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Supervised inductive machine learning is one of several powerful 

methodologies that can be used for performing a Data Mining task. Data Mining 

aims to find previously unknown, implicit patterns that exist in large data sets, but 

are hidden among large quantities of data. These patterns describe potentially 

valuable knowledge. Data Mining techniques have been focused on finding 

knowledge, often expressed in terms of rules, directly from data.  More recently, a 

new Data Mining concept, called Meta Mining, was introduced. It generates 

knowledge utilizing two-step procedure, where first meta-data is generated from 

the input data, and next the meta-data is used to generate meta-rules that 

constitute final data model. 

In this dissertation we examine a new approach to generation of knowledge, 

using supervised inductive learning methodologies combined with Meta Mining. 

We propose a novel data mining system, called MetaSqueezer, for extraction of 

useful patterns that carry new information about input supervised data set. The 

major contribution of this thesis is design and development of the above system, 

supported by extensive benchmarking evaluation results. Two key advantages of 

the system are its scalability, which results from its linear complexity, and high 

 



 iv

compactness of user-friendly data models that it generates. These two features 

make it applicable for applications that use megabytes, or even gigabytes of data. 

The fields contributing to this research are Inductive Machine Learning, 

Data Mining and Knowledge Discovery, and Meta Mining. A study of existing 

Machine Learning methodologies, which give similar results, is given to properly 

situate the research and to help in evaluation of the system.  

The usefulness of the system is evaluated theoretically and also empirically 

via thorough testing. The results show that the system generates very compact 

data models. They also confirm linear complexity of the system, which makes it   

highly applicable to real data. 

Results of application of the system to cystic fibrosis data are provided. 

This application generated very useful results, as evaluated by the domain experts.  



Dedication 

To my brother, Michal, with the best wishes for successful and self-

fulfilling life-long journey. 



 vi

Acknowledgements 

I would like to thank all who helped me to complete this dissertation. 

First, my appreciation goes to my advisor, Dr. Krzysztof Cios, whose 

experience and continuous support helped me over the last few years to become a 

successful researcher. I especially thank him for understanding and 

encouragement for my research directions, which resulted in establishing a 

fruitful and strong advisor-student relationship. You are the best! 

I am grateful to the members of my dissertation committee, Dr. Andrzej 

Ehrenfeucht, Dr. Clayton Lewis, Dr. Dennis Lezotte, and Dr. James Martin. Their 

very much appreciated input helped me to clarify my understanding of the subject, 

and thus to improve the quality of this work. I would like to thank Dr. Frank 

Accurso and Marci Sontag, for providing cystic fibrosis data and helping to 

understand the problems to be modeled. They not only helped me to provide a 

strong validation for the system that is described here, but also enabled me to feel 

importance of my research, by showing its applicability to important medical 

problems. I also would like to thank Dr. Tom Altman for his valuable comments 

and correction that greatly helped in improving and polishing this dissertation. 

Last, but not least, I would like to thank my family for their continuing 

support. I thank my parents, who always tried to explain that knowledge is the key 

to the success, and for their continuing words of encouragement. 



 vii

Contents 

1 Introduction.......................................................................................................... 1 
1.1 Overview of Inductive Learning................................................................... 1 

1.1.1 Basic Definitions.................................................................................... 2 
1.1.2 Supervised Inductive Learning .............................................................. 5 
1.1.3 Inductive Learning via Search ............................................................... 6 

1.1.3.1 The Search Space........................................................................ 6 
1.1.3.2 Rule Validity Tests ..................................................................... 9 
1.1.3.3 Search Algorithms .................................................................... 11 

1.1.4 Classification task ................................................................................ 14 
1.1.5 Knowledge Representation .................................................................. 15 

1.1.5.1 Decision Trees .......................................................................... 16 
1.1.5.2 Production Rules....................................................................... 17 

1.1.6 Machine Learning and Data Mining .................................................... 18 
1.1.6.1 Why Data Mining and Knowledge Discovery? ........................ 19 

1.2 Motivation................................................................................................... 20 
1.3 Goal of the Research................................................................................... 22 

2 Related Work ..................................................................................................... 25 
2.1 Introduction................................................................................................. 25 
2.2 Comparing ML Algorithms ........................................................................ 27 

2.2.1 Assessment of Validity ........................................................................ 28 
2.2.1.1 Repositories of Benchmarking Data Sets ................................. 29 

2.2.2 Experimental Assessment of Scalability.............................................. 30 
2.3 Evaluation of Inductive Machine Learning Algorithms ............................. 33 

2.3.1 Decision Tree Algorithms.................................................................... 34 
2.3.2 Rule Algorithms................................................................................... 35 

3 Architecture of the MetaSqueezer System......................................................... 37 
3.1 Introduction................................................................................................. 37 

3.1.1 Meta Mining......................................................................................... 38 
3.2 Overview of the MetaSqueezer System...................................................... 42 
3.3 The DataSqueezer Algorithm ..................................................................... 44 

3.3.1 The Algorithm...................................................................................... 44 
3.3.1.1 Theoretical Complexity Analysis ............................................. 53 

3.3.2 Experimental Evaluation...................................................................... 56 
3.3.3 Comparison of DataSqueezer with Other Algorithms ......................... 58 

3.3.3.1 Accuracy ................................................................................... 58 
3.3.3.2 Simplicity and Efficiency ......................................................... 60 
3.3.3.3 Flexibility.................................................................................. 63 
3.3.3.4 Experimental Complexity Analysis .......................................... 63 



 viii

3.3.3.5 Summary of Experimental Evaluation...................................... 65 
3.4 The CAIM Algorithm ................................................................................. 66 

3.4.1 Introduction to Discretization .............................................................. 67 
3.4.2 The Algorithm...................................................................................... 69 

3.4.2.1 Definitions of Class-Attribute Interdependent Discretization .. 70 
3.4.2.2 Discretization Criterion............................................................. 74 
3.4.2.3 The CAIM Algorithm ............................................................... 77 
3.4.2.4 Complexity Analysis................................................................. 78 

3.4.3 Experimental Evaluation...................................................................... 80 
3.4.4 Comparison of CAIM with other Algorithms...................................... 81 

3.4.4.1 Accuracy, Simplicity, Efficiency, and Flexibility .................... 82 
3.4.4.2 Impact of the CAIM algorithm discretization on the Subsequent 
Learning Task ........................................................................................... 85 
3.4.4.3 Summary ................................................................................... 88 

4 The MetaSqueezer System................................................................................. 90 
4.1 Introduction................................................................................................. 90 
4.2 MetaSqueezer System................................................................................. 90 

4.2.1 Theoretical Complexity Analysis......................................................... 94 
4.3 Experimental Evaluation............................................................................. 95 

4.3.1 Comparison of MetaSqueezer with Other Algorithms ........................ 97 
4.3.1.1 Accuracy ................................................................................... 97 
4.3.1.2 Simplicity and Efficiency ....................................................... 100 
4.3.1.3 Flexibility................................................................................ 103 
4.3.1.4 Experimental Complexity Analysis ........................................ 104 
4.3.1.5 Summary of Experimental Evaluation.................................... 107 

5 Application of MetaSqueezer System to Analysis of Cystic Fibrosis Data..... 109 
5.1 Introduction............................................................................................... 109 

5.1.1 Significance........................................................................................ 113 
5.2 Understanding the Problem Domain......................................................... 114 
5.3 Understanding the Data ............................................................................ 118 
5.4 Preparation of the Data ............................................................................. 125 

5.4.1 The Class Attributes........................................................................... 130 
5.4.2 The Time-Defining Attribute ............................................................. 133 
5.4.3 Discretization ..................................................................................... 133 
5.4.4 The Training Set for Task 1 ............................................................... 135 
5.4.5 The Training Set for Task 2 ............................................................... 137 
5.4.6 Refining the Project ........................................................................... 139 

5.5 Data Mining .............................................................................................. 141 
5.5.1 Rule and Selector Ranking Tables ..................................................... 142 
5.5.2 Experimental Results ......................................................................... 151 

5.6 Evaluation of the Discovered Knowledge ................................................ 156 
5.7 Using the Discovered Knowledge ............................................................ 169 



 ix

5.7.1 Summary of Results ........................................................................... 170 

6 Summary .......................................................................................................... 171 
6.1 Summary and Significance ....................................................................... 171 
6.2 Future Work.............................................................................................. 174 

References........................................................................................................... 175 

Appendix A Abbreviations ................................................................................. 185 

Appendix B Relevant Publications ..................................................................... 186 

Appendix C Detailed Test Results...................................................................... 189 

Appendix D Results of Mining CF data using DataSqueezer Algorithm........... 202 
 



 x

Tables 

Table 1. Outcomes of the verification test. ........................................................... 10 
Table 2. SPEC test results for the computer hardware configurations used in the 

benchmarking tests........................................................................................ 32 
Table 3. Major properties of inductive ML algorithms ........................................ 34 
Table 4. Major properties of the DataSqueezer algorithm.................................... 48 
Table 5. Sample training set for the DataSqueezer algorithm .............................. 50 
Table 6. Sample rule table generated by the DataSqueezer algorithm ................. 50 
Table 7. Description of data sets used for benchmarking of DataSqueezer 

algorithm ....................................................................................................... 57 
Table 8. Accuracy results for the DataSqueezer, CLIP4, and the other 33 ML 

algorithms ..................................................................................................... 59 
Table 9. Number of rules and selectors, and running time results for the 

DataSqueezer, CLIP4, and the other 33 ML algorithms............................... 61 
Table 10. Summary of experimental complexity analysis results for the 

DataSqueezer algorithm................................................................................ 64 
Table 11. Summary of the benchmarking tests for the DataSqueezer algorithm . 66 
Table 12. 2-D quanta matrix for attribute F and discretization scheme D............ 71 
Table 13. Description of data sets used for benchmarking of CAIM algorithm... 80 
Table 14. Comparison of the seven discretization algorithms using eight 

continuous and mixed-mode data sets (bolded values indicate the best 
results)........................................................................................................... 83 

Table 15. Comparison of the accuracies achieved by the CLIP4 and C5.0 
algorithms for the eight data sets using the seven discretization schemes 
(bolded values indicate the best results) ....................................................... 86 

Table 16. Comparison of the number of rules/leaves generated by the CLIP4 and 
C5.0 algorithms for the eight data sets using the seven discretization (bolded 
values indicate the best results)..................................................................... 87 

Table 17. Summary of the benchmarking tests for the CAIM algorithm ............. 88 
Figure 15. Architecture of the MetaSqueezer system........................................... 92 
Table 18. Major properties of the MetaSqueezer system ..................................... 93 
Table 19. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the 

other 33 ML algorithms ................................................................................ 98 
Table 20. Number of rules and selectors, and running time results for the 

MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms.... 101 
Table 21. Summary of experimental complexity analysis results for the 

MetaSqueezer system.................................................................................. 105 
Table 22. Summary of the benchmarking tests for the DataSqueezer algorithm 107 
Table 23. Summary of data cleaning performed with CF data ........................... 126 
Table 24. List of irrelevant attributes from CF data ........................................... 129 



 xi

Table 25. Definition of the "CF pace (cf)" attribute ........................................... 131 
Table 26. Definition of the "CF type (cf)" attribute............................................ 132 
Table 27. Definition of the "TemporalIntervals (cf)" attribute........................... 133 
Table 28. The manual discretization of the CF data ........................................... 134 
Table 29. The discretization of the CF data using F-CAIM algorithm............... 135 
Table 30. Summary of the refinements performed during the analysis of the CF 

data .............................................................................................................. 140 
Table 31. Summary of training sets for the CF project....................................... 141 
Table 32. Attribute and selector ranking table for the example data .................. 146 
Table 33. Color coded attribute and selector ranking table for the example data

..................................................................................................................... 147 
Table 34. Color coded attribute and selector ranking table with removed irrelevant 

attributes for the example data .................................................................... 148 
Table 35. The 10 fold cross validation results for task 1 .................................... 152 
Table 36. The summary of test results for task 1................................................ 153 
Table 37. The 10 fold cross validation results for task 2 .................................... 154 
Table 38. The summary of test results for task 2................................................ 155 
Table 39. Summary of the benchmarking tests for the MetaSqueezer system ... 156 
 



 xii

Figures 

Figure 1. Process of learning rules by an IL algorithm........................................... 4 
Figure 2. Rule search process: a) bottom-up approach, b) top-down approach ... 12 
Figure 3. Sample search graph.............................................................................. 12 
Figure 4. Search strategies .................................................................................... 14 
Figure 5. Classification task.................................................................................. 15 
Figure 6. Example decision tree represenation ..................................................... 17 
Figure 7. Fields investigated in this dissertation................................................... 24 
Figure 8. Rule generation using decision trees including sample tree, rules 

generated from it, and shared selectors......................................................... 35 
Figure 9. The MM procedure................................................................................ 38 
Figure 10. The pseudo-code of the DataSqueezer algorithm................................ 46 
Figure 11. The Find S algorithm........................................................................... 48 
Figure 12. Relation between execution time and input data size for the 

DataSqueezer algorithm................................................................................ 65 
Figure 13. The pseudo-code of the CAIM algorithm ........................................... 78 
Figure 14. The pseudo-code of the CAIM algorithm ........................................... 91 
Figure 15. Architecture of the MetaSqueezer system........................................... 92 
Figure 16. Relation between execution time and input data size for the 

MetaSqueezer and the DataSqueezer algorithms........................................ 105 
Figure 17. The difference in ratios between the time and training data size ...... 106 
Figure 18. The six-step DMKD process model .................................................. 112 
Figure 19. The structure of the CF data .............................................................. 119 
Figure 20. The relationship showing number of examples with particular number 

of missing values for task 1 ........................................................................ 137 
Figure 21. The relationship showing number of examples with particular number 

of missing values for task 2 ........................................................................ 138 
Figure 22. a) sub-table1 generated for data from interval 1 (I1), b) sub-table2 

generated for data from interval 2 (I2), c) meta-table d) attribute and selector 
ranking table................................................................................................ 149 

Figure 23. The evaluation of results for task 1 ................................................... 162 
Figure 24. The evaluation of results for task 2 ................................................... 167 



 1

Chapter 1 

1 Introduction 

This chapter provides an overview of Inductive Learning, with emphasis on 

Data Mining and Machine Learning. It also explains the motivation and goal of 

the research and talks about potential applications areas. 

1.1 Overview of Inductive Learning 

Humans attempt to understand their environment by using its simplified 

version, called a model. Creation of such a model is called Inductive Learning 

(IL). During the learning phase, humans try to recognize similarities among 

objects and events in the environment, by observation. Next, they group similar 

objects into classes and construct hypotheses used to predict behavior of the 

members (examples) from these classes (Holland et al., 1986). The same activities 

are also performed when knowledge is generated from input data. The generated 

knowledge is not a mere copy of the input data, but rather consists of information 

that is inferred from the data. Two inference techniques, which are used to derive 

new knowledge, are (Holsheimer and Siebes, 1994): 

• deduction, which is a technique that infers knowledge that is a logical 

consequence of the information in the input data. It can be used if the data 

describing some domain is proven to be correct. Most database management 

systems (DBMSs) (e.g., relational DBMSs) can perform deduction via use 
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of simple operators, like the join operator. Such join operator, when applied 

to two relational tables, infers a relation between them. A research area 

called deductive databases uses the idea of deduction to provide a user with 

answers to queries (Ullman, 1989; Ullman and Zaniolo, 1990). Such 

database is augmented with an inference system that is used to derive rules 

that are used to answer user’s queries. 

• induction, which infers knowledge that is generalized from the information 

in the input data. The induction works by searching for regularities among 

the data to provide high level summary of the information contained in the 

data. It is usually performed in the form of a search for a correct hypothesis 

(rule), or a set of them, which is guided by the examples from the input data. 

IL generates hypotheses that are always correct for the input data, but only 

plausible outside of the data.  

1.1.1 Basic Definitions  

Information about the environment is represented by a training data set. 

Since most of current DBMSs are relational, the most popular representation form 

for the data is a relational table, which consists of tuples. Each tuple represents 

one or more objects (examples). We assume that the table stores information 

about properties of the examples, in terms of attributes, but not the relationship 

between the examples. We also assume that the training set consist of a single 

table. The second assumption can be easily realized for all database schemas and 

queries (Ullman, 1989). The table may include unknown values, which means that 
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some of the attributes describing examples may be not known during the learning 

process. 

Definition 1. Training Set. 

Let A = {A1, A2, …, Ak} be a set of attributes with their domains Dom1, 

Dom2, …, Domk. The training set is a finite subset of universe U = Dom1 x Dom2 

x … x Domk, and is defined as a table over A. An example is a tuple in the 

training set. 

The user of training set defines classes, also called concepts, in the data 

(Michalski, 1983a). We assume that the training set contains one or more 

attributes, called predicted attributes, which are used to denote the class of an 

example. The remaining attributes are called predicting attributes. A class is 

defined by a condition that involves combination of values of the predicted 

attributes.  

Definition 2. Class. 

A class Ci is a subset of the training data set S, consisting of all objects that 

satisfy the class condition condi: Ci = {examples ∈ S | condi(o)}. Examples that 

satisfy condi are called positive examples, or examples of class Ci. The remaining 

examples are called negative examples. 

When the classes are defined, an IL algorithm can infer rules, or class 

descriptions, from the training set. The rules are generated for each of the classes, 

using only the predictive attributes. Rules generated for class Ci should describe 

only the positive, and none of the negative examples. 
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Definition 3. Rule. 

Let A be the set of predicting attributes. A rule that describes class Ci is a 

formula IF (A1 = c1) ∧ (A2 = c2) ∧ … ∧ (An = cn) THEN Ci, such that: 

1. Ai ∈ A and i ≠ j → Ai ≠ Aj 

2. ci ∈ Dom(Ai) 

A rule can be also written as IF D THEN C, where D is called description 

and C denotes the class for the rules was generated. The description is a 

disjunction of elementary statements (i.e., (Ai = ci) called selectors. A rule 

generated for class Ci is correct with respect to the training set if its description 

covers positive examples, and none of negative examples. 

The process of rule generation performed by an IL algorithm is shown in 

Figure 1. 

 

Figure 1. Process of learning rules by an IL algorithm 
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1.1.2 Supervised Inductive Learning 

Two types of IL techniques can be distinguished (Carbonell et al, 1983). In 

supervised learning, known also as learning from examples, an external teacher 

defines classes and provides examples for each class. The learning algorithm 

infers rules that describe common properties exhibited by the examples from the 

training data for each class. These class descriptions usually take form of 

classification rules “IF <description> THEN <class>”, which can be used to 

predict the class of previously unseen examples or to find new and useful 

regularities exhibited in the data. The teacher can define either one or multiple 

classes (Dietterich and Michalski, 1983). In case of the single-class learning, the 

teacher defines a single class C for which an IL algorithm generates rules. The 

description must distinguish examples from class C (positive examples) from 

examples which do not belong to class C (negative examples). This type of 

learning is also called binary learning, since it used two classes of examples: 

positive and negative. In multiple-class learning, the teacher defines a finite 

number of classes C1, C2, …, Cc, for which an IL algorithm must find descriptions. 

The algorithm generates rules for the ith class by treating examples from the class 

Ci as positive examples, and examples belonging to any other class as negative 

examples. 

In unsupervised learning, also known as learning from observation, 

inductive algorithm discovers the classes by itself based on common properties of 

examples. Detailed discussions of these two learning models can be found in 
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(Holsheimer and Siebes, 1994). In this work we are only concerned with the 

development of a supervised IL system that performs both single- and multiple-

class learning tasks from supervised training data. 

1.1.3 Inductive Learning via Search 

The goal for any supervised IL algorithm is to generate a set of correct rules 

for each of the classes defined by the teacher. The simplest approach to generate 

such rules is to perform exhaustive search, also known as learning by enumeration, 

which tries all possible descriptions to find these that best fit the class that is 

currently being described. There are two major problems when learning by 

enumeration. First, it is extremely complex, which leads to a very long learning 

time. Second, the rules generated by enumeration will describe only examples 

from some training set, when they should provide generalized description of the 

examples that will also be able to describe examples from outside of the learning 

set. Before we describe other learning methods, which are designed to overcome 

the above problems, we provide several necessary definitions. 

1.1.3.1 The Search Space 

The search space <D, O, f > consists of a set of descriptions D, a set of 

operations on these descriptions O, and a quality function f (Holsheimer and 

Siebes, 1994). 
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The description space D is a set of all possible descriptions for a particular 

training set. Each description D has its corresponding subset of the training set S, 

called cover σD(S).  

Two main operations on D are: generalization and specialization. The goal 

of the generalization is to weaken the description by making it to cover more 

examples. On the other hand, specialization strengthens the description by 

reducing the coverage.  

Let assume that generalization operation was used to convert description D 

into description D’. If an example is covered by D, it is also covered by D’, but 

the reverse does not hold. Thus, the generalization operation is not truth 

preserving. Simply, if D is correct, its generalization D’ may not be correct.  

Definition 4. Generalization. 

A set-description  D = (A1 ∈ S1 ∧ … ∧ Ai ∈ Si ∧ … ∧ An ∈ Sn) is 

generalized by extending the set of values for a particular attribute Ai to Si’ where 

Si ⊂ Si’ ⊆ Domi.  

Specialization is an inverse of the generalization operation, where Si is 

replaced with Si’, and Si ⊃ Si’.  

Quality function f is used to indicate quality of particular descriptions. Each 

description must satisfy two conditions. First, it must be valid, which means that it 

must classify unseen, i.e., not present in training set, examples correctly. Second, 

it should be correct in terms of providing correct description with respect to one 

of the classes defined by the user.  
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Validity of the generated rules can be assessed using two criteria. First, 

after the rules are generated, a classification test is performed. Such test applies 

generated rules to test set, which was unseen during the learning process. The 

rules are used to classify examples from the test set, and the results are compared 

with class values, which are assigned to the test examples by the teacher. 

Accuracy, defined below, is computed, and higher validity value is assigned to 

rules that achieve higher accuracy. Second, the Ockham’s razor principle is used. 

It says that the simpler the description, the more likely it is that it correctly 

describes existing pattern in the data. The complexity of descriptions is most 

commonly evaluated by the number of selectors that the description uses. Thus, 

the validity is higher for simpler descriptions, or smaller complexity.  

Correctness of the generated rules is assessed by stating that the entire set 

of descriptions D for class Ci should cover all positive examples, and none of 

negative examples, i.e., σD(S) = Ci. Most IL algorithms relax this requirement by 

requiring that the description should describe significant majority of positive 

examples, and may cover small number of negative examples. This relaxation is 

due to data inconsistencies, i.e., the same example describes different classes, 

missing values, and noise. It is usually assumed that correctness of the rules is 

verified based on the design of IL algorithm that generates them. 
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1.1.3.2 Rule Validity Tests 

The most popular test to verify validity of generated rules is the accuracy 

test. The test is defined as probability that an example covered by a description 

actually belongs to the class that is described by that description. 

%100
total
TPaccuracy =   

where TP (true positive) is the number of correctly recognized test 

examples, and total is the total number of test examples. A test example is 

checked against all rules describing all classes. 

Also, a more precise test measure called verification test can be used to test 

the rules. The verification test is a standard test procedure in medicine, where 

sensitivity and specificity analysis is used to better evaluate confidence in the 

results (Cios and Moore, 2002). This work applies both, the accuracy and 

verification tests, to provide a thorough verification of validity of rules generated 

by the MetaSqueezer system.  

The verification test consists of three evaluation criteria: 

%100%100
FNTP

TP
positivehypothesis

TPysensitivit
+

==  

%100%100
TNFP

TN
negativehypothesis

TNyspecificit
+

==  

 %100%100
FNFPTNTP

TNTP
total

TNTPaccuracypredictive
+++

+
=

+
=  

where TP (true positive) is the number of correct positive classifications, 

TN (true negative) is the number of correct negative predictions, FP (false 
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positive) is the number of incorrect positive predictions, and FN (false negative) 

is the number of incorrect negative predictions. These values are computed based 

on the possible test outcomes shown in Table 1. 

Table 1. Outcomes of the verification test. 

 test result positive test result negative 
positive rule TP FN 
negative rule FP TN 

 

The predicative accuracy is equivalent to the accuracy. The remaining two 

criteria give additional insight into the goodness of the generated rules. The 

sensitivity measures how many of the examples described by the rules as positive 

were truly positive. The specificity measures how many of the examples 

described by the rules as negative were truly negative. Specificity and sensitivity 

enable evaluation of how the rules perform on the positive and negative data 

separately. This is very important when the numbers of positive and negative 

examples are different. In this case, the accuracy provides just the average result 

for positive and negative examples together, when true accuracy for positive 

examples can be very different than accuracy for the negative examples. The 

difference can be easily noticed when using sensitivity and specificity. Only the 

results with high values for all three criteria can assure high confidence level in 

the rules. A study by Kukar (Kukar et al., 1999) shows the importance of using, 

and trade-offs between, the sensitivity and specificity. Advantages of using 

verification test versus accuracy test were also shown in (Cios et al., 1998).  
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1.1.3.3 Search Algorithms 

IL can be seen as a search over the defined search space. The general 

approach is to start with an initial description, and iteratively modify it via one of 

the operators until its quality exceeds a user-defined threshold (Holsheimer and 

Siebes, 1994). Two approaches for generation of rules are: data-driven, or bottom-

up approach, and model-driven, or top-down approach.  

In the bottom-up search the initial description consists of all examples from 

the training set that describe positive class. The initial description is correct with 

respect to training set, but is too complex, and thus during search it is modified by 

applying generalization operator. The search is based on multiple generalizations, 

which are applied until the description is correct, with a certain tolerance, with 

respect to the training set. The bottom-up search is shown in Figure 2a, where 

filled circles depict positive examples, empty circles the negative examples, and 

the description is shown by the shaded areas. The bigger the shaded area, the 

more general the description is. 

In the top-down search the initial description describes the entire universe, 

or its subset, of the training set. The initial description is refined by applying both 

generalization and specialization operators, until the quality of the description 

exceeds a threshold. The top-down search is shown in Figure 2b. 
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Figure 2. Rule search process: a) bottom-up approach, b) top-down approach 

The search space can be modeled by a directed graph, where nodes 

represent descriptions, and arcs represent operations. Figure 3 shows a sample 

search graph, where a set of operations in O is applied to the initial description D1 

to generate new descriptions D2i. The process of application of operations is 

repeated until a goal node, which represents a description of sufficient quality, is 

reached. Thus, the graph can be used to represent a search for rules, where a 

particular sequence of operations is used to generate correct rules. 

 

Figure 3. Sample search graph 
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Two search strategies are: the irrevocable search, and the tentative search 

(Nillson, 1982). In the irrevocable search, once an operation is selected and 

applied to a description, it will never be reconsidered. This search executes a 

single path thought the graph to generate a rule. In the tentative search, the once 

an operation is selected and applied to a description, it may still be undone, to 

perform a different operation for that description. The main reason for undoing an 

operation is that the search identified that selection of a different operation would 

lead to a better rule. The disadvantage of the latter search strategy is its high 

computational cost, when compared with the irrevocable search. 

Both of these search strategies can work in uninformed or informed mode. 

In uninformed mode, an operation is chosen arbitrarily. In this case, using 

irrevocable strategy leads to performing a depth-first search, while using tentative 

strategy leads to either depth-first search with backtracking, or breath-first search 

(Russel and Norvig, 1995). Uninformed searches are computationally expensive, 

since many descriptions are generated, and for each of them correctness must be 

evaluated. Informed, or heuristic, searches select operations based on a predefined 

heuristic. The heuristic is used to select descriptions which are on the shortest 

path to a goal node, and thus reducing computational complexity.  

Finally, there are three types of search strategies: exhaustive search, beam 

search, and hill climber search. The simplest strategy called exhaustive search 

searches through all possible operators, for all possible nodes. It is 

computationally expensive, and thus can be applied only to small search spaces. 
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The beam search selects n best operations at each node, and searches only through 

descriptions that resulted from applying the selected operations. The hill climber 

algorithm, which is the least computationally expensive, selects a single operation 

that gives the greatest improvement in terms of the quality of new description. 

Both beam and hill climber strategies require heuristics to select nodes, while the 

exhaustive search usually works in an uninformed mode. The exhaustive and 

beam searches usually use the tentative strategy, while the hill climber uses an 

irrevocable strategy. The three types of search strategies are visualized in Figure 4. 

Other search methods, e.g., genetic algorithms, can also be used to perform the 

search (Goldberg, 1989, Holland et al., 1986). 

 

Figure 4. Search strategies 

1.1.4 Classification task 

A typical application of the rules generated by IL algorithms is 

classification. A common feature of IL algorithms is their ability to almost 

perfectly classify the training set, which corresponds to high correctness of the 

generated rules. However, the true value of the rules generated by an algorithm 

exhaustive  hill climber  beam  
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should be evaluated only by testing them on new, unseen during learning, data. 

Figure 5 shows how an IL algorithm is used to generate and test a data model 

(rules) using input data, and how the model is used to perform a classification task. 

First, input data is divided into disjoint training and testing sets. The training set is 

used to generate rules, while testing data is used to evaluate validity of the 

generated rules. Once the rules achieve satisfactory quality level, usually in terms 

of accuracy of describing data from the test set, they are used to perform 

classification on data that was not used during the training and testing process. 

 

Figure 5. Classification task 

1.1.5 Knowledge Representation 

There are several models for representation of knowledge, propositional-

like, first order logic, and structured representation models (Holsheimer and 

Siebes, 1994). In this work, we are only concerned with generation of knowledge 

that utilizes the propositional-like model. The first order logic and the structured 

representation are characterized by better expressive power, when compared with 
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the propositional-like model. On the other hand, achieving this feature requires 

substantial increase in complexity of the representation model. The propositional-

like representation is characterized by simplicity and offers enough expressive 

power for use in IL. Since one of the goals of this work is to develop a system that 

generates simple and easily understandable results, the propositional-like 

representation was selected. 

The propositional-like model uses logic formulas, consisting of attribute-

value conditions, which are used in conjunctions and/or disjunctions to express 

rules. Two most popular propositional-like models are decision trees and 

production rules. 

1.1.5.1 Decision Trees 

A decision tree is capable of expressing knowledge about data described by 

a finite number of classes. The tree consists of nodes and labeled edges. Nodes 

represent attributes, while edges represent possible values of the attributes. The 

terminal nodes in the tree, called leaves, represent classes. The tree is used to 

perform a classification of examples by following a path down the tree, starting 

from the top (root) node, and descending down by following edges, corresponding 

to the values of the attributes, until a leaf node is reached. The class value 

assigned to the leaf node defines classification outcome. The decision tree 

representation is utilized by decision tree algorithms. An example tree is shown in 

Figure 6. 
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Figure 6. Example decision tree represenation 

1.1.5.2 Production Rules 

A production rule is capable of expressing knowledge about data described 

by a finite number of classes. It consists of a structure described by definition 3. 

The description incorporates a conjunction of conditions on attributes. The main 

advantages of production rules are their simplicity and modularity, i.e., a single 

rule can be understood without reference to other rules. 

Any decision tree can be converted into a set of production rules (Quinlan, 

1987a). A single rule is generated for each leaf node, where class of the rule is 

defined by a value assigned to the leaf. The rule is generated by following a path 

that starts at the root node, and ends at the leaf node. The description of a rule 

consists of selectors that are generated from nodes on the path.  An example of a 

rule generated from tree shown in Figure 6 is:  

IF number of wheels = 2 AND engine = no THEN bicycle. 

Other types of propositional-like representations include decision lists 

(Rivest, 1987) and ripple-down rule sets (Holsheimer and Siebes, 1994). These 
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types are more complex than decision tree and production rules, and thus are not 

considered in this dissertation 

1.1.6 Machine Learning and Data Mining 

Since modern databases store very large quantities of data, the inference 

process can be performed only by using computer driven algorithms. Automation 

of the IL process has been extensively studied in the field of Machine Learning 

(ML) field (Kodratoff, 1988; Langley, 1996; Mitchell, 1997; Cios et al., 1998).  

