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Abstract 

Intrinsic disorder in proteins is manifested by regions that lack stable structure under 
physiological conditions. Proteins with disordered regions are common across all kingdoms of 
life, facilitate many essential cellular functions and contribute to dark proteomes. They are 
associated with a wide spectrum of human diseases and consequently are considered as potent 
drug targets. Disordered regions have unique sequence signatures, making them predictable 
from protein sequences. Computational disorder prediction is a vibrant research area with 
over 40 years of history, which heavily depends on machine learning (ML) algorithms and 
innovations, such as meta learning and deep learning. We summarize a comprehensive 
collection of 73 ML-based disorder predictors, detail several most successful methods and 
survey related resources that predict disorder and disorder functions. We detail historical 
trends in the development of disorder predictors, highlighting the shifting focus from 
traditional ML methods, to meta-predictors, and most recently to the deep neural networks. 
We introduce a wide range of useful resources that support disorder and disorder function 
predictions including databases, webservers, and methods that provide quality assessment of 
disorder predictions. The availability of these numerous high-quality methods and resources 
ensures that the computational disorder predictions will continue to make substantial impact 
in key areas of research including rational drug design, structural genomics, and medicine. 

1 Introduction 

Intrinsic disorder in proteins is manifested by presence of regions that lack stable structure 
under physiological conditions [1-3]. These intrinsically disordered regions (IDRs) are 
classified as native coils, native pre-molten globules and native molten globules, signifying 
the fact that they be disordered to a different degree [4, 5]. More generally, IDRs can be seen 
as ensembles of interchanging conformations, with some regions being more expanded 
(native coils and native pre-molten globules) and other being more compact (native molten 
globule). Recent bioinformatics studies suggest that intrinsically disordered proteins (IDPs), 
i.e., proteins with IDRs, are common across all kingdoms of life, with particularly high levels 
in eukaryotes [6-9], and are distributed across different cellular compartment [10, 11]. IDPs 
are engaged in numerous essential cellular functions that include molecular assembly and 
recognition, signal transduction, cell cycle regulation, chromosomal packing, transcription 
and translation, to name but a few [8, 12-22]. They also contribute to the dark proteomes, 
defined as the non-resolved parts of the protein structure space [23-25].  
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Dysfunction of IDPs is associated with a wide spectrum of human diseases [26-28]. Examples 
include the Alzheimer's and Parkinson's diseases, Down's syndrome, prion diseases and 
dementia [29]. Moreover, IDPs facilitate regulatory and signaling functions that frequently 
rely on molecular interactions and consequently their misregulation and misinteractions are 
linked to cancers, diabetes and cardiovascular diseases [30-33]. IDPs play also key roles in 
viral genomes [34-38]. Given the prevalence and importance of IDPs in context of human 
diseases, IDPs such as α-synuclein, tau, p53 and BRCA-1 are attractive drug targets [26]. 
Moreover, novel approaches towards drug rational discovery efforts that target IDPs are being 
developed [39-43], further highlighting importance of this class of proteins. 

Experimentally annotated IDRs can be collected from several databases, such as DisProt [44], 
PDB [45], IDEAL [46], DIBS [47], and MFIB [48]. The DisProt resource also offers 
functional annotations for the IDRs. While these resources provide access to very valuable 
experimental data, their size is relatively small compared to the hundreds of millions of 
protein sequences that are currently included the UniProt database [49]. For instance, the 
recent version 8.3 of DisProt covers approximately 2 thousand proteins [44]. The substantial 
and rapidly growing annotation gap has motivated development of computational predictors 
of IDRs [50-60]. The ability of these methods to generate accurate predictions of intrinsic 
disorder stems from the fact that IDRs have distinct sequence signatures compared to 
structured/ordered regions [61]. For instance, disordered regions typically have high net 
charge, low hydrophobicity and are depleted in aromatic residues when compared to their 
structured counterparts [5, 62, 63]. Availability of these computational methods has made 
substantial impact on the intrinsic disorder field, driving a rapid increase in the research on 
IDPs and IDRs [64]. 

Figure 1A shows disorder annotations for the SIR3 protein from Saccharomyces cerevisiae 
(UniProt ID: P06701) collected from DisProt (DisProt ID: DP00533)  [44]. This 
transcriptional repressor that facilitates modulation of chromatin structure includes one IDR 
(positions 216 to 549) that was shown to interact with proteins and DNA [65]. We use this 
protein to demonstrate disorder prediction generated flDPnn [66], one of the currently best 
methods that recently won the Critical Assessment of Intrinsic Protein Disorder (CAID) [67, 
68]. The disorder predictions are done at the residue level, which means that they are 
produced for each amino acid in the input protein sequence. The prediction consists of a 
numeric propensity score (higher value denotes higher likelihood for disorder) and a binary 
value (disordered vs. structured). The binary prediction is typically generated from the 
putative propensities, where amino acids with propensities higher than a threshold are 
categorized as disordered and the remaining residues are predicted as structured. Figure 1B 
shows the putative propensity of disorder (black line) and binary annotation of disordered 
residues (green horizontal bar) produced by flDPnn; the corresponding threshold is denoted 
by the dashed horizontal line. We note that the location of the predicted disordered residues is 
in close agreement with the experimental data, demonstrating that disorder predictors can 
produce very accurate results. 
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A. Experimental
annotation of disorder

collected from the
DisProt database.

B. Putative disorder
generated by the

flDPnn predictor.

C. Putative disorder
and disorder functions

produced using the
DEPICTER
webserver.

D. Putative disorder
and accompanying
quality assessment

(QA) scores
generated using the

QUARTERplus
webserver.

Figure 1. Experimental and predicted disorder annotations for the SIR3 protein (UniProt ID: P06701, DisProt 
ID: DP00533). Panel A shows the experimental annotation of the disordered regions (positions 216 to 549) 
collected from DisProt (https://www.disprot.org/) [44, 65]. Panel B shows prediction of disorder generated by 
the flDPnn method (http://biomine.cs.vcu.edu/servers/flDPnn/) [66] where black plot gives the putative 
numerical propensity of disorder and horizonal green bar corresponds to putative disordered regions derived 
from the propensity values. Panel C is the prediction of disorder and disorder functions produced by the 
DEPICTER webserver (http://biomine.cs.vcu.edu/servers/DEPICTER/) [69] that include disorder predictions 
using a consensus of the IUPred2A [70] and SPOT-Disorder-Single methods [71] (gray horizonal bar), putative 
disordered protein binding (green horizonal bar) by consensus of DisoRDPbind [72, 73], ANCHOR2 [70] and 
fMoRFpred [74], RNA binding (light blue horizonal bar) and DNA binding (dark blue horizonal bar) regions by 
DisoRDPbind [72, 73], disordered linkers (pink horizonal bar) by DFLpred [75], and putative 
multifunctional/moonlighting disordered regions identified by DMRpred (violet horizonal bar) [76]. Panel D 
gives the disorder prediction (black and gray horizontal bar) generated by the consensus of SPOT-DISORDER-
Single [71], DISOPRED3 [77] and IUPred-short [78] that is accompanied by the quality assessment (QA) scores 
produced by QUARTERplus (http://biomine.cs.vcu.edu/servers/QUARTERplus/) [79]. The QA scores (color-
coded horizonal bar) quantify quality of the consensus disorder prediction, i.e., residues identified with green and 
yellow colors are more likely to be accurately predicted compared to predictions colored in orange or red. 

The flDPnn predictor and significant majority of other disorder predictors were developed 
using a machine learning (ML) approach [51, 54, 60]. This means that the developers of these 
methods used the available experimental disorder data to train predictive models using ML 
algorithms. Once trained and properly validated [68, 80], the resulting predictive models can 
be used to produce accurate predictions of disordered residues and regions for the millions of 
sequences that lack disorder annotations, like we illustrate in Figure 1B. This chapter 
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overviews disorder predictors that rely on the ML models. We produce a comprehensive list 
of these predictors and discuss the underlying ML algorithms used. Moreover, we provide a 
detailed description of several most successful methods. Finally, we briefly survey other 
related resources, including webservers and databases, that facilitate prediction of disorder 
and disorder functions.  

2 Overview of disorder predictors 

Over 100 disorder predictors have been developed to date [51, 54, 60]. They were reviewed in 
a about a dozen surveys [50-60]. The most recent review defines four distinct periods in the 
development of the disorder predictors [60]: 

1. The first-generation predictors were developed between 1979 and 2001. The first ML-
based method was developed by Romero, Obradovic, and Dunker in 1997 [81]. It relies on 
a shallow neural network that utilizes physical and chemical characteristics of the protein 
sequence as its inputs. Relatively few first-generation methods were developed. 

2. The second-generation predictors date between 2002 and 2006. A significant event 
during this time period was the inclusion of disorder prediction assessment into the 5th 
Critical Assessment of Structure Prediction (CASP5) in 2003 [82]. This resulted in rapid 
popularization of this predictive area [50]. The second-generation predictors are typically 
based on somewhat simple predictive models, frequently relying on sequence scoring 
functions and shallow neural networks. The defining innovation was the use of 
evolutionary profiles produced from the position specific score matrix (PSSM) that is 
generated from the input protein sequences with the PSI-BLAST program [83, 84]. 
Representative second-generation methods include GlobPlot [85], IUPred [78, 86], 
PONDR predictors [87-90], DISOPRED [91], DisEMBL [92], and RONN [93].  

