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Abstract

Intrinsically disordered proteins are either entirely disordered or contain disordered regions in their
native state. These proteins and regions function without the prerequisite of a stable structure and
were found to be abundant across all kingdoms of life. Experimental annotation of disorder lags behind
the rapidly growing number of sequenced proteins, motivating the development of computational
methods that predict disorder in protein sequences. DisCoP is a user-friendly webserver that provides
accurate sequence-based prediction of protein disorder. It relies on meta-architecture in which the
outputs generated by multiple disorder predictors are combined together to improve predictive
performance. The architecture of disCoP is presented and its accuracy relative to several other disorder
predictors is briefly discussed. We describe usage of the web interface and explain how to access and
read results generated by this computational tool. We also provide an example of prediction results
and interpretation. The disCoP’s webserver is publicly available at
http://biomine.cs.vcu.edu/servers/disCoP/.
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1. Introduction

Intrinsically disordered proteins (IDPs) form broad structural ensembles and lack stable folded
structure in isolation under physiological conditions [16, 18, 29, 46, 86, 95]. These proteins have also
been called partially folded, natively denatured, natively unfolded, natively disordered, intrinsically
unstructured, intrinsically denatured, and intrinsically unfolded [16]. IDPs have one or more
intrinsically disordered regions (IDRs) and in some cases they are fully disordered. Recent
computational studies estimate that eukaryotic organisms have between 3% and 17% of fully
disordered proteins, and that between 30% and 50% of proteins in their proteomes have at least one
long IDR (30 or more consecutive amino acid residues long) [19, 68, 73, 78, 94, 101, 108]. IDPs also
occupy a large part of proteomes in bacteria, archaea and viruses [5, 19, 24, 50, 78, 92, 94, 99, 101,



102, 104]. They are instrumental for numerous cellular functions including signaling [17, 22, 28, 88],
regulation of transcription [26, 48], translation [75], chromatin condensing [20, 53, 74, 83], and
molecular interactions with proteins and nucleic acids [6, 9, 10, 21, 27, 31, 76, 85, 97], to name just a
few. Intrinsic disorder was shown to be enriched in alternatively spliced regions [3, 40, 82, 111] and in
post-translational modification sites [43, 98, 111]. Moreover, IDPs are being explored as drug targets
[8, 35], which is motivated by their association with a number of human diseases [57, 87].

Sequences of IDRs are substantially different from the sequences of structured regions and proteins.
For example, IDRs are enriched in polar amino acids, depleted in large hydrophobic and aromatic
amino acid, and have relatively low sequence complexity [4, 45, 80, 81]. These differences underlie the
development of accurate computational methods for the prediction of disorder in protein chains. Over
70 computational disorder predictors were developed over the last few decades [2, 11, 14, 15, 25, 32,
44, 47, 54, 55, 65, 66, 79]. Many of the recently published methods rely on meta-architectures that
combine outputs produced by several disorder predictors to (re)predict disorder. The meta-predictors
include (in chronological order) VSL2 [70], metaPrDOS [37], PreDisorder [12], NN-CDF [103], MD [84],
PONDR-FIT [100], MFDp [61], CSpritz [90], MetaDisorder [41], ESpritz [89], MFDp2 [60, 63], DisMeta
[36], disCoP [23], DISOPRED3 [38], and MobiDB-lite [67]. This type of predictive architecture is
motivated by studies that empirically demonstrate that outputs from the meta-predictors are more
accurate when compared to the results produced by their input single predictors [23, 72]. However,
the improved accuracy comes at a cost of a longer runtime and inconvenience. The long runtime stems
from the fact that multiple disorder predictions have to be computed and combined together. The
inconvenience is due to the fact that outputs of several disorder predictors must be collected by the
user. The latter drawback is alleviated by some meta-predictors that incorporate computation of the
input disorder predictors into their publicly available implementations.

A recently published example of a convenient meta-predictor is disCoP (disorder Consensus-based
Predictor) [23]. The disCoP method is available as a user-friendly webserver that automates the entire
prediction process. Users only need to enter the sequence of their proteins and click the “Run” button
to obtain disorder prediction. Moreover, benchmarking tests show that DisCoP provides accurate
predictions, with area under the receiver operating characteristic (ROC) curve (AUC) = 0.85 and
Matthews correlation coefficient (MCC) = 0.50. DisCoP was compared empirically to 20 other disorder
predictors including several meta-predictors such as ESpritz (AUC = 0.83 and MCC = 0.48), CSpritz (AUC
=0.83 and MCC = 0.45), MD (AUC = 0.82 and MCC = 0.45), MFDp (AUC = 0.82 and MCC = 0.45) and
PONDR-FIT (AUC = 0.78 and MCC = 0.41). These tests concluded that predictive performance of disCoP
is statistically significantly better (p-value < 0.01) [23]. To sum up, the two main advantages of disCoP
are the availability of the convenient webserver and good predictive performance.