ML is one of the most successful tools of Knowledge Discovery (KD). If we 

define the KD as a nontrivial process of identifying valid, novel, potentially useful, 

and ultimately understandable patterns from large collections of data (Fayyad et al. 

1996a), then ML is concerned with a Data Mining (DM) step, which is one of the 

most important steps of the knowledge discovery process (Brachman, R., and 

Anand, 1996; Fayyad et al., 1996a; Cabena et al., 1998; Cios, 2001; Cios and 

Kurgan, 2002b). ML can be defined as a field that “is concerned with the question 

of how to construct computer programs that automatically improve with 

experience” (Mitchell, 1997), or as “ability of a program to generate a new data 

structure that is different from an old one, like production if…then… rules from 

input numerical data” (Cios et al., 1998). Most ML algorithms use induction 

process to generate the rules (Breiman et al., 1984; Michalski et al., 1986; Clark 

and Niblett, 1989; Holte, 1993; Quinlan, 1993; Cios and Liu, 1995a; Cios and Liu, 

1995b; Cios et al., 1997; Kaufman and Michalski, 1999; Cios and Kurgan, 2001; 

Cios and Kurgan, 2002a; Kurgan and Cios, 2002a). 
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The outcome of an inductive ML algorithm is explicit and usually takes 

form of production rules, or decision trees that are usually converted into rules. 

One of the reasons why rules generated by ML algorithms are useful is that they 

are widely used for representing knowledge (e.g., in knowledge-based systems), 

and can be easily interpreted, learned from, or modified by human experts 

because of their modularity (Holsheimer and Siebes, 1994). This is one of the 

main reasons why ML is the preferred DM method in situations where the user 

needs to understand and validate the generated model, as in the case of medical 

systems. 

1.1.6.1 Why Data Mining and Knowledge Discovery? 

DM was brought into attention in 1989 during the IJCAI Workshop on 

Knowledge Discovery in Databases (KDD) (Piatetsky-Shapiro, 1991). The 

workshops were continued annually until 1995, when the International 

Conference on Knowledge Discovery and Data Mining (DMKD) became the 

most important annual event for DMKD. The framework for DMKD research was 

outlined in two books: “Knowledge Discovery in Databases“ (Piatesky-Shapiro 

and Frawley, 1991) and „Advances in Knowledge Discovery and Data 

Mining“ (Fayyad et al., 1996a). Since then numerous new DMKD conferences 

such as ACM SIGKDD, SPIE, PKDD, SIAM, regional KDD conferences, 

DMKD-related workshops, and journals like Data Mining and Knowledge 

Discovery  (1997), Journal of Knowledge and Information Systems (1999), and 

IEEE Transactions on Knowledge and Data Engineering (1989) have become an 
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integral part of the DMKD field. DMKD applies many artificial intelligence and 

statistical techniques to the structured data such as databases (Matheus et al., 

1993; Fayyad et al., 1996b; Manilla, 1997). The DMKD is an exponentially 

growing field with strong emphasis on applications (Cios and Kurgan 2002b). The 

main DMKD research topics include discovery of strong patterns, determination 

of concept dependencies, selection of representative data examples and most 

relevant attributes, clustering, and, finally, methods for coping with data 

deficiencies such as inconsistencies, missing values, and noise. In practice, the 

terms DM, KD, and DMKD are almost synonymous and are used interchangeably 

to describe DMKD. For consistency, from now on, we will be using the term DM 

as the field where this work is situated. This thesis addresses development of a 

DM system, and thus terms DMKD and KD are less appropriate, since they refer 

to a discovery process, rather than a methodology for generation of knowledge. 

1.2 Motivation 

A very important problem of DM is the increasing amount of data that need 

to be analyzed. Such data are generated on a daily basis by banks, insurance 

companies, retail stores, medical institutions, research agencies, and on the 

Internet. This explosion came into being through the ever increasing use of 

computers, scanners, digital cameras, bar codes, etc. We are in a situation when 

rich sources of data, stored in databases, warehouses, and other data repositories 

are readily available. This, in turn, causes big interest of research and industrial 
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communities in DM. We require tools to cope with analysis and understanding of 

these huge amounts of data. In response, the DM community has developed 

several successful algorithms over the last few years. A survey that presents a 

comparison of 43 existing DM algorithms is presented in (Goebel and Gruenwald, 

1999). 

Still, one of the major difficulties is that many DM algorithms do not scale 

well to huge volumes of data.  A scalable DM algorithm is characterized by linear 

increase of its runtime with the linear increase of the number of examples in the 

data, and within a fixed amount of memory. Most of the DM algorithms are not 

scalable, but there are several examples of tools that do scale well. They include 

clustering algorithms (Zhang et al., 1996; Bradley et al., 1998; Ganti et al., 1999a), 

ML algorithms (Shafer et al., 1996; Gehrke et al., 1998), and association rule 

algorithms (Agrawal and Srikant, 1994; Agrawal et al., 1995; Toivonen, 1996). 

An overview of scalable DM tools is given in (Ganti et al., 1999b). The most 

recent approach for dealing with the scalability problem is the Meta Mining (MM) 

concept. MM generates meta-knowledge from the meta-data generated by DM 

algorithms (Spiliopoulou and Roddick, 2000). This is performed in two steps. 

First step is concerned with generation of rules (data models) by a DM algorithm 

from prepared subsets of the training set. Next, meta-knowledge is generated from 

the generated rules. In this approach small data models are processed as input data 

instead of huge amounts of the original data, which greatly reduces the 

computational overhead (Kurgan and Cios, 2002a). 
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Another problem addressed in this work is connected with a common 

practice in the DM field, namely, that the researchers often omit discussion of the 

complexity of generated models when presenting their results. This leads to the 

development of algorithms that generate very complex models, which causes 

difficulty with their understanding. This problem is very important in any domain 

where the user is required to comprehend and understand the generated model 

before applying it. A good example is medicine where medical professionals must 

verify data models before using them in a clinical setting. One of the most 

straightforward ways to improve understandability of the generated models is to 

generate them using easy to understand representations, e.g., rules or trees, and to 

generate models that are as compact as possible. 

Finally, the impact of this work can be summarized by putting it into a 

broader context. IDC (http://www.idcresearch.com/), a well known provider of 

technology intelligence and industry analysis, estimates that the DM tools market 

will reach $1.85 billion in 2006. In 1998, Evangelos Simoudis of IBM, predicted 

that "within five years, [data mining] will be as important to running a business as 

the business systems are today".   

1.3 Goal of the Research 

The goal of this research was to design and implement a novel DM system 

that applies supervised inductive ML for analysis of supervised data. The system 

generates data models, in terms of rules, from supervised data. Referring to the 
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discussion presented above, the designed system is characterized by (Kurgan and 

Cios, 2002a; Kurgan and Cios, 2003a): 

• ability to generate very compact models. The system generates a set of rules 

that describe target concepts from supervised data. It generates not only 

small number of rules, but the generated rules are very compact, in terms of 

the number of selectors in their description. This is an important feature for 

a decision maker who needs to evaluate and understand the rules. Also, by 

the Ockham’s razor principle, generation of short descriptions results not 

only in improved understandability, but also in probably better validity of 

the rules. 

• liner complexity, which is later shown both theoretically and experimentally. 

This feature enables the use of the system for problems with megabytes and 

even gigabytes of data. This is a very important advantage, since most of 

the ML algorithms, except decision tree algorithms, do not scale well. The 

MetaSqueezer system belongs to the family of rule algorithms, and as such 

generates different, complementary to decision tree algorithms, types of 

rules.  

 

The system is characterized by all features of a modern IL algorithm, i.e., 

accurate classification, efficient generation of simple rules, and flexibility. It uses 

a novel architecture based on the MM concept, which is the main reason for 

achieving high compactness of rules. To the best of our knowledge, the 
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MetaSqueezer system is the first ML-based system that works employing the MM 

concept. The system provides advancement in the areas of Inductive Learning, 

Data Mining, Machine Learning, and Meta Mining. The main fields contributing 

to the research performed in this dissertation, and their interrelationship are shown 

in Figure 7. 

 

Figure 7. Fields investigated in this dissertation 
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Chapter 2 

2 Related Work 

This chapter describes state of the art of Machine Learning and Data 

Mining fields. First, we provide background information including information 

about several ML algorithms relevant to the MetaSqueezer system. Next, we 

introduce necessary information for comparison with existing ML algorithms.  

2.1 Introduction 

The MetaSqueezer system uses inductive ML techniques to perform 

generation of rules from input supervised data. Each supervised ML algorithm 

should have these qualities: 

• accurate classification – the generated rules need to accurately classify 

examples which were unseen during learning, 

• simple rules – the generated rules should be compact, since less complex 

rules are easier to comprehend and are characterized, by the Ockham’s 

razor, by improved validity, 

• efficient rule generation – the algorithm must scale up to generate rules 

for large data sets, 

• flexibility – the algorithm should work on wide range of problems. In 

case of supervised inductive learning, problems are characterized by 



 26

type of attributes (discrete numerical, discrete nominal, continuous), and 

presence of noise and missing values. 

The first two qualities are typical for any IL task. The third, however, 

requires ML algorithms to be scalable. Many early AI algorithms were designed 

to work only for problems with small number of examples, but were not scalable 

(Schank, 1991). Presently, the fundamental requirement for any DM and/or ML 

algorithm is that it must be able to process large amount of data. The first three 

qualities are typical in design of ML algorithms (Clark and Niblett, 1989), and 

only state of the art ML algorithms exhibit all four qualities (Esposito et al., 2001, 

Cios and Kurgan, 2002a). 

There are also several other issues specific to ML. Many data sets, used by 

ML algorithms, contain noise and missing values. Noise can be present in both 

the predicting and predicted attributes. In the latter case, we have so called false 

examples. Also, many data sets contain missing information, especially for 

domains where the data was collected manually. Only some of the ML algorithms 

are noise and missing data tolerant. A missing data tolerant algorithm can 

generate the rules from the data that contain missing information. A noise tolerant 

algorithm can generate rules that do not cover noisy examples. To show the 

extend of the problem, Redman (Redman, 1998) points out that the data collected 

by enterprise companies consist of about 1-5% errors, and are often redundant and 

inconsistent. 
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The last issue is the format of input data. Some of the data may incorporate 

different types of attributes. The possible types include nominal, discrete 

numerical and continuous data. While some of the ML algorithms are able to 

work with all data types, other algorithms may not be able to work, for example 

with continuous attributes, which in turn narrows down their application range. 

Thus, a flexible inductive ML algorithm must be able to overcome all of the 

above issues. The MetaSqueezer system not only exhibits the first three qualities, 

but also satisfies the requirement of flexibility.  

2.2 Comparing ML Algorithms 

Since quality of inductive ML algorithm is characterized by multiple factors, 

a rigorous method for their assessment is needed.  

The accuracy quality requires that an algorithm must be correct and valid. 

Correctness is exhibited by almost all ML algorithms. It is usually assured by a 

proper design of the algorithm. Such design must assure that generated rules 

describe only positive examples, while excluding negative examples. The 

assessment of validity of rules consists of evaluation of their accuracy while 

performing classification task on a test set. In this work, a more precise 

verification test is used to assess validity of generated rules. 

The simplicity is assessed by an evaluation of the complexity of generated 

rules, and is usually measured as length of generated rules. Such simple 
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evaluation is possible, since most of inductive ML algorithms use relatively 

simple, relational-like knowledge representation models.  

The scalability is reflected in the computational complexity of the 

algorithms. This is often shown using benchmarking tests rather than formal 

complexity analysis. Although most of inductive ML algorithms do not report 

theoretical complexity, this work provides both theoretical and experimental 

scalability evaluation for the system. Since scalability analysis is an experimental-

intensive activity, it requires a very precise definition concerning setup and 

procedure of the performing test. These are explained in the sections below. 

Finally, flexibility of an inductive ML algorithm is evaluated based on factors that 

include input attribute types, noise resistance, and missing value resistance. 

2.2.1 Assessment of Validity 

The assessment of validity of rules is performed by computing accuracy or 

verification tests while performing classification task with the generated rules on 

a test set. Two procedures are utilized to perform such test:  

• single-split testing. The test is performed by dividing the original data 

into training and testing sets. The sets are disjoint, and the first one is 

used to derive data model, and the second to test it. The test results using 

the accuracy test report only accuracy, while test results using the 

verification test report accuracy, sensitivity, and specificity. 

• k-fold cross validation. In k-fold cross-validation, the data is divided into 

k subsets of approximately equal size (Efron, 1979). Rules are generated 
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k times by an IL algorithm, each time leaving out one of the subsets 

from training, but using only the omitted subset to calculate tests for the 

algorithm. Similarly, test results using the accuracy test report only 

accuracy, while test results using the verification test report accuracy, 

sensitivity, and specificity. The test results report mean values standard 

deviations of the above criterions, averaging through all k tests. The 10-

fold cross validation is the most often used cross validation procedure. 

The k-fold cross validation is a more reliable test procedure than the single-

split method. It shows the true performance, in terms of validity, of the tested IL 

algorithm. On the other hand, using the single-split procedure may lead to fitting 

the generated rules to the test set. This is possible since only one test is performed, 

which may lead to falsifying the true performance of the tested algorithm. 

When comparing an IL algorithm with other algorithms, the choice of one 

of the above procedures depends on the test procedures done by researches who 

developed the methods. If they performed the single-split method, the same 

method must be used. 

2.2.1.1 Repositories of Benchmarking Data Sets 

There exist several repositories of standard benchmarking data sets, which 

are widely used by researchers in the IL, ML, and DM communities to perform 

testing and comparison between different algorithms. Sample repositories include 

the University of California Irvine (UCI) Machine Learning Repository (Blake 

and Merz, 1998), the UCI KDD Archive (Hettich & Bay, 1999), and the StatLib 
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project repository (Vlachos, 2000). The repositories store a number of data sets, 

which are characterized by different properties, such as different attribute types, 

different number of classes, etc. This enables using them with many different IL 

algorithms. 

Some of standard benchmarking data sets are already prepared for testing 

procedures. For most of such data sets, they are prepared for single-split test, and 

thus for the sake of consistency between different tests performed using the same 

data set, this testing procedure must be used. The system described here was 

tested using standard data sets downloaded from the above repositories. It uses the 

same test procedures as the procedures used by researchers who reported their 

results. Doing this assures reliable comparison with similar algorithms. 

2.2.2 Experimental Assessment of Scalability 

The scalability of an IL algorithm is often evaluated by showing the 

algorithm’s running time for benchmarking tests. To enable comparison of such 

test between different algorithms, first the same data sets in the same test 

configurations must be used. Second, a procedure for computing the running time 

of algorithms, which were executed on different hardware platforms, must be 

defined. The assumption is that each of the researchers may have only limited 

hardware resources, and rather than forcing them to use the same hardware 

platform, the results are recomputed to accommodate for using different platforms. 

The most commonly used methods for direct comparison of running time 

between algorithms on different hardware configurations are the SPEC 
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benchmarking tests (SPEC, 2001). SPEC benchmark tests contain several 

programs that perform floating-point or integer computations, which are intended 

to measure performance of different hardware configurations. For example, the 

benchmarking results study performed in (Lim, Loh & Shih, 2000), where 33 IL 

algorithms were compared using standard benchmarking data sets, was performed 

on three different hardware configurations. By using the SPECint92 

benchmarking test, they converted all execution times into the execution time 

achieved when using the DEC3000 model 300 system (DEC). 

This work reports results in the same manner. All of the reported running 

time results for the DataSqueezer algorithm and MetaSqueezer system were 

converted into the running time when using the DEC system. This configuration 

was used to be consistent with the results reported in the above study. Only the 

results reported for the CAIM algorithm use the original running time, since the 

entire test was performed on the same hardware configuration. Thus, we note that 

when evaluating running time results, one should analyze ratio of the running 

times between algorithms, rather then the exact numbers. 

To show how the SPEC tests are used, an example recalculation of running 

time between the hardware configuration used by the author, and the DEC system, 

is presented. The hardware configurations used to perform the tests in this work is 

as follows: Intel Pentium III 800 MHz (I800). The hardware configurations along 

with the corresponding SPEC test results are given in Table 2. 
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Table 2. SPEC test results for the computer hardware configurations used in the 

benchmarking tests 

 

To recalculate the running times the following steps are taken: 

• The SPECint95 benchmarking test was used since I800 configuration was 

not reported in the SPECint92 test, where DEC was reported. The Intel 

Pro Adler 150MHz (I150) system was used as a bridge between the 

SPECint92 and SPECint95 benchmarking tests. 

• The CPU time ratio for I150 using DEC as the reference was calculated 

as follows: DEC time = (I150 time) * (SPECint92 for I150) / 

(SPECint92 for DEC) ≈ (I150 time) * 3.5. 

• The ratio to transform the time from the I150 to I800 was calculated as: 

I150 time = (I800 time) * (SPECint95 for I800) / (SPECint95 for I150) ≈ 

(I300 time) * 6.4. 

• Both calculated above ratios were multiplied to calculate the CPU time 

between DEC and I800. The final formula for the I800 is: DEC time ≈ 

22.4 * (I800 time). 

Thus, the time achieved on I800 configuration is multiplied by 22.4 to 

compute the time, which is equivalent to the time achieved using the DEC 

configuration. 

 Workstation SPECint92 
results  Workstation SPECint95 

results 
I150 Intel Pro  Alder 150MHz 243.9 I150 Intel Pro  Alder 150Mhz 6.08 
DEC DEC 3000 Model 300 66.2 I800 Intel Pentium III 800MHz 38.9 
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2.3 Evaluation of Inductive Machine Learning Algorithms 

Three general categories of inductive ML algorithms are: decision trees, 

rule algorithms, and their hybrids (Cios et al., 1998). An inductive decision tree 

algorithm generates rules based on finding regularities in the data through data 

manipulations that use entropy measures (Shannon, 1948) and involve generation 

of a decision tree. Examples of decision tree algorithms are CART (Breiman, 

1984), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and T1 (Holte, 1993). In 

contrast, an inductive rule algorithm does not use entropy, and does not generate a 

tree when generating rules. Representative rule algorithms are the AQ family of 

algorithms (Michalski et al., 1986; Kaufmann and Michalski, 1999), DBLearn 

(Cai et al., 1991; Han et al., 1992), KEDS (Rao and Lu, 1993), and DataSqueezer 

(Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). The hybrid algorithms work 

by combining entropy-based and non-entropy based approaches. They are 

represented by CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991), and 

CLIP family of algorithms (Cios and Kurgan, 2001; Cios and Kurgan 2002a). 

Table 3, partially taken from (Holsheimer and Siebes, 1994), shows summary of 

major properties of representative inductive ML algorithms. 
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Table 3. Major properties of inductive ML algorithms 

Algorithm Search Type Results Other Features 
AQ15 top-down, beam production rules only discrete attributes 
C4.5 top-down, hill climber decision tree all attribute types 
CLIP4 top-down, beam production rules all attribute types 
CN2 top-down, beam decision lists all attribute types 

DataSqueezer top-down/bottom-up, 
hill climber production rules all attribute types 

DBLearn bottom-up, hill climber production rules only discrete attributes 
ID3 top-down, hill climber decision tree only discrete attributes 
KEDS top-down, exhaustive region-equation pair only discrete attributes 
T1 top-down, hill climber decision tree 1 level tree, all attr. types 

 

2.3.1 Decision Tree Algorithms 

The decision tree algorithms are characterized by fast rule generation, high 

validity of generated results, and high understandability of generated knowledge 

representation. The T1, ID3, and C4.5, and other ML algorithm that are 

extensions of them, use the hill climber search technique, which makes them 

scalable. The CN2 algorithm is characterized by worse scalability, since it applies 

beam search. Most of decision tree algorithms are also flexible in terms of being 

able to process both discrete and continuous attributes, and being noise and 

missing values tolerant. Their limitation is the output knowledge representation, 

i.e., decision trees. There are two downsides to using decision trees: 

• Large trees. Decision tree algorithms tend to grow very large trees for real 

applications and, thus, may be difficult to interpret by humans (Holsheimer 

and Siebes, 1994). Only few decision tree algorithms can generate rules that 

are comparably compact relative to the rules generated by the rule 
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algorithms. They have to apply pruning operation to shorten the rules 

(Quinlan, 1986; Quinlan 1987b; Mingers, 1989; Esposito et al., 1997). 

However, pruning adds additional computation overhead and, thus, may 

worsen scalability. 

• Dependent rules. Rules generated by the decision tree algorithms are 

dependent, i.e., rules share selectors between each other. Since rules are 

generated by traversing a tree from a leaf to the root node, different rules 

share the same selectors, as illustrated in Figure 8. This prevents using 

decision trees in an MM setting, since they would generate meta-rules, 

which are biased towards the shared selectors. 

 

Figure 8. Rule generation using decision trees including sample tree, rules 

generated from it, and shared selectors 

2.3.2 Rule Algorithms 

The rule tree algorithms are characterized by slower rule generation, when 

comparing to decision trees, relatively high validity of generated rules, and high 

understandability of generated knowledge representation. AQ and CLIP4 apply 

X

Y

Z 

P 

P 

N

N

0

0 

2 

1

1 

1

Rule 1: if X=1 then P 
Rule 2: if X=0 and Y=1 then N 
Rule 3: if X=0 and Y=0 and Z=1 then N 
Rule 4: if X=0 and Y=0 and Z=2 then P 

shared selectors: 
- rule 2 and 3, and rule 2 and 4: X=0 
- rule 3 and 4: X=0, and Y=0 



 36

beam search technique, and thus are not scalable. For example, CLIP4 has O(s2) 

complexity, where s is the number of examples in training set (Cios and Kurgan, 

2002a). The DBLearn and DataSqueezer apply hill climber search, and their 

scalability is similar to scalability of the decision tree algorithms. The 

DataSqueezer algorithm has O(s) complexity (Kurgan and Cios, 2003a), while 

DBLearn has worse complexity of O(s log s). Also, only DataSqueezer and 

CLIP4 are flexible in terms of being able to process both discrete and continuous 

attributes. They are being both noise and missing values tolerant. Other 

algorithms, i.e., DBLearn and AQ15 can handle only discrete attributes.  

The rules generated by rules algorithms do not exhibit dependencies. This 

enables using them in an MM setting, in contrast to decision tree algorithms. Thus, 

since the architecture of the MetaSqueezer system is based on an MM concept, a 

rule algorithm was used to generate rules. The system utilizes DataSqueezer 

algorithm, since it exhibits best properties among the studied rule algorithms. 

DataSqueezer is characterized by linear running time, high validity of generated 

rules, flexibility to handle both discrete and continuous attributes, noisy and 

missing values resistance, and high understandability of generated rules. These 

properties are supported by extensive benchmarking comparison shown in the 

subsequent chapters. 
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Chapter 3 

3 Architecture of the MetaSqueezer System 

In this chapter we give a high level overview of the MetaSqueezer system 

and detailed description of all its components. The Meta Mining concept, which is 

one of the key concepts used in the MetaSqueezer system, is also described. The 

description of each component is followed by experimental and theoretical 

evaluation and comparison with other IL algorithms. A detailed description of the 

system along with its experimental evaluation is described in the next Chapter 4. 

3.1 Introduction 

The MetaSqueezer system uses supervised inductive ML methods and MM 

concept (Kurgan and Cios, 2003a). MM is a generic framework for higher order 

mining. Its main characteristic is generation of data models called meta-

knowledge (often meta-rules) from already generated data models (usually rules, 

which are called meta-data) (Spiliopoulou and Roddick, 2000). An MM IL system 

works in two steps. First, it divides the training set subsets and generates a data 

model for each of them. Next, it takes the generated data models and generates 

new meta-models from them. Since the MM concept is one of the fundamental 

technologies utilized to develop the MetaSqueezer system, the following section 

is used to introduce it to the reader. 
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3.1.1 Meta Mining 

The goal of the MM is to generate rules from rule sets generated by IL 

algorithms. An IL algorithm, which works based on the MM concept, is shown in 

Figure 9. 

 

Figure 9. The MM procedure 
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The MM is based on performing several steps in order to generate a final 

data model. First, the training set is divided into n subsets. Each of these subsets is 

fed into an IL algorithm to generate meta-data. The meta-data usually take form 

of production rules or decision trees. Next, the meta-data is fed into another or the 

same IL algorithm to generate meta-knowledge. The meta-knowledge is often in a 

form of meta-rules. The meta-rules may use the same knowledge representation as 

regular rules, i.e., production rulers, trees, etc., but they express knowledge about 

the meta-data, rather then the original training set. 

There are several advantages to using MM (Spiliopoulou and Roddick, 

2000; Kurgan and Cios, 2003a): 

• Generation of compact data models. Since an MM based system 

generates results from data models, they reflect patters that are present in 

meta-data. Thus, the results of MM are different than results of learning 

from the original training set. Researchers argue that such results are 

more suitable for describing knowledge that can be considered 

interesting by users (Abraham and Roddick, 1999; Spiliopoulou and 

Roddick, 2000; Roddick and Spiliopoulou, 2002). In many cases, the 

meta-rules describe the most interesting information since often focus of 

interest is directed to finding the information that is a confluence of rules 

which describe a small subset of characteristics about the data (Abraham 

and Roddick 1999). 
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• Scalability. The learning algorithms are applied to small sets of data, i.e., 

subsets of the training set and meta-data, instead of to the huge amounts 

of data stored in the training set. This results in reduction of 

computational time for the systems that utilize non-linear algorithms to 

generate data models. 

• User-friendliness. Some argue that meta-mining is characterized by 

improved tractability of generation of data models and improved ease of 

finding changes in the data (Spiliopoulou and Roddick, 2000).  

Although using MM has the advantage of reducing computational overhead 

and providing compact data models, so far it received little attention in the 

DMKD community. 

 

One of the most natural application areas for MM is the temporal KD where 

rules can be generated for particular time intervals and then meta-knowledge can 

be discovered using MM. Instead of directly learning from the entire temporal 

training data set, its parts that describe particular time intervals are learned to 

generate meta-rules, and later used to generate the meta-knowledge. The MM 

approach was applied to temporal association rule algorithms (Rainsford and 

Roddick 1999). The MM in case of the temporal KD performs meta-knowledge 

learning, which consists of the following steps (Abraham and Roddick, 1997): 

1. rule set generation; In this step, individual snapshots of the data are 

selected and learned from, and generated rules (meta-data) are 
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collected into separate rule sets (timestamped for identification). The 

generated rule sets are of the same type, and are generated using the 

same settings of an IL algorithm to ensure full compatibility. 

2. input preparation; In this step, generated rule sets are converted into a 

consistent format to facilitate rule processing. 

3. meta-rule set generation; In this step, a separation algorithm that takes 

two adjacent, in a temporal sense, rule sets as input, compares them 

and produces four categories of  meta-rules: new, retired, unchanged, 

and changed rules (some of which may be empty). 

4. processing of categories; In this step, each meta-rule category is 

processed individually to derive general characterizations for the 

contents of each of the four (or possibly only some selected, e.g. new 

and expired) categories. 

Using MM in this setting results in generation of meta-knowledge that 

describes changes in the data rather than the data itself. The above temporal MM 

concept was extended to enable incremental discovery of meta-rules (Abraham 

and Roddick 1999). 

 

The system described here can be used for generation of data models from 

any supervised data. In particular, the system can be used for analysis of ordered 

data. Such data can be divided into subsets using one of the data attributes. One 

example of such data is temporal data. Since the MetaSqueezer system does not 
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utilize any temporal information, it uses the MM concept to generate regular, non-

temporal production rules. Sample applications of the system include analysis of 

medical data, consumer transactions data, business decision making data, stock 

market data and many others. 

3.2 Overview of the MetaSqueezer System 

The MetaSqueezer system uses an inductive ML algorithm to generate 

meta-rules from supervised data (Kurgan and Cios, 2003a). The system generates 

the meta-knowledge in a series of these steps (Kurgan and Cios, 2003a): 

• Preprocessing: 

o the training set is validated by repairing or removing incorrect 

records, and marking unknown values, 

o the validated data is transformed into the form suitable for further 

processing. In case of the MetaSqueezer system, it is a single 

relational table where a separate column holds an attribute that is 

used to divide the data.  The classes are generated for each data 

record. They are usually derived from one of the attributes, 

o continuous attributes, of the transformed data, are discretized (Cios 

et al., 1998) by a supervised discretization algorithm CAIM 

(Kurgan and Cios, 2001; Kurgan and Cios, 2002b; Kurgan and 

Cios, 2003b), 

o the data is divided into subsets using the prepared attribute; 
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• Data Mining 

o meta-data in the form of production rule sets are generated from 

data for each of the defined subsets. The rules are generated using 

supervised inductive ML algorithm called DataSqueezer (Kurgan 

and Cios, 2002a; Kurgan and Cios, 2003a), 

o for every set of rules a rule table is created. It stores the generated 

rules in the format that is identical to the format of the original 

input data, for detailed explanation see section 3.3.1. Each table 

stores meta-data about the input data from one of the data subsets. 

• Meta Mining 

o meta-rules are generated from the rule tables. First, all the rule 

tables are concatenated into a single table. Next, the meta-rules are 

generated by applying the DataSqueezer algorithm to the combined 

rule table. The meta-rules describe the most important patterns 

associated with defined classes over the entire original training set. 

The MetaSqueezer system uses the same ML algorithm, called 

DataSqueezer, to generate both meta-data and meta-knowledge. This is because of 

specific properties of the DataSqueezer algorithm, which are described in the 

subsequent sections. The system is characterized by high accuracy and good 

scalability because of its linear complexity, high compactness of generated meta-

knowledge, and flexibility. It works with nominal, and discrete and continuous 
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numerical attributes. It also handles data with missing values and noise. The 

above properties are discussed and shown in the subsequent sections. 

Below, a detailed description of the system is given. Chapter 4 describes 

components of the system, i.e., DataSqueezer and CAIM algorithms, together 

with evaluation and comparison with other state of the art ML algorithms. 

Chapter 5 describes the MetaSqueezer system. It also provides an evaluation and 

comparison of the system with other state of the art ML systems. Finally, Chapter 

6 is devoted to description of application of the system into a real-life problem 

concerning analysis of cystic fibrosis data. 

3.3 The DataSqueezer Algorithm 

The DataSqueezer algorithm constitutes core element of the MetaSqueezer 

system (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). It is utilized to 

generate meta-data during the DM step and the meta-rules in the MM step. 

DataSqueezer is an inductive ML algorithm that generates production rules 

applying generalization operations, and irrevocable, informed hill climber search. 

The algorithm applies a bottom-up, followed by top-down approach to generate 

the rules. Next, we provide nomenclature necessary to give the pseudocode of the 

algorithm, the pseudocode, and prose explanation of the algorithm. 

3.3.1 The Algorithm 

Let us denote the input data set by S. The sets of positive examples, SP, and 

negative examples, SN, must satisfy these three properties: SP ∪ SN = S, SP ∩ SN = 
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∅, SN ≠ ∅, and SP ≠ ∅. Examples are described by a set of K attribute-value pairs: 

]#[1 jj
K
j vae =∧= , where aj denotes jth attribute with value vj ∈ dj (domain of 

values of jth attribute), # is a relation (=, <, ≈, ≥, etc.), and K is the number of 

attributes (Michalski, 1973; Michalski, 1983b). In case of the DataSqueezer 

algorithm the relation is equality. An example e consists of set of selectors sj = [aj 

= vj]. The DataSqueezer algorithm generates production rules in the form of: IF 

(s1 AND … AND sm) THEN class = classi, where si = [aj = vj] is a single selector. 