3. The third-generation predictors were published between 2007 and 2015. One of the 
defining features of this time period was the introduction of meta-predictors, which 
generate disorder prediction by combining results produced by several disorder predictors. 
Popular third-generation meta-predictors include MFDp [94], CSpritz [95], PONDR-FIT 
[96] and DisCoP [97, 98]. We also note that the assessment of the disorder predictions 
continued biannually in the CASP7, CASP8, CASP9 and CASP10 experiments [80, 99-
101], resulting in a steady stream of new predictors. 

4. The fourth-generation period has started in 2016. This new generation of disorder 
predictors is defined by the introduction and development of deep learning models. Our 
analysis reveals that about half of the fourth-generation disorder predictors, 11 out of 23, 
rely on the deep neural networks [60]. Representative deep learning-based methods 
include AUCpred [102], SPOT-Disorder [103], SPOT-Disorder-Single [71], SPOT-
Disorder2 [104], rawMSA [105] and flDPnn[66]. The focus on designing novel deep 
network-based predictors culminated in their convincing success in the most recent CAID 
community assessment [67, 68]. 

As the above historical overview suggests, disorder predictors utilize a broad spectrum of 
predictive models. They are typically divided into three categories based on their predictive 
models [51, 52, 54, 55, 58]: (1) sequence scoring function-based methods; (2) machine 
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learning approaches; and (3) meta-predictors. The sequence scoring function-based predictors 
use relatively simple additive and/or weighted functions, some of which are grounded in 
physical principles governing protein folding processes, to process information extracted from 
the input sequence and sequence-derived evolutionary information. Representative methods in 
this category include FoldIndex [106], IUPred [78, 86], IUPred2A [70] and IUPred3 [107]. 
The machine learning methods utilize sophisticated predictive models that are trained from 
experimental data using a variety of ML algorithms, such as support vector machine, 
conditional random field, random forest and a variety of neural networks. Well-known ML 
methods include DisEMBL [92], DISOPRED [91], PONDR [90], PrDOS [108], DISOPRED3 
[77], fIDPnn [66], SPOT-Disorder2 [104], RawMSA [105] and AUCpred [102]. The meta-
predictors utilize two or more disorder predictions as inputs to re-predict disorder to improve 
predictive performance when compared to the input predictions. Several empirical studies 
show that well-designed meta-predictors produce such improvements [97, 109-111]. 
Illustrative meta-predictors include metaPrDOS [112], MFDp [94], Cspritz [95], MFDp2 
[113, 114], disCoP [97, 98] and MobiDB-lite [109]. Moreover, some meta-predictors use ML 
models to process inputs, which means that they belong to both categories. Corresponding 
examples include metaPrDOS [112] and MFDp [94]. 

3 Disorder prediction using machine learning 

We focus on the machine learning disorder predictors. We searched for these methods using 
listing of methods that participated in community assessments [68, 80, 82, 99-101, 115] and a 
comprehensive selection of 13 previously published surveys, which also include comparative 
studies [50-55, 58, 60, 116-119]. This extensive search produced list of 73 ML-based disorder 
predictors that are summarized in Table 1. This Tables identifies when and where these 
methods were published and reviews ML models that they utilize.  

Table 1. Summary of 73 predictors of intrinsic disorder that use machine learning models. The methods are 
sorted in the chronological order of their publication.  

Disorder predictor 
Year 

published Ref. Machine learning algorithms used 

Predictor by Dunker et al. 1997 [81] Shallow neural network 
PONDR CaN-XT 1997 [120] Shallow neural network 
PONDR XL1 1997 [120] Shallow neural network 
PONDR VL-XT 2001 [89] Shallow neural network 
DisEMBL-REM465 2003 [92] Shallow neural network 
DisEMBL-HL 2003 [92] Shallow neural network 
DisEMBL-COIL 2003 [92] Shallow neural network 
DISOPRED 2003 [91] Shallow neural network 
DISOPRED2 2004 [121] Support vector machine + Shallow neural network 
DISpro 2005 [122, 123] Shallow neural network 
PONDR VL3 2005 [90] Shallow neural network 
PONDR VL3H 2005 [90] Shallow neural network 
PONDR VL3E 2005 [90] Shallow neural network 
RONN (JRONN) 2005 [93] Shallow neural network 
PONDR VSL1 2005 [87] Regression 
PROFbval 2006 [124] Shallow neural network 
PONDR VSL2B 2006 [87, 88] Support vector machine 
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Disorder predictor 
Year 

published Ref. Machine learning algorithms used 

PONDR VSL2P 2006 [87, 88] Support vector machine 
Wiggle 2006 [125] Support vector machine 
Distill 2006 [126] Shallow neural network 
Spritz (Spritz3) 2006 [127] Support vector machine 
DisPSSMP 2006 [128] Radial basis function networks 
iPDA (DisPSSMP2) 2007 [129] Radial basis function networks 
POODLE-L 2007 [130] Support vector machine 
POODLE-S 2007 [131] Support vector machine 
POODLE-W 2007 [132] Nearest neighbor 
NORSnet 2007 [133] Shallow neural network 
PrDOS (PrDOS2) 2007 [108] Support vector machine 
Pdisorder 2007 N/A Shallow neural network 
UCON 2007 [133] Shallow neural network 
OnD-CRF (OnD-CRF2) 2008 [134] Conditional random field 
metaPrDOS (metaPrDOS2) 2008 [112] Support vector machine 
PreDisorder 2009 [135] Shallow neural network 
NN-CDF  2009 [136] Shallow neural network 
DRaai 2009 [137] Random forest 
MD 2009 [138] Shallow neural network 
UPforest-L 2009 [139] Random forest 
POODLE-I 2010 [140] Support vector machine 
MFDp 2010 [94] Support vector machine 
PONDR FIT 2010 [96] Shallow neural network 
Cspritz 2011 [95] Shallow neural network 
Espritz-D 2012 [141] Shallow neural network 
Espritz-N 2012 [141] Shallow neural network 
Espritz-X 2012 [141] Shallow neural network 
SPINE-D 2012 [142] Shallow neural network 
DNdisorder 2013 [143] Deep neural network (restricted Boltzmann machine) 
MFDp2 2013 [113, 114] Support vector machine 
disCoP 2014 [97, 98] Regression 
DynaMine 2014 [144, 145] Regression 
PON-Diso 2014 [146] Random forest 
s2D-1 2015 [147] Shallow neural network 
s2D-2 2015 [147] Shallow neural network 

DISOPRED3 2015 [77] Support vector machine + Shallow neural network + Nearest 
neighbor 

DisoMCS 2015 [148] Conditional random field 
DeepCNF-D 2015 [149] Deep neural network (convolutional) + Conditional random field 
AUCpred 2016 [102] Deep neural network (convolutional) + Conditional random field 
AUCpred-np 2016 [102] Deep neural network (convolutional) + Conditional random field 
DisPredict (DisPredict2) 2016 [150] Support vector machine 
SPOT-Disorder1 2017 [103] Deep neural network (recurrent) 
SPOT-Disorder-Single 2018 [71] Deep neural network (hybrid: convolutional + recurrent) 
Predictor by Zhao and Xue 2018 [151] Decision tree + Shallow neural network 
IDP-CRF 2018 [152] Conditional random field 
Spark-IDPP 2019 [153] Support vector machine + Shallow neural network 
IDP-FSP 2019 [154] Conditional random field 
rawMSA 2019 [105] Deep neural network (hybrid: convolutional + recurrent) 
SPOT-Disorder2 2019 [104] Deep neural network (hybrid: convolutional + recurrent) 
DisoMine 2020 N/A Deep neural network (recurrent) 
ODiNPred 2020 [155] Shallow neural network 
IDP-Seq2Seq 2020 [156] Deep neural network (recurrent) 
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Disorder predictor 
Year 

published Ref. Machine learning algorithms used 

flDPnn 2021 [66] Deep neural network (feed-forward) 
flDPlr 2021 [66] Regression 
RFPR-IDP 2021 [107] Deep neural network (hybrid: convolutional + recurrent) 
Metapredict 2021 [157] Deep neural network (recurrent) 

Table 1 reveals that the first ML predictor was developed in 1997. These methods were 
developed at a relatively steady pace over the subsequent years. On average, close to 3 
methods were developed annually, with 11 predictors published in the last 3 years. Figure 2 
illustrates these trends. We observe a sharp spike in the development efforts between 2005 
and 2007 when 21 methods were released.  We speculate that this was fueled by the inclusion 
of the disorder prediction into CASP5 and CASP6 experiments [82, 115], which 
correspondingly grew from 6 participating methods in CASP5 to 20 in CASP6. Figure 2 also 
highlight selected popular and/or well performing methods that were developed over the years 
(in chronological order): PONDR XL1 [120] (1997), DisEMBL [92] and DISOPRED [91] 
(2003), PONDR VSL2B [87, 88] (2006), PrDOS [108] (2007), MFDp [94] (2010), Espritz 
[141] (2012), DISOPRED3 [77] (2015), AUCpred [102] (2016), SPOT-Disorder-Single [71] 
(2018), SPOT-Disorder2 [104] and RawMSA [105] (2019), and fIDPnn [66] (2021).  