This chapter describes the underlying meta-architecture of disCoP, explains its web interface and
provides detailed instructions on how to generate predictions with this computational tool. We also
explain how to read and interpret the results generated by this meta-predictor using a case study that
concerns prediction of intrinsic disorder for the chromatin accessibility complex 16kD protein.

2. Materials

1. Sequences of proteins to be predicted. The sequences must be formatted using the FASTA format
(see Note 1). Up to 5 protein sequences can be submitted at one time as either a file upload or using a
text entry field (see Note 2).



2. disCoP: The webserver that is freely available at http://biomine.cs.vcu.edu/servers/disCoP/ is
designed to be simple to use. All computations are performed on the server side and thus the only
requirements for submitting predictions are: an internet connection and a modern web browser
(Firefox, Internet Explorer, or Chrome). The webserver visualizes the results directly in the web
browser window and also delivers these results to the user-provided email address.
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Fig. 1 Prediction process implemented in the disCoP predictor. The outputs of the four disorder predictors (SPINE-D,
DISOclust, DISOPRED2 and MD) generated in stage 1 include the propensity scores and the corresponding putative IDRs,
which are show using the green horizontal bars. The dashed boxes with gray shading denote the sliding windows that are
used to compute the seven features in stage 2. In stage 3, the binomial deviation regression model predicts the putative
propensities for disorder from the seven features. The putative IDRs generated by disCOP are shown at the bottom of the
figure and they correspond to the residues for which the putative propensities for disorder > 0.5. The example shows
results produced for the chromatin accessibility complex 16kD protein (UniProt id: Q9V452)

The meta-architecture of the disCoP’s webserver is shown in Fig. 1. The input protein sequence goes
through a three-stage process to generate putative IDRs. In stage 1, the sequence is processed by four
disorder predictors: SPINE-D [110], DISOclust [49], DISOPRED2 [93] and MD [84]. This collection of four
predictors was selected from among 20 disorder predictors using an empirical procedure that aims to
maximize predictive performance [23]. Each of the four methods outputs numeric propensity for
disorder and binary disorder annotations (disordered vs. ordered) for each residue in the input protein
chain. In stage 2, these predictions are processed to produce features that numerically quantify
information which is relevant for the disorder prediction. The features are calculated using sliding
windows that aggregate and summarize putative disorder information among neighboring (in the
sequence) amino acid residues. This reduces the risk of making spurious predictions. The windows are
represented by dashed boxes in Fig. 1. A balanced and complementary set of seven features is
collected by considering both types of outputs (propensities and binary) generated by each of the four
disorder predictors. Stage 3 uses these features as input to a trained regression model to produce
disCoP’s predictions in the form of numeric propensities for disorder. These propensities range
between 0 and 1, where higher propensity scores are indicative of a higher likelihood of intrinsic
disorder. The disCoP’s webserver further processes these propensities to generate binary predictions,



which correspond to the putative IDRs. Residues with propensities > 0.5 are predicted to be disordered
while the remaining residues are predicted as ordered/structured (see Note 3).

Disorder Consensus-based Predictor (disCoP)
References | Materials | Help | Acknowledgments | Disclaimer | Biomine

disCoP webserver

This consensus-based method is designed for in-silico prediction of per-residue protein disorder
propensities. It combines four rationally selected input predictors: DISOclust, DISOPRED2, MD, and

SPINE-D, using custom-designed features that aggregate their predictions and binomial deviance-based
regression model.

Please follow the three steps below to make predictions:

1. Upload a file with protein sequences, or paste them into text area

Server accepts up to 5 (FASTA formated) protein sequences. Either upload a file or enter each
protein in a new line in the following text field (see Help for details):

Choose a file | No file chosen
>DP00091

MEPEPEPEQEANKEEEKILSAAVRAKIERNRQRALMLRQARLACRPYPTGEGISTVKAPPKVIDSGGGFFIEE
EEAEEQHVENVVRQPGPVLECDYLICEECGKDFMDSYLSNHFDLAVCDSCRDAEEKHKLITRTEAKQEYLLK
DCDIDKREPVLKFILKKNPHNTHWGDMKLYLKAQVIKRSLEVWGSEEALEEAKEVRKDNRDKMKQKKFDKK
VKELRRTVRSSLWKKEASGHQHEYGPEEHVEEDSYKKTCITCGYEMNYEK

Example | Reset sequence(s)

2. Provide your e-mail address (required)

Please provide your e-mail address to be notified when results are ready.

my_email@send.results.here

3. Predict:

Click button to launch prediction.