We define SP and SN as tables where rows represent examples and columns 

correspond to attributes. Table of positive examples is denoted as POS and the 

number of positive examples by NPOS, while the table and the number of negative 

examples as NEG and NNEG, respectively. The POS and NEG tables are created by 

inserting all positive and negative examples, respectively, where examples are 

represented by rows and attributes by columns. Positive examples from the POS 

table are described by the set of values: posi[j] where j=1,…,K, is the column 

number, and i is the example number (row number in the POS table). The 

negative examples are described similarly by a set of negi[j] values. The 

DataSqueezer algorithm also uses tables that store intermediate results (GPOS for 

POS table, and GNEG for NEG table), which are composed of K columns. Each 

cell of the GPOS table is denoted as gposi[j], where i is a row number and j is a 

column number, and similarly for GNEG table is denoted by gnegi[j]. The GPOS 

table stores reduced subset of the data from POS, and GNEG table stores reduced 

subset of the data from NEG. The meaning of reduction is explained later. Both, 
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the GNEG and GPOS tables have an additional, (K+1)th column that stores number 

examples from NEG and POS, which a particular row in GNEG and GPOS describes, 

respectively. Thus, for example gpos2[K+1] stores number of examples from 

POS, which are described by the 2nd row in GPOS table. Figure 10 shows the 

pseudocode of the DataSqueezer algorithm (Kurgan and Cios, 2003a). 

 

Figure 10. The pseudo-code of the DataSqueezer algorithm 

The first step of the algorithm works in a bottom-up manner. It starts with 

the most specific hypotheses, which cover individual examples. Next, it applies 

generalization operator to generalize them until they incorporate two or more 

selectors. This is performed for both positive and negative data. In the second step, 

the algorithm applies a search procedure that generates rules from the generalized 

Given: POS, NEG, K (number of attributes), S (number of examples) 
Step1. 
1.1 Initialize GPOS = []; i=1; j=1; k=1; tmp = pos1; 
1.2.1 for k = 1 to K    // for all attributes 
1.2.2    if (posj[k] ≠ tmp[k] or posj[k] = ‘∗’) 
1.2.3       then tmp[k] = ‘∗’;    // ‘∗’ denotes missing value 
1.2.4 if (number of non missing values in tmp ≥ 2) 
1.2.5       then gposi = tmp; gposi[K+1] ++; 
1.2.6    else i ++; tmp =  posj; 
1.3 set j++; and until j ≤ NPOS go to 1.2.1 
1.4 Initialize GNEG = []; i=1; j=1; k=1; tmp = neg1; 
1.5.1 for k = 1 to K    // for all attributes 
1.5.2    if (negj[k] ≠ tmp[k] or negj[k] = ‘∗’) 
1.5.3       then tmp[k] = ‘∗’;    // ‘∗’ denotes missing value 
1.5.4 if (number of non missing values in tmp ≥ 2) 
1.5.5       then gnegi = tmp; gnegi[K+1] ++; 
1.5.6    else i ++; tmp =  negj; 
1.6 set j++; and until j ≤NNEG go to 1.5.1 
Step2. 
2.1 Initialize RULES = []; i=1;   // where rulesi denotes ith rule stored in RULES 
2.2 create LIST = list of all columns in GPOS  
2.3 within every column of GPOS that is on LIST, for every non missing value a from selected column k  

compute sum, sak, of values of gposi[K+1] for every row i, in which a appears (multiply every sak, by the 
number of values the attribute k has) 

2.4 select maximal sak, remove k from LIST, add “k = a” selector to rulesi 
2.5.1 if rulesi does not describe any rows in GNEG 
2.5.2       then remove all rows described by rulesi from GPOS, i=i+1; 
2.5.3          if GPOS is not empty go to 2.2, else terminate 
2.5.4    else go to 2.3 
Output: RULES describing POS
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hypotheses. Each rule is generated in a top-down manner, since the search starts 

with a single selector, and uses specialization by adding additional selectors until 

the rule covers only positive examples, from the generalized positive hypotheses, 

and none of the negative examples, from the generalized negative hypotheses. 

The rule generation mechanism used by the DataSqueezer algorithm is 

based on the inductive learning hypothesis (Mitchell, 1997). It states that any 

hypothesis found to approximate the target function (defined by class attribute) 

well, over a sufficiently large set of training examples, will also approximate the 

target function well over other unobserved examples. Based on this assumption, 

step 1 of the algorithm performs data reduction via use of the prototypical concept 

learning. Step 1 is very similar to the Find S algorithm by Mitchell (Mitchell, 

1997). For comparison, the Find S algorithm is shown in Figure 11. DataSqueezer 

performs data reduction to generalize information stored in the original data. The 

data reduction is performed by application of generalization operator in linear, 

with respect the training set, manner. First, a very specific hypothesis that covers 

an example is generated, and next it is generalized by using next and the 

following examples. The data reduction is performed separately for both positive 

and negative data. Step 2 of the algorithm generates rules by performing 

irrevocable, informed hill climber search starting with an empty rule, and adding 

selectors until the termination criterion fires. The max depth of the search is equal 

to the number of attributes. Next, the examples covered by the generated rule are 
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removed from the GPOS table and the process is repeated until all examples are 

covered by generated rules. 

 

Figure 11. The Find S algorithm 

The Find S algorithm has several problems with the convergence to a 

correct hypothesis (Mitchell, 1997). The DataSqueezer algorithm uses step 2 to 

resolve them. Step 2 assures convergence to the correct and consistent with 

training set hypothesis by using negative data. Each rule, while being generated, 

is checked versus the set of generalized negative hypotheses. If the rule covers 

any data in this set, a new selector is added to the rules making it more specific, 

and thus able to better distinguish between positive and negative data. Only rules 

that can describe positive data and none of the negative data are accepted. Thus, 

the issue of inconsistency of generated hypotheses is resolved. The main 

properties of the DataSqueezer algorithm are summarized in Table 4. 

Table 4. Major properties of the DataSqueezer algorithm 

Search Process Search Type Results Other Features 
top-down in step1 
bottom-up in step 2 

irrevocable 
hill climber production rules all attribute types, noise and 

missing values resistant 
 

For multi-class problems, the DataSqueezer algorithm generates a separate 

set of rules for every class, each time generating rules that describe the currently 

Find S Algorithm 
1. Initialize h to the most specific hypothesis in H 
2. For each positive training instance x 
    - For each attribute constraint ai in h 
       IF the constraint ai in h is satisfied by x THEN do nothing 
       ELSE replace ai in h by the next more general constraint that is satisfied by x 
3. Output hypothesis h



 49

chosen (positive) class. The DataSqueezer algorithm utilizes CAIM algorithm to 

perform front-end discretization of continuous attributes (Kurgan and Cios, 2001; 

Kurgan and Cios, 2002b; Kurgan and Cios, 2003b). 

The following section provides an answer to the question why the 

DataSqueezer was chosen, among other ML algorithms, to be incorporated into 

the MetaSqueezer system. The DataSqueezer algorithm was chosen because of its 

five following characteristic features (Kurgan and Cios, 2002a; Kurgan and Cios, 

2003a): 

• it generates production rules that involve no more than one selector 

per attribute. The number of selectors of a rule generated by the 

DataSqueezer algorithm is bounded by the number of attributes in the 

data. Similar property is exhibited only by decision tree algorithms. The 

rule and hybrid algorithms generate rules that may involve multiple 

selectors per single attribute. 

This property enables storing generated rules in a table that has identical 

structure with the original data table. The following example of patients 

who are either directed to go home or to undergo a treatment, based on 

some test results, is used to present this property. Every patient is 

described by three attributes: temperature, heart blood flow results, and 

chest pain type. The attributes can take on the following values: 

temperature = {normal, low, high}, heart blood flow = {normal, low, 

high}, and chest pain type = {1, 2, 3, 4}. Based on the values of the 
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attributes, a decision is made for each patient. We note that the example 

is used only to show how the algorithm is working, while the algorithm 

is able to handle much more complex and larger training sets. The 

DataSqueezer algorithm is used to generate a set of rules that describe 

how the decision was made based on some historical data. A sample 

historical data is shown in Table 5. 

Table 5. Sample training set for the DataSqueezer algorithm 

decision temperature heart blood flow chest pain type 
home low normal 2 
home low normal 3 
home normal normal 3 
home normal low 2 
home normal low 1 
treatment low high 4 
treatment low low 4 
treatment high normal 4 

 

DataSqueezer generates the following three rules for the above data: “IF 

temperature = normal THEN home”, “IF temperature = low AND heart 

blood flow = normal THEN home”, and “IF chest pain type = 4 THEN 

treatment”. The rules describe historical data and at the same time show 

decision patterns. The three rules can be stored in a rule table shown in 

Table 6. This table has identical format with the table shown in Table 5. 

Table 6. Sample rule table generated by the DataSqueezer algorithm 

decision temperature heart blood flow chest pain type 
home normal * * 
home low normal * 
treatment * * 4 
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The “*” symbol stands for missing value, and is used to denote attributes 

that are not used in the rules. The rule table can be used as input to the 

same algorithm that was used to generate the rules. This enables using 

the DataSqueezer algorithm in an MM setting by running it again with 

the generated rules (meta-data) as its input to produce the meta-rules. 

The meta-rules describe patterns exhibited in the meta-data, and thus 

they provide a well-focused and compact knowledge about the classes. 

• it generates rules that are very compact in terms of the number of 

used selectors. Experimental results, shown later, indicate that 

DataSqueezer generates rules which involve small number of selectors. 

This assures that the input data for the MM step of the MetaSqueezer 

system are very compact and focused on describing the classes. This, in 

turn, improves the results generated by the system. For comparison, 

decision trees tend to grow very large and, thus, are difficult to interpret 

by humans, unless pruning is used to shorten the rules. For details see 

section 2.3.1. 

• it can handle data with large number of missing values. The rule 

generation procedure used by the DataSqueezer algorithm assures that it 

can cope with data that has large number of missing values. This 

property is especially valuable in an MM setting. The meta-data 

generated by the DataSqueezer algorithm contains many missing values 

since it provides a compact description of the original data. It omits 
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some attributes and selectors, used in the original data, to provide 

compact meta-data. The omitted values are substituted by missing values 

in the rule tables, which are used as an input to the MM step. 

The DataSqueezer algorithm uses only complete portion of the data. In 

other words it uses all available information while ignoring missing 

values. It uses all examples from the original data, even the examples 

that contain missing values, by analyzing their complete values. 

• it generates independent rules. Rules generated by the DataSqueezer 

are independent of each other, i.e., the rule generation mechanism does 

not allow for sharing of selectors between the rules. To compare, the 

decision trees generate dependent rules, see section 2.3.1. If decision 

trees were to be used in an MM setting, the generated meta-rules would 

be biased towards the shared selectors. Thus, using decision trees can 

results in omitting some of important patterns in the generated meta-

rules. 

• it has linear complexity. Complexity analysis of the algorithm shows 

that it is liner in respect to the number of examples in the data sets, i.e., 

O(m), where m is the number of examples. The theoretical complexity 

analysis of the algorithm is shown in section 3.3.1.1. 

The above discussion rules out decision tree algorithms as potential 

candidates for incorporation in the MetaSqueezer system since they tend to grow 

large trees as well as dependent rules. Since the DataSqueezer algorithm is 
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characterized by the best features among the state of the art rule and hybrid 

algorithms, see section 2.3.2, it was chosen to be used in the system. 

3.3.1.1 Theoretical Complexity Analysis 

In what follows, complexity of the DataSqueezer algorithm is estimated. 

First we start by defining assumptions: 

• s is number of examples, k is number of attributes, r is the number of 

generated rules, and c is the number of classes in the problem, 

• length of the RULES vector is k, 

• size of all POS and NEG matrices is kO(s), 

• s>>k, since this is required to apply ML algorithm, 

• the r, c, and k are small constants. These constants were used in the 

analysis to provide general complexity estimation, but the final 

complexity is a function of s. 

To estimate complexity of the entire algorithm, we break the process into 

determination of the complexity for particular steps of the algorithm: 

1. complexity of the initialization (line “Given” from the code from Figure 10) 

kO(s) to derive POS matrix 

kO(s) to derive NEG matrix 

Thus, the total complexity of the initialization is: kO(s). 

2. complexity of STEP 1 (lines 1.1-1.6 from the code from Figure 10) 

Line 1.1:  O(1) 

Line 1.2.1:  O(k) and applies to lines 1.2.2, and 1.2.3 
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Line 1.2.2:  O(1) 

Line 1.2.3:  O(1) 

Lines 1.2.4-1.2.6: O(1) 

Line 1.3:  O(s) and applies to lines 1.2.1-1.2.6 

Line 1.4:  O(1) 

Line 1.5.1:  O(k) and applies to lines 1.5.2, and 1.5.3 

Line 1.5.2:  O(1) 

Line 1.5.3:  O(1) 

Lines 1.5.4÷1.5.6: O(1) 

Line 1.6:  O(s) and applies to lines 1.5.1-1.5.6 

Thus total estimated complexity of the STEP 1 is: O(1) + O(s) • [ O(k) • 

[ O(1) + O(1) ] + O(1) + O(1) + O(1) ] + O(1) + O(s) • [ O(k) • [ O(1) + O(1) ] + 

O(1) + O(1) + O(1) ] = O(1) + O(ks) + O(s) + O(s) + O(s) + O(1) + O(ks) + O(s) 

+ O(s) + O(s) = O(ks). 

3. complexity of STEP 2 (lines 2.1-2.5.4 from the code from Figure 10) 

Line 2.1:  O(1) 

Line 2.2:  O(1) 

Line 2.3:  O(ks) one sweep through GPOS is sufficient 

Line 2.4:  O(k) selection of max sak is precomputed in 2.3 

Line 2.5.1:  O(ks) one sweep through GNEG is required 

Line 2.5.2:  O(s) 
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Line 2.5.3:  O(r) and applies to lines 2.2-2.5.4, since this line 

will execute “go to 2.2” r times 

Line 2.5.4:  O(k) and applies to lines 2.3-2.5.4, since the 

longest rules has k selectors 

Thus the total complexity of the STEP 2 is: O(1) + O(r) • [ O(1) + O(k) • 

[ O(ks) + O(k) + O(ks) + O(s) ]] = O(1) + O(r) • [ O(1) + O(k2s) + O(k2) + O(k2s) 

+ O(ks) ] = O(1) + O(r) + O(rk2s) + O(rk2) + O(rk2s) + O(rks) = O(rk2s). 

 

The complexity of the entire algorithm is estimated as a sum of 

complexities for each of the algorithm’s steps as: kO(s) + O(ks) + O(rk2s) = 

O(rk2s). 

The above estimation concerns generation of rules for one class. The 

complexity of generation of rules for the problems with c classes is cO(rk2s). 

Since the number of generated rules r and number of classes c are usually small 

constants, we can estimate that the expected running time of the algorithm is 

O(k2s). Additionally, since number of attributes k is also usually a small constant, 

the expected running time of the algorithm is estimated as O(s). This argument 

shows that the DataSqueezer algorithm is linear. Linear complexity of the 

DataSqueezer algorithms proves that it is scalable and can therefore be used with 

data sets of large size. 
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3.3.2 Experimental Evaluation 

The DataSqueezer algorithm was extensively benchmarked to evaluate its 

validity, simplicity, efficiency and flexibility. It was tested on 20 data sets. The 

data sets were obtained from the University of California Irvine (UCI) Machine 

Learning Repository (Blake and Merz, 1998), the UCI KDD Archive (Hettich & 

Bay, 1999), and from the StatLib project data sets repository (Vlachos, 2000). The 

reason for using standard benchmarking data sets is that it enables direct 

comparison of performance of the DataSqueezer algorithm with other ML 

algorithms that generate similar results. A detailed description of the data sets is 

given in Table 7 Both, percent of missing values and percent of inconsistent 

examples refer to already discretized training sets.  

The benchmarking tests are characterized by diversity of training sets, 

including their size, both in terms of number of examples and attributes, number 

of classes, attribute types, and amount of missing values and noise in the data. 

The range of the tests is characterized by: 

• the size of training data sets: between 151 and 200K examples, 

• the size of testing data sets: between 15 and 565K examples, 

• the number of attributes: between 5 and 61, 

• the number of classes: between 2 and 10, 

• the attribute types: nominal, discrete numerical, and continuous 

numerical, 

• the percentage of examples with missing values: between 0 and 52.3, 
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• the percentage of inconsistent, noisy examples: between 0 and 66.3. 

 

Table 7. Description of data sets used for benchmarking of DataSqueezer 

algorithm 

set size # classes # attrib. test data % ex. with 
missing 

% inconsistent 
examples 

# subsets 

bcw 699 2 9 10CV 2.3 0 4 
bld 345 2 6 10CV no 62.2 3 
bos 506 3 13 10CV no 22.9 3 
cmc 1473 3 9 10CV no 53.6 7 
dna 3190 3 61 1190 no 0 8 
hea 270 2 13 10CV no 1.9 3 
led 6000 10 7 4000 no 66.3 10 
pid 768 2 8 10CV no 60.9 4 
sat 6435 6 37 2000 no 3.6 10 
seg 2310 7 19 10CV no 0.8 6 
smo 2855 3 13 1000 no 36.5 4 
thy 7200 3 21 3428 no 1.8 6 
veh 846 4 18 10CV no 6.7 4 
vot 435 2 16 10CV no 0 3 
wav 3600 3 21 3000 no 0 3 
tae 151 3 5 10CV no 56.1 2 
 

adult 48842 2 14 16281 7.4 31.9 10 
cid 299285 2 40 99762 52.3 0.01 10 
forc 581012 7 54 565892 0 6.4 5 
mush 8124 2 22 2441 29.7 0 5 

 

This diversity of the tests ensures that evaluation of the algorithm, which is 

performed based on comparison with results achieved by other state of the art 

inductive ML algorithms, is comprehensive and strong. 
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3.3.3 Comparison of DataSqueezer with Other Algorithms 

The tests compare accuracy of the rules, number of rules and selectors, and 

execution time. The DataSqueezer algorithm was compared to CLIP4 algorithm 

(Cios and Kurgan, 2002a), and 33 other inductive ML algorithms, for which the 

results were published in (Lim et al., 2000). This study reports results on the first 

16 data sets described in Table 7. The remaining 4 data sets were chosen because 

of their larger size, and incorporation of larger amount of missing values. The last, 

cid, data set was also used to perform experimental complexity analysis. 

3.3.3.1 Accuracy 

The tests, see Table 8, show verification test results for the DataSqueezer 

and other ML algorithms (Kurgan and Cios, 2003a). For the 33 algorithms 

maximum and minimum accuracy, after (Lim et al., 2000), is reported. 

The mean accuracy of the DataSqueezer algorithm for the first 16 data sets 

is 75.4%. To compare, the POLYCLASS algorithm achieved the highest mean 

accuracy of 80.5% (Kooperberg et al. 1997). (Lim et al., 2000) calculated 

statistical significance of error rates. It shows that the difference between the 

mean accuracies of two algorithms is statistically significant at the 10% level if 

they differ by more than 5.9 %. Close analysis of the results indicates that the 

DataSqueezer algorithm’s accuracy is within the range of the best ML algorithms.  
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Table 8. Accuracy results for the DataSqueezer, CLIP4, and the other 33 ML 

algorithms 

Reported accuracy 
(Lim et al., 2000) DataSqueezer 

set 
max min 

CLIP4 
accuracy 

(Cios and Kurgan, 
2002a) 

mean 
accuracy 

mean 
sensitivity 

mean 
specificity

bcw 97 91 95 94 92 98 
bld 72 57 63 68 86 44 
bos 78 69 71 70 70 88 
cmc 57 40 47 44 40 73 
dna 95 62 91 92 92 97 
hea 86 66 72 79 89 66 
led 73 18 71 68 68 97 
pid 78 69 71 76 83 61 
sat 90 60 80 80 78 96 
seg 98 48 86 84 83 98 
smo 70 55 68 68 33 67 
thy 99 11 99 96 95 99 
veh 85 51 56 61 61 88 
vot 96 94 94 95 93 96 
wav 85 52 75 77 77 89 
tae 77 31 60 55 53 79 
MEAN 83.5 54.6 74.9 75.4 74.6 83.5 

set algorithm (accuracy) (reference) mean 
accuracy 

mean 
sensitivity 

mean 
specificity

NBTree (84) (Kohavi, 1996) 

adult 
C4.5 (84.5), C4.5-auto (85.5), Voted ID3-0.6 
(84.4), T2 (83.2), 1R (80.5), CN2 (84), HOODG 
(83.2), FSS Naive Bayes (86), IDTM  (85.5), 
Naive-Bayes (83.9), NN-1 (78.6), NN-3 (79.7), 
OC1 (85) (Blake & Merz, 1998) 

82 94 41 

cid 
C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0 
boosted (95.4), Naïve-Bayes (76.8)  (Hettich & 
Bay, 1999) 

91 94 45 

forc [NN-backprop (70.0), Linear Discriminant 
Analysis (58.0)]  (Blackard, 1998) 55 56 90 

[C4.5 (100), NBTree (96.5)] (Kohavi, 1996) 
[STAGGER (95)]  (Schlimmer, 1987) mush 
[HILLARY (95)] (Iba, Wogulis & Langley, 
1988) 

100 100 100 

MEAN mean best: 87.9    means worst: 77.1 82.0 86.0 69.0 
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We also note that since the mean sensitivities and specificities achieved by 

the algorithm have high and comparable values, the generated rules describe 

correctly all classes in the data. The rules are not biased towards describing, for 

example, only classes that are described by majority of examples. 

The results achieved by the DataSqueezer for the latter four data sets also 

place it among best ML algorithms. It achieves accuracies comparable to the 

results obtained by other best ML algorithms for the adult, cid, and mush data sets. 

 The results show that DataSqueezer generates very accurate rules, which 

means that it is characterized by high validity. 

3.3.3.2 Simplicity and Efficiency 

The tests, see Table 9, also show number of rules, number of selectors, and 

execution time for the DataSqueezer algorithm, and the other ML algorithms 

(Kurgan and Cios, 2003a). Similarly, as for the accuracy tests, the algorithm is 

compared with results achieved by 33 algorithms reported in (Lim et al., 2000), 

and with results achieved by the CLIP4 (Cios and Kurgan, 2002a). For the 33 

algorithms, the median number of rules (the authors reported the number of tree 

leaves for 21 decision tree algorithms) and the maximum and minimum execution 

time, as it was reported by the authors, is given. Additionally, for the 

DataSqueezer and CLIP4, the number of selectors per rules is reported. The last 

measure enables direct comparison of complexity of generated rules. 

The mean number of rules generated by the DataSqueezer algorithm is 21.3. 

In (Lim et al., 2000) the median number of tree leaves, which is equivalent to the 
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number of rules, for the 21 tested decision tree algorithms was reported as 17.8. 

The number of rules generated by the CLIP4 algorithm is 16.8. The number of 

rules generated by the DataSqueezer algorithm is comparable to the reported 

results. For the latter four data sets, the algorithm also achieves low number of 

generated rules. 

Table 9. Number of rules and selectors, and running time results for the 

DataSqueezer, CLIP4, and the other 33 ML algorithms 

Reported accuracy 
(Lim et al., 2000) DataSqueezer 

mean CPU time 

CLIP4 
(Cios and Kurgan, 2002a) 

set 

min [s] max [h] 

median 
# of 

leaves
mean 

time [s]
mean # 
rules

mean # 
selectors

# select 
/rule 

mean 
time [s]

mean 
# 

rules 

mean # 
select 

# 
select/ 
rule 

bcw 4s 2.7 7 5.1 4.2 121.6 29.0 0.2 4.5 12.8 2.8 
bld 5s 1.5 10 6.6 9.7 272.4 28.1 0.1 3.4 14.0 4.1 
bos 9s 5.5 11 35.8 10.5 133.5 12.7 0.4 19.8 107 5.4 
cmc 12s 23.9 15 46 8 60.7 7.6 1.3 20.2 70.5 3.5 
dna 2s 475.2 13 662.8 8 90 11.3 12.5 39.0 97.0 2.5 
hea 4s 3.3 6 2.2 11.6 192.3 16.6 0.1 4.7 17.1 3.6 
led 1s 12.4 24 166.4 41 189 4.6 3.8 51 194 3.8 
pid 7s 2.5 7 5.8 4 64.1 16.0 0.2 1.8 8.0 4.4 
sat 8s 73.2 63 3696.7 61 3199 52.4 21.3 57 257 4.5 
seg 28s 75.6 39 614.6 39.2 1169.9 29.8 6.1 57.3 219 3.8 
smo 1s 3.8 2 90.5 18 242 13.4 1.1 6 12 2.0 
thy 3s 16.1 12 164.2 4 119 29.8 1.3 7 28 4.0 
veh 14s 14.1 38 45.3 21.3 380.7 17.9 1.2 23.7 80.2 3.4 
vot 2s 25.2 2 4.4 9.7 51.7 5.3 0.1 1.4 1.6 1.1 
wav 4s 4.3 16 43.1 9 85 9.4 0.4 22 65 2.9 
tae 6s 10.2 20 0.7 9.3 273.2 29.4 0.2 21.2 57.2 2.7 

MEAN 6.9 s 46.8 h 17.8 5 min
49.4 s 16.8 415.3 19.6 3.1 s 21.3 77.5 3.4 

adult N/A 16839 72 7561 105.0 399.4 61 395 6.5 
cid N/A --- --- --- --- 5,938.0 15 95 6.3 
forc N/A 21542 63 2438 38.7 582.0 59 2105 35.7 
mush N/A 257.4 2 18 9.0 0.1 8 21 2.6 
MEAN N/A --- --- --- --- 1729.9 35.8 654.0 12.8 
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Next, DataSqueezer was analyzed in terms of the number of selectors, and 

the number of selectors per rule, which it generates. The number of selectors per 

rule generated by the algorithm for the 16 data sets is 3.4. Hence, on average, 

each rule generated by the DataSqueezer algorithm involves only 3.4 attribute-

values pairs in the rule description. This is significantly less than the number of 

selectors per rule achieved by the CLIP4 algorithm (about 80% less). For 

comparison, the average number of attributes, without considering number of 

values they can take on, for the first 16 data sets is 17.3. Hence, the DataSqueezer 

uses on average only 20% of the attributes in the generated rules. Similarly, for 

the latter four data sets, DataSqueezer generates rules, which on average use only 

40% of the attributes, since the average number of attributes for these data sets is 

32.5. One can conclude that the rules generated by the DataSqueezer are very 

compact. The algorithm not only generates easy to understand format of generated 

knowledge, i.e., production rules, but also the rules are very short are, therefore, 

simple. 

 

The DataSqueezer’s average execution time for the first 16 data sets is 3.1 

seconds. In (Lim et al., 2000) the authors reported the minimum execution time of 

5 seconds for C4.5 algorithm (Quinlan, 1993; Quinlan 1996). The results show 

the DataSqueezer algorithm is much faster than any of the 33 ML algorithms. 

This shows that the algorithm generates the knowledge efficiently. It is also 
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interesting to note that the POLYCLASS algorithm, which achieved the best 

accuracy, had an average execution time of 3.2h.  

3.3.3.3 Flexibility 

Based on the high validity (accuracy), simplicity and efficiency, which 

were achieved by the algorithm for the diverse range of the training sets, the 

algorithms is also highly flexible. It achieves very good performance for data sets 

that include both large number of examples with missing values (e.g., adult, cid, 

mush data sets), and large number of inconsistent, and thus noisy examples (e.g., 

bld, cmc, led, pid, smo, tae, and adult data sets). The algorithm also achieves very 

good performance for the data sets that incorporate both large number of missing 

and inconsistent examples (e.g., adult data set). We note, that the tests were 

performed for data sets that incorporate all three types of attributes: nominal, 

discrete numerical, and continuous numerical. Thus, the DataSqueezer algorithm 

is also characterized by very high flexibility. 

3.3.3.4 Experimental Complexity Analysis 

DataSqueezer was also experimentally tested to show additional validation 

of its linear complexity. The tests were performed using the cid data set, see Table 

7. The data set includes 40 attributes and 300K of data samples, which assures the 

accuracy of the provided analysis. The training part of the original data set was 

used to derive training sets for the complexity analysis. The training sets were 

derived by selecting a number of examples from the beginning of the original 
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training set. A standard procedure of using training sets of doubled size for each 

test, to verify if the execution time is also doubled, was used. The results are 

summarized in Table 10 (Kurgan and Cios, 2003a). The table shows the time 

ratios for the subsequent experiments, along with the results of the verification 

test, and the number of generated rules and selectors. 

Table 10. Summary of experimental complexity analysis results for the 

DataSqueezer algorithm 

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size 

(ratio) --- 2 2 2 2 2 2 2 1.56 

Time 30msec 58msec 98msec 2sec 
47msec

6sec 
90msec

18sec 
89msec

47sec 
13msec 

2min 
16sec 

29msec 

4min 
25sec 

09msec
Time - Ratio --- 1.93 1.69 2.52 2.79 2.74 2.50 2.95 1.94 

Accuracy 87.9 89.9 88.1 87.7 87.9 89.3 89.4 89.1 90.5 
Sensitivity 90.3 92.3 90.7 90.3 90.5 92.1 92.2 91.8 93.5 
Specificity 52.0 45.6 48.7 49.1 48.4 46.5 46.4 47.3 45.4 

# Rules 11 13 10 12 12 13 14 13 15 
# Selectors 74 80 57 77 74 81 88 83 95 

 

Figure 12 visualizes the results. The figure shows a graph of relation 

between execution time and size of the data. It uses logarithmic scale on both axes 

to help visualize data points for low values. 
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Figure 12. Relation between execution time and input data size for the 

DataSqueezer algorithm 

The experimental results show linear relationship between the execution 

time and size of the input data for both algorithms, and thus agree with the 

theoretical complexity analysis. The time ratio is always close to the data size 

ratio, which implies that the DataSqueezer algorithm has linear complexity.  

3.3.3.5 Summary of Experimental Evaluation 

To summarize, two main advantages of the DataSqueezer algorithm are the 

compactness of the generated rules and low computational cost. The experimental 

results show that the algorithm strongly exhibits all four qualities of supervised 

inductive ML algorithms. It efficiently generates very simple rules that perform 

with high accuracy on test sets. It is also flexible to handle all types of attributes, 

and training sets that incorporate high number of noisy and missing values 
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examples. Table 11 summarizes the results of the experimental evaluation of the 

DataSqueezer algorithm. 

Table 11. Summary of the benchmarking tests for the DataSqueezer algorithm 

accuracy simplicity efficiency flexibility 

high high very high 

highly flexible: 
handles all attribute types 

noise resistant 
missing values resistant 

 

The results place the DataSqueezer algorithm among the best ML 

algorithms. The reader is encouraged to examine Appendix C for detailed results, 

which include graphs and detailed reports from 10 fold cross validation runs. 

3.4 The CAIM Algorithm 

Since the DataSqueezer algorithm handles only numerical or nominal data, 

the CAIM discretization algorithm is used as a front-end to handle continuous 

attributes (Kurgan and Cios, 2001; Kurgan and Cios, 2002b; Kurgan and Cios, 

2003b). There are many other inductive ML algorithms, e.g., AQ algorithms, 

CLIP algorithms, and CN2 algorithm that can handle only numerical or nominal 

data. It was also observed that some other ML algorithms that handle continuous 

attributes still perform better with discrete-valued attributes (Catlett, 1991; Kerber, 

1992).  
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3.4.1 Introduction to Discretization 

Discretization transforms a continuous attribute’s values into a finite 

number of intervals and associates with each interval a numerical, discrete value. 

For mixed-mode (continuous and discrete) data, discretization is usually 

performed prior to the learning process (Catlett, 1991; Dougherty et al., 1995; 

Fayyad and Irani, 1992; Pfahringer, 1995). Discretization can be broken into two 

tasks. The first task is to find the number of discrete intervals. Only some 

discretization algorithms perform this; often the user must specify the number of 

intervals, or provide a heuristic rule (Ching et al., 1995). The second task is to 

find the width or the boundaries for the intervals, given the range of values of a 

continuous attribute. The CAIM algorithm automatically selects the number of 

discrete intervals and, at the same time, finds the width of every interval based on 

the interdependency between the classes and attribute values. 