 
Figure 2. Timeline of the development of the machine learning-based predictors of intrinsic disorder. The green 
bars show the number of predictors developed in a given year. Selected popular and/or well-performing 
predictors are named inside the bars. The red line is the cumulative number of the predictors. 

Table 1 shows that the 73 disorder predictors rely on a variety of different ML algorithms. 
Some of these predictors use an ensemble of models that were produced by multiple different 
ML algorithms. A case in point is DISOPRED3 that combines support vector machine, 
shallow neural network and nearest neighbor models [77]. We break down these algorithms in 
Figure 3. By far the most popular choices are shallow neural networks and support vector 
machines, which when combined account for 60% of all ML algorithms used. The shallow 
neural networks were particularly popular in early years, with nearly all predictors between 
1997 and 2005 utilizing these models (Table 1). The support vector machines were commonly 
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used between 2006 and 2010, when 10 out of 25 predictors applied these models. 
Interestingly, the most popular ML models in recent years are deep neural networks, which 
were used by 6 out of 11 disorder predictors that were published since 2019. Deep neural 
networks differ from the shallow networks by inclusion of multiple hidden layers. The deep 
networks also often apply more advanced neuron types and more sophisticated architectures 
and connection patterns. The deep learning-based disorder predictors utilize a diverse 
collection of architecture types that cover feed-forward, recurrent, convolutional and hybrid 
topologies (Figure 3). The latter typically combine convolutional and recurrent topologies 
(Table 1).  

The drive to use the deep networks partly stems from their popularity in related areas of 
protein bioinformatics [158, 159]. Some examples include prediction of protein function [160, 
161], residue contacts [162-166], residue distances [167], binding residues [168-171], 
crystallization success [172], solvent accessibility [173, 174], secondary structure [174-176], 
posttranslational modification sites [177], and substrates and cleavage sites [178]. Another 
key factor contributing to the popularity of the deep learners is their success in recent 
assessments of disorder predictions [58, 68, 116]. For example, all of the best-performing 
methods that participated in the most recent CAID competition [67, 68], which include 
flDPnn [66], SPOT-Disorder2 [104], RawMSA [105] and AUCpred [102], rely on the deep 
networks. Interestingly, these methods use diverse network architectures including 
convolutional topology by AUCpred, a hybrid of convolutional and recurrent by SPOT-
Disorder2 and RawMSA, and the feed-forward topology by flDPnn. 

 

Figure 3. The breakdown of different types of machine learning models used by the disorder predictors. The 
smaller, gray-scale pie chart shows various types of the deep neural networks. 
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4 Selected machine learning-based disorder predictors 

Several large-scale comparative studies that assessed predictive performance of the intrinsic 
disorder predictors were published in the past [68, 80, 82, 99-101, 115-119]. Among them, we 
highlight the community assessments where disorder predictors were evaluated on blind test 
datasets (i.e., datasets that were not available to the authors of predictors) by an independent 
group of assessors who do not take part in the competitions. This arguably ensures that the 
evaluation is fair across the participating predictors. The community assessments include (in 
chronological order) CASP5 [82], CASP6 [115], CASP7 [99], CASP8 [100], CASP9 [101], 
CASP10 [80] and CAID [68]. The largest and most recent assessments reported results for 28 
disorder predictors in CASP10 [80] and 32 in CAID [68]. The top three methods in these two 
assessments utilize ML-based models. They include PrDOS [108], DISOPRED3 [77] and 
MFDp [94] from CASP10 [80]; and flDPnn [66]; SPOT-Disorder2 [104] and AUCpred [102] 
from CAID [66, 68]. Following, we provide detailed description of these six best-performing 
ML-based disorder predictors. 

4.1 PrDOS 

PrDOS was developed by Dr. Ishida at the University of Tokyo and Dr. Kinoshita at the 
Tohoku University. This method integrates two predictors: one based on an evolutionary 
profile of the protein sequence and the other based on the protein structure templates. The 
result is computed as a weighted average of the outputs from the two predictors. Comparative 
analysis reveals that this method outperformed all other disorder predictors in the CASP10 
experiment [80]. 

Predictive model: Combination of SVM and the sequence alignments of sequences from PDB 
structures.  

Citation data: 676 citations according to Google Scholar (January 2022); published in 2007 
[108]. 

Availability: Webserver at https://prdos.hgc.jp/cgi-bin/top.cgi. 

4.2 MFDp 

The MFDp predictor was designed by Dr. Kurgan’s team, which currently resides at the 
Virginia Commonwealth University. This is a meta-predictor that combines putative disorder 
predicted by four complementary methods: IUPred-long [78], IUPred-short  [78], 
DISOPRED2 [121] and DISOclust [179]. The main innovation behind MFDp is the design of 
the consensus that relies on three SVM models that predict different sizes of IDRs (long, 
short, and all-size). The subsequently version of this predictor, MFDp2 [113], calibrates the 
outputs from the original MFDp using disorder content predictions generated by DisCon 
[180]. MFDp was ranked third in CASP10 [80], and did not participate in CAID.   

Predictive model: Ensemble of three SVMs.  

Citation data: 183 citations according to Google Scholar (January 2022); published in 2010 
[94]. 
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Availability: MFDp webserver at http://biomine.cs.vcu.edu/servers/MFDp/; MFDp2 
webserver at http://biomine.cs.vcu.edu/servers/MFDp2/. 

4.3 DISOPRED3 

DISOPRED3 was released by Dr. Jones’s lab at the University College London. The two 
prior versions of this popular disorder predictor were released in 2003 (DISOPRED) and 2004 
(DISOPRED2) [91, 121]. DISOPRED3 integrates its own disorder predictor with outputs 
generated by DISOPRED2 and two ML-based predictions trained using long IDRs. This 
method also identifies protein binding sites in the putative IDRs using an additional SVM-
based model. DISOPRED3 is a part of the PSIPRED workbench [181]. DISOPRED3 was 
ranked second in CASP10 and among top ten predictors in CAID [68, 80]. 

Predictive model: SVM, shallow neural network and nearest neighbor for disorder prediction. 
SVM for prediction of the disordered protein binding.  

Citation data: 565 citations according to Google Scholar (January 2022); published in 2015 
[77]. 

Availability: Webserver at http://bioinf.cs.ucl.ac.uk/psipred/; standalone code at 
http://bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/. 

4.4 AUCpred 

AUCpred was created by Dr. Xu’s group at the Toyota Technological Institute in Chicago in 
collaboration with researchers from the University of Chicago. One of the innovations was 
that the underlying predictive model that relies on deep convolutional network was trained to 
maximize area under the ROC curve (AUC). This method offers two options: prediction with 
or without the use of the evolutionary profile. The latter prediction is much faster (10 seconds 
for an average length protein chain) and slightly less accurate than the outputs of the former 
design. AUCpred was ranked among the top three methods in the CAID experiment [66, 68].  

Predictive model: Deep convolutional neural network combined with conditional random 
fields.  

Citation data: 66 citations according to Google Scholar (January 2022); published in 2016 
[102]. 

Availability: Webserver at http://raptorx.uchicago.edu/StructurePropertyPred/predict/. 

4.5 SPOT-Disorder2 

The SPOT-Disorder2 method was released by Prof. Zhou’s lab, which is now located at the 
Shenzhen Bay Laboratory. The earlier SPOT-Disorder version of this method was published 
in 2017 [103]. SPOT-Disorder2 improves over SPOT-Disorder by integrating several network 
topologies rather than using one long short-term memory bidirectional recurrent neural 
network (LSTM-BRNN). The second version utilizes evolutionary profile and predictions 
from SPOT-1D method [182] as inputs. Besides predicting disorder, SPOT-Disorder2 outputs 
putative semi-disordered regions which can be used to identify molecular recognition features 
(MoRFs) [74, 183]. CAID results place this method among the top three predictors, however, 
SPOT-Disorder2 suffers long runtime when compared to its close challengers [66, 68].   
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Predictive model: Hybrid deep neural network that combines convolutional and recurrent 
topologies. 

Citation data: 42 citations according to Google Scholar (January 2022); published in 2019 
[104]. 

Availability: Webserver at https://sparks-lab.org/server/spot-disorder2/; standalone code at 
https://sparks-lab.org/downloads/. 

4.6 flDPnn 

The flDPnn predictor was developed in Prof. Kurgan’s lab, which is currently located at the 
Virginia Commonwealth University, in collaboration with researchers from the Nankai 
University. The defining features of this method include innovative predictive inputs that 
incorporate extended sequences profile and protein-level feature encoding, ability to predict 
selected functions for the putative IDRs that it predicts, and low runtime. The functions 
covered by flDPnn include disordered linkers and interaction with proteins, DNA and RNA. 
FlDPnn produces the disorder and disorder function predictions very quickly, in about 5 
seconds for an average size protein. Comparative analysis in CAID reveals that flDPnn ranks 
among the top three predictors in that experiment and that it is at least an order of magnitude 
faster than these competitors [66, 68]. 

Predictive model: Deep feed-forward neural network for the disorder prediction. Ensemble of 
four random forest models for the prediction of disorder functions. 

Citation data: 6 citations according to Google Scholar (January 2022); published in 2021 
[66]. 

Availability: Webserver at http://biomine.cs.vcu.edu/servers/flDPnn/; standalone code at 
https://gitlab.com/sina.ghadermarzi/fldpnn. 