Run disCoP

Fig. 2. The disCoP prediction submission webpage. Orange/yellow circles indicate the three steps to submit sequences for
predictions, discussed in the text.

3. Methods

Submission of predictions is made at the main disCoP’s webpage at
http://biomine.cs.vcu.edu/servers/disCoP/. Notification of completed predictions are given by email,




and thus an email address is required for each submission. These notifications provide a link to
prediction results, which can be viewed in a browser window and/or downloaded as a parsable text
file. The predictions can be accessed at a later time and they are kept on the webserver for at least
three months.

3.1. Running disCoP

Three easy steps are required to submit sequences for prediction (Fig. 2, labels 1, 2, and 3):

Step 1. Enter FASTA formatted sequences (see Note 1) in one of two ways:
e Upload a file of FASTA formatted sequences.
e Input the FASTA formatted sequences into the white text entry field. This can be done
using the copy and paste function. An example of properly formatted sequence can be
obtained by clicking the “Example” button located below the text entry field.

Clicking the “Reset sequence(s)” button clears both submission options. There are limits to both
the number of sequences and maximum length of sequences that can be submitted for
prediction (see Note 2).

Step 2. Provide an email address (see Note 4). This email is only used to send notification of
completed predictions.
Step 3. Click “Run disCoP” to start the prediction.

Clicking “Run disCoP” takes the user to a status page that reports on the current state of the submitted
prediction. Submissions to several different bioinformatics webservers located at the
http://biomine.cs.vcu.edu site (see Note 5) are entered into the same queue system (see Note 6). The
status page reports the current position in the queue and shows when prediction for this submission
begins. The runtime needed to complete prediction for an average length protein sequence (about 250
amino acids) is approximately 10 minutes. The prediction can take over 40 minutes when submitting 5
longer protein sequences. After the prediction is completed, the status page automatically redirects
the user to the prediction results page. This also triggers an email with the location of the results page
that is sent to the user-provided email address. There is no need to keep the status page open while
predictions are running since the notification email is always sent when the prediction is finished.

Predictions for disCoP job id: 20190404185835 are ready. @

Upon the usage the users are requested to use the following citation(s):
Fan X, Kurgan LA, 2014. Accurate prediction of disorder in protein chains with a comprehensive and empirically
designed consensus. Journal of Biomolecular Structure and Dynamics, 32(3): 448-464.

You can find the results for this job at:
http://biomine.cs.vcu.edu/webresults/disCoP/20190404185835/results.html

The CSV file can be found here: http://biomine.cs.vcu.edu/webresults/disCoP/20190404185835/results.csv
The webserver can be found here: http://biomine.cs.vcu.edu/servers/disCoP/ @

Thank you for using our webserver,
Biomine group

Fig. 3. The disCoP notification email. The email provides unique job identifier and links to the results indicated with
orange/yellow circles, discussed in the text.



3.2. Results generated by disCoP

The results page can be reached by leaving the status page open for the duration of the prediction, or
by following the link provided in the email.

The email (Fig. 3) provides a job identifier together with the location of the prediction results page and
the text file with the results. Each submission is assigned a unique 14-digits long identifier (Fig. 3, label
1) that is shown at the top of the notification email (see Note 7). In the case of issues with the
completion and/or contents of the prediction, the identifier can be used to trace the corresponding
submission. The email message includes a direct link to the webpage with the results of the prediction
(Fig. 3, label 2) and to the text file with the results (Fig. 3, label 3).

DISCOP RESULTS PAGE

Results for pxsCoP webserver.

Use this link to download the results as a CSV file: RESULTS.CSV @

Results format

The first line displays the query sequence followed by predictions which are shown in two rows.

o the first row annotates disordered (D) and ordered (O) residues
o the second row gives prediction scores (the higher the score the more likely it is that a given residue is disordered)

Q9VvV452 : MGEPRSQPPVERPPTAETFLPLSRVRTIMKSSMDTGLIT?

disCoP : @
831818 4118 4SS 41X S 3eke]S 2 M S O Al 7 S 6 O[3 6 2[8]5 78X55 415361 5 28185 OfiRe} 4 7ENE 4 4 1%l 4 2 1%l 4 OjeEs] 3 Okl 3 ofe)

Fig. 4. The disCoP prediction results webpage. The red D and green n denote the putative disordered residues and putative
non-disordered (structured) residues, respectively. The corresponding putative propensity scores are provided directly
underneath. Orange/yellow circles indicate important features of this page, discussed in the text.