Discretization algorithms can be divided into two categories: 

• unsupervised algorithms that discretize attributes without taking into 

account respective class labels. The two representative algorithms are 

equal-width and equal-frequency discretizations (Chiu, 1991). The 

equal-width discretization algorithm determines the minimum and 

maximum values of the discretized attribute, and then divides the range 

into a user-defined number of equal width discrete intervals. The equal-

frequency algorithm determines the minimum and maximum values of 

the discretized attribute, sorts all values in ascending order, and divides 
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the range into a user-defined number of intervals so that every interval 

contains the same number of sorted values. 

• supervised algorithms discretize attributes by taking into account the 

interdependence between class labels and the attribute values. The 

representative algorithms are: maximum entropy (Wong and Chiu, 1987), 

Patterson-Niblett (Patterson and Niblett, 1987), which is built into a 

decision trees algorithm (Quinlan, 1993), Information Entropy 

Maximization (IEM) (Fayyad and Irani, 1993), and other information-

gain or entropy-based algorithms (Dougherty et al., 1995; Wu, 1996), 

statistics-based algorithms, e.g., ChiMerge (Kerber, 1992) and Chi2 (Liu 

and Setiono, 1997), class-attribute interdependency algorithms, e.g., 

CADD (Ching et al., 1995), and clustering-based algorithms, e.g., K-

means discretization (Tou and Gonzalez, 1974). 

In addition, quantization methods (Linde et al., 1980) are also used to 

design discretization algorithms, e.g., the adaptive quantizer algorithm (Chan, 

1991). Since large numbers of possible attribute values slows down and makes 

inductive learning ineffective, one of the main goals of a discretization algorithm 

is to significantly reduce the number of discrete intervals derived for a continuous 

attribute (Catlett, 1991). At the same time the algorithm should maximize the 

interdependency between discrete attribute values and class labels, as this 

minimizes the information loss due to discretization. As always, a satisfactory 

trade-off between these two goals needs to be achieved. 
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The CAIM algorithm discretizes an attribute into the smallest number of 

intervals and maximizes the class-attribute interdependency, and thus makes the 

subsequently performed ML task much easier. The algorithm automatically 

selects the number of discrete intervals without any user supervision. It uses class-

attribute interdependency as defined in (Ching et al., 1995). 

The CAIM algorithm was compared with six well-known discretization 

algorithms, almost always resulting in the smallest number of discrete intervals 

and the highest class-attribute interdependency. The CAIM algorithm and the six 

algorithms were used to discretize several continuous and mixed-mode data sets. 

The data sets were used with two ML algorithms - the CLIP4 (Cios and Kurgan, 

2001; Cios and Kurgan 2002a), and C5.0 (Data Mining Tools, 2002), algorithms - 

to generate the rules. The accuracy of the rules shows that the application of the 

CAIM algorithm as a front-end discretization algorithm significantly improves 

performance of classification and also reduces the number of generated rules. 

3.4.2 The Algorithm 

Before describing the CAIM algorithm, the necessary background 

information is given. First, class-attribute interdependent discretization is 

described. Next, the CAIM discretization criterion, which is the core element of 

the CAIM algorithm, is described.  
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3.4.2.1 Definitions of Class-Attribute Interdependent Discretization 

The CAIM algorithm’s goal is to find the minimum number of discrete 

intervals while minimizing the loss of class-attribute interdependency. The 

algorithm uses class-attribute interdependency information as the criterion for the 

optimal discretization. Next, several definitions to define the criterion are 

introduced (Ching, 1995). 

A supervised classification task requires a training data set consisting of S 

examples, where each example belongs to only one of C classes. Let F indicate 

any of the continuous attributes from the mixed-mode data. Then there exists a 

discretization scheme D on F, which discretizes the continuous domain of 

attribute F into n discrete intervals bounded by the pairs of numbers: 

]}d ,(d , ],d ,(d ],d ,{[d :D n1-n2110 …  

where d0 is the minimal value and dn is the maximal value of attribute F, 

and the values are arranged in ascending order. These values constitute the 

boundary set {d0, d1, d2, …, dn-1, dn} for discretization D. 

 

Each value of attribute F can be classified into only one of the n intervals 

defined above. Membership of each value within a certain interval for attribute F 

may change with the change of the discretization D. The class variable and the 

discretization variable of attribute F are treated as two random variables defining 

a two-dimensional frequency matrix (called quanta matrix) that is shown in Table 

12. 
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Table 12. 2-D quanta matrix for attribute F and discretization scheme D 

Interval Class [d0, d1] … (dr-1, dr] … (dn-1, dn] 
Class Total 

C1 
: 

Ci 
: 

CC 

q11 
: 

qi1 
: 

qC1 

…
…
…
…
…

q1r 
: 

qir 
: 

qCr 

…
…
…
…
…

 q1n 
: 

qin 
: 

qCn 

M1+ 
: 

Mi+ 
: 

MC+ 

Interval Total   M+1 … M+r … M+n M 
 

In Table 12, qir is the total number of continuous values belonging to the ith 

class that are within interval (dr-1, dr], Mi+ is the total number of objects belonging 

to the ith  class, and M+r is the total number of continuous values of attribute F that 

are within the interval (dr-1, dr], for i=1,2…,C and, r= 1,2, …, n. 

The estimated joint probability of the occurrence that attribute F values are 

within the interval Dr = (dr-1, dr], and belong to class Ci can be calculated as: 

M
q

FDCpp ir
riir == )|,( . 

The estimated class marginal probability that attribute F values belong to 

class Ci, pi+, and the estimated interval marginal probability that attribute F values 

are within the interval Dr = (dr-1, dr] p+r are as follows: 

M
M

Cpp i
ii

+
+ == )(  and 

M
M

FDpp r
rr

+
+ == )|( . 

The Class-Attribute Mutual Information between the class variable C and 

the discretization variable D for attribute F given the 2-D frequency matrix shown 

in Table 12 is defined as: 
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∑∑
= = ++

=
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Similarly, the Class-Attribute Information (Fayyad and Irani, 1992) and the 

Shannon’s entropy of the given matrix are defined, respectively, as: 

∑∑
= =

+=
C

i

n

r ir

r
ir p

ppFDCINFO
1 1

2log)|,(  and ∑∑
= =

=
C

i

n

r ir
ir p

pFDCH
1 1

2
1log)|,( . 

Given the three latter equations, the Class-Attribute Interdependence 

Redundancy (CAIR) criterion (Wong and Liu, 1975) and Class-Attribute 

Interdependence Uncertainty (CAIU) (Huang, 1996) criterion are defined as 

follows: 

)|,(
)|,()|,(

FDCH
FDCIFDCR =  and 

)|,(
)|,()|,(

FDCH
FDCINFOFDCU = . 

The CAIR criterion is used in the Class-Attribute Dependent Discretizer 

(CADD) algorithm (Ching, 1995). The CAIR criterion is used to measure the 

interdependence between classes and the discretized attribute (the larger its value 

the better correlated are the class labels and the discrete intervals) (Cios et al, 

1998). It is also independent of the number of class labels and the number of 

unique values of the continuous attribute. The same holds true for the CAIU 

criterion, but with a reverse relationship. The CADD algorithm has the following 

disadvantages: 

• it uses a user-specified number of intervals when initializing the 

discretization intervals, 
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• it initializes the discretization intervals using a maximum entropy 

discretization method; such initialization may be the worst starting point 

in terms of the CAIR criterion, 

• the significance test used in the algorithm requires training for selection 

of a confidence interval. 

The CAIU and CAIR criteria were both used in the CAIUR discretization 

algorithm (Huang, 1996). The CAIUR algorithm avoided the disadvantages of the 

CADD algorithm generating discretization schemes with higher CAIR values, but 

at the expense of a very high computational cost, making it inapplicable for 

discretization of continuous attributes that have a large number of unique values. 

The CAIM algorithm has the following three goals: 

• to maximize the interdependency between the continuous-valued attribute 

and its class labels, 

• to achieve the minimum number of discrete intervals possible, 

• to perform the discretization task at reasonable computational cost so that 

it can be applied to continuous attributes with large number of unique 

values. 

The CAIM algorithm avoids the disadvantages of the CADD and CAIUR 

algorithms. It works in a top-down manner, dividing one of the existing intervals 

into two new intervals using a criterion that results in achieving the optimal class-

attribute interdependency after the split, and starts with a single, [do, dn], interval. 
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3.4.2.2 Discretization Criterion 

The Class-Attribute Interdependency Maximization (CAIM) criterion 

measures the dependency between the class variable C and the discretization 

variable D for attribute F, for a given quanta matrix (see Table 12), and is defined 

as: 

n
MFDCCAIM

n

r r

r∑
= += 1

2max

)|,( , 

where: n is the number of intervals, r iterates through all intervals, i.e., 

r=1,2,...,n, maxr is the maximum value among all qir values (maximum 

value within the rth column of the quanta matrix), i=1,2,...,C, M+r is the total 

number of continuous values of attribute F that are within the interval (dr-1, 

dr].  

 

The CAIM criterion is a heuristic measure that is used to quantify the 

interdependence between classes and the discretized attribute. It has the following 

properties: 

• the larger the value of CAIM criterion the higher the interdependence 

between the class labels and the discrete intervals. The bigger the 

number of values belonging to class Ci within a particular interval (if the 

number of values belonging to Ci within the interval is the largest then Ci 

is called the leading class within the interval) the higher the 
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interdependence between Ci and the interval. The goal of maximizing 

the interdependence between classes and the discrete intervals can be 

translated into achieving the largest possible number of values that 

belong to a leading class within all intervals. The CAIM criterion 

accounts for the trend of maximizing the number of values belonging to 

a leading class within each interval by using maxi. The value of CAIM 

criterion grows when values of maxr grow, which relates to the increase 

of the interdependence between the class labels and the discrete intervals. 

The highest interdependence between the class labels and the discrete 

intervals (and at the same time the highest value of CAIM) is achieved 

when all values within a particular interval belong to the same class for 

all intervals. In this case, maxr = M+i and CAIM=S/n, 

• it takes on real values from the interval [0, S] where S is the number of 

values of the continuous attribute F, 

• the criterion generates discretization schemes where each interval has all 

of its values grouped within a single class label. This observation 

motivated us to use the maxr values within each of the n intervals, and 

summing them for all intervals, 

• the squared maxi value is divided by the M+i for two reasons: 

o to account for the negative impact that values belonging to classes 

other than the class with the maximum number of values within an 
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interval have on the discretization scheme. The more such values the 

bigger the value of M+i , which in turn decreases the value of CAIM. 

o to scale the maxr
2 number. Because the division factor M+i is always 

greater than or equal to maxr, the overflow error will not happen 

during calculations. To avoid the overflow, the calculation is 

performed by first dividing maxr by M+i and then multiplying the 

result by maxr, i.e., 

r
i

r

i

r

M
ascalculatedis

M
maxmaxmax 2

++

, 

• because the algorithm favors discretization schemes with smaller 

numbers of intervals, the summed value is divided by the number of 

intervals n, 

• the Mi+ values from the quanta matrix are not used because they are 

defined as the total number of objects belonging to the ith class, which 

does not change with different discretization schemes. 

The value of the CAIM criterion is calculated with a single pass over the 

quanta matrix. The CAIM criterion has similar properties to the CAIR criterion 

but the experimental results show that the CAIM criterion tends to generate a 

much smaller number of intervals and using it results in achieving higher 

interdependency. The CAIM criterion is used by the CAIM algorithm to perform 

discretization. 
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3.4.2.3 The CAIM Algorithm 

The optimal discretization scheme can be found by searching over the space 

of all possible discretization schemes to find the one with the highest value of the 

CAIM criterion. Such a search for a scheme with the globally optimal value of 

CAIM is highly combinatorial and time consuming. Thus, the CAIM algorithm 

uses a greedy approach, which searches for the approximate optimal value of the 

CAIM criterion by finding local maximum values of the criterion. Although this 

approach does not guarantee finding the global maximum, it is both 

computationally inexpensive and closely-approximates the optimal discretization 

scheme, which is shown in section 3.4.4. The algorithm consists of these two 

steps: 

• initialization of the candidate interval boundaries and the initial 

discretization scheme, 

• consecutive additions of a new boundary that results in the locally highest 

value of the CAIM criterion. 

The pseudocode of the CAIM algorithm is given in Figure 13. 

The algorithm starts with a single interval that covers all possible values of 

a continuous attribute, and divides it iteratively. From all possible division points 

that are tried (with replacement) in 2.2., it chooses the division boundary that 

gives the highest value of the CAIM criterion. The algorithm assumes that every 

discretized attribute needs at least the number of intervals equal to the number of 
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classes since this assures us that the discretized attribute can improve subsequent 

classification. 

 

Figure 13. The pseudo-code of the CAIM algorithm 

The CAIM algorithm implements a balance between a reasonable 

computational cost and finding the optimal discretization scheme. Despite the 

greedy manner in which the algorithm works, the discretization schemes it 

generates have very high class-attribute interdependency and always a small 

number of discretization intervals. For the data sets used in the experimental 

section, the CAIM algorithm generated discretization schemes with the smallest 

number of intervals that assures low computational cost, and always achieved 

very high class-attribute interdependency, which results in significant 

improvement in the subsequently performed classification tasks. 

3.4.2.4 Complexity Analysis 

In what follows we determine the complexity of the algorithm for 

discretizing a single attribute. The CAIM algorithm’s time bound is determined 

 

Given: Data consisting of S examples, C classes, and continuous attributes Fi 
For every Fi do: 
Step1. 
1.1 find maximum (dn) and minimum (do) values of Fi 
1.2 form a set of all distinct values of Fi in ascending order, and initialize all possible interval boundaries B 

with minimum, maximum and all the midpoints of all the adjacent pairs in the set 
1.3 set the initial discretization scheme as D:{[d0, dn]}, set GlobalCAIM=0 
Step2. 
2.1 initialize k=1; 
2.2 tentatively add an inner boundary, which is not already in D, from B, and calculate corresponding CAIM 

value 
2.3 after all the tentative additions have been tried accept the one with the highest value of CAIM 
2.4 if (CAIM > GlobalCAIM or k<C) then update D with the accepted in step 2.3 boundary and set 

GlobalCAIM=CAIM, else terminate 
2.5 set k=k+1 and go to 2.2 
Output: Discretization scheme D 
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by the calculation of the CAIM criterion in step 2.2. In the worst case, the CAIM 

criterion is calculated in O(C⋅S) time, where S is the number of distinct values of 

the discretized attribute, C is the number of classes in the problem, and usually is 

a small constant. The CAIM algorithm starts with a single interval, and as 

experimental results show, the expected number of intervals per attribute is O(C).  

Thus, the time bound for calculation of the CAIM value can be estimated as 

O(C2). The CAIM values are calculated in O(S) time for all candidate boundaries 

in step 2.2. This gives the total time of step 2.2 as O(S⋅C2). Step 2.2 is executed in 

the worst case in O(S), and the results show that the expected number of intervals 

is again O(C), thus we can estimate that step 2.2 is executed in O(C). Therefore, 

the time bound for Step 2 of the CAIM algorithm is O(C)⋅O(S⋅C2) = O(S⋅C3). 

Sorting in step 1.2 takes O(S⋅log S) time, and determines the time for Step1. 

Depending on the value of C, which for most inductive machine learning 

applications is a small constant, the expected running time of the algorithm is 

O(S⋅log S). This shows that the CAIM algorithm can be applied to large problems. 

The remaining costs of the algorithm include building the quanta matrix 

given the discretization scheme in O(S) time (this time adds to calculating the 

CAIM value), updating the discretization scheme in step 2.4 in O(S) time, and 

updating the global CAIU value in O(C) time. All these costs are negligible. 
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3.4.3 Experimental Evaluation 

Below, the results of the CAIM algorithm along with the other six leading 

discretization algorithms on the eight well-known continuous and mixed-mode 

data sets are presented. The smo data, see Table 13, set was obtained from the 

StatLib project data sets repository (Vlachos, 2000), and remaining data sets were 

obtained from the University of California Irvine ML Repository (Blake and Merz, 

1998). Detailed description of the data sets is shown in Table 13. 

Table 13. Description of data sets used for benchmarking of CAIM algorithm 

Data sets Properties 
iris sat thy wav ion smo hea pid 

# of classes 3 6 3 3 2 3 2 2 

# of examples 150 6435 7200 3600 351 2855 270 768 

# of training / testing 
examples 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

# of attributes 4 36 21 21 34 13 13 8 

# of continuous 
attributes 

4 36 6 21 32 2 6 8 

 

The benchmarking tests are characterized by diversity of training sets, 

including their size, both in terms of number of examples and attributes, and 

number of classes. The range of the tests is characterized by: 

• the size of training data sets: between 150 and 7200 examples, 

• the number of attributes: between 4 and 36, 

• the number of classes: between 2 and 6. 

This diversity of the tests ensured that evaluation of the algorithm, which is 

performed based on comparison with results achieved by other state of the art 

discretization algorithms, is comprehensive and strong. 
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3.4.4 Comparison of CAIM with other Algorithms 

Tests were performed for the CAIM algorithm and six other discretization 

algorithms. The six discretization algorithms were: 

• two unsupervised algorithms: equal-width and equal frequency, 

• four supervised algorithms: Patterson-Niblett, IEM, Maximum Entropy 

and CADD. 

The unsupervised algorithms require the user to specify the number of 

discrete intervals. In our experiments we used the following heuristic formula  to 

estimate the number of intervals: nFi = M / (3C), where nFi is the number of 

intervals for attribute Fi, M is the number of examples, and C is the number of 

classes (Wong and Chiu, 1987). The supervised algorithms apply their own 

criteria to generate an appropriate number of discrete intervals. 

All seven algorithms were used to discretize the eight data sets. The 

goodness of the discretization algorithm was evaluated based on the CAIR 

criterion value, the number of generated intervals, and the execution time. 

To quantify the impact of the selection of a discretization algorithm on the 

classification task performed subsequently by a ML algorithm, the discretized 

data sets were used to generate rules by ML algorithms. The CLIP4 algorithm was 

used to represent the hybrid algorithms, and the C5.0 algorithm to represent 

decision tree algorithms. The classification goodness was measured using 

accuracy and the number of rules. The results were compared among the seven 

discretization algorithms, for all data sets and both learning algorithms. 
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3.4.4.1 Accuracy, Simplicity, Efficiency, and Flexibility 

Evaluation of the discretization algorithms was performed using the CAIR 

criterion since one of the goals of discretization is to maximize the class-attribute 

interdependence (Wong and Liu, 1975). This can be done by finding a 

discretization scheme, DMAX, out of all possible discretization schemes, D, such 

that: CAIR(DMAX) ≥ CAIR(Di) ∀(Di∈D) (Ching et al. 1995). 

The CAIM criterion has the same properties as the CAIR criterion, but 

since it is a new heuristic measure, the CAIR criterion was used instead. The 

higher the value of the CAIR criterion, the higher the interdependence between 

the class labels and the discrete intervals. Table 14 shows the CAIR value, the 

number of discrete intervals, and the execution time for the 10-fold cross 

validation tests on 8 data sets, and the seven discretization schemes (Kurgan and 

Cios, 2002b). The discretization was done using the training folds, and the testing 

folds were discretized using the already generated discretization scheme. The 

direct comparison of results can be performed by looking at the rank column in 

Table 14. The rank value is defined as each algorithm’s rank for a particular data 

set among the seven algorithms, averaged over the eight data sets.  

The CAIM algorithm achieved the highest class-attribute interdependency 

for 5 out of 8 data sets, and for wav and ion data sets had the second and third 

highest, respectively. The CAIM algorithm was behind the competitors for only 

the smo data set, but this data set has only 2 continuous attributes out of 13. For 

this test, the CAIM algorithm achieved the highest rank (1.9) among all compared 
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algorithms, and this rank is significantly better than 3.1 achieved by the 

Information Entropy Maximization algorithm, which was the second best. The 

results show that the greedy approach combined with the CAIM criterion work in 

practice resulting, on average, in higher interdependence between class and 

attribute variables than the interdependence achieved by other algorithms. This, in 

turn, implies that the CAIM algorithm is characterized by high accuracy. 

Table 14. Comparison of the seven discretization algorithms using eight 

continuous and mixed-mode data sets (bolded values indicate the best results) 

Data set 
Criterion Discretization 

Method iris std sat std thy std wav std ion std smo std hea std pid std 
RANK

mean 

Equal Width 0.40 0.01 0.24 0 0.071 0 0.068 0 0.098 0 0.011 0 0.087 0 0.058 0 4.0 
Equal Frequency 0.41 0.01 0.24 0 0.038 0 0.064 0 0.095 0 0.010 0 0.079 0 0.052 0 5.4 
Paterson-Niblett 0.35 0.01 0.21 0 0.144 0.01 0.141 0 0.192 0 0.012 0 0.088 0 0.052 0 3.5 
Maximum Entropy 0.30 0.01 0.21 0 0.032 0 0.062 0 0.100 0 0.011 0 0.081 0 0.048 0 5.9 
CADD 0.51 0.01 0.26 0 0.026 0 0.068 0 0.130 0 0.015 0 0.098 0.01 0.057 0 3.4 
IEM 0.52 0.01 0.22 0 0.141 0.01 0.112 0 0.193 0.01 0.000 0 0.118 0.02 0.079 0.01 3.1 

CAIR 
mean value 
through all 
intervals 

CAIM 0.54 0.01 0.26 0 0.170 0.01 0.130 0 0.168 0 0.010 0 0.138 0.01 0.084 0 1.9 
Equal Width 16 0 252 0 126 0.48 630 0 640 0 22 0.48 56 0 106 0 4.8 
Equal Frequency 16 0 252 0 126 0.48 630 0 640 0 22 0.48 56 0 106 0 4.8 
Paterson-Niblett 48 0 432 0 45 0.79 252 0 384 0 17 0.52 48 0.53 62 0.48 4.0 
Maximum Entropy 16 0 252 0 125 0.52 630 0 572 6.70 22 0.48 56 0.42 97 0.32 4.4 
CADD 16 0.71 246 1.26 84 3.48 628 1.43 536 10.26 22 0.48 55 0.32 96 0.92 3.6 
IEM 12 0.48 430 4.88 28 1.60 91 1.50 113 17.69 2 0 10 0.48 17 1.27 2.1 

total # of 
intervals 

CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0 1.3 
Equal Width 0.02 0.01 26.63 2.02 4.74 0.05 8.04 0.26 1.21 0.02 0.32 0.01 0.08 0.01 0.27 0.01 1.3 
Equal Frequency 0.03 0.01 26.11 0.55 4.85 0.16 8.46 0.21 1.29 0.06 0.31 0.01 0.08 0 0.27 0.01 1.5 
Paterson-Niblett 0.12 0.01 82.52 2.36 32.98 1.60 176.8 4.13 14.35 2.75 1.44 0.06 0.42 0.01 2.44 0.01 6.4 
Maximum Entropy 0.03 0 30.36 1.42 11.01 0.65 26.76 1.66 3.33 0.39 0.45 0.05 0.14 0.02 0.58 0.05 3.5 
CADD 0.08 0.01 54.19 1.81 65.46 13.62 435.5 24.68 17.88 0.65 1.05 0.16 0.69 0.05 3.91 0.30 6.6 
IEM 0.05 0 49.90 1.77 10.56 0.35 59.14 3.16 2.57 0.32 0.53 0.01 0.14 0.01 0.77 0.05 4.1 

time [s] 

CAIM 0.05 0.01 53.36 1.90 11.50 0.47 46.13 3.68 2.51 0.25 0.64 0.01 0.13 0.01 0.70 0.01 4.1 
 

The CAIM algorithm generated discretization scheme with the smallest 

number of intervals for 6 data sets, as compared with six other discretization 

algorithms. For the smo and hea data sets, it generated the second smallest 

number of intervals. Again, the rank of CAIM was significantly better than the 
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ranks of other discretization algorithms. Smaller numbers of discrete intervals 

reduces the size of the data and helps to better understand the meaning of the 

discretized attributes. This is a significant advantage of the CAIM algorithm that 

further shows its usefulness and proves that the algorithm is characterized by high 

simplicity. 

Unsupervised discretization algorithms achieved the shortest execution time 

since they do not process any class related information; they require less 

computation time and generate results that are less suited for the subsequent ML 

tasks. Among supervised algorithms, the Maximum Entropy algorithm achieved 

the best average rank. The second fastest were IEM and CAIM algorithms; they 

worked well on larger data sets like thy or wav, which is important for real-life 

applications. The results for IEM, CAIM, and Maximum Entropy algorithms 

show that they are the most efficient among supervised methods, with comparable 

performance. 

The above results show good applicability of the CAIM algorithm, which 

generates small numbers of intervals that are highly interdependent with class 

labels, with speeds comparable to the fastest supervised discretization algorithms. 

Based on the accuracy, simplicity, and efficiency achieved on diverse 

training datasets, the algorithm was shown to be highly flexible. 
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3.4.4.2 Impact of the CAIM algorithm discretization on the Subsequent 

Learning Task 

The discretized data sets were used as input to CLIP4 and C5.0 algorithms 

to generate rules. The accuracy and the number of rules were compared for the 

seven discretization algorithms. Since C5.0 can generate data models from 

continuous attributes, its performance while generating rules from raw data, 

against the results achieved using discretized data using the seven algorithms was 

also compared. Direct comparison of results can be seen by looking at the RANK 

column in Table 15 that shows the accuracy (Kurgan and Cios, 2002b). 

On average, the best accuracy for the two inductive ML algorithms was 

achieved for the data that was discretized using the CAIM algorithm. Using 

CLIP4 and C5.0 to generate a data model, the difference between the rank 

achieved by the CAIM algorithm and the next best IEM algorithm, and built-in 

discretization, in the case of C5.0, is over 1.0. In the case of using the CLIP4 

algorithm to generate a data model, the average accuracy of the rules was the 

highest for data discretized with the CAIM algorithm. The second best accuracy 

was achieved for the data discretized with the IEM algorithm, while accuracies 

using the remaining discretization algorithms were lower and comparable to each 

other. 
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Table 15. Comparison of the accuracies achieved by the CLIP4 and C5.0 

algorithms for the eight data sets using the seven discretization schemes (bolded 

values indicate the best results) 

Data sets 
iris Sat thy wav ion smo hea pid Algor. Discretization 

Method acc std acc std acc std acc std acc std acc std acc std acc std 

RANK
mean 

Equal Width 88.0 6.9 77.5 2.8 91.7 1.9 68.2 2.2 86.9 6.4 68.6 2.0 64.5 10.1 65.5 6.5 4.6 
Equal Frequency 91.2 7.6 76.3 3.4 95.7 2.4 65.4 2.9 81.0 3.7 68.9 2.8 72.6 8.2 63.3 6.3 4.8 
Paterson-Niblett 87.3 8.6 75.6 3.9 97.4 0.6 60.9 5.2 93.7 3.9 68.9 2.7 68.5 13.6 72.7 5.1 4.3 
Maximum Entropy 90.0 6.5 76.4 2.7 97.3 0.9 63.5 2.9 82.9 4.8 68.7 2.8 62.6 9.8 63.4 5.1 5.3 
CADD 93.3 4.4 77.5 2.6 70.1 13.9 61.5 3.4 88.8 3.1 68.8 2.5 72.2 11.4 65.5 4.2 3.9 
IEM 92.7 4.9 77.2 2.7 98.8 0.5 75.2 1.7 92.4 6.9 66.9 2.6 75.2 8.6 72.2 4.2 2.9 

CLIP4 
accuracy 
 

CAIM 92.7 8.0 76.4 2.0 97.9 0.4 76.0 1.9 92.7 3.9 69.8 4.0 79.3 5.0 72.9 3.7 1.8 
Equal Width 94.7 5.3 86.0 1.6 95.0 1.1 57.7 8.2 85.5 6.4 69.2 5.4 74.7 5.2 70.8 2.8 5.3 
Equal Frequency 94.0 5.8 85.1 1.5 97.6 1.2 57.5 7.9 81.0 12.4 70.1 1.7 69.3 5.7 70.3 5.4 6.0 
Paterson-Niblett 94.0 4.9 83.0 1.0 97.8 0.4 74.8 5.6 85.0 8.1 70.1 3.2 79.9 7.1 71.7 4.4 4.3 
Maximum Entropy 93.3 6.3 85.2 1.5 97.7 0.6 55.5 6.2 86.5 8.8 70.2 3.9 73.3 7.6 66.4 5.9 5.6 
CADD 93.3 5.4 86.1 0.9 93.5 0.8 56.9 2.1 77.5 11.9 70.2 4.7 73.6 10.6 71.8 2.2 5.4 
IEM 95.3 4.5 84.6 1.1 99.4 0.2 76.6 2.1 92.6 2.9 69.7 1.6 73.4 8.9 75.8 4.3 3.3 
CAIM 95.3 4.5 86.2 1.7 98.9 0.4 72.7 4.2 89.0 5.2 70.3 2.9 76.3 8.9 74.6 4.0 2.1 

C5.0 
accuracy 
 

Built-in 92.7 9.4 86.4 1.7 99.8 0.4 72.6 3.6 87.0 9.5 70.1 1.3 76.8 9.9 73.7 4.9 3.3 
 

The average accuracy of rules generated by the C5.0 algorithm shows that 

the best results are achieved after discretization of data with the CAIM algorithm. 

The second best results were achieved by discretizing data using the IEM 

algorithm and C5.0 with its built-in discretization. Discretization using the 

remaining algorithms resulted in achieving significantly worse accuracies on the 

average. The accuracy results show that the CAIM algorithm generates the 

discrete data that results in improved performance of subsequently used 

supervised inductive ML algorithms when compared to the data generated by the 

other discretization algorithms. Table 16 shows the classification results in terms 

of number of generated rules (Kurgan and Cios, 2002b). 
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Table 16. Comparison of the number of rules/leaves generated by the CLIP4 and 

C5.0 algorithms for the eight data sets using the seven discretization (bolded 

values indicate the best results) 

Data sets 
iris sat thy wav ion smo pid hea Algor. Discretization 

Method # std # std # std # std # std # std # std # std 

RANK
mean 

Equal Width 4.2 0.4 47.9 1.2 7.0 0.0 14.0 0.0 1.1 0.3 20.0 0.0 7.3 0.5 7.0 0.5 3.8 
Equal Frequency 4.9 0.6 47.4 0.8 7.0 0.0 14.0 0.0 1.9 0.3 19.9 0.3 7.2 0.4 6.1 0.7 3.5 
Paterson-Niblett 5.2 0.4 42.7 0.8 7.0 0.0 14.0 0.0 2.0 0.0 19.3 0.7 1.4 0.5 7.0 1.1 2.6 
Maximum Entropy 6.5 0.7 47.1 0.9 7.0 0.0 14.0 0.0 2.1 0.3 19.8 0.6 7.0 0.0 6.0 0.7 3.6 
CADD 4.4 0.7 45.9 1.5 7.0 0.0 14.0 0.0 2.0 0.0 20.0 0.0 7.1 0.3 6.8 0.6 3.5 
IEM 4.0 0.5 44.7 0.9 7.0 0.0 14.0 0.0 2.1 0.7 18.9 0.6 3.6 0.5 8.3 0.5 3.0 

CLIP4 
# rules 
 

CAIM 3.6 0.5 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.5 0.5 1.9 0.3 7.6 0.5 2.1 
Equal Width 6.0 0.0 348.5 18.1 31.8 2.5 69.8 20.3 32.7 2.9 1.0 0.0 249.7 11.4 66.9 5.6 4.9 
Equal Frequency 4.2 0.6 367.0 14.1 56.4 4.8 56.3 10.6 36.5 6.5 1.0 0.0 303.4 7.8 82.3 0.6 5.8 
Paterson-Niblett 11.8 0.4 243.4 7.8 15.9 2.3 41.3 8.1 18.2 2.1 1.0 0.0 58.6 3.5 58.0 3.5 3.3 
Maximum Entropy 6.0 0.0 390.7 21.9 42.0 0.8 63.1 8.5 32.6 2.4 1.0 0.0 306.5 11.6 70.8 8.6 5.8 
CADD 4.0 0.0 346.6 12.0 35.7 2.9 72.5 15.7 24.6 5.1 1.0 0.0 249.7 15.9 73.2 5.8 4.9 
IEM 3.2 0.6 466.9 22.0 34.1 3.0 270.1 19.0 12.9 3.0 1.0 0.0 11.5 2.4 16.2 2.0 3.5 
CAIM 3.2 0.6 332.2 16.1 10.9 1.4 58.2 5.6 7.7 1.3 1.0 0.0 20.0 2.4 31.8 2.9 1.9 

C5.0 
# rules 

Built-in 3.8 0.4 287.7 16.6 11.2 1.3 46.2 4.1 11.1 2.0 1.4 1.3 35.0 9.3 33.3 2.5 3.1 
 

The rank achieved by the CAIM algorithm, for experiments performed with 

CLIP4 and C5.0 algorithms, shows that on average it had the smallest number of 

rules. Closer analysis of the results shows that the CLIP4 algorithm generates a 

small number of rules for all data sets discretized using the seven discretization 

algorithms. The average rank results show that discretizing data using Paterson-

Niblett algorithm resulted in an average number of rules similar to the number of 

rules for data models generated using data discretized with the CAIM algorithm. 