5 Related resources  

Nowadays, users are provided with access to webservers and implementations for many 
disorder predictors. However, making these predictions could be inconvenient, particularly in 
scenarios where users would like to secure multiple disorder predictions for the same protein 
or predictions for a large number of proteins. A convenient alternative to making prediction 
using individual methods is to collect pre-computed predictions from one of the currently 
available databases: D2P2 (Database of Disorder Protein Predictions; https://d2p2.pro/) [184], 
MobiDB (https://mobidb.bio.unipd.it/) [185, 186], and DescribePROT 
(http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/) [187]. Each of these three databases 
provides instantaneous access to results generated by several disorder predictors for large 
datasets of proteins ranging from 1.35 million proteins from 83 genomes in DescribePROT, 
10.43 million proteins from 1,765 genomes in D2P2, to 219.74 million proteins in MobiDB. 
One of the key features of the MobiDB resource is the inclusion of the consensus disorder 
prediction produced by MobiDB-lite method [109] as well as curated experimental 
annotations of disorder that are collected from several source including DisProt [44], IDEAL 
[46], ELM [188], MFIB [48], DIBS [47], FuzDB [189] and PhasePro [190]. While D2P2 and 
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MobiDB primarily focus on the disorder predictions, DescribePROT also provides predictions 
of other structural and functional characteristics of proteins. These include putative solvent 
accessibility predicted by ASAquick [191], putative disordered linked by DFLpred [75], 
putative protein-binding residues by DisoRDPbind [72, 73, 192], MoRFChibi [193] and 
SCRIBER [194, 195], putative DNA-binding and RNA-binding residues by DisoRDPbind 
and DRNApred [196], secondary structure by PSIPRED [197], signal peptides by SignalP 
[198, 199], disorder by PONDR VSL2B [87, 88], and alignment profiles produced by 
MMseqs2 [200, 201]. In total, the most recent release 1.4 of DescribePROT provides access 
to over 7.8 billion residue-level predictions.  

However, we note that users must still rely on disorder predictors when they want to predict 
sequences that are not included in a given database. A very useful resource in that case is 
DEPICTER (DisorderEd PredictIon CenTER; http://biomine.cs.vcu.edu/servers/DEPICTER/) 
[69]. This unique webserver generates a comprehensive collection of disorder and disorder 
function predictions. It provides consensus disorder predictions using results produced by the 
fast IUPred-short [78], IUPred-long [78] and SPOT-Disorder-Single [71] methods. These 
predictions are accompanied by the disordered linker predictions made by DFLpred [75], 
putative disordered regions that interact with proteins and nucleic acids that are predicted by 
combining results of fMoRFpred [74], DisoRDPbind [72] and ANCHOR2 [70], and putative 
disordered multifunctional (moonlighting) regions generated by DMRpred [76]. Figure 1C 
shows results computed by DEPICTER for the SIR3 protein (UniProt ID: P06701; DisProt 
ID: DP00533). DEPICTER suggests that the putative IDRs (grey horizontal bar) is 
multifunctional (violet horizontal bar) and that it binds DNA (dark blue horizontal bar) and 
proteins (green horizontal bar). These predictions are in good agreement with the 
experimental disorder annotations shown in Figure 1A.  

Another recent advance is the development of methods that provide interpretable residue-level 
quality assessment scores [202]: QUARTER (http://biomine.cs.vcu.edu/servers/QUARTER/) 
[203, 204] and QUARTERplus (http://biomine.cs.vcu.edu/servers/QUARTERplus/) [79]. The 
scores produced by these tools can be used to identify regions where the quality of the 
disorder predictions generated by several popular methods, such as DISOPRED3, IUPred, 
PONDR VSL2B and disEMBL, is high. QUARTERplus relies on a deep convolutional neural 
network to make accurate, consensus-based disorder predictions accompanied by the quality 
assessment scores, which allow the users to easily pinpoint which disorder predictions are 
more trustworthy. We illustrate this in Figure 1D where the disorder predictions shown using 
the black and gray horizontal bar are annotated with the quality assessment scores, i.e., color-
coded horizontal bar where residues identified with green and yellow colors are more likely to 
be accurately predicted compared to predictions colored in orange or red. We note that the 
short putative IDRs that were identified at both sequence termini are marked in red/orange, 
which suggests that these predictions are likely incorrect. In contrast, the long putative IDRs 
in the middle of the sequence is marked in yellow/green, suggesting that this disorder 
prediction is likely accurate. These color-coded annotations concur with the experimental 
disorder annotations from Figure 1A, signifying the usefulness of the quality assessment 
scores that QUARTERplus produces. 
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We also briefly overview computational predictors of disorder functions. There are well over 
a dozen predictors of disordered protein-binding regions [205], including recent methods, 
such as OPAL+ [206], MoRFPred_en [207], FLIPPER [208] and SPOT-MoRF [209]. 
Moreover, users can utilize DisoRDPbind [72, 73, 192] and DeepDISOBind [169] to identify 
putative IDRs that interact with DNA, RNA and proteins, as well as DisoLipPred [170] that 
predicts IDRs that bind lipids. There are also two methods that predict disordered linker 
regions, DFLpred [75] and IPOD [210]. We stress the fact that prediction of binding IDRs 
(i.e, IDRs that bind proteins, DNA, RNA and small ligands) was recently assessed in the 
CAID experiment [68]. CAID found that ANCHOR2 [70], DisoRDPbind [72, 73, 192] and 
MoRFCHiBi [193] are the most accurate predictors of binding IDRs. However, this 
assessment concluded that “disordered binding regions remain hard to predict”, suggesting 
that disorder function predictors should be further improved [68]. Interested readers can find 
more details in several recent surveys on this topic [51, 205, 211]. 

6 Summary 

Disorder prediction is a vibrant and very active research area that heavily relies on ML 
models and innovations, including meta learning and deep learning. We identified 73 ML-
based disorder predictors that were developed in the last four decades. We found that the 
original focus on traditional ML methods, such as shallow neural networks and support vector 
machines, which dominated this field until mid-2000s has shifted towards the meta-predictors 
in late 2010s. This was subsequently followed by a transition to the deep neural networks in 
around 2015. Given the success of deep learners in the recent CAID experiment [66, 68] and 
their popularity in the broader protein bioinformatics area [158, 159], we anticipate that the 
development of deep neural network-based disorder predictors will continue in a near future. 
We also stress the availability of many useful resources that support disorder and disorder 
function predictions including databases, such as D2P2 [184], MobiDB [185, 186], and 
DescribePROT [187], comprehensive webservers, such as DEPICTER [69], and methods that 
provide quality assessment of disorder predictions, such as QUARTERplus [79]. The easy 
access to these numerous methods and resources ensures that the computational disorder 
predictions will continue to make substantial impact in other key areas of research, such as 
rational drug design [42, 43, 212-214], structural genomics [24, 92, 215], study of human 
diseases [216], and systems medicine [59]. 

Funding 

This work was funded in part by the National Science Foundation (grants 2125218 and 
2146027) and the Robert J. Mattauch Endowment funds to L.K. 

References 

1. Dunker, A.K., et al., What’s in a name? Why these proteins are intrinsically disordered. 
Intrinsically Disordered Proteins, 2013. 1(1): p. e24157. 



14 
 

2. Lieutaud, P., et al., How disordered is my protein and what is its disorder for? A guide through 
the "dark side" of the protein universe. Intrinsically Disord Proteins, 2016. 4(1): p. e1259708. 

3. Oldfield, C.J., et al., Introduction to intrinsically disordered proteins and regions. Intrinsically 
Disordered Proteins: Dynamics, Binding, and Function, 2019: p. 1-34. 

4. Uversky, V.N., Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta, 
2013. 1834(5): p. 932-51. 

5. Oldfield, C.J., et al., Introduction to intrinsically disordered proteins and regions, in Intrinsically 
Disordered Proteins, N. Salvi, Editor. 2019, Academic Press. p. 1-34. 

6. Xue, B., A.K. Dunker, and V.N. Uversky, Orderly order in protein intrinsic disorder 
distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol 
Struct Dyn, 2012. 30(2): p. 137-49. 

7. Peng, Z., et al., Exceptionally abundant exceptions: comprehensive characterization of intrinsic 
disorder in all domains of life. Cell Mol Life Sci, 2015. 72(1): p. 137-51. 

8. Wang, C., V.N. Uversky, and L. Kurgan, Disordered nucleiome: Abundance of intrinsic disorder 
in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. 
Proteomics, 2016. 16(10): p. 1486-98. 

9. Peng, Z., M.J. Mizianty, and L. Kurgan, Genome-scale prediction of proteins with long 
intrinsically disordered regions. Proteins, 2014. 82(1): p. 145-58. 

10. Zhao, B., et al., IDPology of the living cell: intrinsic disorder in the subcellular compartments of 
the human cell. Cell Mol Life Sci, 2020. 

11. Meng, F., et al., Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder 
and Protein-Protein Interactions in Intra-Nuclear Compartments. Int J Mol Sci, 2015. 17(1). 

12. Uversky, V.N., C.J. Oldfield, and A.K. Dunker, Showing your ID: intrinsic disorder as an ID for 
recognition, regulation and cell signaling. Journal of Molecular Recognition, 2005. 18(5): p. 
343-384. 