This results page (Fig. 4) includes a link to a text file results.csv with prediction results (Fig. 4, label 1)
and a visualization of the predictions (Fig. 4, label 2) (see Note 8). The text file contains protein
identifiers, sequences, binary predictions and propensity scores for each of the submitted protein
sequences. These data are in the comma-separable CSV format to ease parsing. An example of the CSV
format results file is shown in Fig. 5. Each sequence is represented by three lines:

Line 1. The protein name taken from the FASTA header provided by the user followed by the
protein sequence. The individual amino acids are comma-separated to ease aligning them
to the corresponding predictions listed in the two subsequent lines.

Line 2. Binary predictions of disorder, where D denotes disordered residues and O denoted
ordered residues.

Line 3. Propensity for disorder, ranging between 1 for high propensity to 0 for low propensity.
Residues with propensity > 0.5 are annotated as D in the second line.

The visualization (Fig. 4, label 2) shows the binary annotations of the putative IDRs (using red
highlights) and putative ordered regions (green highlights) for each residue in the input protein chain.
Each binary annotation is associated with the propensity score, which is provided directly underneath.
The scores are in the range between 0 and 99, where residues with scores > 50 are predicted in binary
as disordered.
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E,S,D,E
discop,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,9,0,0,0,0,0,0,0,0,0,0,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,
D,D,D,D

disCoP - prob,0.832,0.832,0.835,0.838,0.840,0.840,0.840,0.837,0.834,0.829,0.824,0.810,0.795,0
.770,0.749,0.721,0.689,0.655,0.623,0.600,0.577,0.558,0.542,0.529,0.519,0.507,0.496,0.479,0.46
8,0.458,0.443,0.431,0.416,0.408,0.399,0.393,0.388,0.376,0.359,0.342,0.328,0.317,0.315,0.314,0
.310,0.304,0.300,0.295,0.289,0.284,0.278,0.275,0.277,0.284,0.293,0.302,0.317,0.329,0.337,0.34
9,0.361,0.377,0.396,0.413,0.422,0.430,0.436,0.438,0.441,0.442,0.442,0.440,0.437,0.435,0.431,0
.426,0.419,0.409,0.399,0.393,0.385,0.378,0.363,0.353,0.344,0.334,0.323,0.323,0.322,0.324,0.33
1,0.336,0.342,0.349,0.360,0.389,0.415,0.451,0.463,0.478,0.496,0.516,0.535,0.556,0.572,0.587,0
.605,0.626,0.650,0.678,0.711,0.747,0.761,0.768,0.771,0.770,0.769,0.767,0.762,0.758,0.753,0.74
9,0.744,0.744,0.745,0.744,0.744,0.744,0.744,0.744,0.740,0.733,0.726,0.717,0.711,0.706,0.706,0
.706,0.706,0.706

Fig. 5. Example of the CSV format results file for the disCoP prediction. The example shows results produced for the
chromatin accessibility complex 16kD protein (UniProt id: Q9V452).
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Fig. 6. Known intrinsically disordered and structured regions in CHRAC16 compared to disorder predictions. (Top panel)
Structurally characterized regions are shown: two intrinsically disordered regions (red) and one structured region (blue).
(Middle and bottom panels) Intrinsic disorder prediction scores given by SPINE-D (cyan), DISOPRED (orange), DISOclust
(green), MD (purple), and disCoP (pink, shown alone in the bottom panel) are shown, where values above 0.5 are
predictions of disorder and below 0.5 are prediction of structure. Hatch portions of the score lines indicate incorrect
predictions.



4. Case study

The protein CHRAC16 is a component of the chromatin accessibility complex (CHRAC), formed by
interaction of CHRAC16 and CHRAC14 with the ATP-utilizing chromatin assembly and remodeling factor
(ACF) complex. The crystal structure of the CHRAC14/16 dimer has been determined [30], which
revealed two disordered regions located at either terminus (Fig. 6, top panel). The N- and C-terminal
IDRs play a role in the ACF binding and modulating DNA binding affinity, respectively [30].