On the other hand, the number of leaves (rules) generated by the C5.0 algorithm 

varied significantly over the data sets. The three discretization algorithms that 

work best with the C5.0 algorithm are: the CAIM algorithm, the Paterson-Niblett 

algorithm, and the IEM algorithm. Also, similarly low numbers of leaves were 
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generated when using the C5.0’s built-in discretization. Among these four 

discretization algorithms, discretizing the data using the CAIM algorithm resulted 

in the smallest average number of leaves. 

The above tests show that using CAIM algorithm not only results in 

accurate, efficient, simple, and flexible discretization, but also results in 

significant improvement in accuracy and simplicity of results generated by 

subsequently applied inductive ML algorithms. 

3.4.4.3 Summary  

To summarize, the CAIM algorithm is a very efficient algorithm for 

discretization of continuous attributes. It generates very accurate and simple 

discretization schemes, when comparing to other state of the art discretization 

algorithms. It also improves accuracy and simplicity of results generated by 

inductive ML algorithms, when generating rules on discretized data. Table 17 

summarizes the results of the experimental evaluation of the CAIM algorithm. 

Table 17. Summary of the benchmarking tests for the CAIM algorithm 

accuracy simplicity efficiency flexibility 

very high very high high 
highly flexible 

improves accuracy and simplicity of 
subsequently used inductive ML algorithms

 

The results place the DataSqueezer algorithm among the best discretization 

algorithms. 
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The CAIM algorithm is used in the MetaSqueezer system because of its 

advantages shown above. Namely, it discretizes continuous attributes into 

(possibly) the smallest number of intervals, which results in better compactness of 

the discretized data. It maximizes class-attribute interdependency, which results in 

minimization of the information loss due to discretization, and improving results 

achieved by the subsequently performed inductive ML task. The CAIM algorithm 

also selects, on its own, the number of discrete intervals. 
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Chapter 4 

4 The MetaSqueezer System 

This chapter provides detailed description of the system. The description is 

followed by experimental and theoretical evaluation and comparison with other IL 

algorithms. In the Chapter 5 we will describe application of the system to analysis 

of cystic fibrosis data. 

4.1 Introduction 

The MetaSqueezer system is suitable to efficiently generate production 

rules for large quantities of supervised data (Kurgan and Cios, 2003a). The system 

uses MM concept for generation of rules. The rules are generated using a three-

step process: preprocessing, DM, and MM. MetaSqueezer generates production 

rules by repeatedly applying the IL algorithm, DataSqueezer, which works based 

on the generalization operations, and irrevocable, informed hill climber search.  

The DataSqueezer algorithm is used in the DM step to generate meta-data, and 

again in the MM step to generate meta-rules, which constitute outcome from the 

MetaSqueezer system.  

4.2 MetaSqueezer System 

The pseudo-code of the MetaSqueezer system follows: 
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Figure 14. The pseudo-code of the CAIM algorithm 

During the preprocessing step, the raw data are first preprocessed by 

performing data validation and transformation. The resulting data is divided into 

training subsets that are discretized using the CAIM algorithm, and then fed into 

the DM step. DM generates meta-data from the data subsets. The DataSqueezer 

algorithm is used to generate the meta-data, in terms of rules generated for each of 

the training subsets. Next, in the Meta Mining step the meta-data generated for 

each of the subsets is concatenated and fed again into the DataSqueezer algorithm 

to generate meta-rules. The detailed architecture of the MetaSqueezer system is 

shown in Figure 15. 

Given: supervised data organized into n training subsets, and describing c classes 
1. use the DataSqueezer algorithm to generate rule sets, RSi, i = 1,2…n, for all training subsets 
2. for each RSi generate a rule table RTi, i = 1,2…n 
3. use the DataSqueezer algorithm to generate set of meta-rules from a data table being a concatenation 

of all RTi 
Result: the generated meta-rules 
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Figure 15. Architecture of the MetaSqueezer system 

Since the MetaSqueezer applies the DataSqueezer algorithm to generate 

both meta-data and meta-rules, its properties are the same as the properties of the 

DataSqueezer algorithm, see Table 18. 
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Table 18. Major properties of the MetaSqueezer system 

Search Process Search Type Results Other Features 
top-down and 
bottom-up 

irrevocable 
hill climber 

production meta-
rules 

all attribute types, noise and 
missing values resistant 

 

The MetaSqueezer system has the following characteristic features: 

• it generates production rules that involve no more than one selector per 

attribute. This is because the DataSqueezer algorithm, which is used to 

generate meta-rules, generates rules with a single selector per attribute. 

• it generates rules that are very compact in terms of the number of used 

selectors. Experimental results, shown in section 4.3, indicate that the 

MetaSqueezer system generates rules that involve small number of 

selectors, even smaller than for the rules generated from the same 

training data by the DataSqueezer algorithm. The main reason for the 

compactness is application of the MM concept in the MetaSqueezer 

system. Since the outcome from the system, meta-rules, are generated 

from already generated meta-data, they provide information about 

patterns exhibited in the already summarized data. 

• it can handle data with large number of missing values and large number 

of noisy examples, since it applies the DataSqueezer algorithm that is 

highly noise and missing values resistant. 

• it generates independent rules, since it applies the DataSqueezer 

algorithm, which generates independent rules. 
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• it has linear complexity. Complexity analysis of the MetaSqueezer 

system shows that it is liner in respect to the number of examples in the 

data sets, i.e., O(s), where s is the number of examples. The theoretical 

complexity analysis of the system is shown in section 4.2.1. 

• it generates highly user friendly results. The system provides very easy to 

understand representation of generated meta-rules, which consists of 

attribute and selector tables. Such tables are inferred directly from the 

rules. The tables are generated using a procedure described in section 

5.5.1. 

The above properties of the system show its high applicability to real-life 

problems that concern high volumes of input data, and require providing simple 

and easy to comprehend results. The system is flexible, since it can be applied to 

all types of attributes, is noise and missing values resistant, and provides very 

accurate and compact rules. These properties are shown in the subsequent sections.  

4.2.1 Theoretical Complexity Analysis 

The complexity of the MetaSqueezer system is determined by complexity 

of the DataSqueezer algorithm. Assuming that s is the number of examples in the 

original data set, the MetaSqueezer system divides the data into n subsets, of s/n 

size. In the DM step, the MetaSqueezer system uses DataSqueezer algorithm n 

times, which gives total complexity of nO(s/n) = O(s), since complexity of the 

DataSqueezer algorithm is O(s). In the MM step, the DataSqueezer algorithm is 

run once with the data of size O(s). Thus, complexity of the MetaSqueezer system 
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is O(s) + O(s) = O(s). The complexity of the preprocessing step was omitted, 

since the reported in the literature complexity results always omit this step in 

calculations. As the results of the theoretical analysis, the MetaSqueezer system 

has linear complexity. This result is also supported experimentally in section 

4.3.1.4. 

4.3 Experimental Evaluation 

The MetaSqueezer system was extensively benchmarked to show its 

validity, simplicity, efficiency, and flexibility. The benchmarking procedure is 

very similar to the procedure described for the DataSqueezer algorithm. It was 

tested on 20 standard benchmarking data sets. The data sets were obtained from 

the University of California Irvine (UCI) Machine Learning Repository (Blake 

and Merz, 1998), the UCI KDD Archive (Hettich & Bay, 1999), and from the 

StatLib project data sets repository (Vlachos, 2000). Using standard 

benchmarking data sets enables direct comparison of performance of the 

MetaSqueezer system and other ML algorithms that generate similar results. The 

benchmarking setup was developed mainly to perform comparison between the 

MetaSqueezer system and the DataSqueezer algorithm; e.g., both were tested on 

the same data sets. The comparison between the DataSqueezer and MetaSqueezer 

is a vital part of the benchmarking tests, since it provides validation for the 

development of the system. Since the MetaSqueezer system uses the 
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DataSqueezer algorithm, a strong reason, proven via tests, should be provided to 

validate creation of the MetaSqueezer system. 

The detailed description of the data sets is given in Table 7. Both, percent 

of missing values and percent of inconsistent examples refer to already discretized 

training sets. The number of subsets column refers to the number of subsets 

generated from the initial training set during the preprocessing step of the 

MetaSqueezer system. This is a user-defined number, and depends mostly on the 

size of the data, i.e., the larger the data the bigger the number of subsets should be 

used. The number of subsets for the 20 data sets was between 2 for the smallest 

tea data set, and 10 for the largest led, sat, adult, and cid datasets.  

The benchmarking tests are characterized by strong diversity of training 

sets, including their size, both in terms of number of examples and attributes, 

number of classes, attribute types, and amount of missing values and noise in the 

data. The range of the tests is characterized by: 

• the size of training data sets: between 151 and 200K examples, 

• the size of testing data sets: between 15 and 565K examples, 

• the number of attributes: between 5 and 61, 

• the number of classes: between 2 and 10, 

• the attribute types: nominal, discrete numerical, and continuous 

numerical, 

• the percentage of examples with missing values: between 0 and 52.3, 

• the percentage of inconsistent, noisy examples: between 0 and 66.3, 
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• the number of training data subsets: between 2 and 10. 

The diversity of the tests ensures that evaluation of the MetaSqueezer 

system, which is performed based on comparison with results achieved by other 

state of the art inductive ML algorithms including the DataSqueezer algorithm, is 

comprehensive and strong. 

4.3.1 Comparison of MetaSqueezer with Other Algorithms 

The tests compare accuracy of the rules, number of rules and selectors, and 

execution time. The MetaSqueezer system was compared to DataSqueezer 

algorithm (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a), CLIP4 algorithm 

(Cios and Kurgan, 2002a), and 33 other inductive ML algorithms, for which the 

results were published in (Lim et al., 2000). This study reports results on the first 

16 data sets described in Table 7. The remaining 4 data sets were chosen because 

of their larger size, and incorporation of larger amount of missing values. The last, 

cid, data set was also used to perform experimental complexity analysis of the 

MetaSqueezer system. 

4.3.1.1 Accuracy 

To evaluate accuracy of the MetaSqueezer system, the verification test was 

performed. The summary of the test results is shown in Table 19. The table shows 

minimum and maximum accuracy for the 33 inductive ML algorithms (Lim et al., 

2000), accuracy for the CLIP4 algorithm, and accuracy, sensitivity, and 

specificity for the MetaSqueezer system and the DataSqueezer algorithm (Kurgan 
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and Cios, 2003a). Only the MetaSqueezer algorithm works using the MM concept, 

which required dividing the training set into subsets. The remaining algorithms 

use original data sets, which were not divided into subsets, as input. 

Table 19. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the 

other 33 ML algorithms 

Reported accuracy 
(Lim et al., 2000) DataSqueezer MetaSqueezer 

set 
max min 

CLIP4 
accuracy 

(Cios and Kurgan, 2002a) mean 
accuracy 

mean 
sensitivity

mean 
specificity

mean 
accuracy 

mean 
sensitivity 

mean 
specificity

bcw 97 91 95 94 92 98 93 97 85 
bld 72 57 63 68 86 44 70 93 38 
bos 78 69 71 70 70 88 71 70 86 
cmc 57 40 47 44 40 73 47 43 72 
dna 95 62 91 92 92 97 90 89 95 
hea 86 66 72 79 89 66 79 87 70 
led 73 18 71 68 68 97 69 69 97 
pid 78 69 71 76 83 61 75 83 59 
sat 90 60 80 80 78 96 74 73 95 
seg 98 48 86 84 83 98 81 81 97 
smo 70 55 68 68 33 67 67 33 69 
thy 99 11 99 96 95 99 96 86 99 
veh 85 51 56 61 61 88 60 59 87 
vot 96 94 94 95 93 96 94 92 99 
wav 85 52 75 77 77 89 78 78 89 
tae 77 31 60 55 53 79 52 51 76 
MEAN 83.5 54.6 74.9 75.4 74.6 83.5 74.8 74.0 82.1 

set algorithm (accuracy) (reference) mean 
accuracy 

mean 
sensitivity

mean 
specificity

mean 
accuracy 

mean 
sensitivity 

mean 
specificity

NBTree (84) (Kohavi, 1996) 

adult 
C4.5 (84.5), C4.5-auto (85.5), Voted ID3-0.6 (84.4), 
T2 (83.2), 1R (80.5), CN2 (84), HOODG (83.2), FSS 
Naive Bayes (86), IDTM  (85.5), Naive-Bayes (83.9), 
NN-1 (78.6), NN-3 (79.7), OC1 (85) (Blake & Merz, 
1998) 

82 94 41 81 95 33 

cid 
C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0 
boosted (95.4), Naïve-Bayes (76.8)  (Hettich & Bay, 
1999) 

91 94 45 90 93 49 

forc [NN-backprop (70.0), Linear Discriminant Analysis 
(58.0)]  (Blackard, 1998) 55 56 90 55 36 89 
[C4.5 (100), NBTree (96.5)] (Kohavi, 1996) 
[STAGGER (95)]  (Schlimmer, 1987) mush 
[HILLARY (95)] (Iba, Wogulis & Langley, 1988) 

100 100 100 100 99 100 

MEAN mean best: 87.9  means worst: 77.1 82.0 86.0 69.0 81.5 80.8 67.8 
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The average accuracy of the MetaSqueezer system for the first 16 data sets 

is 74.8%, while for the DataSqueezer algorithm is 75.4%. The difference in 

accuracy is insignificant, showing that the results generated by the MetaSqueezer 

system achieve the same accuracy as the results generated by the DataSqueezer 

algorithm. Also, the difference in accuracy between the two algorithms for the 

latter four data sets is insignificant. Both generate very accurate rules for them. 

This is a significant achievement of the MetaSqueezer system, since it provides 

more compact rules (when compared to the DataSqueezer algorithm), which is 

shown in the next section, without trading their accuracy. 

To situate the MetaSqueezer system among other inductive ML algorithms 

we compare it with the 33 algorithms from the (Lim et al., 2000) study. The 

POLYCLASS algorithm (Kooperberg et al. 1997) achieved the highest mean 

accuracy of 80.5% among the 33 algorithms. Also, the (Lim et al., 2000) 

calculated statistical significance of error rates, which shows that a difference 

between the mean accuracies of two algorithms is statistically significant at the 

10% level if they differ by more than 5.9 %. Analysis of the results shows that the 

MetaSqueezer system’s accuracy is within the range of POLYCLASS, as well as 

all other ML algorithms, including CLIP4 and DataSqueezer. The accuracies 

achieved by the MetaSqueezer system place it among the best inductive ML 

algorithms. The mean sensitivities and specificities achieved by the MetaSqueezer 

system have high and comparable values. This is a very desirable property, which 

means that the generated rules describe correctly all classes in the data, i.e., the 
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rules are not biased towards describing, for example, only classes that are 

described by majority of examples. The same property was exhibited by the 

DataSqueezer system. The MetaSqueezer system again preserved a positive 

property originally exhibited by the DataSqueezer algorithm. 

The results show that the MetaSqueezer system generates very accurate 

rules, which means that it is characterized by high validity. The validity of the 

MetaSqueezer system is comparable to validity achieved by the DataSqueezer 

algorithm. 

4.3.1.2 Simplicity and Efficiency 

The simplicity and efficiency related tests are used to validate if the 

MetaSqueezer system generates compact and easy to understand rules, and if it 

generates them quickly. The tests report number of rules, number of selectors, and 

execution time. Table 20 shows the results for the MetaSqueezer system, the 

DataSqueezer algorithm, and the other ML algorithms (Kurgan and Cios, 2003a). 

The MetaSqueezer system is compared with results achieved the DataSqueezer 

algorithm, by 33 algorithm reported in the (Lim et al., 2000), and with results 

achieved by the CLIP4 (Cios and Kurgan, 2002a). For the 33 algorithms, the 

median number of rules (the authors reported the number of tree leaves for 21 

decision tree algorithms) and the maximum and minimum execution time, as it 

was reported by the authors, is given. Additionally, for the MetaSqueezer, 

DataSqueezer, and CLIP4 number of selectors per rules is reported. The last 

measure enables direct comparison of complexity of generated rules. 
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Table 20. Number of rules and selectors, and running time results for the 

MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms 

Reported accuracy 
(Lim et al., 2000) DataSqueezer MetaSqueezer 

mean CPU time 

CLIP4 
(Cios and Kurgan, 2002a) 

set 

min [s] max [h] 
median # 
of leaves mean time 

[s] 
mean # 
rules 

mean # 
selectors

# select 
/rule 

mean time 
[s] 

mean # 
rules 

mean # 
select 

# select/ 
rule 

mean time 
[s] 

mean # 
rules 

mean # 
select 

# select/
rule 

bcw 4s 2.7 7 5.1 4.2 121.6 29.0 0.2 4.5 12.8 2.8 0.7 6.3 12.3 1.9 
bld 5s 1.5 10 6.6 9.7 272.4 28.1 0.1 3.4 14.0 4.1 0.3 2.6 7.7 3.0 
bos 9s 5.5 11 35.8 10.5 133.5 12.7 0.4 19.8 107 5.4 0.9 17.9 56.3 3.1 
cmc 12s 23.9 15 46 8 60.7 7.6 1.3 20.2 70.5 3.5 1.6 17.4 42.1 2.4 
dna 2s 475.2 13 662.8 8 90 11.3 12.5 39.0 97.0 2.5 22.8 34.0 53.0 1.6 
hea 4s 3.3 6 2.2 11.6 192.3 16.6 0.1 4.7 17.1 3.6 0.3 1.9 3.7 1.9 
led 1s 12.4 24 166.4 41 189 4.6 3.8 51 194 3.8 4.9 51 141 2.8 
pid 7s 2.5 7 5.8 4 64.1 16.0 0.2 1.8 8.0 4.4 0.6 2.1 9.3 4.4 
sat 8s 73.2 63 3696.7 61 3199 52.4 21.3 57 257 4.5 24.0 55 104 1.9 
seg 28s 75.6 39 614.6 39.2 1169.9 29.8 6.1 57.3 219 3.8 6.4 50.7 89.3 1.8 
smo 1s 3.8 2 90.5 18 242 13.4 1.1 6 12 2.0 1.3 3 11 3.7 
thy 3s 16.1 12 164.2 4 119 29.8 1.3 7 28 4.0 1.6 6 6 1.0 
veh 14s 14.1 38 45.3 21.3 380.7 17.9 1.2 23.7 80.2 3.4 1.5 22.4 41.4 1.8 
vot 2s 25.2 2 4.4 9.7 51.7 5.3 0.1 1.4 1.6 1.1 0.4 1 1 1.0 
wav 4s 4.3 16 43.1 9 85 9.4 0.4 22 65 2.9 0.4 16 16 1.0 
tae 6s 10.2 20 0.7 9.3 273.2 29.4 0.2 21.2 57.2 2.7 0.3 14.7 27.8 1.9 

MEAN 6.9 s 46.8 h 17.8 5 min 
49.4 s 16.8 415.3 19.6 3.1 s 21.3 77.5 3.4 4.3 s 18.9 38.9 2.2 

adult N/A 16839 72 7561 105.0 399.4 61 395 6.5 231.8 19 64 3.4 
cid N/A --- --- --- --- 5,938.0 15 95 6.3 6,115.4 6 34 5.7 
forc N/A 21542 63 2438 38.7 582.0 59 2105 35.7 416.0 33 699 21.2
mush N/A 257.4 2 18 9.0 0.1 8 21 2.6 0.4 6 16 2.7 
MEAN N/A --- --- --- --- 1729.9 35.8 654.0 12.8 1,690.9 16.0 203.3 8.3 

 

The mean number of rules generated by the MetaSqueezer system is 18.9, 

while for the DataSqueezer algorithm is 21.3. The median number of tree leaves, 

which is equivalent to the number of rules, for the 21 tested decision tree 

algorithms, was reported as 17.8 (Lim et al., 2000). The number of rules 

generated by the CLIP4 algorithm is 16.8. For the latter four data sets, the 

MetaSqueezer system also achieves low number of generated rules. The number 
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of rules generated by the MetaSqueezer system is comparable to the reported 

results, and most importantly, lower than the number of rules generated by the 

DataSqueezer algorithm. For the latter four data sets, the difference is significant, 

since the MetaSqueezer system generates on the average over 50% less rules. This 

difference was achieved for largest considered data sets, which shows that the 

user can potentially obtain smaller rule sets for large data sets. This result 

confirms one of the main advantages of the MetaSqueezer system, namely that it 

generates very simple and easy to understand knowledge, in terms of the number 

of rules. 

Next, the MetaSqueezer system was analyzed in terms of the number of 

selectors, and the number of selectors per rule, which it generates. The number of 

selectors per rule generated by the system for the 16 data sets is 2.2. It means that 

on average each rule generated by the MetaSqueezer system involves only 2.2 

attribute-values pairs in the description of the rule. This is significantly less than 

the number of selectors per rule achieved by the DataSqueezer algorithm (35% 

less), and the CLIP4 algorithm (almost 90% less). This is primarily caused by 

application of the MM concept where the meta-rules, which are reported here, are 

generated from meta-data. The remaining algorithms generate rules directly from 

the input data. This is yet another confirmation of the one of the main advantages 

of the MetaSqueezer system, namely that it generates very simple and easy to 

understand knowledge, in terms of achieving high compactness of the rules 

expressed in the small number of selectors in the rule description. Both, low 
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number of rules, and very small number of selectors within each rule, together 

with very simple format of generated rules, i.e., production rules, make the results 

generated by the system very easy to comprehend, evaluate, and use. This is a 

very significant advantage of the MetaSqueezer system. It validates usefulness of 

the system for real-life applications concerning learning from supervised data, and 

assures that the results generated by the system are very simple. 

MetaSqueezer’s execution time for the 16 datasets was 4.3 seconds. The 

minimum execution time reported in (Lim et al., 2000) was 5 seconds for C4.5 

algorithm (Quinlan, 1993; Quinlan 1996). The results show that the MetaSqueezer 

system is faster than any of the 33 ML algorithms. The only faster algorithm is the 

DataSqueezer algorithm which achieved execution time of 3.1 seconds. The 

MetaSqueezer system is build using the DataSqueezer algorithm and it is not 

surprising to see that both perform comparably well. The slightly worse results 

achieved by the MetaSqueezer system can be explained by additional computation 

overhead connected with dividing the data into subsets. The MetaSqueezer system 

generates the knowledge very efficiently. It is also interesting to note that the 

POLYCLASS algorithm, which achieved the best accuracy, had a mean execution 

time of 3.2h.  

4.3.1.3 Flexibility 

The tests show that the MetaSqueezer system is characterized by high 

validity (accuracy), simplicity and efficiency. Since these results were achieved 

for a diverse range of the training sets, the system is also highly flexible. It 
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achieves excellent results for data sets that include large number of examples with 

missing values (e.g., adult, cid, mush data sets), large number of noisy examples 

(e.g., bld, cmc, led, pid, smo, tae, and adult data sets), and both large number of 

missing and noisy examples (e.g., adult data set). Also, the system is flexible 

since it achieves excellent performance on the test sets that incorporate all three 

types of attributes: nominal, discrete numerical, and continuous numerical. Thus, 

the MetaSqueezer system is also characterized by very high flexibility. 

4.3.1.4 Experimental Complexity Analysis 

The MetaSqueezer system was experimentally tested to provide additional 

validation of its linear complexity. As in the experimental complexity analysis 

performed with the DataSqueezer algorithm, the tests were performed using the 

cid data set, Table 7. The data set includes 40 attributes and 300K of data samples, 

which assures accuracy of the complexity analysis. The training part of the 

original data set was used to derive training sets for the complexity analysis. The 

training sets were derived by selecting a number of examples from the beginning 

of the original training set. A standard procedure of using training sets of doubled 

size for each test, to verify if the execution time was also doubled, was used. The 

results are summarized in Table 21 (Kurgan and Cios, 2003a). The table shows 

time ratios for the subsequent experiments, along with the results of the 

verification test, and the number of generated rules and selectors. 
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Table 21. Summary of experimental complexity analysis results for the 

MetaSqueezer system 

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size 

(ratio) --- 2 2 2 2 2 2 2 1.56 

Time 65msec 1sec 
27msec

2sec 
31msec

4sec 
72msec

10sec 
44msec

24sec 
71msec

55sec 
43msec 

2min 
31sec 

71msec 

4min 
33sec 

01msec
Time - Ratio --- 1.95 1.81 2.04 2.21 2.34 2.24 2.74 1.80 

Accuracy 93.6 90.6 90.3 92.0 92.5 91.7 90.5 90.9 90.2 
Sensitivity 99.6 94.9 93.8 96.3 97.2 95.9 93.7 94.1 93.0 
Specificity 1.9 25.7 37.1 26.5 20.6 28.1 41.8 41.7 49.0 

# Rules 38 11 14 17 18 13 11 11 6 
# Selectors 173 67 76 106 98 66 72 67 34 
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Figure 16. Relation between execution time and input data size for the 

MetaSqueezer and the DataSqueezer algorithms 

The results are visualized in Figure 16. The figure shows a graph of relation 

between execution time and size of the data for both MetaSqueezer system and 

DataSqueezer algorithm. The results for both algorithms are shown to compare 
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their performance. The graph uses logarithmic scale on both axes to help visualize 

data points of low values. 

The results show linear relationship between the execution time and the size 

of input data, for both MetaSqueezer and DataSqueezer, and thus agree with the 

theoretical complexity analysis. The linearity is confirmed by observing that the 

time ratio is always close to the data size ratio. The difference in ratios between 

the time and training data size is shown in Figure 17. It shows that the ratio 

difference does not grow with the growing size of input data. 

-0.3
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

0 1 2 3 4 5 6 7 8 9
experim ent num ber

difference 
between ratios

Ratio differences for MetaSqueezer
Ratio differences for DataSqueezer

 

Figure 17. The difference in ratios between the time and training data size 

The slightly higher values of time ratio can be explained by computational 

overhead for preparation of the input data. However, it is important that the 

overhead does not increase with the increase of the input data size. The graph in 

Figure 16 shows that the MetaSqueezer system has additional overhead connected 

with division of input data into subsets, which becomes insignificant with the 

growing size of the input data. This property is exhibited by initially lower 

execution time of the DataSqueezer algorithm, where the difference in execution 
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time between the MetaSqueezer system and the DataSqueezer algorithm shrinks 

with growth of the size of data. 

4.3.1.5 Summary of Experimental Evaluation 

To summarize, the three main advantages of the MetaSqueezer system are 

the compactness of the generated rules, low computational cost, and user-

friendliness of the generated results. Experimental results show that the system 

strongly exhibits all four qualities of supervised inductive ML algorithms, i.e., 

accuracy, simplicity, efficiently, and flexibility. It generates rules very efficiently 

since it is characterized by linear complexity. It also generates very simple rules 

that perform with high accuracy. Still, it is sufficiently flexible to handle all types 

of attributes, and training sets that incorporate high number of noisy and missing 

values examples. Using the results of the analysis of the system’s qualities, the 

advantages of the MetaSqueezer system are verified. It generates both compact 

and user-friendly rules since it generates small number of short rules, and the 

rules are in easy to comprehend format, i.e., production rules. Table 11 

summarizes the results of the experimental evaluation of the MetaSqueezer 

system. 

Table 22. Summary of the benchmarking tests for the DataSqueezer algorithm 

accuracy simplicity efficiency flexibility 

high very high very high 

highly flexible: 
handles all attribute types 

noise resistant 
missing values resistant 
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The results place the MetaSqueezer system among the best inductive ML 

algorithms. The reader is encouraged to inspect Appendix C for detailed results, 

which include graphs and detailed reports from 10 fold cross validation runs. 
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Chapter 5 

5 Application of MetaSqueezer System to Analysis of Cystic 

Fibrosis Data 

In this chapter we describe application of the system to analysis of data 

describing patients with cystic fibrosis. The goal was to provide answers for two 

data mining goals specified by the owners of the data: finding factors related to 

the pace of the disease development, and to different type of the disease.   

5.1 Introduction 

The MetaSqueezer system was used to perform analysis of medical data.  

The project was carried out using the DMKD process model, which is described 

next. 

Several researchers have described a series of steps that constitute the KD 

process. They range from very simple models, incorporating few steps that 

usually include data collection and understanding, data mining, and 

implementation, to more sophisticated models like the nine-step model proposed 

by Fayyad et al. (Fayyad et al., 1996c). This project applies the six-step DMKD 

process model as defined by (Cios et al., 2000a; Cios, 2001; Cios and Kurgan, 

2002b). The advantage of this model is that it is based on an industry initiated 

study that led to the development of an industry- and tool-independent DM 
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process model (Wirth and Hipp, 2000; CRISP-DM, 2001). The model’s 

usefulness for this project is supported by its successful applications to several, 

mostly medical, problem domains (Sacha et al., 2000; Cios et. al, 2000a; Cios et. 

al., 2000b; Kurgan et al., 2001). The goal of designing the DMKD process model 

is to develop a set of processing steps that would be followed by practitioners 

when executing DMKD projects. The purpose of such design is to help plan, work 

through, and reduce the overall costs of the project by outlining the DMKD 

process, and by describing procedures performed in each of the steps. The DMKD 

process model describes a range from problem specification to deployment of the 

results, i.e. discovered knowledge. 

The six-step DMKD process is described as follows: 

1. Understanding the problem domain. In this step the project is defined, 

including definition of objectives, and learning domain specific 

terminology and methods. A high-level description of the problem, 

including the requirements and restrictions is analyzed. The project goals 

are translated into DMKD goals and the project plan, which includes 

selection of suitable DM tools, is prepared. 

2. Understanding the data. This step includes collection of the data, and 

decision regarding which data will be used (including its format and size). 

Next, initial data exploration is performed to verify usefulness of the data 

in respect to the goals identified in step 1. 
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3. Preparation of the data. In this step, the data that will be used as input for 

DM tools in step 4 is chosen. The step may involve sampling of data, 

performing correlation and significance tests, data cleaning like checking 

of completeness of data examples, assigning classes to data examples, 

removing or correcting noise, missing values, etc. The cleaned data can be 

further processed by feature selection and extraction algorithms (to reduce 

dimensionality), by derivation of new attributes (say by discretization), 

and by summarization of data (data granularization). New data records, 

meeting specific input requirements of the given DM tools, are formed. 

4. Data mining. This step applies DM tools to discover new information from 

the data prepared in step 3. First, the training and testing procedures are 

designed. Next, the data model is constructed using one of the chosen DM 

tools, and the generated data model is verified by using testing procedures. 