13. Liu, J., et al., Intrinsic disorder in transcription factors. Biochemistry, 2006. 45(22): p. 6873-88. 
14. Peng, Z., et al., A creature with a hundred waggly tails: intrinsically disordered proteins in the 

ribosome. Cell Mol Life Sci, 2014. 71(8): p. 1477-504. 
15. Babu, M.M., The contribution of intrinsically disordered regions to protein function, cellular 

complexity, and human disease. Biochem Soc Trans, 2016. 44(5): p. 1185-1200. 
16. Peng, Z.L., et al., More than just tails: intrinsic disorder in histone proteins. Molecular 

Biosystems, 2012. 8(7): p. 1886-1901. 
17. Xie, H.B., et al., Functional anthology of intrinsic disorder. 3. Ligands, post-translational 

modifications, and diseases associated with intrinsically disordered proteins. Journal of 
Proteome Research, 2007. 6(5): p. 1917-1932. 

18. Xie, H.B., et al., Functional anthology of intrinsic disorder. 1. Biological processes and functions 
of proteins with long disordered regions. Journal of Proteome Research, 2007. 6(5): p. 1882-
1898. 

19. Staby, L., et al., Eukaryotic transcription factors: paradigms of protein intrinsic disorder. 
Biochem J, 2017. 474(15): p. 2509-2532. 

20. Hu, G., et al., Functional Analysis of Human Hub Proteins and Their Interactors Involved in the 
Intrinsic Disorder-Enriched Interactions. Int J Mol Sci, 2017. 18(12). 

21. Na, I., et al., Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. 
Mol Biosyst, 2016. 12(9): p. 2798-817. 

22. Peng, Z., et al., Resilience of death: intrinsic disorder in proteins involved in the programmed 
cell death. Cell Death Differ, 2013. 20(9): p. 1257-67. 

23. Bhowmick, A., et al., Finding Our Way in the Dark Proteome. J Am Chem Soc, 2016. 138(31): 
p. 9730-42. 



15 
 

24. Hu, G., et al., Taxonomic Landscape of the Dark Proteomes: Whole-Proteome Scale Interplay 
Between Structural Darkness, Intrinsic Disorder, and Crystallization Propensity. Proteomics, 
2018: p. e1800243. 

25. Kulkarni, P. and V.N. Uversky, Intrinsically Disordered Proteins: The Dark Horse of the Dark 
Proteome. Proteomics, 2018. 18(21-22). 

26. Uversky, V.N., C.J. Oldfield, and A.K. Dunker, Intrinsically disordered proteins in human 
diseases: introducing the D2 concept. Annu Rev Biophys, 2008. 37: p. 215-46. 

27. Midic, U., et al., Protein disorder in the human diseasome: unfoldomics of human genetic 
diseases. BMC Genomics, 2009. 10 Suppl 1: p. S12. 

28. Xie, H., et al., Functional anthology of intrinsic disorder. 3. Ligands, post-translational 
modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res, 
2007. 6(5): p. 1917-32. 

29. Uversky, V.N., The triple power of D(3): protein intrinsic disorder in degenerative diseases. 
Front Biosci (Landmark Ed), 2014. 19: p. 181-258. 

30. Uversky, V.N., et al., Unfoldomics of human diseases: linking protein intrinsic disorder with 
diseases. BMC Genomics, 2009. 10 Suppl 1: p. S7. 

31. Cheng, Y., et al., Abundance of intrinsic disorder in protein associated with cardiovascular 
disease. Biochemistry, 2006. 45(35): p. 10448-60. 

32. Iakoucheva, L.M., et al., Intrinsic disorder in cell-signaling and cancer-associated proteins. J 
Mol Biol, 2002. 323(3): p. 573-84. 

33. Al-Jiffri, O.H., et al., Intrinsic disorder in biomarkers of insulin resistance, hypoadiponectinemia, 
and endothelial dysfunction among the type 2 diabetic patients. Intrinsically Disord Proteins, 
2016. 4(1): p. e1171278. 

34. Fan, X., et al., The intrinsic disorder status of the human hepatitis C virus proteome. Mol 
Biosyst, 2014. 10(6): p. 1345-63. 

35. Xue, B., et al., Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol 
Life Sci, 2012. 69(8): p. 1211-59. 

36. Xue, B. and V.N. Uversky, Intrinsic disorder in proteins involved in the innate antiviral 
immunity: another flexible side of a molecular arms race. J Mol Biol, 2014. 426(6): p. 1322-50. 

37. Alshehri, M.A., et al., On the Prevalence and Potential Functionality of an Intrinsic Disorder in 
the MERS-CoV Proteome. Viruses, 2021. 13(2). 

38. Xue, B., et al., Structural disorder in viral proteins. Chem Rev, 2014. 114(13): p. 6880-911. 
39. Cheng, Y., et al., Rational drug design via intrinsically disordered protein. Trends Biotechnol, 

2006. 24(10): p. 435-42. 
40. Dunker, A.K. and V.N. Uversky, Drugs for 'protein clouds': targeting intrinsically disordered 

transcription factors. Curr Opin Pharmacol, 2010. 10(6): p. 782-8. 
41. Ghadermarzi, S., et al., Sequence-Derived Markers of Drug Targets and Potentially Druggable 

Human Proteins. Front Genet, 2019. 10: p. 1075. 
42. Hu, G., et al., Untapped Potential of Disordered Proteins in Current Druggable Human 

Proteome. Curr Drug Targets, 2016. 17(10): p. 1198-205. 
43. Uversky, V.N., Intrinsically disordered proteins and novel strategies for drug discovery. Expert 

Opin Drug Discov, 2012. 7(6): p. 475-88. 
44. Hatos, A., et al., DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res, 2020. 

48(D1): p. D269-D276. 
45. Le Gall, T., et al., Intrinsic disorder in the Protein Data Bank. J Biomol Struct Dyn, 2007. 24(4): 

p. 325-42. 



16 
 

46. Fukuchi, S., et al., IDEAL in 2014 illustrates interaction networks composed of intrinsically 
disordered proteins and their binding partners. Nucleic Acids Research, 2014. 42(D1): p. D320-
D325. 

47. Schad, E., et al., DIBS: a repository of disordered binding sites mediating interactions with 
ordered proteins. Bioinformatics, 2018. 34(3): p. 535-537. 

48. Ficho, E., et al., MFIB: a repository of protein complexes with mutual folding induced by 
binding. Bioinformatics, 2017. 33(22): p. 3682-3684. 

49. UniProt, C., UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, 2021. 
49(D1): p. D480-D489. 

50. He, B., et al., Predicting intrinsic disorder in proteins: an overview. Cell Res, 2009. 19(8): p. 
929-49. 

51. Meng, F., V.N. Uversky, and L. Kurgan, Comprehensive review of methods for prediction of 
intrinsic disorder and its molecular functions. Cell Mol Life Sci, 2017. 74(17): p. 3069-3090. 

52. Meng, F., V. Uversky, and L. Kurgan, Computational Prediction of Intrinsic Disorder in 
Proteins. Curr Protoc Protein Sci, 2017. 88: p. 2 16 1-2 16 14. 

53. Deng, X., J. Eickholt, and J. Cheng, A comprehensive overview of computational protein disorder 
prediction methods. Mol Biosyst, 2012. 8(1): p. 114-21. 

54. Liu, Y., X. Wang, and B. Liu, A comprehensive review and comparison of existing computational 
methods for intrinsically disordered protein and region prediction. Brief Bioinform, 2019. 20(1): 
p. 330-346. 

55. Li, J., et al., An Overview of Predictors for Intrinsically Disordered Proteins over 2010-2014. Int 
J Mol Sci, 2015. 16(10): p. 23446-62. 

56. Pryor, E.E., Jr. and M.C. Wiener, A critical evaluation of in silico methods for detection of 
membrane protein intrinsic disorder. Biophys J, 2014. 106(8): p. 1638-49. 

57. Dosztanyi, Z., B. Meszaros, and I. Simon, Bioinformatical approaches to characterize 
intrinsically disordered/unstructured proteins. Brief Bioinform, 2010. 11(2): p. 225-43. 

58. Katuwawala, A., C.J. Oldfield, and L. Kurgan, Accuracy of protein-level disorder predictions. 
Brief Bioinform, 2020. 21(5): p. 1509-1522. 

59. Kurgan, L., M. Li, and Y. Li, The Methods and Tools for Intrinsic Disorder Prediction and their 
Application to Systems Medicine, in Systems Medicine, O. Wolkenhauer, Editor. 2021, Academic 
Press: Oxford. p. 159-169. 

60. Zhao, B. and L. Kurgan, Surveying over 100 predictors of intrinsic disorder in proteins. Expert 
Rev Proteomics, 2021: p. 1-11. 

61. Campen, A., et al., TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic 
disorder. Protein Pept Lett, 2008. 15(9): p. 956-63. 

62. Uversky, V.N., A decade and a half of protein intrinsic disorder: biology still waits for physics. 
Protein Sci, 2013. 22(6): p. 693-724. 

63. Yan, J., et al., Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci, 
2020. 77(12): p. 2423-2440. 

64. Kurgan, L., et al., On the Importance of Computational Biology and Bioinformatics to the 
Origins and Rapid Progression of the Intrinsically Disordered Proteins Field, in Biocomputing 
2020. 2020. p. 149-158. 

65. McBryant, S.J., C. Krause, and J.C. Hansen, Domain organization and quaternary structure of 
the Saccharomyces cerevisiae silent information regulator 3 protein, Sir3p. Biochemistry, 2006. 
45(51): p. 15941-8. 

