disorder. 
Moreover, it provides only the binary values for the disorder predictions, lacking the 
corresponding putative propensities. 

2.2 D2P2 

D2P2 was released around 2012 by Julian Gough’s team at the University of Bristol. His 
research group has recently moved to the MRC Laboratory of Molecular Biology at 
Cambridge and D2P2 is no longer supported. The release of this resource was supported by a 
large international group of researchers including Drs Takeshi Ishida (Tokyo Institute of 
Technology), Bin Xue and Vladimir Uversky (University of South Florida), Zsuzsanna 
Dosztanyi (Eotvos Lorand University), Zoran Obradovic (Temple University), Lukasz Kurgan 
(Virginia Commonwealth University), and A. Keith Dunker (Indiana University). 

Availability: https://d2p2.pro/ [99] 

Advantages: D2P2 offer access to the results produced by a diverse collection of six disorder 
predictors (Table 1). It also combines these predictions using a 75% consensus approach, i.e., 
a residue is predicted as disorder if at least 75% of methods predicts it as disordered in binary. 
The use of this meta/consensus approach is motivated by the past empirical studies [154, 
155]. Moreover, D2P2 provides arguably the most comprehensive annotations of protein 
domains and PTMs. 

Disadvantages: Similar to MobiDB, D2P2 is nearly fully focuses on the intrinsic disorder 
annotations. Furthermore, this resource was last updated in 2013 and is no longer maintained. 

2.3 DescribePROT 

DescribePROT was produced by Lukasz Kurgan’s lab at the Virginia Commonwealth 
University and made available to the public in 2020. Similar to D2P2, DescribePROT was a 
collaborative effort that involved a big team of researchers including Drs A. Keith Dunker 
(Indiana University), Andrzej Kloczkowski (Ohio State University), Jorg Gsponer (University 
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of British Columbia), Johannes Soding (Max Planck Institute for Biophysical Chemistry), 
Zoran Obradovic (Temple University), Martin Steinegger (Seoul National University), and 
Yaoqi Zhou (Shenzhen Bay Laboratory). 

Availability: http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/ [100] 

Advantages: The strongest point of DescribePROT is the diversity of its predictions that cover 
several structural and functional characteristics including solvent accessibility, secondary 
structure, protein-, RNA- and DNA-binding AAs, intrinsic disorder, disordered linkers and 
signal peptides. Consequently, DescribePROT stores over 7.8 billion AA-level predictions. 
Moreover, it provides access to position specific scoring matrices (PSSMs) generated from 
protein sequences using MMSeqs2 [156-158] and the relative entropy-based conservation 
scores that are produced from PSSMs [159, 160]. Furthermore, this is the only database that 
combines complementary predictions of DNA, RNA and protein interactions that are trained 
using structured vs. disordered data [75], which results in a more complete coverage of these 
interactions. 

Disadvantages: The main downside of DescribePROT is a relatively low number of proteins 
that it covers (1.37 million), which spans over 83 complete proteomes/species. It also suffers 
insufficient linkage to external resources. However, both of these issues should be resolved in 
the subsequent releases. 

2.4 Example results 

Figure 1A shows experimental annotations of structure and function for the SIR3 protein, 
transcriptional repressor from Saccharomyces cerevisiae (UniProt ID: P06701), which we 
extract from the DisProt database (DisProt ID: DP00533) [6]. SIR3 modulates chromatin 
structure and correspondingly includes a long intrinsically disordered region (positions 216 to 
549) that interacts with proteins and DNA [161].  

We compare these annotations against the results that we collect from the D2P2 (Figure 1B), 
MobiDB (Figure 1C) and DescribePROT (Figure 1D) databases. We observe that the location 
of the predicted disordered AAs in these three databases agrees to a large degree with the 
experimental data. This suggests that the corresponding disorder predictors produce accurate 
results, which concurs with recent empirical assessments that similarly conclude that disorder 
predictions are in general done accurately [85, 162, 163]. We emphasize that these resources 
provide well-designed and color-coded visualizations of the predictions and annotations, each 
using its own format. D2P2 groups all disorder predictions together and presents an 
“agreement” line that compares them against experimental annotations, if available (Figure 
1B). This is accompanied with the location of identified domains and PTMs. MobiDB 
similarly clusters several disorder predictions together with the corresponding consensus 
result (Figure 1C). It also provides annotations of domains and protein interactions at the 
bottom of the panel. DescribePROT divides the panel into two parts where the top aggregates 
information at the protein level and the bottom provides complete AA-level results (Figure 
1D). The residue-level annotations supplied by DescribePROT include both binary 
predictions (horizontal bars) and numeric propensities (thin solid lines). We note that 
MobiDB and DescribePROT provide interactive interfaces where users can select specific 
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functional/structural characteristics, zoom in and out on selected parts of the sequence, and 
are shown convenient and informative callouts that display additional details and which 
appear on the mouse hover. 