Data mining tools include many types of algorithms, e.g., machine 

learning, rough and fuzzy sets, Bayesian methods, evolutionary computing, 

neural networks, clustering, association rules etc. Detailed description of 

these algorithms, together with specifications of their application areas, 

can be found in (Cios et al., 1998). 

5. Evaluation of the discovered knowledge. This step includes understanding 

of the results, checking whether the new information is novel and 

interesting, interpretation of the results, and checking their impact on the 

project goals. Approved models are retained. 
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6. Using the discovered knowledge. This step consists of planning where and 

how the discovered knowledge will be used. 

The just described DMKD process model is visualized in Figure 18, after 

(Cios and Kurgan, 2002b).  

 

Figure 18. The six-step DMKD process model 

The important issues are the iterative and interactive aspects of the process. 

Since any changes and decisions made in one of the steps can result in changes in 

later steps, feedback loops may be necessary. The feedback paths are shown by 

dashed lines in Figure 18. They are by no means exhaustive. 

Following, the discussion concerning significance of the project is provided. 

Next, the project is described using the six step DMKD process model. 
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5.1.1 Significance 

The project concerns analysis of cystic fibrosis data. The data set is 

temporal in nature, and as such needs specific learning tools. The MetaSqueezer 

system can be easily used for analysis of temporal data, and thus was chosen to 

perform analysis. 

Despite extensive literature search only one other application of inductive 

ML techniques to analysis of temporal medical data was found. A system by 

(Karimi and Hamilton, 2000) discovers very limited temporal relations using 

Bayesian Networks and inductive machine learning algorithm C4.5 (Quinlan, 

1993). The two algorithms are used to find relations between temporarily 

consecutive records but without generalizing temporal rules for the entire period 

of time.  Also, the MM concept was not used in the system. 

Although the MetaSqueezer system does not discover any temporal 

relationships, it can be used to derive non temporal patters, in terms of production 

rules, that describe the data across the time, but using meta-data that describes 

data within particular temporal intervals. Also, other important factors, like 

efficiency of the system and compactness of results that it generates, decided on 

application of the system in this project. 

Medical applications often aim to describe patterns in disease development 

and to predict therapy effectiveness. The application of the MetaSqueezer system 

can be included within the first category. Our goal is to discover patterns 

(important factors) that are associated with different paces of development of 
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cystic fibrosis disease. As a secondary goal, the system was used to find important 

factors associated with particular gene types that cause cystic fibrosis. 

5.2 Understanding the Problem Domain 

Since the MetaSqueezer system is applied to medical data describing cystic 

fibrosis (CF) patients, first the disease is introduced. CF is a genetic disease 

affecting approximately 30,000 children and adults in the United States (Cystic 

Fibrosis Foundation, 2002). One in 31 Americans, and one in 28 Caucasians, 

which translates into more than 10 million people carry the defective gene causing 

CF. They do not exhibit the symptoms, and thus they do not know about the 

disease. An individual must inherit a defective copy of the CF gene from each of 

the parents to become affected. Statistically, when two carriers conceive a child, 

there is a 25 percent chance that the child will have CF, a 50 percent chance that 

the child will be a carrier, and a 25 percent chance that the child will be a non-

carrier. 

CF is a deadly disease that affects multiple systems, including the 

respiratory system, digestive system, endocrine system, and reproductive system. 

It has multiple symptoms including very salty-tasting skin, persistent coughing, 

wheezing or pneumonia, excessive appetite but poor weight gain, and bulky stools. 

CF is diagnosed usually by the sweat test, which measures amount of salt in the 

sweat. A high chloride level indicates that a person has CF. 
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The treatment of CF depends upon multiple factors like stage of the disease 

and which organs are involved. In case of the most severely affected organ, the 

lungs, the disease is treated usually by chest physical therapy, and antibiotics, 

which are used to treat lung infections. When CF affects the digestive system, the 

patients are required to eat an enriched diet and take replacement vitamins and 

enzymes (Cystic Fibrosis Foundation, 2002). 

 

One of fundamental assumptions in the project was for the medical staff to 

provide only the necessary minimum background knowledge to us. The main 

reason for that was to assure that the research will not be biased toward finding 

solutions that would confirm accuracy of the MetaSqueezer system based on the 

domain knowledge. By following this assumption, a true evaluation of the system 

was provided. 

The project goal is to perform analysis of data concerning patients with CF. 

Although CF is an extensively studied disease, the amount of available data and 

support of well qualified medical staff were important and sufficient factors that 

lead to starting the project. The predicted outcome of the investigation was to 

provide new findings that may advance knowledge about the disease and its 

treatment methods. Also, the investigation was an opportunity to confirm 

correctness of the system, for example by finding results, which are already 

described in literature. 

The two goals defined by clinicians were: 
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• task 1 is to discover patterns (important factors) that influence the pace of 

the development of CF. Although CF affect multiple systems, the one 

system that is used to indicate the progress of the disease is the 

pulmonary system. It is interesting that for some patients the disease 

progresses very fast, while for others it progresses relatively slow. There 

are some known factors that are related to the pace of the disease, but 

still much of them probably remain unknown. Thus, the first goal was to 

discover such factors that are related to different, predefined paces of the 

disease development based on historical data concerning CF patients. 

• task 2 is to discover important factors that are related to particular kinds 

of CF. CF is a genetic disease. As for such, genotypes related to the 

disease are described. Our task was to find factors that are related to 

different, predefined types of CF based on historical data concerning CF 

patients. 

The CF data is temporal in nature. It describes several hundreds of CF 

patients in time. For each patient multiple visits are recorded. Most of the patients 

are monitored between their birth and death. For each visit multiple attributes 

describing demographical information, various lab results, and diagnostic 

information are recorded. It is a known fact that the data describes different 

relationships depending on the stage of the disease. Thus, any investigation that 

uses such data must be able to separate the data into subsets corresponding to 

particular stages of the disease. 
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In the next step the two goals were redefined into mining goals: 

• Task 1. Such mining goal can be defined as a supervised inductive 

learning task. Categorical class attribute must be defined, which will 

group the data into subsets corresponding to patients who exhibit 

different pace of the disease development. Also, since the data is 

temporal, another attribute will be used to divide the data across the time 

domain. The attribute will describe the stage of the disease based on the 

status of a pulmonary function test. 

• Task 2. Such goal can be also defined as a supervised inductive learning 

task. Thus, a categorical class attribute that describes patients in terms of 

the particular type of CF they have must be defined. Next, similarly as 

for the first task, the data must be divided in temporal manner by using 

attribute(s) describing patient’s lung functions.  

After analyzing both tasks, the MetaSqueezer system was identified as a 

DM tool capable to provide desired results. There are four factors that decided 

about choosing the system: 

• it generates very simple to understand rules. This project requires 

physicians to be able to analyze and comprehend the rules. This is 

necessary to evaluate and use the results. The system not only generates 

small number of rules, but also very compact rules, which tremendously 

helps in their analysis 
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• it is scalable. The system has linear complexity and thus can be used with 

large quantities of data. The estimated size of the CF data set was about 

20K examples by around 200 attributes, and thus an efficient system is 

necessary to generate the results. 

• it can handle large quantities of missing values. Since the CF data is a 

real-life, clinical data set, it is expected that it will contain large 

quantities of missing information. The MetaSqueezer system is able to 

handle data sets which contain significant amount of missing values 

since such data is always used an an input to the MM step. The 

DataSqueezer which is a core inductive ML algorithm used within the 

system is proven to generate accurate results even in presents of 

significant amount of missing information.  

• it can handle temporal data. Although the system does not provide 

temporal-like knowledge representation, it can be succesfully applied to 

temporal data. The DM step of the MetaSqueezer system accepts 

multiple training data sub sets, which can represent temporally organized 

subsets of the original data. 

5.3 Understanding the Data 

The data used in this project was donated by Dr. Frank Accurso, pediatric 

pulmonologist from Denver Children’s Hospital. It was collected starting in 1982. 

It includes demographical information about patients, clinical information 
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including a variety of lab tests, and diagnoses. The data includes information 

about 856 patients. It was stored in the MS Access 97 using seven relational 

tables. The tables, together with the relational dependencies (shown as links) are 

shown in Figure 19. 

 

Figure 19. The structure of the CF data 

Detailed description of each of the tables is provided below: 

• VISITS (vis) table 

o The table holds the most important information relevant to patient’s 

visits to the clinic. One of the attributes, which is stored in the visits 
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table is the FEV% attribute that will be used as the time-defining 

attribute, as well as the class attribute. 

o Statistical information: 

 15,199 examples 

 26 attributes, numerical and binary 

 183,845 missing values; 46.5% of the total number of values 

 no keys are defined 

• ADDDAYS (add) table 

o The table holds administrative information, like patient admission 

information, kind of sickness that patient had when admitted, etc. 

o Statistical information: 

 2,141 examples 

 9 attributes, binary, textual, numerical, and date/time 

 3,011 missing values; 15.6% of the total number of values 

 no keys are defined 

• DEMOGRAPHICS (dem) table 

o The table holds demographical information about patients, like gender, 

race, ethnicity, family situation, etc. 

o Statistical information: 

 856 examples 

 40 attributes, binary, textual, numerical, and date/time 

 18,317 missing values; 53.5% of the total number of values 
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 “patno” is defined as the primary key 

• DIAGNOSIS2 (dia) table 

o The table holds diagnostic information. Although each patient is 

diagnosed with CF, the tests that lead to the diagnosis are indicated, 

and values for theses tests are provided. The table holds two attributes, 

Genotype1 and Genotyp2, that will be used to define the class attribute 

o Statistical information: 

 856 examples 

 89 attributes, binary, textual, numerical, and date/time 

 42,336 missing values; 55.6% of the total number of values 

 no keys are defined 

• CULTURE_LAST (cul) table 

o The table holds a variety of laboratory test results 

o Statistical information: 

 6,904 examples 

 65 attributes, numerical and textual 

 235,054 missing values; 52.4% of the total number of values 

 no keys are defined 

• MICROCHEMISTRY (mic) table 

o The table holds a variety of laboratory test results 

o Statistical information: 

 3,138 examples 
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 65 attributes, numerical 

 146,307 missing values; 71.7% of the total number of values 

 no keys are defined 

• HEMATOLOGY (hem) table 

o The table holds a variety of laboratory test results 

o Statistical information: 

 2,348 examples 

 27 attributes, numerical and textual 

 22,043 missing values; 34.8% of the total number of values 

 no keys are defined 

Because of the confidentiality issues, all identification information was 

removed from the data before it was used in the project. The data holds only 

relevant clinical information. 

There are several issues with the CF data. First, as expected, it contains 

significant amount of missing information. For example, MICROCHEMISTRY, 

CULTURE_LAST, and DIAGFNOSIS2 tables contain more than half of missing 

information. Second, it can be also expected that since the data was inserted 

manually by the physicians, it will contain also substantial amount of incorrect 

records. Next, the tables contain different attributes: numerical, textual, and 

binary, which need to be handled by the learning algorithm. The tables also 

possibly include large quantities of irrelevant information, in terms of attributes, 
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which may be removed before the learning process is executed. All these issues 

need to be addressed in the next step. 

Below, the FEV%, Genotype 1, and Genotype 2 attributes are described. 

These attributes will be used to derive classes for both tasks, and to divide the 

data into temporal intervals: 

• FEV% (Forced Expiratory Volume in One Second % Predicted) attribute 

is stored in the VISITS table. It describes the amount of air that can be 

forced out in one second after taking a deep breath. Since one of the 

most significant symptoms of CF is obstruction of lungs, the lungs 

function tests are very good indicator of the stage of the disease. In case 

of the CF data, the test result indicates the stage of the disease better than 

the timestamp information, because different patients are diagnosed and 

start treatment at different age. Another advantage of FEV% is its 

independence of patient characteristics like weight, age, race, etc., since 

these characteristics are used to compute its values. The FEV% is used 

as the attribute to define temporal intervals for both tasks. It is also used 

to define the class attribute for the first task. Since goal of this task is to 

discover important factors that influence the pace of CF development, 

several categories of the disease development pace were defined using 

the FEV% attribute. The choice of the FEV% attribute was suggested by 

Dr. Accurso who is the owner of the data set. 
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• Genotype 1 and Genotype 2 attributes are stored in the DIAGNOSIS2 

table. The CF is caused by at least 1000 different genetic mutations, but 

approximately 70% of the mutations are found to be delta F508 gene, 

making it the most common CF mutation (Cystic Fibrosis Genetic 

Analysis Consortium, 1990; Cystic Fibrosis Mutation Database, 2003). 

The CF data includes two attributes describing the genetic mutations: 

Genotype 1 and Genotype 2. These attributes are used to distinguish 

different kinds of CF. Since the second mining task is to find important 

factors that are related to particular kinds of CF, combination of the two 

attributes will be used to provide class labels for the task. According to 

Dr. Accurso, four kinds of CF need to be defined: 1) both Genotype 1 

and Genotype 2 are F508, 2) Genotype 1 is F508 and Genotype 2 is any 

other genotype, 3) Genotype 2 is F508 and Genotype 1 is any other 

genotype, 4) both Genotype 1 and Genotype 2 are not F508. 

In summary, the data was identified to hold all information necessary to 

carry out the project. More specifically, several attributes that may be used to 

derive classes and temporal subsets for both learning tasks were identified. Also, 

the amount and variety of information included in the CF data gives a strong 

reason to believe that interesting patters may be discovered. 
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5.4 Preparation of the Data 

Before the CF data will be used to generate rules using the MetaSqueezer 

system, it needs to be preprocessed. This usually involves removing or correcting 

noise and missing values, sampling and reorganizing the data, assigning classes to 

examples, identifying temporal intervals, etc. The cleaned data is later discretized 

since the MetaSqueezer system works only with discrete data. As with most of the 

DM projects, it is expected that this step consumes most of the allocated time 

(Cabena et. al, 1998, Cios and Kurgan, 2002b). It is well recognized that data 

preparation is a very important task that greatly affects the outcome of the entire 

project, and thus it often takes a significant portion of the total project effort 

The CF data is stored in seven relational tables. As a first step, a manual 

data checking and cleaning was performed. It is expected that this task will 

consume significant amount of time since the CF data contains significant amount 

of errors and inconsistencies. Since the data concerns medical domain, problems 

are expected connected with physician’s interpretation that is written in an 

unstructured free-text English (text fields in the database), which is very difficult 

to standardize and thus difficult to mine (Cios and Moore, 2002). To point out 

some of the problems, the values of the FEV% attribute from VISITS table should 

be in the range [0; 200], but some records have bigger values. Since the 

information stored in this attribute is critical for the MetaSqueezer system, this 

problem needs to be carefully corrected. Another problem is presence of null 
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attributes. Such attributes have null values for all tuples (rows) and thus should be 

deleted. Almost all tables in the CF data contain attributes that are null. 

Table 23. Summary of data cleaning performed with CF data 

Table Fixed inconsistencies Fixed errors 
DEMOGRAPHICS sex : F → f, Female → f, M → m, Male → m 

group: nbs → NBS 
marital: u → Unknown, m → Married, s → Single, d → Divorced 
mecil: No → no, NO → no, Yes → yes, y  → yes, Treated Surg  → 
TreatedSurgically, tr surgically  → TreatedSurgically, trsurg  → 
TreatedSurgically, treated surgically → TreatedSurgically, surg → 
TreatedSurgically, surgery →  TreatedSurgically, Treated Surgically → 
TreatedSurgically, Treated Med → med 
jaun: Unknown → unk, Untreated → unt, untreated → unt, treated → trt, 
No → no, NO → no, Treated → trt 
bfed: Yes → yes, No → no, NO → no, y → yes, YES → yes, YYES → 
yes, n → no 
dcmot: y → yes, n → no, Yes → yes, YES → yes, Y → yes, NO → no, No 
→ no 
deltype: Vaginal → vagnl 

marital: o, 1 
 

ADDAYS EXTENDEDCRC : n → N 
 

NONE 

CULTURE_LAST SOURCE: SPUTUM → Sputum 
SOURCE2: Throat cx → Throat Cx 
VIRUSDETECTED: N → n, Y → y, ND → n 
Adeno: N → n, Y → y 
CMV: N → n, Y → y 
FLU: N → n 
ParafluI: N → n, Y → y 
ParafluII: N → n 
ParafluIII: N → n 
Rhino: N → n 
Coxsa: N → n 
Polio: N → n 
RSVCX: N → n 
RSVRAPID: N → n 

VIRUSDETECTED: +, = 
 

DIAGNOSIS2 Status : unknown → Unknown 
site1: other → OTHER, Other → OTHER, Oher → OTHER 
val2: M → m 
site2: other → OTHER, Other → OTHER 
site3: other → OTHER, Other → OTHER 
Geno: removed entire attribute 
Date of NPD: removed entire attribute 
Date Post card Sent: removed entire attribute 

age@diagnosis: -73.9,-93.3 
age@sweate3: -73.9,-94.2,-93.3 
Geno: entirely NULL attribute 
Date of NPD: entirely NULL attribute 
Date Post card Sent: only a single date 
10/19/2001 
Genotypes2: comment 
sweatna1: 878 

HEMATOLOGY pivka: NEG → Neg 
 

pivka: 77,0.4,0.99 
IIAg: NEG 
empty records for PatNo: 1948, 514, 97, 
112, 893, 194, 665, 1940, 248 
 

MICROCHEMISTRY BUNoperand: S → s 
Ca:mg/dL;MEQ/L: meq/l → MEQ/L 
VitAmeas: UG/DL → ug/dl, MCG/DL → mcg/dl, ug/dL → ug/dl 
IGECom: removed entire attribute 

empty record for PatNo: 863, 642, 561, 
956, 640 
IGECom: entirely NULL attribute 

VISITS NONE FEV%: values above 150: 151, 158, 
164, 166, 808, 982 
Inpt: delete examples with Inpt=1 
PulseOximetry: delete values > 100 
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The two main manual operations were performed to clean the CF data. First, 

the consistency of attributes was corrected by merging together their 

corresponding values. Such operation is caused by inconsistent format of inserted 

data, and must be performed since inductive ML algorithms do not recognize such 

correspondence. Next, erroneous values of attributes were identified and removed. 

This was performed for all of the tables, and is summarized in Table 23. 

After the data was cleaned, it was converted into a single relational table. In 

order to merge the seven tables several join operation were performed. The tables 

were merged in pairs, where results of one join operation were merged with next 

table. The following procedure was applied to generate a single table out of the 

seven original tables: 

1. join on DEMOGRAPHICS and DIAGNOSIS2 with “patno (dem) EQUAL 

TO patno (dia)” 

2. join on VISITS-imp and the previous join result with with “patno (vis) 

EQUAL TO patno (dem)” 

3. join on the previous join result and ADDDAYS with with “patno (vis) 

EQUAL TO Patno (add) AND visdate1 (vis) CLOSEST TO ADMDATE 

(add)” 

• additional conditions were: “visdate1 (vis) ≤ ADMDATE (add)” AND 

“ADMDATE (add) – visdate1 (vis) ≤ 90 days” 

4. join on the previous line result and CULTURE-LAST with with “patno (vis) 

EQUAL TO patno (cul) AND visdate1 (vis) CLOSEST TO date (cul)” 
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• additional conditions: “|date (cul) – visdate1 (vis)| ≤ 90 days” 

5. join on the previous line result and MICROCHEMISTRY with with “patno 

(vis) EQUAL TO Pat. (mic) AND visdate1 (vis) CLOSEST TO Date (mic)” 

• additional conditions: “|Date (mic) – visdate1 (vis)| ≤ 90 days” 

6. join on the previous line result and HEMATOLOGY with with “patno (vis) 

EQUAL TO patno (hem) AND visdate1 (vis) CLOSEST TO date (hem)” 

• additional conditions: “|date (hem) – visdate1 (vis)| ≤ 90 days” 

7. join on the previous line result and PERCENTILES with with “patno (vis) 

EQUAL TO patno (per) AND visdate1 (vis) EQUAL TO date (per)” 

• this join operation concern a new data table that is described later in the 

section. 

The next data preparation step consists of removing attributes that are 

irrelevant to the performed tasks. After consultation with Dr. Accurso, the 

attributes listed in Table 24 were removed. The attributes were found either 

irrelevant from the medical point of view or containing too much noise or missing 

information to be used for learning. 

After removal of attributes, temporal intervals and class labels are 

generated. Finally, the data is discretized using both the manual discretization, 

and F-CAIM algorithm (Kurgan and Cios, 2003b). The outcome of this step are 

two relational tables that include discrete attributes, an attribute that defines class 

labels, one per each table, and another attribute that defines temporal intervals 
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used to divide data in the DM step of the MetaSqueezer system. One of the 

generated tables is used for the first tasks, while the other for the second task. 

Table 24. List of irrelevant attributes from CF data 

table name attribute name 
VISITS visdate1, Dictation, Other, AdultCenter, FVC, FVC%, FEV1, FEF25-

75, , FEF25-75% , ACT, MAC , TSF, SSF, HeightforAgeZ, 
WeightforAgeZ, WeightforHeightZ, HC, %IBW 

DEMOGRAPHICS Insurance, Comment, Study, Smokinginthehome, cffam, lunghx, 
motallrg, fatallrg, siballrg, , bleng , ofc, distress, resus, jaun, formage 

DIAGNOSIS2 DOB, Ifmoved-where?, Status-Comment, othexplain, DateDiagnosis, 
irtdate1, irtdate2, irtdate3, swedate1, swedate2, swedate3, swedate4, 
Comment, GenotypeDate, Accession., GenoComment, Sex, 
DateofEnzymeStart, Sendapostcard, birthstate, Status, Unknown, 
swetamt1, val1, site1, age@sweat1, swetamt2, val2, site2, age@sweat2, 
swetamt3, val3, site3, age@sweate3, swetamt4, val4, site4, 
age@sweat4, SweatTestOriginal, GenotypeOriginal, GenotypeSite, 
GENOGROUP, CauseofDeath, dateofEnzymestartoperand, 
TomNemeth?, NasalPotentialDifference, age@diagnosis 

ADDAYS ADMDATE, DISCHGDATE, INDICATION(DX), COMMENT1, 
EXTENDEDCRC 

MICROCHEMISTRY Date, Clinic, CRCvisit, age, IGEoper, BUNoperand, ALKoperand, 
Camg/dL;MEQ/L, VitD25-OH/Operand, VitAmeas, Gamma-Eoperand, 
TRYPoperand, CG/OPERAND, Lipase, TotalE, OGTT-FastingGlucose, 
OGTT-30minuteGlucose, OGTT-60minutesGlucose, OGTT-
90minutesGlucose, OGTT-120minutesGlucose, ZPP, Gluthathione, 
VitAoperand, po4, ca19 

HEMATOLOGY date, crcvisit, Clinic, BASOS/OPERAND, EOS/OPERAND, 
CRP/Operand, pivka, IIAg 

CULTURE_LAST date, BASE, BASE2, BASE3, BASE4, BASE5, power, power2, 
power3, power4, power5, Comment, Comment2, crcvisit, HOSPITAL, 
CFPATHOGEN, PolymorphicCellsDe, EpithelialCellsDet, 
GramNegativeRodDe, GramPositiveRod, GramNegativeDiploc, 
GramNegativePleorm, GramPositiveCocci, GramPositiveCocci2, 
PseudomonasAerugino, PseudomonasAerugin2, HFlu, HOSPITAL2, 
SOURCE2, VIRUSDETECTED, Adeno, CMV, FLU, ParafluI, 
ParafluII, ParafluIII, Rhino, Coxsa, Polio, RSVCX, RSVRAPID, 
RSVTECHNIQUE 

other patno, FEV% (vis), Genotypes1 (dia), Genotypes2 (dia) because of 
correlation with class and time-defining attributes 

 

The step of data preparation was highly iterative. Following, the final 

outcome, derived after several iterations, is described. Also, a brief description of 

all iterations is summarized at the end of this section. 
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The MetaSqueezer system can be applied to generate rules from supervised 

temporal data, such as CF data. The training set needs to be organized in a 

relational table where each column holds a single attribute, and each tuple 

describes a single example. In case of analysis of CF data, there are two attributes 

that must be included in the table: 

• one that stores class labels. Class labels are usually derived from one of 

the data attributes and define the target concept. In case of Task 1, they  

describe the pace of the disease development, and in case of the task 2 

they describe different types of CF. The “CF pace (cf)” attribute was 

generated to describe classes for task 1, while “”CF type (cf)” attribute 

was generated to describe classes for task 2. 

• one that stores time-defining information. The MetaSqueezer system 

works with training set that is divided into subsets. These subsets are 

defined for example as temporal intervals, and as such will include data 

that is associated with particular stages of the CF. The same time-

defining attribute, called “TemporalIntervals (cf)”, is used for both tasks. 

Following, the description of the class and time-defining attributes is 

provided. 

5.4.1 The Class Attributes 

These are two class attributes, one per each task. The first attribute 

describes pace of the disease development, which is used to define classes for task 
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1. The attribute was derived based on “visdate1” and “FEV%” attributes using the 

following procedure: 

• remove all examples with missing “visdate1” or ”patno” or “FEV%” 

o “visdate1” describes the visit data, while “patno” describes unique 

patient number 

• remove all examples for 

o “visitdate1” at patient’s age ≤ 7 years 

o all patients with 5 or less visits, because of possibility of 

inaccuracies for the linear curve fitting 

• recalculate “visdate1” into the “dayno” that describes number of days 

since the first visit for each patient 

• perform linear curve fitting (y=a*x+b) to determine pace of the disease 

development for each of the patients 

o use “dayno” as x, and “FEV%” as y coordinate 

o use slope of the linear interpolation of the above relation to 

determine the pace of CF. 

The “CF pace (cf)” attributes is defined in Table 25. 

Table 25. Definition of the "CF pace (cf)" attribute 

CF pace (cf) slope a description # patients # data points
FastDegrad [-inf, -0.01) fast pace of degradation 68 2221 
SlowDegrad [-0.01, -0.005) intermediate pace of degradation 64 2241 
NoChange [-0.005, 0.005) no change 165 5847 

Improv [0005, inf) slow pace of improvement 60 1598 
Unknown unknown missing (no slope for a patient) 499 4613 
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The total number of negative slopes, which define degradation, was 227, 

positive slopes, which define improvement, was 130, while the total number of 

patients for whom the slopes were computed was 357. The first four categories 

from Table 25 define the examples that will be used to generate rules, while the 

last category defines examples that will be removed. This means that the first task 

is the 4-class supervised inductive learning task. The definition of the intervals of 

the slope was decided by Dr. Accurso. 

The second class attribute describes different types of CF and is used to 

define classes for task 2. The attribute was derived based on “Genotype 1” and 

“Genotype 2” attributes, as shown in Table 26. 

Table 26. Definition of the "CF type (cf)" attribute 

CF type Genotypes1 Genotypes2 # examples 
Type1 F508 F508 8386 
Type2 F508 not F508 5329 
Type3 not F508 F508 0 
Type4 not F508 not F508 969 
Type5 either or both unknown 1836 

 

The first four categories define the examples that will be used to generate 

rules, while the last category defines examples that will be removed. The Type2 

and Type3 classes were merged together, and thus the second task is the 3-class 

supervised inductive learning task. The definition of the types was decided by Dr. 

Accurso.  
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5.4.2 The Time-Defining Attribute 

The time-defining attribute, which is used to divide the data into subsets for 

the DM step of the MetaSqueezer system is derived from the FEV% attribute. 

There are 6 discrete values of the attribute, shown in Table 27, defined. 

Table 27. Definition of the "TemporalIntervals (cf)" attribute 

TemporalIntervals (cf) > min FEV%  ≤ max FEV% # examples 
1 0 40 824 
2 40 60 1474 
3 60 80 2281 
4 80 100 2973 
5 100 1000 1686 
0 FEV% empty, 

error, <0, >1000 
7282  

 

The first five categories define the examples that will be used to generate 

rules, while the last category defines examples that will be removed. This means 

that the training sets for both tasks are divided into 5 subsets during the DM step 

of the MetaSqueezer system. The definition of the intervals of the FEV% attribute 

was decided by Dr. Accurso. 

5.4.3 Discretization 

After deriving class and time-defining attributes, the data was discretized. 

First, each attribute was evaluated to belong to one of three categories: discrete, 

continuous for manual discretization, and continuous for automated discretization. 

The discrete attributes were left unchanged. The continuous for manual 

discretization attributes were discretized by Dr. Accurso. This was performed to 



 134

generate discrete attribute, where their values have medical representation. The 

summary of manual discretization is provided in Table 28. 

Table 28. The manual discretization of the CF data 

attribute name # of discrete 
intervals 

discretization schema 

dob (dia) 3 
(-inf, 12/31/1981) → before82, (01/01/1982, 
12/31/1992) → 82till92, (01/01/1993, present) → 
after92 

DateOfDeath (dia) 2 any value → true, empty → false 
crcvisit1 (vis) 2 0 → 0, non 0 → non0 
Birthstate (dem) 2 CO → CO, non CO → notCO 
moteduc (dem) 2 <=12 → 12andbelow, >12  → above12 
fateduc (dem) 2 <=12 → 12andbelow, >12  → above12 
gestage (dem) 2 <=38 → 38andbelow, >38  → above38 

bwt (dem) 3 <2.5 → below2.5, <2.5, 3.2> → between2.5and3.2, 
>3.2 → above3.2 

apgar1 (dem) 3 <5 → below5, <5, 8) → 5till8, >=8 → 8andabove 
apgar5 (dem) 3 <5 → below5, <5, 8) → 5till8, >=8 → 8andabove 

dayshop (dem) 3 <5 → below5, <5, 15> → between5and15, >15 → 
above15 

ALB@DXINTERVIEW 
(dia) 3 <=2.5 → 2.5andbelow, (2.5, 3> → 2.5till3, >3 → 

above3 
pseuda (cul) 2 0 → 0, non 0 → non0 
pseudm (cul) 2 0 → 0, non 0 → non0 
pseudc (cul) 2 0 → 0, non 0 → non0 
Xanthamonas(psmaltophilia) 
(cul) 2 0 → 0, non 0 → non0 

otherpseud (cul) 2 0 → 0, non 0 → non0 
stapha (cul) 2 0 → 0, non 0 → non0 
hflu (cul) 2 0 → 0, non 0 → non0 
Aspegillus (cul) 2 0 → 0, non 0 → non0 
NonTBMycobacterium (cul) 2 0 → 0, non 0 → non0 
EColi (cul) 2 0 → 0, non 0 → non0 
Klebsiella (cul) 2 0 → 0, non 0 → non0 
Alcaligienesxylosoxidans 
(Achromobacter) 2 0 → 0, non 0 → non0 

BranhCat (cul) 2 0 → 0, non 0 → non0 

IGE (mic) 3 <100 → below100, <100,1000> → 100till1000, >1000 
→ above1000 

alb (mic) 3 <=2.5 → 2.5andbelow, (2.5, 3> → 2.5till3, >3 → 
above3 

age@diagnosis (dia) 4 <=0.25 → below025, (0.25,2> → 025till2, (2,7> → 
2till7, >7 → above7 
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The continuous for automated discretization attributes were discretized 

using the supervised discretization algorithm F-CAIM (Kurgan and Cios, 2003b). 

The F-CAIM algorithm is a modification of the original CAIM algorithm, which 

exhibits the same properties as CAIM, but is faster. Since it is a supervised 

discretization algorithm, it discretizes an attribute using class labels. Thus, the 

algorithm discretizes each attribute twice, separately for each of the tasks. The list 

of attributes discretized using the F-CAIM algorithm is shown in Table 29. 