66. Hu, G., et al., flDPnn: Accurate intrinsic disorder prediction with putative propensities of 
disorder functions. Nat Commun, 2021. 12(1): p. 4438. 



17 
 

67. Lang, B. and M.M. Babu, A community effort to bring structure to disorder. Nat Methods, 2021. 
18(5): p. 454-455. 

68. Necci, M., et al., Critical assessment of protein intrinsic disorder prediction. Nat Methods, 2021. 
18(5): p. 472-481. 

69. Barik, A., et al., DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server. J Mol 
Biol, 2020. 432(11): p. 3379-3387. 

70. Meszaros, B., G. Erdos, and Z. Dosztanyi, IUPred2A: context-dependent prediction of protein 
disorder as a function of redox state and protein binding. Nucleic Acids Res, 2018. 46(W1): p. 
W329-W337. 

71. Hanson, J., K. Paliwal, and Y. Zhou, Accurate Single-Sequence Prediction of Protein Intrinsic 
Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures. J Chem Inf 
Model, 2018. 58(11): p. 2369-2376. 

72. Peng, Z. and L. Kurgan, High-throughput prediction of RNA, DNA and protein binding regions 
mediated by intrinsic disorder. Nucleic Acids Res, 2015. 43(18): p. e121. 

73. Peng, Z., et al., Prediction of Disordered RNA, DNA, and Protein Binding Regions Using 
DisoRDPbind. Methods Mol Biol, 2017. 1484: p. 187-203. 

74. Yan, J., et al., Molecular recognition features (MoRFs) in three domains of life. Mol Biosyst, 
2016. 12(3): p. 697-710. 

75. Meng, F. and L. Kurgan, DFLpred: High-throughput prediction of disordered flexible linker 
regions in protein sequences. Bioinformatics, 2016. 32(12): p. i341-i350. 

76. Meng, F. and L. Kurgan, High-throughput prediction of disordered moonlighting regions in 
protein sequences. Proteins, 2018. 86(10): p. 1097-1110. 

77. Jones, D.T. and D. Cozzetto, DISOPRED3: precise disordered region predictions with annotated 
protein-binding activity. Bioinformatics, 2015. 31(6): p. 857-63. 

78. Dosztanyi, Z., et al., IUPred: web server for the prediction of intrinsically unstructured regions 
of proteins based on estimated energy content. Bioinformatics, 2005. 21(16): p. 3433-4. 

79. Katuwawala, A., et al., QUARTERplus: Accurate disorder predictions integrated with 
interpretable residue-level quality assessment scores. Comput Struct Biotechnol J, 2021. 19: p. 
2597-2606. 

80. Monastyrskyy, B., et al., Assessment of protein disorder region predictions in CASP10. Proteins, 
2014. 82 Suppl 2: p. 127-37. 

81. Romero, P., et al., Identifying disordered regions in proteins from amino acid sequence. 1997 
Ieee International Conference on Neural Networks, Vols 1-4, 1997: p. 90-95. 

82. Melamud, E. and J. Moult, Evaluation of disorder predictions in CASP5. Proteins, 2003. 53 
Suppl 6: p. 561-5. 

83. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 

84. Hu, G. and L. Kurgan, Sequence Similarity Searching. Curr Protoc Protein Sci, 2019. 95(1): p. 
e71. 

85. Linding, R., et al., GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic 
Acids Res, 2003. 31(13): p. 3701-8. 

86. Dosztanyi, Z., et al., The pairwise energy content estimated from amino acid composition 
discriminates between folded and intrinsically unstructured proteins. J Mol Biol, 2005. 347(4): p. 
827-39. 

87. Obradovic, Z., et al., Exploiting heterogeneous sequence properties improves prediction of 
protein disorder. Proteins, 2005. 61 Suppl 7: p. 176-82. 

88. Peng, K., et al., Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 
2006. 7: p. 208. 



18 
 

89. Romero, P., et al., Sequence complexity of disordered protein. Proteins, 2001. 42(1): p. 38-48. 
90. Peng, K., et al., Optimizing long intrinsic disorder predictors with protein evolutionary 

information. J Bioinform Comput Biol, 2005. 3(1): p. 35-60. 
91. Jones, D.T. and J.J. Ward, Prediction of disordered regions in proteins from position specific 

score matrices. Proteins, 2003. 53 Suppl 6: p. 573-8. 
92. Linding, R., et al., Protein disorder prediction: implications for structural proteomics. Structure, 

2003. 11(11): p. 1453-9. 
93. Yang, Z.R., et al., RONN: the bio-basis function neural network technique applied to the 

detection of natively disordered regions in proteins. Bioinformatics, 2005. 21(16): p. 3369-76. 
94. Mizianty, M.J., et al., Improved sequence-based prediction of disordered regions with multilayer 

fusion of multiple information sources. Bioinformatics, 2010. 26(18): p. i489-96. 
95. Walsh, I., et al., CSpritz: accurate prediction of protein disorder segments with annotation for 

homology, secondary structure and linear motifs. Nucleic Acids Res, 2011. 39(Web Server 
issue): p. W190-6. 

96. Xue, B., et al., PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim 
Biophys Acta, 2010. 1804(4): p. 996-1010. 

97. Fan, X. and L. Kurgan, Accurate prediction of disorder in protein chains with a comprehensive 
and empirically designed consensus. J Biomol Struct Dyn, 2014. 32(3): p. 448-64. 

98. Oldfield, C.J., et al., Computational Prediction of Intrinsic Disorder in Protein Sequences with 
the disCoP Meta-predictor. Methods Mol Biol, 2020. 2141: p. 21-35. 

99. Bordoli, L., F. Kiefer, and T. Schwede, Assessment of disorder predictions in CASP7. Proteins, 
2007. 69 Suppl 8: p. 129-36. 

100. Noivirt-Brik, O., J. Prilusky, and J.L. Sussman, Assessment of disorder predictions in CASP8. 
Proteins, 2009. 77 Suppl 9: p. 210-6. 

101. Monastyrskyy, B., et al., Evaluation of disorder predictions in CASP9. Proteins, 2011. 79 Suppl 
10: p. 107-18. 

102. Wang, S., J. Ma, and J. Xu, AUCpreD: proteome-level protein disorder prediction by AUC-
maximized deep convolutional neural fields. Bioinformatics, 2016. 32(17): p. i672-i679. 

103. Hanson, J., et al., Improving protein disorder prediction by deep bidirectional long short-term 
memory recurrent neural networks. Bioinformatics, 2017. 33(5): p. 685-692. 

104. Hanson, J., et al., SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by 
Ensembled Deep Learning. Genomics Proteomics Bioinformatics, 2019. 17(6): p. 645-656. 

105. Mirabello, C. and B. Wallner, rawMSA: End-to-end Deep Learning using raw Multiple Sequence 
Alignments. PLoS One, 2019. 14(8): p. e0220182. 

106. Prilusky, J., et al., FoldIndex: a simple tool to predict whether a given protein sequence is 
intrinsically unfolded. Bioinformatics, 2005. 21(16): p. 3435-8. 

107. Liu, Y., X. Wang, and B. Liu, RFPR-IDP: reduce the false positive rates for intrinsically 
disordered protein and region prediction by incorporating both fully ordered proteins and 
disordered proteins. Brief Bioinform, 2021. 22(2): p. 2000-2011. 

108. Ishida, T. and K. Kinoshita, PrDOS: prediction of disordered protein regions from amino acid 
sequence. Nucleic Acids Res, 2007. 35(Web Server issue): p. W460-4. 

109. Necci, M., et al., MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder 
in proteins. Bioinformatics, 2017. 33(9): p. 1402-1404. 

110. Peng, Z. and L. Kurgan, On the complementarity of the consensus-based disorder prediction. Pac 
Symp Biocomput, 2012: p. 176-87. 

111. Katuwawala, A., C.J. Oldfield, and L. Kurgan, DISOselect: Disorder predictor selection at the 
protein level. Protein Sci, 2020. 29(1): p. 184-200. 



19 
 

112. Ishida, T. and K. Kinoshita, Prediction of disordered regions in proteins based on the meta 
approach. Bioinformatics, 2008. 24(11): p. 1344-8. 

113. Mizianty, M.J., Z. Peng, and L. Kurgan, MFDp2: Accurate predictor of disorder in proteins by 
fusion of disorder probabilities, content and profiles. Intrinsically Disord Proteins, 2013. 1(1): p. 
e24428. 

114. Mizianty, M.J., V. Uversky, and L. Kurgan, Prediction of intrinsic disorder in proteins using 
MFDp2. Methods Mol Biol, 2014. 1137: p. 147-62. 

115. Jin, Y. and R.L. Dunbrack, Jr., Assessment of disorder predictions in CASP6. Proteins, 2005. 61 
Suppl 7: p. 167-75. 

116. Katuwawala, A. and L. Kurgan, Comparative Assessment of Intrinsic Disorder Predictions with a 
Focus on Protein and Nucleic Acid-Binding Proteins. Biomolecules, 2020. 10(12). 

117. Peng, Z.L. and L. Kurgan, Comprehensive comparative assessment of in-silico predictors of 
disordered regions. Curr Protein Pept Sci, 2012. 13(1): p. 6-18. 