A. Experimental annotation of collected from the DisProt database 

 
B. Annotations from the D2P2 database 

 
C. Annotations from the MobiDB database 

 

D. Annotations from the DescribePROT database 

 
Figure 1. Experimental and predicted disorder annotations for the SIR3 protein (UniProt ID: P06701, DisProt 
ID: DP00533). Panel A shows the experimental annotations collected from DisProt (https://www.disprot.org/). 
Panel B shows the results generated by the D2P2 database (https://d2p2.pro/). Panel C presents the results 
produced by the MobiDB database (https://mobidb.bio.unipd.it/). Panel D gives the outputs from the 
DescribePROT database (http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/). The legends included in panels 
B, C and D explain the encoding of the presented data. 

3 Conclusions, impact and limitations 

Three large-scale databases that we introduce and discuss in this chapter, MobiDB, D2P2 and 
DescribePROT, facilitate easy and free access to large collections of the AA-level annotations 
of protein structure and function. We demonstrate that they provide complementary scope and 
services. D2P2 arguably delivers the most comprehensive set of annotations of protein 
domains and PTMs. However, this database was last updated in 2013 and is no longer actively 
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supported. MobiDB focuses primarily on the intrinsic disorder and is by far the largest and 
most externally connected resource. On the other hand, DescribePROT covers the most 
diverse collection of the structural and functional features. Thus, we recommend the latter two 
resources as the most valuable, current and complete solutions to conveniently collect the 
AA-level annotations. 

The data available in these databases is utilized for numerous practical applications. We 
briefly summarize impact of one of the structural aspects covered by these resources, the 
intrinsic disorder. Just in 2021, the disorder predictions of the popular IUPred [37-40], which 
are available via D2P2 and MobiDB databases, were used to analyze the SARS-CoV-2 
proteins [164-167], link mutations in the intrinsically disordered sequence regions to cancer 
[168, 169], investigate liquid-liquid phase separation [170-172], localize disorder across 
compartments of the human cell [108], and to develop a wide range of predictive tools [173-
178], among many other applications. Similarly long list of diverse uses can be attributed to 
the results produced by DisoRDPbind [44-46], which covers putative disordered 
protein/DNA/RNA binding AAs and which are available via DescribePROT. These 
predictions were utilized to investigate several viral genomes including SARS-CoV-2 [179], 
porcine astrovirus type 3 [180], and hepatitis E [181], and to decipher functions of genes from 
animal pathogens [182]. They were also applied to investigate several specific proteins, such 
as CS-like zinc finger (FLZ) [183], nonstructural nsP2 protein from Salmonid alphavirus 
[184], spindle-defective protein 2 (SPD-2) [185], heat shock factor 1 (Hsf1) [186], and Mixed 
Lineage Leukemia 4 (MLL4) [187], some of which are connected to cancers and 
neurodegenerative and viral diseases. More broadly, we find that the intrinsic disorder 
predictions are utilized across many research and development areas, such as drug design 
[188-192], molecular and systems medicine [193, 194], and structural genomics [124, 195]. 
These examples and studies clearly demonstrate the significant impact of the use of the 
putative AA-level annotations, which is directly facilitated by the described here databases. 

Lastly, we emphasize that the use of these databases is limited to the proteins that they 
include. Users who like to collect the AA-level data outside of the protein sets covered in 
these resources, e.g., for a novel protein sequence, have the option of applying one of the 
freely available predictive platforms. These platforms include PredictProtein 
(https://predictprotein.org/) [90], PSIPRED workbench (http://bioinf.cs.ucl.ac.uk/psipred/) 
[91], MULTICOM (http://sysbio.rnet.missouri.edu/multicom_cluster/) [92], Distill 
(http://distillf.ucd.ie/distill/) [93], and DEPICTER 
(http://biomine.cs.vcu.edu/servers/DEPICTER/) [94]. We briefly discuss details of the 
DisorderEd PredictIon CenTER (DEPICTER) webserver, which is the closest to the scope of 
the three databases. This webserver conveniently generates the AA-level predictions on the 
server side covering a broad selection of disorder and disorder function predictions. It 
produces consensus/meta prediction of disordered AAs using results output by the fast UPred-
short [40], IUPred-long [40] and SPOT-Disorder-Single [196] methods. It also predicts the 
disordered linkers using DFLpred [150], disordered AAs that bind proteins, DNA and/or 
RNA by combining results of fMoRFpred [197], DisoRDPbind [46] and ANCHOR2 [38] 
methods, and putative disordered multifunctional (moonlighting) AAs generated by DMRpred 
[198]. The predictions are visualized and delivered as a parsable text file in the browser 
window and sent to the user’s email, if the email was provided as one of the inputs. 
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