Table 29. The discretization of the CF data using F-CAIM algorithm 

table name attribute name 
VISITS vis_hgt1, vis_wght1, PulseOximetry 
DEMOGRAPHICS motage, fatage 
DIAGNOSIS2 HCT@DXINTERVIEW, irt1, age@irt1, irt2, age@irt2, irt3, age@irt3, 

swetna1, swetk1, swetcl1, swetna2, swetk2, swetcl2, swetna3, swetk3, 
swetcl3, swetna4, swetk4, swetcl4 

MICROCHEMISTRY na, k, cl, CO2, Glucose, bun, alkphos, ast, prot, ca, PHOS-S, VitD25-OH, 
prealb, rbp, vita, alphae, Gamma-E, TRYP2, lipids, cg, Zinc, 
GLYCOHGB, GGTP-S, IU/LGPT/ALT, LDH-S, CHOLESTEROL-S, 
CREAT-S, BILI-TOTAL, E/L, BetaCarotene, HemA1C, BileAcid 

HEMATOLOGY wbc, rbc, hgb, hct, mcv, mch, mchc, rdw, segs, bands, lymphs, relymph, 
monos, basos, eos, esr, PMNElastase 

CULTURE_LAST BASEpower, BASEpower2, BASEpower3, BASEpower4 
PERCENTILES WAZ, HAZ, WHZ 

 

5.4.4 The Training Set for Task 1 

The task 1 goal it to discover factors related to different paces of the 

development of CF. Thus, the training set uses “CF pace (cf)” attribute as the 

class attribute, and “TemporalInterval (cf)” as the attribute to divide the data into 

subsets during the DM step of the MetaSqueezer system. The training set was 

derived from the original data first by removing noise and inconsistencies, 
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merging the seven tables, removing irrelevant attributes, defining class and time-

defining attributes, and finally discretizing the remaining continuous attributes. 

Two more steps were performed to generate final version of the training set: 

• examples that include incomplete critical information, in terms of class or 

temporal information, were removed. Thus, all examples that have “CF 

pace (cf)” = Unknown OR “TemporalInterval (cf)” = 0 were removed. 

Total of 11,872 examples were removed. 

• examples that incorporate too many missing values were removed. This 

was performed to remove all examples that contain large number of 

missing values introduced by performing join operations. During the join, 

if a tuple from one table was not matched with a tuple from another table, 

it was padded with missing values. If an example was not matched 

during several subsequent joins, as a result it contains many missing 

values, and can be treated as an outlier and thus removed. To decide 

which examples will be removed, a graph that shows relationship 

between the number of missing values and number of examples that 

have the number of missing values was used, see Figure 20. 
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Figure 20. The relationship showing number of examples with particular number 

of missing values for task 1 

The graph shows a peak of number of missing values above 115 missing 

values per example. This high peak is associated with the examples that 

were padded with zeros during join operations, and thus might be removed 

without impairing the quality of learning. The examples with more than 115 

missing values were removed. Total of 2,316 examples were removed. 

After applying the above preprocessing steps, the training set for task 1 

consists of 5,448 examples described by 160 attributes, and with total number of 

values of 871,680. The number of missing values is 492,961, which constitutes 

56.6 % of the entire set. 

5.4.5 The Training Set for Task 2 

The task 2 goal it to discover factors related to different types of CF. Thus, 

the training set uses “CF type (cf)” attribute as the class attribute, and 

“TemporalInterval (cf)” as the attribute to divide the data into subsets during the 
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DM step of the MetaSqueezer system. The training set for task 2 was derived the 

same way as the training set for the task 1, except the last two steps for which the 

description follows: 

• examples that include incomplete critical information, in terms of class or 

temporal information, were removed. Thus, all examples that have “CF 

type (cf)” = Type5 OR “TemporalInterval (cf)” = 0 were removed. Total 

of 7,538 examples were removed. 

• examples that incorporate too many missing values were removed. 

Similarly as for the training set for the task 1, a graph that shows 

relationship between the number of missing values and number of 

examples that have the number of missing values was used, see Figure 

21. 
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Figure 21. The relationship showing number of examples with particular number 

of missing values for task 2 
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Similarly as for the training set for the task 1, based on the analysis of the 

graph, the examples with more than 115 missing values were removed. 

Total of 2,472 examples were removed. 

After applying the above preprocessing steps, the training set for task 2 

consists of 6,022 examples described by 160 attributes, and with total number of 

values of 963,520. The number of missing values is 541,860, which constitutes 

56.2 % of the entire set. 

5.4.6 Refining the Project 

The described above preprocessing steps were developed in highly iterative 

manner, which is a common practice in case of DMKD projects. Following, a 

summary of the iterations, including brief description of the changes, reasons, and 

description of affected DMKD steps is provided. 

Since the start of the project, the CF data was identified as very challenging 

training set. Several reasons, like large amount of missing information, incorrect 

records, large number of attributes, and structure of the CF data, were identified 

as sources of possible difficulties. The project was performed slowly, with several 

iterations, and careful revisions of the performed work. Four formal meetings 

were held to evaluate the progress and direct the research. Also, numerous other 

informal meeting and discussion have taken place. The results of these meeting 

are summarized in Table 30, which shows all major iterations during the CF 

project. 
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Table 30. Summary of the refinements performed during the analysis of the CF 

data 

current 
DMKD step

returned to reasons for 
modifications

summary of modifications 

Data Mining Preparation 
of the Data 

incomplete 
and difficult to 
evaluate 
results 

modification of the join operation, hand-coded 
discretization of several attributes, removal of 
several irrelevant attributes, redesign of the “CF 
pace (cf)” attribute, new format of displaying the 
results 

Evaluation of 
the 
Discovered 
Knowledge 

Understandi
ng of the 
Data 

unsatisfactory 
results 

New data table, which describes weight and height 
percentiles was added, modification of the join 
operation to accommodate for the new table, hand-
coded discretization of several attributes that were 
discretized automatically, deletion of examples with 
high number of missing values, removal of several 
irrelevant attributes 

Evaluation of 
the 
Discovered 
Knowledge 

Data Mining invalidated 
results 

10 fold cross validation test procedures, 
improvement in the new format of displaying the 
results, removed minor data inconsistencies  

 

The above iterations represent only the major modifications performed 

during the project. They were performed at different steps of the DMKD process 

and resulted in the refinement of the process by returning, modifying, and 

repeating some of the previously performed steps. The redesign of the approach 

was guided by both the medical the DM personnel. The main reason for 

performing these refinements was unsatisfactory quality of results. The performed 

modification resulted in improving the quality of the training sets, and improving 

quality of representation of the results. It is very important to note that all of the 

performed refinements resulted in substantial improvement of the quality of the 

approach. The above work provides a strong validation of the iterative nature of 

DMKD projects. 
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5.5 Data Mining 

The goal of the DM step is to generate new and useful knowledge from the 

data prepared in the preceding steps. In case of the CF data, the DM step 

consisted in two separate tasks. Task 1 was to discover important factors related 

to predefined paces of the development of the disease. Task 2 was to discover 

important factors related to predefined types of the CF. During the Preparation of 

the Data step, two training sets, one per each task, were prepared. Summary 

information about the sets is shown in Table 31.  

Table 31. Summary of training sets for the CF project 

set size # classes # attrib. test data % missing 
values 

% inconsistent 
examples 

# subsets 

CF1 5448 4 160 10CV 56.6 0 5 
CF2 6022 3 160 10CV 56.2 0 5 

 

The DM task for both training sets is very difficult because of the two 

following observations: 

• both training sets are characterized by very large number of missing 

values. For both datasets, all examples contain some missing values, and 

total number of missing information is larger than the amount of 

complete information. 

• both training sets are described by a large number of attributes, which 

constitute about half of the original attributes from the raw CF data. 

Because of the very large number of attributes, it can be expected that 
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the data is very specific, i.e. there are very little common patterns 

between different patients. Thus generated rules may be long. 

The first factor was overcome by application of the MetaSqueezer system. 

The system is proven to be missing values resistant. The results generated by the 

system for the CF data again prove its ability to cope with data containing large 

amount of missing information. 

The second factor was overcome by development of an alternative 

knowledge representation. The rules, generated by the MetaSqueezer, were 

transformed into tables, called rule and selector ranking tables, which show 

association of particular attributes and selectors with particular class values and 

within particular training subsets. These tables are computed from the rules, and 

provide compact and very easy to understand summary of information contained 

in the generated rules sets. 

5.5.1 Rule and Selector Ranking Tables 

The tables are generated from rules by adopting procedure proposed by 

(Cios and Kurgan, 2002a). Background information and description of the 

procedure is given below. 

The attribute and selector ranking tables are used to rank attributes and 

selectors by assigning to them a goodness value that quantifies relevance of the 

attributes to a particular learning task. The building of the tables is based on 

computing goodness of each attribute and selector using classification rules 

generated by the MetaSqueezer system or the DataSqueezer algorithm. The 
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attribute and selector goodness is computed in three steps (Cios and Kurgan, 

2002a): 

1. Each rule generated by the MetaSqueezer system or DataSqueezer 

algorithm consists of multiple selectors and has assigned goodness value 

equal to the number of positive examples it covers. The goodness is 

computed during rule generation. Its value is converted into percentage 

of the size of positive training data. 

2. Each selector is assigned a goodness value equal to the goodness of the 

rule it comes from. Goodness of the same selectors from different rules 

is summed up, and then scaled to the (0,100) range. 100 is assigned to 

the highest summed value, and the remaining summed values are scaled 

accordingly. Scaling of the goodness values is necessary because the 

summed goodness for a particular selector can have value over 100, and 

only its ratio to other selector goodness is important. 

3. For each attribute the sum of scaled goodness for all its selectors is 

computed and divided by the number of attribute values to obtain the 

goodness of the attribute. 

The following example shows how to compute attribute and selector tables 

for data shown in Table 5. The DataSqueezer generated these two rules for class 

home: “IF temperature = normal THEN home” (goodness 3), and “IF temperature 

= low AND heart blood flow = normal THEN home” (goodness 2). The goodness 

of rules is converted in the following manner: rule 1 describes 3 out of 5 examples 
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from class home. Thus, its goodness is 3/5= 60%. Rule 2 describes 2 out of 5 

examples from class home, so its goodness is 2/5= 40%. Below the list of all 

selectors and their goodness values, computed as a sum of goodness of rules that 

use the selector is given: 

((temperature, normal); goodness 60), ((temperature, low); goodness 40), 

((temperature, high); goodness 0) 

((heart blood flow, normal); goodness 40), ((heart blood flow, low); 

goodness 0), ((heart blood flow, high); goodness 0) 

((chest pain type, 1); goodness 0), ((chest pain type, 2); goodness 0), ((chest 

pain type, 3); goodness 0) ((chest pain type, 4); goodness 0)  

After scaling the selector goodness values to the [0-100] range, the updated 

goodness values are as follows: 

((temperature, normal); goodness 100), ((temperature, low); goodness 66.7), 

((temperature, high); goodness 0) 

((heart blood flow, normal); goodness 66.7), ((heart blood flow, low); 

goodness 0), ((heart blood flow, high); goodness 0) 

((chest pain type, 1); goodness 0), ((chest pain type, 2); goodness 0), ((chest 

pain type, 3); goodness 0) ((chest pain type, 4); goodness 0)  

For attribute “temperature” we have the following selectors and their 

goodness values: ((temperature, normal); goodness 100), ((temperature, low); 

goodness 66.7), ((temperature, high); goodness 0) 
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That gives the goodness of the attribute as (100+66.7+0)/3 = 55.6. Similarly, 

the goodness of the “heart blood flow” attribute is 22.2 and goodness of the “chest 

pain type” attribute is 0. The attribute and selector goodness for the rules 

describing class home are as follows: 

ATTRIBUTE : temperature (55.60  goodness) 

values: normal (100.00), low (66.70), high (0.00),  

ATTRIBUTE : heart blood flow (22.20  goodness) 

values: normal (66.70), low (0.00), high (0.00),  

ATTRIBUTE : chest pain type (0.00  goodness) 

values: 1 (0.00), 2 (0.00), 3 (0.00), 4 (0.00), 

The DataSqueezer generates the following rule for class treatment:  “IF 

chest pain type = 4 THEN treatment” (goodness 3). Following the same 

computations, the attribute and selector goodness for the rules describing class 

treatment are: 

ATTRIBUTE : chest pain type (25.00  goodness) 

values: 1 (0.00), 2 (0.00), 3 (0.00), 4 (100.00),  

ATTRIBUTE : heart blood flow (0.00  goodness) 

values: normal (0.00), low (0.00), high (0.00),  

ATTRIBUTE : temperature (0.00  goodness) 

values: normal (0.00), low (0.00), high (0.00), 
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Next, the computed goodness values are used to generate the attribute and 

selector ranking tables. The table generated for the above example is shown in 

Table 32. 

Table 32. Attribute and selector ranking table for the example data 

attribute value class home class treatment 
temperature 55.6 0 
temperature normal 100 0 
temperature low 66.7 0 
temperature high 0 0 
heart blood flow 22.2 0 
heart blood flow normal 66.7 0 
heart blood flow low 0 0 
heart blood flow high 0 0 
chest pain type 0 25 
chest pain type 1 0 0 
chest pain type 2 0 0 
chest pain type 3 0 0 
chest pain type 4 0 100 

 

The table is used to analyze the generated rules in terms of finding 

important attributes and selectors that were found to be correlated with a 

particular class. The main reason for generation of such tables is simplicity of 

their analysis. Instead of analyzing many possible rules, the user is shown a 

simple table that lists the degree of association between an attribute or a selector 

and a desired class. The degree of association is computed from the rules, and 

thus is validated by the procedures used to validate the rules. The table greatly 

simplifies the task of understanding and analysis of the results. Once the user 

finds an interesting correlation, all rules that were used to compute it can be 

pulled and displayed. 
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After developing the tables and using them in the CF project, one more 

modification was proposed and implemented. To make the analysis of the table 

easier, the values representing the degree of association were color-coded. Three 

thresholds were designed: for value of 0 the corresponding cell in the table is 

white, for values from (0, 50) interval the color is gray, and for values from [50, 

100] interval the color is black. The white color shows no association relationship. 

The gray color shows an association, while the black color shows a strong 

association. This greatly simplified the analysis of the table making it a very user-

friendly and easy to carry-out task. As an example, the above table in color coded 

version is shown in Table 33. 

Table 33. Color coded attribute and selector ranking table for the example data 

attribute value class home class treatment 
temperature   
temperature normal   
temperature low   
temperature high   
heart blood flow   
heart blood flow normal   
heart blood flow low   
heart blood flow high   
chest pain type   
chest pain type 1   
chest pain type 2   
chest pain type 3   
chest pain type 4   

 

To even further improve the simplicity of the table, the attributes and 

selectors that do not exhibit association with any of the classes may be removed 

from it. Table 34 show the attribute and selector ranking table with removed 

attributes and selectors. 
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Table 34. Color coded attribute and selector ranking table with removed irrelevant 

attributes for the example data 

attribute value class home class treatment 
temperature   
temperature normal   
temperature low   
heart blood flow   
heart blood flow normal   
chest pain type   
chest pain type 4   

 

The attribute and selector tables are generated from rules generated by the 

MetaSqueezer system. A separate table is generated from rules generated by the 

DataSqueezer for each of the training subsets, called sub-tablei, where i is a subset 

index. Another table is generated for the meta-rules generated in the meta mining 

step of the system; called meta-table. The attribute and selectors tables are 

generated in three steps. First all sub-tablei tables are merged into a single 

attribute and selectors table, where entries for each of the classes are subdivided 

into specific intervals. Next, the meta-table is used to adjust the values in the 

existing attribute and selector table. If a specific entry exists in both tables, the 

value in the attribute and selector table will be summed with the value from the 

meta-table. Otherwise it is left unchanged. Finally, the values in the attribute and 

selector table are scaled to the (0,100) range. The table shows the associations 

between each of the attributes and selectors used in the rules, and the class 

attribute, separately for each input subset. An example table, generated from rules 

generated for the CF data, is shown later in the chapter. 
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An example attribute and selector ranking table resulting from manipulating 

a sub-table1, a sub-table2, and a meta-table is shown in Figure 22. 

attribute value class home class treatment
temperature   
temperature normal   
temperature low   
heart blood flow   
heart blood flow normal   
chest pain type   
chest pain type 4   

a) 

attribute value class home class treatment
temperature   
temperature normal   
heart blood flow   
heart blood flow normal   
chest pain type   
chest pain type 3   
chest pain type 4   

b) 

attribute value class home class treatment
temperature normal   
heart blood flow   
heart blood flow normal   
chest pain type   
chest pain type 4   

c) 

attribute value class home class treatment
  I1 I2 I1 I2 

temperature     
temperature normal     
temperature low     
heart blood flow     
heart blood flow normal     
chest pain type     
chest pain type 3     
chest pain type 4     

d) 

Figure 22. a) sub-table1 generated for data from interval 1 (I1), b) sub-table2 

generated for data from interval 2 (I2), c) meta-table d) attribute and selector 

ranking table. 

The main use of the attribute and selector ranking table is to enable human 

evaluation of the generated rules by domain experts. Since often they have limited 

time to perform the evaluations any method, like the one just described, that 

simplifies the task is always welcome. Analysis of attribute and selector ranking 

tables is performed by the following procedure: 

• analysis of the class attribute to generate a list of values that can be 

grouped based on similarities inferred from available background 

knowledge. This list, called the class list, includes each of the values 
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separately, but may include some grouping of values. This step concerns 

analysis of values from the first row in the attribute and selector ranking 

table. In the example table in Figure 22d, the class list consists of 

{(home), (treatment)}, 

• finding significant attributes and selectors described in the attribute and 

selector ranking table. Each of the rows of the table, except the first, 

describes degree of association of a particular attribute or selector and 

class values described by the shaded areas in columns. For each attribute 

we find if grey or black areas that represent association of an attribute 

with all classes are related to any of the elements from the class list. If 

they are related to one element from the list then add the attribute or  

selector to the list of, possibly, significant selectors and attributes. This 

list contains an attribute or selector name along with the names of 

classes from the class list, to which the attribute exhibits association 

together with information about the degree of this association, and 

information for which intervals it was exhibited. In case of the example 

table in Figure 22d, the list of significant selectors and attributes consists 

of the following five entries: {(temperature normal, strong association 

with class home in I1 and I2), (temperature low, association with class 

home in I1), (heart blood flow normal, strong association with class 

home in I1 and I2), (chest paint type, strong association with class 
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treatment in I1 and I2), (chest pain type 4, strong association with class 

treatment in I1 and I2)}. 

• evaluation of findings from the list of the significant attributes and 

selectors. This is usually performed by domain experts who decide  

validity and usefulness of each of the generated associations. 

The attribute and selector ranking tables generated from the training data 

for both tasks in the CF project, along with evaluation performed by medical 

professionals are described in section 5.6. 

5.5.2 Experimental Results 

Both training sets were used as an input to the MetaSqueezer system. First, 

the system was used to generate a set of production rules. Next, the rules were 

evaluated, in terms of performing two sets of tests for each of the defined tasks: 

• first test generates a set of rules from the entire training set. The rules are 

used to generate the attribute and selector ranking tables, and tested on 

the same training set. The results report accuracy on the training data, 

number of generated rules and selectors. This set is used to provide 

results that are analyzed by the clinicians. 

• second test takes the training set and performs 10 fold cross validation 

with the system with the same setting as for the first test. The results 

report verification test results, running time, and number of rules and 

selectors for each of the ten runs, and their mean values. The results of 

the second test provide reliable analysis of the simplicity, accuracy, 
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efficiency, and flexibility of the system, but could not be used by the 

clinicians since ten different rule sets are generated.  Instead, this set is 

used to provide validation of results generated for the first set since both 

test are performed for the same system settings. 

Table 35 shows results achieved by the MetaSqueezer system for the 

training set for task 1 and when performing 10 cross validation test. The table 

shows accuracy, specificity, sensitivity, running time, and number of rules and 

selectors achieved in each of the ten runs, and their corresponding mean and 

standard deviation values. 

Table 35. The 10 fold cross validation results for task 1 

Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean 
Accuracy 57.8 58.2 65.1 60.6 59.1 59.1 66.8 60.4 61.7 61.5 2.94 61.0 
Specificity 88.9 89.3 90.2 88.8 90 89.6 91.2 90.5 91 89.8 0.8 89.9 
Sensitivity 57 59.2 60.1 63.3 60.7 52.6 63.4 58.4 59 56.6 3.22 59.0 
Time 
[msec] 8663 8501 8169 8537 8428 8794 8663 8360 8413 9010 239 1min 25sec 

53msec 
# Rules 452 448 428 494 493 345 470 435 356 434 50.5 436 
# Selector 4437 4320 4125 4710 4720 3393 4603 4213 3460 4196 467 4.22E+03 

 

The results show that the system generates accurate rules. Two factors need 

to be considered to evaluate accuracy of the system. First, the data contain only 

about 44% of complete information. Second, the default hypothesis, where the 

most frequent class is selected, for that training set has 34.2% accuracy. Thus the 

rules generated by the MetaSqueezer system are accurate, since they achieve 61% 

accuracy for the 10 CV tests, which is significantly better than the default 

hypothesis, and they are generated from data containing high amount of missing 
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information. Also, the rules achieve high and comparable with accuracy values of 

sensitivity and specificity, which further proves their high quality. The simplicity 

of results generated by the system is also high. The system generates only 436 

rules for almost 6000 examples described by 160 attributes. The average number 

of selectors per rule, which is 9.7, is very low. The system generates the rules in 

about 86 seconds, which is a very good result considering the size of the training 

set. Thus, the system is also characterized by high efficiency. The system is also 

highly flexible since it generates accurate and simple results for input data that 

contain all attribute types, and is characterized by high number of missing values.  

The summary of results achieved when generating rules from the entire 

training set for the task 1 is shown in Table 36. The table compares the results 

with the results achieved during the 10 CV tests.  

Table 36. The summary of test results for task 1 

Test type accuracy # rules # selectors 
Using training set 67.6 498 4838 
10 CV, mean values 61.0 436 4220 

 

The results show that the MetaSqueezer generates slightly more accurate 

rules when using the entire training set as the input. This is a common result, 

which shows that accuracy of results can be increased when using more data. The 

results show that the rules generated by the system can be trusted as a source of 

useful and reliable information about the patterns which are associated with 

different paces of CF.  
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Table 37 shows the results achieved by the MetaSqueezer system for the 

training set for task 2 and when performing 10 cross validation test. Similarly as 

for task 1, the table shows accuracy, specificity, sensitivity, running time, and 

number of rules and selectors achieved in each of the ten runs, and their 

corresponding mean and standard deviation values. 

Table 37. The 10 fold cross validation results for task 2 

Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean 
Accuracy 57.4 54.1 69.8 41.3 53.6 51.1 73.8 71 69.3 73.1 11.3 61.4 
Specificity 88.6 86.7 89.8 88.3 85.5 91.2 92.2 88.7 89 90.1 1.97 89 
Sensitivity 71 67.5 66.4 54.6 64.1 57.4 73.8 73.2 68 76.9 7.11 67.3 
Time 
[msec] 16918 16289 17865 15709 16626 15720 17550 17232 17765 17577 811 2min 49sec 

25msec 
# Rules 498 490 804 215 502 204 791 770 758 749 233 578 
# Selector 5211 5073 8387 2238 5240 2039 8307 8093 7916 7648 2.44E+3 6.02E+3 

 

The results show that the system generates accurate rules. Again, we note 

that the data contain only about 44% of complete information, and the default 

hypothesis for that training set has 46.0% accuracy. Thus the rules generated by 

the MetaSqueezer system are accurate, sine they achieve 61% accuracy for the 10 

CV tests, which is significantly better than the default hypothesis, and they are 

generated from data containing high amount of missing information. The rules 

achieve also high and comparable with accuracy values of sensitivity and 

specificity, which provides additional validation of their high quality. The 

simplicity of results generated by the system is also high. The system generates 

only 578 rules for almost 6000 examples described by 160 attributes. Thus, the 

average number of selectors per rule, which is 10.4, is very low. The system 
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generates the rules in about 170 seconds, and thus is also characterized by high 

efficiency. Finally, the system is highly flexible since it generates accurate and 

simple results for input data that contain all attribute types, and is characterized by 

high number of missing values. The results achieved by the MetaSqueezer for the 

training data describing task 2 are comparable, in terms of quality, to the results 

achieved for the task 1. 

The summary of results achieved when generating rules from the entire 

training set for the task 2 is shown in Table 38. The table compares the results 

with the results achieved during the 10 CV tests.  

Table 38. The summary of test results for task 2 

Test type accuracy # rules # selectors 
Using training set 77.2 790 4809 
10 CV, mean values 61.4 578 6020 

 

Similarly as for task 1, the results show that the MetaSqueezer generates 

more accurate rules when using the entire training set as the input. The results 

show that the rules generated by the system can be trusted as a source of useful 

and reliable information about the patterns which are associated with different 

kinds of CF. 

The summary of results achieved by the MetaSqueezer system for both 

tasks is shown in Table 39.  

 

 



 156

Table 39. Summary of the benchmarking tests for the MetaSqueezer system 

task accuracy simplicity efficiency flexibility 
1 high high very high highly flexible 
2 high high high highly flexible 

 

5.6 Evaluation of the Discovered Knowledge 

The DM step generated two sets of rules, one set for each of the defined 

tasks. The rules were transformed into the rule and selector tables, which were 

presented to the domain experts.  

The tables were analyzed by using the following 4 grade scale: 

• 1+ was assigned for trivial, not useful results. By default such mark was 

simply omitted from being displayed on the table. The associations 

described by that mark are considered not useful from the medical 

perspective. 

• 2+ was assigned for results that are of little interest. The associations 

described by that mark are considered of marginal value from the 

medical perspective. 

• 3+ was assigned for interesting, but already known results. The 

associations described by that mark are considered interesting, but were 

already discovered by other researchers. Such results are used to provide 

validation of the results generated by the system. 

• 4+ was assigned for very interesting, and unknown results. The 

associations described by that mark are of the highest value, since they 
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show very important finding which are not yet confirmed or reported in 

the professional literature. Such findings, if found, are the basis for 

evaluating the entire project as successful. Also, they directly lead to 

high quality publication in a known medical journal. 

The evaluation was performed by Dr Frank Accurso, who is a cystic 

fibrosis expert, director of  the CF care center, with background in pediatric 

pulmonology.  The analysis of the results was performed manually based on the 

attribute and selector ranking tables for the two tasks, using the procedure 

described in 5.5.1.  

The table describing results for the first task, shown in Figure 23, was 

analyzed in these steps: 

• the class list consists of {(improv), (nochange), (slowdegrad),  

(fastdegrad), (nochange, improve), (improve, slowdegrad), (slowdegrad, 

fastdegrad), (nochange, slowdegrad, fastdegrad)}. It includes elements 

that consist of tuples of class values; the groupings were considered as 

valuable by the domain experts. 

• the list of significant selectors and attributes is shown below 

attribute or selector degree of association classes intervals 
CFtypes Type4 association slowdegrad TI5 
vis_wght1 [54.40, 104.00) association 

association 
nochange 
slodegrad 

TI5 
TI2 

vis_wght1 [54.40, 104.00) association 
association 

fastdegrad
slowdegrad 

TI3 
TI4 

dob association 
association 

nochange 
slowdegrad 

TI1, TI4 
TI1, TI3, TI4 

dob before1982 association 
association 

nochange 
slowdegrad 

TI5 
TI2, TI3 

race Indian association slowdegrad TI5 
race Black association improv TI1, TI3, TI4 
race Asian association slowdegrad TI4 
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group C association 
association 
association 

nochange 
slowdegrad
fastdegrad 

TI4 
TI1, TI2 

TI1, TI2, TI4 
group NSB association improve 

no change
slowdegrad
fastdegrad 

TI1, TI2, TI3, TI4, TI5
TI1, TI2, TI3, TI4 

TI1, TI4 
TI1 

group MI association improv TI1, TI2 
group FN association improv TI2, TI3 
motage association nochange 

slowdegrad 
TI1, TI2, TI4 

TI4 
motage [22.50, 48.50) association improve 

no change
slowdegrad
fastdegrad 

TI1, TI4, TI5 
TI1, TI2, TI3, TI4, TI5

TI1, TI4 
TI1, TI4 

motage [19.50, 22.50) association slowdegrad
fastdegrad 

TI2 
TI3 

birthord 4 association slowdegrad
fastdegrad 

TI1, TI2 
TI4 

numsib 3 association nochange 
slowdegrad 

TI2 
TI4 

numsib 4 association fastdegrad TI1, TI2, TI3 
cfsib 1 association slowdegrad

fastdegrad 
TI1, TI2, TI4 

TI4 
deltype cspln association slowdegrad

fastdegrad 
TI1, TI4 

TI1 
deltype unk association improv 

nochange 
TI2, TI3, TI4 
TI1, TI2, TI4 

deltype vagbr association improv TI4 
mecil association improv 

nochange 
TI4 

TI1, TI4 
mecil unk association improv TI5 
mecil TreatedSurgically association fastdegrad TI4 
irt association slowdegrad TI4 
irt No association fastdegrad

slowdegrad
nochange 

TI1, TI2 
TI2, TI3 

TI5 
irt Yes association nochange 

slowdegrad 
TI4 
TI4 

FalseNeg association slowdegrad TI4 
FalseNeg - association slowdegrad TI2, TI3 
FalseNeg No association slowdegrad TI4 
Clinic Transplant association fastdegrad TI5 
age@irt1 association nochange TI1, TI2 
irt2 [324.00, 826.00) association nochange 

slowdegrad 
TI4 
TI1 

age@irt2 [-0.50, 27.50) association fastdegrad TI2 
irt3 association improv TI3 
sweatna1 [44.5, 50.00) association slowdegrad TI2, TI3 
sweatk1 [24.50, 46.00) association improv 

nochange 
TI3, TI4, TI5 
TI1, TI2, TI4 

sweatcl1 [-11.00, 95.50) association improv TI1, TI2, TI4 
sweatna2  association nochange 

slowdegrad 
TI1, TI2, TI3 

TI3 
sweatk2 association nochange TI2 
sweatk2 [19.50, 58.50) association nochange 

slowdegrad 
TI1, TI2, TI4 

TI1, TI4 
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sweatcl2 association nochange TI2, TI3, TI4 
sweatna3 [75.00, 109.00) association improv 

nochange 
TI3 

TI1, TI3 
sweatk3 [5.50, 26.50) association improv 

nochange 
TI3 
TI1 

sweatcl3 [99.50, 113.00) association nochange TI3 
sweatk4 [10.50, 39.50) association improv TI3 
tobraresistent? Suscept. association slowdegrad TI3 
tobraresistent? NotDone association improv TI5 
ciproresistant? Suscept. association fastdegrad TI3 
na [129.00, 143.00) association slowdegrad TI4 
prot [-1.95, 7.95) association slowdegrad TI4 
vita [0.44, 748.00) association slowdegrad TI4 
wbc [4.05, 18.00) association slowdegrad TI4 
hct [27.40, 45.50) association slowdegrad TI4 
mch [24.90, 91.40) association slowdegrad TI4 
machc [30.40, 35.80) association slowdegrad TI4 
rdw [-0.85, 15.40) association slowdegrad TI4 
HAZ [-2.91, -1.87) association fastdegrad TI1 
WZH [-1.80, 1.51) association fastdegrad

slowdegrad 
TI3 
TI4 

age@diagnosis 025till2 association fastdegrad
slowdegrad 

TI2, TI3, TI5 
TI2, TI3 

age@diagnosis above7 association nochange TI5 
 

• evaluation of the findings from the list of significant attributes and 

selectors is shown, by marks, in Figure 23, which were assigned by the 

experts based on their expertise of the domain. The marks were proposed 

and assigned by Dr. Accurso and Marci Sontag. 