118. Walsh, I., et al., Comprehensive large-scale assessment of intrinsic protein disorder. 
Bioinformatics, 2015. 31(2): p. 201-8. 

119. Necci, M., et al., A comprehensive assessment of long intrinsic protein disorder from the DisProt 
database. Bioinformatics, 2018. 34(3): p. 445-452. 

120. Romero, Obradovic, and K. Dunker, Sequence Data Analysis for Long Disordered Regions 
Prediction in the Calcineurin Family. Genome Inform Ser Workshop Genome Inform, 1997. 8: p. 
110-124. 

121. Ward, J.J., et al., The DISOPRED server for the prediction of protein disorder. Bioinformatics, 
2004. 20(13): p. 2138-9. 

122. Hecker, J., J.Y. Yang, and J.L. Cheng, Protein disorder prediction at multiple levels of sensitivity 
and specificity. Bmc Genomics, 2008. 9. 

123. Cheng, J.L., M.J. Sweredoski, and P. Baldi, Accurate prediction of protein disordered regions by 
mining protein structure data. Data Mining and Knowledge Discovery, 2005. 11(3): p. 213-222. 

124. Schlessinger, A., G. Yachdav, and B. Rost, PROFbval: predict flexible and rigid residues in 
proteins. Bioinformatics, 2006. 22(7): p. 891-3. 

125. Gu, J., M. Gribskov, and P.E. Bourne, Wiggle - Predicting functionally flexible regions from 
primary sequence. Plos Computational Biology, 2006. 2(7): p. 769-785. 

126. Bau, D., et al., Distill: a suite of web servers for the prediction of one-, two- and three-
dimensional structural features of proteins. BMC Bioinformatics, 2006. 7: p. 402. 

127. Vullo, A., et al., Spritz: a server for the prediction of intrinsically disordered regions in protein 
sequences using kernel machines. Nucleic Acids Res, 2006. 34(Web Server issue): p. W164-8. 

128. Su, C.T., C.Y. Chen, and Y.Y. Ou, Protein disorder prediction by condensed PSSM considering 
propensity for order or disorder. BMC Bioinformatics, 2006. 7: p. 319. 

129. Su, C.T., C.Y. Chen, and C.M. Hsu, iPDA: integrated protein disorder analyzer. Nucleic Acids 
Research, 2007. 35: p. W465-W472. 

130. Hirose, S., et al., POODLE-L: a two-level SVM prediction system for reliably predicting long 
disordered regions. Bioinformatics, 2007. 23(16): p. 2046-53. 

131. Shimizu, K., S. Hirose, and T. Noguchi, POODLE-S: web application for predicting protein 
disorder by using physicochemical features and reduced amino acid set of a position-specific 
scoring matrix. Bioinformatics, 2007. 23(17): p. 2337-2338. 

132. Shimizu, K., et al., Predicting mostly disordered proteins by using structure-unknown protein 
data. Bmc Bioinformatics, 2007. 8. 

133. Schlessinger, A., M. Punta, and B. Rost, Natively unstructured regions in proteins identified from 
contact predictions. Bioinformatics, 2007. 23(18): p. 2376-84. 



20 
 

134. Wang, L. and U.H. Sauer, OnD-CRF: predicting order and disorder in proteins using 
[corrected] conditional random fields. Bioinformatics, 2008. 24(11): p. 1401-2. 

135. Deng, X., J. Eickholt, and J. Cheng, PreDisorder: ab initio sequence-based prediction of protein 
disordered regions. BMC Bioinformatics, 2009. 10: p. 436. 

136. Xue, B., et al., CDF it all: consensus prediction of intrinsically disordered proteins based on 
various cumulative distribution functions. FEBS Lett, 2009. 583(9): p. 1469-74. 

137. Han, P.F., X.Z. Zhang, and Z.P. Feng, Predicting disordered regions in proteins using the 
profiles of amino acid indices. Bmc Bioinformatics, 2009. 10. 

138. Schlessinger, A., et al., Improved disorder prediction by combination of orthogonal approaches. 
PLoS One, 2009. 4(2): p. e4433. 

139. Han, P.F., et al., Large-scale prediction of long disordered regions in proteins using random 
forests. Bmc Bioinformatics, 2009. 10. 

140. Hirose, S., K. Shimizu, and T. Noguchi, POODLE-I: disordered region prediction by integrating 
POODLE series and structural information predictors based on a workflow approach. In Silico 
Biol, 2010. 10(3): p. 185-91. 

141. Walsh, I., et al., ESpritz: accurate and fast prediction of protein disorder. Bioinformatics, 2012. 
28(4): p. 503-9. 

142. Zhang, T., et al., SPINE-D: accurate prediction of short and long disordered regions by a single 
neural-network based method. J Biomol Struct Dyn, 2012. 29(4): p. 799-813. 

143. Eickholt, J. and J. Cheng, DNdisorder: predicting protein disorder using boosting and deep 
networks. BMC Bioinformatics, 2013. 14: p. 88. 

144. Cilia, E., et al., From protein sequence to dynamics and disorder with DynaMine. Nat Commun, 
2013. 4: p. 2741. 

145. Cilia, E., et al., The DynaMine webserver: predicting protein dynamics from sequence. Nucleic 
Acids Res, 2014. 42(Web Server issue): p. W264-70. 

146. Ali, H., et al., Performance of protein disorder prediction programs on amino acid substitutions. 
Hum Mutat, 2014. 35(7): p. 794-804. 

147. Sormanni, P., et al., The s2D method: simultaneous sequence-based prediction of the statistical 
populations of ordered and disordered regions in proteins. J Mol Biol, 2015. 427(4): p. 982-996. 

148. Wang, Z., et al., DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions 
Using a Multi-Class Conservative Score Approach. PLoS One, 2015. 10(6): p. e0128334. 

149. Wang, S., et al., DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep 
Convolutional Neural Fields. Int J Mol Sci, 2015. 16(8): p. 17315-30. 

150. Iqbal, S. and M.T. Hoque, DisPredict: A Predictor of Disordered Protein Using Optimized RBF 
Kernel. PLoS One, 2015. 10(10): p. e0141551. 

151. Zhao, B. and B. Xue, Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder 
Prediction and Identified Novel Disordered Residues Inside Binding Motifs. Int J Mol Sci, 2018. 
19(10). 

152. Liu, Y.M., X.L. Wang, and B. Liu, IDP-CRF: Intrinsically Disordered Protein/Region 
Identification Based on Conditional Random Fields. International Journal of Molecular Sciences, 
2018. 19(9). 

153. Malysiak-Mrozek, B., T. Baron, and D. Mrozek, Spark-IDPP: high-throughput and scalable 
prediction of intrinsically disordered protein regions with Spark clusters on the Cloud. Cluster 
Computing-the Journal of Networks Software Tools and Applications, 2019. 22(2): p. 487-508. 

154. Liu, Y., et al., Identification of Intrinsically Disordered Proteins and Regions by Length-
Dependent Predictors Based on Conditional Random Fields. Mol Ther Nucleic Acids, 2019. 17: 
p. 396-404. 



21 
 

155. Dass, R., F.A.A. Mulder, and J.T. Nielsen, ODiNPred: comprehensive prediction of protein 
order and disorder. Sci Rep, 2020. 10(1): p. 14780. 

156. Tang, Y.J., Y.H. Pang, and B. Liu, IDP-Seq2Seq: identification of intrinsically disordered 
regions based on sequence to sequence learning. Bioinformatics, 2021. 36(21): p. 5177-5186. 

157. Emenecker, R.J., D. Griffith, and A.S. Holehouse, Metapredict: a fast, accurate, and easy-to-use 
predictor of consensus disorder and structure. Biophys J, 2021. 120(20): p. 4312-4319. 

158. Torrisi, M., G. Pollastri, and Q. Le, Deep learning methods in protein structure prediction. 
Comput Struct Biotechnol J, 2020. 18: p. 1301-1310. 

159. Pakhrin, S.C., et al., Deep Learning-Based Advances in Protein Structure Prediction. Int J Mol 
Sci, 2021. 22(11). 

160. Zhang, F., et al., DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein 
Functions from Protein Sequences and Interactions. Proteomics, 2019. 19(12): p. e1900019. 

161. Gligorijevic, V., M. Barot, and R. Bonneau, deepNF: deep network fusion for protein function 
prediction. Bioinformatics, 2018. 34(22): p. 3873-3881. 

162. Di Lena, P., K. Nagata, and P. Baldi, Deep architectures for protein contact map prediction. 
Bioinformatics, 2012. 28(19): p. 2449-57. 

163. Wang, S., et al., Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning 
Model. PLoS Comput Biol, 2017. 13(1): p. e1005324. 

164. Wu, T., et al., Analysis of several key factors influencing deep learning-based inter-residue 
contact prediction. Bioinformatics, 2020. 36(4): p. 1091-1098. 

165. Wang, S., S. Sun, and J. Xu, Analysis of deep learning methods for blind protein contact 
prediction in CASP12. Proteins, 2018. 86 Suppl 1: p. 67-77. 

166. Schaarschmidt, J., et al., Assessment of contact predictions in CASP12: Co-evolution and deep 
learning coming of age. Proteins, 2018. 86 Suppl 1: p. 51-66. 

167. Wu, T.Q., et al., DeepDist: real-value inter-residue distance prediction with deep residual 
convolutional network. Bmc Bioinformatics, 2021. 22(1). 