Disorder predictions for CHRAC16 demonstrates the improvement of disCoP predictions relative to its
component predictions from SPINE-D, DISOPRED, DISOclust, and MD. This is shown in Fig. 6 by
comparing the amount of incorrect predictions (hatch portions of the score lines) between disCoP and
the other four methods. For comparison, prediction scores from disCoP server’s CSV output file were
plotted along with prediction scores of the component predictors (Fig. 6, middle and bottom panels).
The four component predictors of disCoP generally perform well for Drosophila CHRAC16 (Fig. 6,
middle panel); SPINE-D, DISOPRED, DISOclust, and MD predict 85%, 87%, 84% and 69% of residues
correctly, respectively. Both SPINE-D and DISOPRED predict disordered and ordered regions correctly,
but predict the two disordered regions to be shorter than found experimentally. DISOclust and MD
both predict too much disorder, with MD predicting much of the structured region to be disordered. In
contrast, the disCoP prediction is highly accurate (Fig. 6, bottom panel), predicting 98% of residues
correctly. Similar to SPINE-D and DISOPRED, disCoP slightly under predicts disorder at the N-terminus
and C-terminus, but only by two residues and one residues, respectively.

Notes

1. The FASTA format for the protein sequences is explained at
https://en.wikipedia.org/wiki/FASTA format. Briefly, each protein is represented by multiple lines
where the first line that begins with “>” followed by the name and description of the protein, and
the subsequent lines that provide the sequence using the 1-letter amino acid encoding and with 20

amino acids per line. Example follows

>Q9Vv452
MGEPRSQPPVERPPTAETFLPLSRVRTIMKSSMDTGLITNEVLFLMTKCTELFVRHLAGA
AYTEEFGQRPGEALKYEHLSQVVNKNKNLEFLLQIVPQKIRVHQFQEMLRLNRSAGSDDD
DDDDDDDDEEESESESESDE

The disCoP server will also accept the second line that gives the entire protein sequence, i.e., the
user has the option of providing the sequence in one line or breaking it up into multiple lines.

2. Up to five FASTA-formatted sequences can be submitted at one time. Moreover, the programs
used to implement the disCoP predictor limit the length of submitted protein sequences to the
range between 26 residues and 1000 residues. These limits apply to both the text entry field and
when uploading the file. Submissions exceeding either of these limits receive an error notification
from the server (“You entered 10 proteins. Up to 5 proteins allowed!” or “Input sequence is 1024
amino acids long. The minimal allowed length is 26 amino acids and the maximal length is 1000.
Please re-submit your sequence.”) and prediction is disallowed. Requests with more than 5
proteins have to be broken into multiple submissions each with 5 or fewer sequences; (also, see
Note 6). The users must combine the results from different submissions manually.

3. Analysis of the predictions generated by disCoP benefits from examining the propensity scores in
addition to the binary predictions. High values of the propensity scores which are below the 0.5




threshold (and which consequently do not result in the binary prediction of IDRs) may suggest
presence of disorder if combined with other data. Benchmarks show that the threshold = 0.5
corresponds to the predictions with sensitivity of about 65% and low (15%) false positive rate,
resulting in a rather conservative set of disorder predictions. This means that residues that were
not predicted as disordered based on the binary outputs and which have high propensity scores
have elevated likelihood for disorder, but at higher levels of false positives.

Rather than requiring an active browser connection for the duration of the entire prediction,
notification of completed predictions are provided via the email address provided by the user.

The http://biomine.cs.vcu.edu site includes several other predictors, such as (in alphabetical order)
CONNECTOR [91], CRYSTALP2 [42], Cypred [39], DFLpred [51], DisCon [64], DisoRDPbind [71, 77],
DMRpred [52], DRNApred [106], fDETECT [56, 58], fMoRFpred [105], funDNApred [1], hybridNAP
[109], ILbind [33], MFDp [62], MFDp2 [60, 63], MoRFpred [13, 69], NsitePred [7], PPCpred [59],
QUARTER [34, 96], RAPID [108], SSCon [107] and SLIDER [73].

The http://biomine.cs.vcu.edu site utilizes the first-come-first-serve queue. However, the number
of simultaneous submissions across all webservers (see Note 5) that are received from the same IP
address is limited to three. Users who submit too frequently receive a message to resubmit after
one of their pending submissions is completed. This limit aims to equalize access to this resource
across users by not allowing any one user to submit an excessive number of jobs that would
severely delay/block access for the other users.

Both links to the results are based on the unique job identifier and they are not posted online. This
means that the other users of this webserver are unable to access the results, preserving privacy of
the submission.

Users should save the email and the links to the results. They can be accessed only via the links that
are provided in the notification email and on the results webpage.
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