168. Sun, Z., et al., To improve the predictions of binding residues with DNA, RNA, carbohydrate, and 
peptide via multi-task deep neural networks. IEEE/ACM Trans Comput Biol Bioinform, 2021. 
PP. 

169. Zhang, F., et al., DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding 
intrinsically disordered residues with deep multi-task learning. Brief Bioinform, 2021. 

170. Katuwawala, A., B. Zhao, and L. Kurgan, DisoLipPred: Accurate prediction of disordered lipid 
binding residues in protein sequences with deep recurrent networks and transfer learning. 
Bioinformatics, 2021. 

171. Pan, X.Y. and H.B. Shen, Predicting RNA-protein binding sites and motifs through combining 
local and global deep convolutional neural networks. Bioinformatics, 2018. 34(20): p. 3427-
3436. 

172. Elbasir, A., et al., DeepCrystal: a deep learning framework for sequence-based protein 
crystallization prediction. Bioinformatics, 2019. 35(13): p. 2216-2225. 

173. Zhang, B., L. Li, and Q. Lu, Protein Solvent-Accessibility Prediction by a Stacked Deep 
Bidirectional Recurrent Neural Network. Biomolecules, 2018. 8(2). 

174. Heffernan, R., et al., Improving prediction of secondary structure, local backbone angles, and 
solvent accessible surface area of proteins by iterative deep learning. Sci Rep, 2015. 5: p. 11476. 

175. Zhang, B., J. Li, and Q. Lu, Prediction of 8-state protein secondary structures by a novel deep 
learning architecture. BMC Bioinformatics, 2018. 19(1): p. 293. 

176. Spencer, M., J. Eickholt, and C. Jianlin, A Deep Learning Network Approach to ab initio Protein 
Secondary Structure Prediction. IEEE/ACM Trans Comput Biol Bioinform, 2015. 12(1): p. 103-
12. 



22 
 

177. Wang, D., et al., MusiteDeep: a deep-learning framework for general and kinase-specific 
phosphorylation site prediction. Bioinformatics, 2017. 33(24): p. 3909-3916. 

178. Li, F., et al., DeepCleave: a deep learning predictor for caspase and matrix metalloprotease 
substrates and cleavage sites. Bioinformatics, 2020. 36(4): p. 1057-1065. 

179. McGuffin, L.J., Intrinsic disorder prediction from the analysis of multiple protein fold 
recognition models. Bioinformatics, 2008. 24(16): p. 1798-804. 

180. Mizianty, M.J., et al., In-silico prediction of disorder content using hybrid sequence 
representation. BMC Bioinformatics, 2011. 12: p. 245. 

181. Buchan, D.W.A. and D.T. Jones, The PSIPRED Protein Analysis Workbench: 20 years on. 
Nucleic Acids Research, 2019. 47(W1): p. W402-W407. 

182. Hanson, J., et al., Improving prediction of protein secondary structure, backbone angles, solvent 
accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent 
and residual convolutional neural networks. Bioinformatics, 2019. 35(14): p. 2403-2410. 

183. Mohan, A., et al., Analysis of molecular recognition features (MoRFs). J Mol Biol, 2006. 362(5): 
p. 1043-59. 

184. Oates, M.E., et al., D(2)P(2): database of disordered protein predictions. Nucleic Acids Res, 
2013. 41(Database issue): p. D508-16. 

185. Piovesan, D., et al., MobiDB 3.0: more annotations for intrinsic disorder, conformational 
diversity and interactions in proteins. Nucleic Acids Res, 2018. 46(D1): p. D471-D476. 

186. Piovesan, D., et al., MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res, 2021. 
49(D1): p. D361-D367. 

187. Zhao, B., et al., DescribePROT: database of amino acid-level protein structure and function 
predictions. Nucleic Acids Res, 2021. 49(D1): p. D298-D308. 

188. Dinkel, H., et al., ELM 2016--data update and new functionality of the eukaryotic linear motif 
resource. Nucleic Acids Res, 2016. 44(D1): p. D294-300. 

189. Miskei, M., C. Antal, and M. Fuxreiter, FuzDB: database of fuzzy complexes, a tool to develop 
stochastic structure-function relationships for protein complexes and higher-order assemblies. 
Nucleic Acids Res, 2017. 45(D1): p. D228-D235. 

190. Meszaros, B., et al., PhaSePro: the database of proteins driving liquid-liquid phase separation. 
Nucleic Acids Res, 2020. 48(D1): p. D360-D367. 

191. Faraggi, E., et al., Fast and Accurate Accessible Surface Area Prediction Without a Sequence 
Profile. Prediction of Protein Secondary Structure, 2017. 1484: p. 127-136. 

192. Oldfield, C.J., Z. Peng, and L. Kurgan, Disordered RNA-Binding Region Prediction with 
DisoRDPbind. Methods Mol Biol, 2020. 2106: p. 225-239. 

193. Malhis, N., M. Jacobson, and J. Gsponer, MoRFchibi SYSTEM: software tools for the 
identification of MoRFs in protein sequences. Nucleic Acids Res, 2016. 

194. Zhang, J., S. Ghadermarzi, and L. Kurgan, Prediction of protein-binding residues: dichotomy of 
sequence-based methods developed using structured complexes versus disordered proteins. 
Bioinformatics, 2020. 36(18): p. 4729-4738. 

195. Zhang, J. and L. Kurgan, SCRIBER: accurate and partner type-specific prediction of protein-
binding residues from proteins sequences. Bioinformatics, 2019. 35(14): p. i343-i353. 

196. Yan, J. and L. Kurgan, DRNApred, fast sequence-based method that accurately predicts and 
discriminates DNA- and RNA-binding residues. Nucleic Acids Res, 2017. 45(10): p. e84. 

197. McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction server. 
Bioinformatics, 2000. 16(4): p. 404-5. 

198. Teufel, F., et al., SignalP 6.0 predicts all five types of signal peptides using protein language 
models. Nat Biotechnol, 2022. 



23 
 

199. Almagro Armenteros, J.J., et al., SignalP 5.0 improves signal peptide predictions using deep 
neural networks. Nat Biotechnol, 2019. 37(4): p. 420-423. 

200. Mirdita, M., M. Steinegger, and J. Soding, MMseqs2 desktop and local web server app for fast, 
interactive sequence searches. Bioinformatics, 2019. 35(16): p. 2856-2858. 

201. Steinegger, M. and J. Soding, MMseqs2 enables sensitive protein sequence searching for the 
analysis of massive data sets. Nat Biotechnol, 2017. 35(11): p. 1026-1028. 

202. Wu, Z., et al. Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in 
Proteins. 2017. Cham: Springer International Publishing. 

203. Wu, Z., et al., Prediction of Intrinsic Disorder with Quality Assessment Using QUARTER. 
Methods Mol Biol, 2020. 2165: p. 83-101. 

204. Hu, G., et al., Quality assessment for the putative intrinsic disorder in proteins. Bioinformatics, 
2019. 35(10): p. 1692-1700. 

205. Katuwawala, A., et al., Computational Prediction of MoRFs, Short Disorder-to-order 
Transitioning Protein Binding Regions. Comput Struct Biotechnol J, 2019. 17: p. 454-462. 

206. Sharma, R., et al., OPAL+: Length-Specific MoRF Prediction in Intrinsically Disordered Protein 
Sequences. Proteomics, 2019. 19(6): p. e1800058. 

207. Fang, C., et al., MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning 
strategy. J Bioinform Comput Biol, 2019. 17(6): p. 1940015. 

208. Monzon, A.M., et al., FLIPPER: Predicting and Characterizing Linear Interacting Peptides in 
the Protein Data Bank. J Mol Biol, 2021. 433(9): p. 166900. 

209. Hanson, J., et al., Identifying molecular recognition features in intrinsically disordered regions of 
proteins by transfer learning. Bioinformatics, 2020. 36(4): p. 1107-1113. 

210. Peng, Z., Q. Xing, and L. Kurgan, APOD: accurate sequence-based predictor of disordered 
flexible linkers. Bioinformatics, 2020. 36(Supplement_2): p. i754-i761. 

211. Katuwawala, A., S. Ghadermarzi, and L. Kurgan, Computational prediction of functions of 
intrinsically disordered regions. Prog Mol Biol Transl Sci, 2019. 166: p. 341-369. 

212. Hosoya, Y. and J. Ohkanda, Intrinsically Disordered Proteins as Regulators of Transient 
Biological Processes and as Untapped Drug Targets. Molecules, 2021. 26(8). 

213. Biesaga, M., M. Frigole-Vivas, and X. Salvatella, Intrinsically disordered proteins and 
biomolecular condensates as drug targets. Curr Opin Chem Biol, 2021. 62: p. 90-100. 

214. Ambadipudi, S. and M. Zweckstetter, Targeting intrinsically disordered proteins in rational drug 
discovery. Expert Opin Drug Discov, 2016. 11(1): p. 65-77. 

215. Oldfield, C.J., et al., Utilization of protein intrinsic disorder knowledge in structural proteomics. 
Biochim Biophys Acta, 2013. 1834(2): p. 487-98. 

216. Deng, X., et al., An Overview of Practical Applications of Protein Disorder Prediction and Drive 
for Faster, More Accurate Predictions. Int J Mol Sci, 2015. 16(7): p. 15384-404. 

 