CLASS 
FASTDEGRAD CLASS IMPROV CLASS 

NOCHANGE  
 CLASS 
SLOWDEGRAD ATRIBUTE VALUE MARK

TI1TI2TI3TI4TI5 TI1TI2TI3TI4TI5 TI1TI2 TI3TI4 TI5  TI1TI2 TI3TI4TI5

 CFtypes (cf)                       
 CFtypes (cf)  Type1                       
 CFtypes (cf)  Type2                       
 CFtypes (cf)  Type4 2+                      
 vis_hgt1 (vis)                       
 vis_hgt1 (vis)  [105.00,180.00)                       
 vis_wght1 (vis)                       
 vis_wght1 (vis)  [22.10,54.40)                       
 vis_wght1 (vis)  [54.40,104.00)                       
 vis_wght1 (vis)  [16.90,22.10)                       
 PulseOximetry (vis)  [86.50,101.00)                       
 dob (dem)                       
 dob (dem)  82till92                       
 dob (dem)  before82                       
 race (dem)                       
 race (dem)  Caucasian                       
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 race (dem)  Indian                       
 race (dem)  Black 3+                      
 race (dem)  Asian                       
 group (dem)                       
 group (dem)  C 3+/4+                      
 group (dem)  NBS 3+/4+                      
 group (dem)  MI 3+/4+                      
 group (dem)  FN 3+/4+                      
 marital (dem)                       
 marital (dem)  Married                       
 marital (dem)  Unknown                       
 marital (dem)  Divorced                       
 motage (dem)                       
 motage (dem)  [22.50,48.50) 3+                      
 motage (dem)  [19.50,22.50) 3+                      
 birthord (dem)                       
 birthord (dem)  3                       
 birthord (dem)  2                       
 birthord (dem)  1                       
 birthord (dem)  4                       
 numsib (dem)                       
 numsib (dem)  2                       
 numsib (dem)  1                       
 numsib (dem)  3                       
 numsib (dem)  0                       
 numsib (dem)  4                       
 numsib (dem)  5                       
 cfsib (dem)                       
 cfsib (dem)  1                       
 cfsib (dem)  0                       
 deltype (dem)                       
 deltype (dem)  vagnl                       
 deltype (dem)  csemg                       
 deltype (dem)  cspln                       
 deltype (dem)  unk                       
 deltype (dem)  vagbr                       
 mecil (dem)                       
 mecil (dem)  unk                       
 mecil (dem)  TreatedSurgically 2+                      
 mecil (dem)  no                       
 irt (dia)                       
 irt (dia)  No                       
 irt (dia)  Yes                       
 FalseNeg (dia)                       
 FalseNeg (dia)  -                       
 FalseNeg (dia)  No                       
 Clinic (dia)                       
 Clinic (dia)  Billings                       
 Clinic (dia)  Adult                       
 Clinic (dia)  Denver                       
 Clinic (dia)  Colo.Spgs                       
 Clinic (dia)  GreatFalls                       
 Clinic (dia)  Transplant                       
 irt1 (dia)                       
 irt1 (dia)  [79.50,373.00)                       
 age@irt1 (dia)                       
 age@irt1 (dia)  [-0.50,5.50)                       
 irt2 (dia)  [324.00,826.00)                       
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 irt2 (dia)  [87.50,322.00)                       
 age@irt2 (dia)  [-0.50,27.50)                       
 irt3 (dia)  [79.00,201.00)                       
 swetna1 (dia)                       
 swetna1 (dia)  [54.50,152.00)                       
 swetna1 (dia)  [44.50,50.00)                       
 swetk1 (dia)                       
 swetk1 (dia)  [24.50,46.00) 4+                      
 swetk1 (dia)  [16.50,24.50)                       
 swetcl1 (dia)                       
 swetcl1 (dia)  [101.00,157.00)                       
 swetcl1 (dia)  [-11.00,95.50) 3+                      
 swetna2 (dia)                       
 swetna2 (dia)  [22.00,101.00)                       
 swetk2 (dia)                       
 swetk2 (dia)  [19.50,58.50)                       
 swetk2 (dia)  [11.50,19.50)                       
 swetcl2 (dia)                       
 swetcl2 (dia)  [108.00,123.00)                       
 swetcl2 (dia)  [26.50,108.00)                       
 swetna3 (dia)  [75.00,109.00)                       
 swetk3 (dia)  [5.50,26.50)                       
 swetcl3 (dia)  [99.50,113.00)                       
 swetk4 (dia)  [10.50,39.50)                       
 SOURCE (cul)                       
 SOURCE (cul)  Sputum                       
 SOURCE (cul)  ThroatCulture                       
 tobraresistent? (cul)                       
 tobraresistent? (cul)  Suscept. 2+                      
 tobraresistent? (cul)  NotDone                       
 tobraresistent? (cul)  No                       
 ciproresistant? (cul)                       
 ciproresistant? (cul)  Suscept.                       
 ciproresistant? (cul)  No                       
 meropenemresistant? (cul)                       
 meropenemresistant? 
(cul)  No                       

 na (mic)  [129.00,143.00) 2+                      
 prot (mic)  [-1.95,7.95) 2+                      
 vita (mic)  [0.44,748.00) 2+                      
 wbc (hem)  [4.05,18.00) 2+                      
 hct (hem)  [27.40,45.50) 2+                      
 mch (hem)  [24.90,91.40) 2+                      
 mchc (hem)  [30.40,35.80) 2+                      
 rdw (hem)  [-0.85,15.40) 2+                      
 WAZ (per)                       
 WAZ (per)  [-1.93,1.51)                       
 HAZ (per)                       
 HAZ (per)  [-2.91,-1.87) 3+                      
 HAZ (per)  [-1.87,2.50)                       
 WZH (per)  [-1.80,1.51)                       
 BASEpower (cul)                       
 BASEpower (cul)  [-1.00,2E4)                       
 BASEpower2 (cul)                       
 BASEpower2 (cul)  [-1.75,7.5E6)                       
 BASEpower3 (cul)                       
 BASEpower3 (cul)  [-1.75,1.1E8)                       
 BASEpower4 (cul)                       
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 BASEpower4 (cul)  [-5E3,1.25E5)                       
 age@diagnosis (dia)                       
 age@diagnosis (dia)  025till2 3+                      
 age@diagnosis (dia)  below025                       
 age@diagnosis (dia)  above7                       

Figure 23. The evaluation of results for task 1 

The results generated by the MetaSqueezer system for task 1 can be broken 

into two parts: 

• confirmatory results marked by 3+ describe relationships that were 

known previously, but give confidence in the correctness of the 

performed analysis. The findings include the following correlations and 

their medical interpretation: 

o black race and improvement of the disease; the finding suggests that 

the patients who are black may have less severe disease, possibly 

less severe CF mutations or other genetic modifiers, 

o C group and degradation of the disease for small values of FEV%; 

the finding suggests that patients who are conventionally diagnosed 

may have a faster decline in FEV1 during advanced stages of the 

disease 

o NBS groups and improvement of the disease; the finding suggests 

that the benefits of newborn screening may result in stable or 

improving lung function in childhood, which may be the result of 

closer follow-up in early childhood, 

o MI and FN groups and improvement of the disease for small values 

of FEV%; the finding suggests that improvement may be seen in 
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FEV1 in children who are false negative on the screen or who are 

diagnosed through meconium ileus after their decline in FEV1 has 

occurred, 

o [22.50,48.50) values of motage and improvement or stable state of 

the disease; the finding suggests that children of mothers over the 

age of 22 years tend to have stable lung function, 

o [19.50,22.50) values of motage and degradation of the disease for 

medium values of FEV%; the finding suggests that children with 

moderate lung disease who have young mothers (between 19.5 and 

22.5 years) tend to have a decline in lung function, 

o [-11.00,95.50) values of sweatcl1 and improvement of the disease; 

the finding suggests that children with lower sweat chloride values 

(<95.5) may have less severe lung disease, 

o [-2.91,-1.87) values of HAZ and degradation of the disease for small 

values of FEV%; this finding suggests that children with height 

stunting and severe disease may have a rapid decline in FEV1, 

o 025till2 values of age@diagnosis and degradation of the disease; the 

finding suggests that children who were diagnosed after the initial 

newborn period may have a more rapid decline in pulmonary 

function, 
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• new findings marked by 4+ describe findings that may be significant 

medically. The findings include the following correlation and its medical 

interpretation: 

o [24.50,46.00) value of sweatk1 and the improvement of the disease; 

the finding suggests that there is a possible significance to CF of 

genes that modify potassium levels. 

The results show not only that the system generated accurate results for the 

task 1, based on 10 confirmatory findings, but also that the system discovered one 

significant finding concerning potassium levels in sweat. 

The table describing results for the second task, Figure 24, was analyzed in 

as follows: 

• the class list consists of {(type1), (type2), (type4)}, 

• the list of significant selectors and attributes is shown below. 

attribute or selector degree of association classes intervals 
CFpace Improv association type4 TI1, TI2, TI4 
vis_wght [79.80, 104.00) association type4 TI3 
PulseOximetry association type4 TI4 
dob association type1 TI1, TI4 
dob before82 association type2 TI3, TI5 
race Indian association type4 TI1 
race Black association type2 TI3 
group C association type4 TI1, TI2, TI4 
group NSB association type1 

type2 
type4 

TI1, TI2, TI3, TI4 
TI1, TI2, TI4 
TI1, TI2, TI4 

marital divorced association type2 TI5 
marital separated association type4 TI4 
motage association type4 TI2 
motage [15.10, 24.50) association type2 TI1 
birthord 4 association type2 TI2, TI3 
numsib 4 association type1 TI2 
deltype csemg association type2 TI2 
deltype cspin association type4 TI4 
deltype unk association type2 TI1, TI2, TI3, TI4 
apgar1 5till8 association type1 TI4 
irt association type2 TI5 
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irt No association type2 TI3, TI5 
irt Yes association type1 TI1 
FalseNeg association type2 TI5 
FalseNeg - association type2 TI5 
Clinic Transplant association type2 TI5 
irt1 association type3 TI2 
irt1 [391.00, 759.00) association type1 TI2 
irt1 [48.50, 112.00) association type2 TI1 
age@irt2 [8.50, 67.50) association type1 TI1, TI2, TI4 
sweatna1 [47.50, 80.50) association type2 TI4 
sweatna1 [80.50, 85.50) association type2 TI1, TI2 
sweatna1 [6.00, 47.50) association type4 TI2 
sweatk1 association type4 TI4 
sweatk1 [31.50, 105.00) association type4 TI4 
sweatlcl1 [-11.00, 86.50) association type2 TI1, TI5 
sweatlcl1 [153.00, 171.00) association type4 TI2 
sweatna2 association type1 TI1, TI2, TI3, TI4, TI5 
sweatk2 association type1 TI1, TI2, TI4 
sweatna3 [68.50, 106.00) association type1 TI1 
sweatk3 [15.50, 28.50) association type1 TI3 
sweatlcl3 [98.50, 114.00) association type1 TI3 
tobraresistent? Suscept. association type4 TI2, TI3 
ciproresistant? Suscept. association type4 TI2 
meropenemresistant? Suscept. association type4 TI3 
ast [9.50, 145.00) association type4 TI1 
WZH [-1.11, 1.31) association type1 TI4 
age@diagnosis 2till7 association type4 TI2 

 

• evaluation of findings from the list of the significant attributes and 

selectors is shown by marks in Figure 24, assigned by Dr. Accurso and 

Marci Sontag. 

CLASS TYPE1  CLASS TYPE2   CLASS TYPE4  
ATRIBUTE VALUE MARK TI1 TI2 TI3 TI4 TI5 TI1 TI2 TI3 TI4 TI5  TI1 TI2 TI3 TI4 TI5

 CFpace (cf)                  
 CFpace (cf)  NoChange                  
 CFpace (cf)  FastDegrad                  
 CFpace (cf)  SlowDegrad                  
 CFpace (cf)  Improv 3+                 
 vis_hgt1 (vis)                  
 vis_hgt1 (vis)  [102.00,188.00)                  
 vis_wght1 (vis)                  
 vis_wght1 (vis)  [15.30,53.30)                  
 vis_wght1 (vis)  [53.30,79.80)                  
 vis_wght1 (vis)  [79.80,104.00)                  
 PulseOximetry (vis)                  
 PulseOximetry (vis)  [92.50,101.00)                  
 dob (dem)                  
 dob (dem)  82till92                  
 dob (dem)  before82                  
 race (dem)                  
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 race (dem)  Caucasian                  
 race (dem)  Unknown                  
 race (dem)  Indian                  
 race (dem)  Black                  
 group (dem)                  
 group (dem)  C 2+                 
 group (dem)  NBS 2+                 
 marital (dem)                  
 marital (dem)  Married                  
 marital (dem)  Unknown                  
 marital (dem)  Divorced                  
 marital (dem)  Separated                  
 motage (dem)                  
 motage (dem)  [25.50,37.50)                  
 motage (dem)  [15.10,24.50)                  
 birthord (dem)                  
 birthord (dem)  3                  
 birthord (dem)  2                  
 birthord (dem)  1                  
 birthord (dem)  4                  
 numsib (dem)                  
 numsib (dem)  2                  
 numsib (dem)  1                  
 numsib (dem)  0                  
 numsib (dem)  4                  
 cfsib (dem)                  
 cfsib (dem)  1                  
 cfsib (dem)  0                  
 deltype (dem)                  
 deltype (dem)  vagnl                  
 deltype (dem)  csemg                  
 deltype (dem)  cspln                  
 deltype (dem)  unk                  
 apgar1 (dem)  5till8                  
 mecil (dem)                  
 mecil (dem)  no                  
 dcmot (dem)                  
 dcmot (dem)  yes                  
 irt (dia)                  
 irt (dia)  No                  
 irt (dia)  Yes                  
 FalseNeg (dia)                  
 FalseNeg (dia)  -                  
 Clinic (dia)                  
 Clinic (dia)  Billings                  
 Clinic (dia)  Adult                  
 Clinic (dia)  Denver                  
 Clinic (dia)  Colo.Spgs                  
 Clinic (dia)  GreatFalls                  
 Clinic (dia)  Transplant                  
 irt1 (dia)                  
 irt1 (dia)  [391.00,759.00) 3+                 
 irt1 (dia)  [112.00,285.00)                  
 irt1 (dia)  [48.50,112.00)                  
 age@irt1 (dia)  [-0.50,2.50)                  
 irt2 (dia)                  
 irt2 (dia)  [93.00,477.00)                  
 age@irt2 (dia)  [8.50,67.50)                  
 swetna1 (dia)                  
 swetna1 (dia)  [47.50,80.50)                  
 swetna1 (dia)  [85.50,152.0)                  
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 swetna1 (dia)  [80.50,85.50)                  
 swetna1 (dia)  [6.00,47.50)                  
 swetk1 (dia)                  
 swetk1 (dia)  [31.50,105.00)                  
 swetk1 (dia)  [4.50,19.50)                  
 swetk1 (dia)  [20.50,31.50)                  
 swetcl1 (dia)                  
 swetcl1 (dia)  [113.00,153.00)                  
 swetcl1 (dia)  [86.50,113.00)                  
 swetcl1 (dia)  [-11.00,86.50)                  
 swetcl1 (dia)  [153.00,171.00)                  
 swetna2 (dia)                  
 swetna2 (dia)  [60.50,139.00)                  
 swetk2 (dia)                  
 swetk2 (dia)  [13.50,32.50)                  
 swetcl2 (dia)                  
 swetcl2 (dia)  [85.50,153.00)                  
 swetna3 (dia)  [68.50,106.00)                  
 swetk3 (dia)  [15.50,28.50)                  
 swetcl3 (dia)  [98.50,114.00)                  
 SOURCE (cul)                  
 SOURCE (cul)  Sputum                  
 SOURCE (cul)  ThroatCulture                  
 tobraresistent? (cul)                  
 tobraresistent? (cul)  Suscept.                  
 tobraresistent? (cul)  NotDone                  
 tobraresistent? (cul)  No                  
 ciproresistant? (cul)                  
 ciproresistant? (cul)  Suscept.                  
 ciproresistant? (cul)  NotDone                  
 ciproresistant? (cul)  No                  
 meropenemresistant? (cul)                  
 meropenemresistant? 
(cul)  NotDone                  

 meropenemresistant? 
(cul)  No                  

 meropenemresistant? 
(cul)  Suscept.                  

 ast (mic)  [9.50,145.00)                  
 WAZ (per)                  
 WAZ (per)  [-1.75,1.36)                  
 HAZ (per)                  
 HAZ (per)  [-1.53,2.53)                  
 WZH (per)  [-1.11,1.31)                  
 BASEpower (cul)                  
 BASEpower (cul)  [-0.50,1.15E3)                  
 BASEpower2 (cul)                  
 BASEpower2 (cul)  [-1.75,752.00)                  
 BASEpower3 (cul)                  
 BASEpower3 (cul)  [-0.50,5.5E7)                  
 BASEpower4 (cul)                  
 BASEpower4 (cul)  [-2.5E3,2.5E3)                  
 age@diagnosis (dia)                  
 age@diagnosis (dia)  025till2                  
 age@diagnosis (dia)  below025                  
 age@diagnosis (dia)  2till7                  

Figure 24. The evaluation of results for task 2 
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The results generated by the MetaSqueezer system for task 2 include only 

several confirmatory findings. The findings include the following correlations and 

their medical interpretation: 

o improvement of the disease and Type 4 CF; the finding suggests that 

Children with 2 non-F508 mutations may have mild lung disease, 

o [391.00,759.00) values of irt1 and Type 1 CF for medium values of 

FEV%; the finding suggests that children with high IRT values at 

birth have moderate lung disease. 

The results show that the system generates accurate results for the task 2, 

based on 2 confirmatory findings. No new and significant findings were 

discovered for task 2. The future work will include redefining classes for this task. 

They will include five distinct genotypes, instead of currently defined 3. This, in 

turn, may lead to discovery of new and significant findings that were not yet 

found because of too big granularity of class definitions. 

As an additional validation of the usefulness of the MetaSqueezer system, 

as applied to the CF data, we show in Appendix D a comparison of the results it 

generated with the results generated when applying the DataSqueezer algorithm to 

the same data. The results, in terms of attribute and selector importance tables 

generated by the DataSqueezer algorithm show that: 

• since the DataSqueezer operates on the entire data set, the tables show 

only associations between attributes and selectors and classes, which 

limits analytical capabilities of the user, 
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• after performing analysis of the tables, using a procedure identical to the 

procedure described for analysis of results generated by the 

MetaSqueezer system, the following was found: 

o the results for task 1 include only five 3+ (confirmatory) findings. 

They overlap with findings of the MetaSqueezer system. Remaining 

confirmatory findings and the significant finding that were 

discovered by the MetaSqueezer system, as well as other findings, 

were not present in the results by the DataSqueezer algorithm. 

o the results for task 2 include only one 3+ (confirmatory) finding. It 

overlaps with findings of the MetaSqueezer system. Remaining 

confirmatory findings that were discovered by the MetaSqueezer 

system, as well as other findings, were not present in the results 

generated by the DataSqueezer algorithm. 

The above direct comparison of the results generated by the MetaSqueezer 

system and the DataSqueezer algorithm shows clearly the advantages of the Meta 

Mining system. The system is able to generate more useful results from the same 

data when compared with a data mining algorithm. 

5.7 Using the Discovered Knowledge 

The DMKD process, which was used in the project, appears to be very 

practical. The iterative process used for the generation of results significantly 

improved results generated by the MetaSqueezer system. The system generated 
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two kinds of results: 12 confirmatory findings that prove the correctness of the 

system, and most importantly 1 significant new finding that shows that the system 

is capable of generation of useful results. 

5.7.1 Summary of Results 

The outcome of the project was evaluated as very successful by the domain 

experts. In their opinion the results constitute material that can be published in a 

high quality medical journal. The publication will be written upon running task 2 

with new definition of classes. Even in case of not generating any new findings 

for that task, the new finding discovered for task 1 was evaluated as sufficient 

basis for the publication. The new finding discovered for task 1 was classified as 

possibly medically significant, and thus may help to bring new insights into this 

very important disease. 
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Chapter 6  

6 Summary 

In this chapter we summarize significance of our research, provide 

conclusions, and describe future work.  

6.1 Summary and Significance 

The main goal of the our research was to develop an inductive supervised 

ML system that is efficient, generates simple and accurate results, and is flexible 

to be applied to a variety of input data formats and data containing noise and 

missing values. As a result, a novel learning system was developed based on the 

meta-mining concept. To the best of our knowledge, the system is the first that 

applies an inductive ML algorithm within an MM setting to generate a set of 

production rules. The application of the MM concept resulted in achieving several 

desirable properties: generation of compact data models, scalability, user-

friendliness in terms of the transparency of the learning process, and most 

importantly, simplicity of generated results.  

There are several reasons why the MetaSqueezer system has proven to be 

successful. It satisfies all four criteria, defined in Chapter 2, which define a 

successful supervised IL system: 

• It generates rules that result in accurate classification. 
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The benchmarking tests showed that the system generates rules that 

accurately classify test data even in the presence of noise and 

inconsistencies. The MetaSqueezer system achieves error rates that are 

within the range of error rates achieved by the most accurate IL algorithm. 

• It generates simple rules 

The benchmarking tests show that the system generates small number of 

very compact rules. The system generates rules that on average use 2.2 

selectors in the rule’s descriptor, which is between 35% and 90% less than 

the number of selectors generated by other supervised ML algorithm. 

• It generates rules very efficiently 

The theoretical complexity analysis shows that the system has linear 

complexity. The benchmarking tests show that the average CPU execution 

time of the system is 4.3 seconds, which is the best execution time among 

all compared inductive ML algorithms, except the DataSqueezer algorithm 

itself. Both results show that the system can be successfully applied to 

very large data sets. 

• It is very flexible 

The MetaSqueezer system was tested on very large data sets, both in terms 

of number of examples and attributes. The data sets included all types of 

attributes, i.e., discrete numerical, discrete nominal, continuous, and binary. 

They also included data sets with large amounts of noisy and missing 
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information. Thus, the system is very flexible and robust since it generates 

high quality results for the diverse types of data. 

In other words, the performed benchmarking tests of the system clearly 

show its two main advantages, namely high compactness of the generated rules 

and very low computational cost. These results place the MetaSqueezer system 

among the best inductive ML algorithms. 

 

The usefulness of the system was also proven by applying it to a real-life 

project concerning analysis of CF data. The difficulty of the project was caused 

by the complexity of the data, high number of missing values, and our weak 

background knowledge about the disease. Despite that, the system generated 

meaningful and useful results that can be used to enhance understanding of the 

disease. The results generated by the system not only confirmed its correctness by 

“discovering” knowledge already known by the CF experts about some 

relationships, but also provided a new significant finding about the disease. The 

new finding is medically important, and concerns potassium levels in sweat. More 

specifically, it is related to the possible significance to CF of genes that modify 

potassium levels. 

 

To summarize, the research was proven to be useful in several ways. It 

proposes, thoroughly tests, and applies a novel inductive supervised ML system. 

The results show high potential of the system. It can be used to generate non-
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temporal data models for supervised data, including ordered and temporal data. 

The ability of the system to very efficiently generate very simple and easy to 

understand rules makes it one of the best inductive supervised ML systems. 

6.2 Future Work 

The future work will include applications of the system to projects possibly 

concerning various domains including medicine, banking, and retail stores data. 

The immediate work will concentrate on a follow up on the CF project, where 

analysis of task 2 will be refined by redefining the class attribute.  

Another task concerns investigation of alternative ways of displaying the 

results generated by the MetaSqueezer system. The dissertation describes one new 

format, in terms of attribute and selector ranking tables generated directly from 

the rules. The tables were used, with great success, to display and analyze results 

of the CF project. In the future, a study to evaluate this and other ways of 

displaying the generated rules will be performed. It will take into account human 

cognitive processes, especially information of how people assimilate new 

knowledge to increase the usefulness of the proposed system (Pazzani, 2000). 
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Appendix A 

Abbreviations 

CAIM – Class-Attribute Interdependency Maximization (algorithm), see section 

3.4 

CF – Cystic Fibrosis, see section 5.2 

CLIP4 – Cover Learning using Inductive Programming version 4, see section 

2.3.2 

DM – Data Mining, see section 1.1.6 

DMKD – Data Mining and Knowledge Discovery, see section 1.1.6 

F-CAIM – Fast Class-Attribute Interdependency Maximization (algorithm), see 

section 5.4.3 

KD – Knowledge Discovery, see section 1.1.6 

IL – Inductive Learning, see section 1.1 

ML – Machine Learning, see section 1.1.6 

MM – Meta Mining, see section 3.1.1 
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Appendix B 

Relevant Publications 

The content of this dissertation is supported by several refereed articles that 

were published, accepted or submitted to international journals and conferences. 

A full list of the publications can be found at the end of this appendix. Below, an 

outline of the contents of each publication and their relevant appearance within 

the body of the dissertation are given. 

The first chapter provides introduction to the dissertation. Its latter parts, 

especially the description of the research goals, were based on two papers that 

propose and describe the DataSqueezer algorithm and the MetaSqueezer system 

(Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). Also, a book chapter was 

used to provide an overview of the DM and ML fields (Cios and Kurgan, 2002b). 

The second chapter describes related work. The definition of qualities of 

inductive ML algorithms was based on (Cios and Kurgan, 2002a). The discussion 

of rule algorithms was supported by two papers that describe a rule algorithm 

called DataSqueezer (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). 

Similarly the discussion of hybrid algorithms was supported by two papers that 

describe a family of hybrid algorithms called CLIP (Cios and Kurgan, 2001; Cios 

and Kurgan, 2002a). 

The third chapter provides an overview of the MetaSqueezer system and 

describes its major elements. The system’s overview is based on (Kurgan and 
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Cios, 2003a). The description of the DataSqueezer system is based on (Kurgan 

and Cios, 2002a; Kurgan and Cios, 2003a). These papers propose and provide 

detailed description of the DataSqueezer algorithm. The benchmarking results of 

the DataSqueezer algorithms are based on (Kurgan and Cios, 2003a). Also, the 

results which were used in comparison of the DataSqueezer algorithm with other 

inductive ML algorithms were taken from (Cios and Kurgan, 2002a). The 

description of the CAIM algorithm is based on (Kurgan and Cios, 2001; Kurgan 

and Cios, 2002b; Kurgan and Cios, 2003b). The benchmarking results of the 

CAIM were taken from (Kurgan and Cios, 2002b). 

The fourth chapter provides detailed description of the MetaSqueezer 

system. The description of the system together with its benchmarking tests were 

based on (Kurgan and Cios, 2003a). Also, two papers were used to provide results 

that were used in comparison of the MetaSqueezer system with other inductive 

ML algorithms (Kurgan and Cios, 2002a; Cios and Kurgan, 2003a). 

The fifth chapter provides description of the project where the 

MetaSqueezer system is used to analyze data concerning CF patients. The project 

was carried using the six step DMKD process model. Experience from application 

of the model to another medical problem, concerning analysis of cardiac SPECT 

data, was used to proceed with and describe the project (Kurgan et al., 2001). 

Also, description of the process model was taken from (Cios and Kurgan, 2002b). 

Implementation and description of the F-CAIM algorithm, which was used to 

discretize the CF data, was based on (Kurgan and Cios, 2003b). Finally, another 
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paper was used to design the attribute and selector ranking tables that were used 

to display and analyze results generated in the project (Cios and Kurgan, 2002a). 

 

List of Relevant Publications: 

Cios, K. J. and Kurgan, L., Hybrid Inductive Machine Learning: An Overview of 
CLIP Algorithms. In: Jain, L.C. & Kacprzyk, J. (Eds.), New Learning 
Paradigms in Soft Computing, Physica-Verlag (Springer), pp. 276-322, 2001 

Cios, K.J., and Kurgan, L., Hybrid Inductive Machine Learning Algorithm that 
Generates Inequality Rules, Information Sciences, Special Issue on Soft 
Computing Data Mining, accepted, 2002a 

Cios, K. J., and Kurgan, L., Trends in Data Mining and Knowledge Discovery, In: 
Pal N.R., Jain, L.C. and Teoderesku, N. (Eds.), Knowledge Discovery in 
Advanced Information Systems, Springer, to appear, 2002b 

Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. and Goodenday, L.S., 
Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis, 
Artificial Intelligence in Medicine, 23(2), pp. 149-169, 2001 

Kurgan, L., and Cios, K.J., Discretization Algorithm that Uses Class-Attribute 
Interdependence Maximization, Proceedings of the 2001 International 
Conference on Artificial Intelligence (IC-AI 2001), Las Vegas, Nevada, 
pp.980-987, 2001 

Kurgan, L., and Cios, K.J., DataSqueezer Algorithm that Generates Small 
Number of Short Rules, IEE Proceedings: Vision, Image and Signal Processing, 
submitted, 2002a 

Kurgan, L., and Cios, K.J., CAIM Discretization Algorithm, IEEE Transactions 
of Knowledge and Data Engineering, accepted, 2002b 

Kurgan, L., & Cios, K. J., Meta-Mining Architecture for Learning from 
Supervised Data, submitted, 2003a 

Kurgan, L., and Cios, K.J., Fast Class-Attribute Interdependence Maximization 
(CAIM) Discretization Algorithm, Proceeding of the 2003 International 
Conference on Machine Learning and Applications (ICMLA'03), pp.30-36, Los 
Angeles, 2003b 
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Appendix C 

Detailed Test Results 

DATA SET NAME: bcw 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 97.1 95.7 95.7 94.3 90 92.9 97.1 90 97.1 92.8 2.78 94.3 
Specificity 100 100 100 90.5 95.7 95.5 100 95.5 100 100 3.3 97.7 
Sensitivity  94.3 93.8 94.2 95.9 87.2 91.7 94.9 87.5 95.9 88.4 3.45 92.4 
Time [msec] 0 1 0 1 0 2 1 0 2 0 0.82 0.7 msec 
# Rules 4 4 6 5 4 5 6 4 4 3 0.97 4.5 
# Selectors 11 12 17 14 12 14 17 11 11 9 2.66 12.8 
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DATA SET NAME: bcw 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 91.4 92.9 90 100 90 88.6 95.7 92.9 94.3 91.3 3.34 92.7 
Specificity 80.8 82.6 80 100 84.2 72 92 85.7 83.3 86.7 7.44 84.7 
Sensitivity  97.7 97.9 95.6 100 92.2 97.8 97.8 95.9 100 94.9 2.4 97.0 
Time [msec] 2 3 8 4 2 0 3 1 3 4 2.16 3 msec 
# Rules 6 7 5 7 7 7 7 7 6 4 1.06 6.3 
# Selectors 14 17 10 13 14 11 12 14 10 8 2.63 12.3 
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DATA SET NAME: vot 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 93.2 97.7 97.7 90.9 93.2 97.7 95.5 88.6 95.5 94.7 3.05 94.5 
Specificity 100 100 100 87.5 88.2 100 100 92.9 94.4 100 5.16 96.3 
Sensitivity  90 95.5 95.8 92.9 96.3 96.4 91.7 86.7 96.2 92.9 3.26 93.4 
Time [msec] 0 0 1 0 0 0 0 0 1 2 0.7 0.4 msec 
# Rules 1 1 1 2 2 1 2 2 1 1 0.52 1.4 
# Selectors 1 1 1 2 3 1 3 2 1 1 0.84 1.6 
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DATA SET NAME: vot 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 100 97.7 86.4 93.2 95.5 95.5 93.2 95.5 95.5 92.1 3.65 94.4 
Specificity 100 93.3 100 95.7 100 100 100 100 100 100 2.39 98.9 
Sensitivity  100 100 76.9 90.5 92.9 93.8 88 92.3 91.7 89.3 6.52 91.5 
Time [msec] 0 3 2 0 2 0 5 1 3 0 1.71 1.6 msec 
# Rules 1 1 1 1 1 1 1 1 1 1 0 1 
# Selectors 1 1 1 1 1 1 1 1 1 1 0 1 
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DATA SET NAME: veh 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 64.7 57.6 56.5 64.7 64.7 63.5 64.7 55.3 63.5 55.6 4.24 61.1 
Specificity 89 85.8 87 89.2 88.9 88.9 88.9 86 88 85.3 1.56 87.7 
Sensitivity 62.7 57.9 57.3 62.2 64.5 59.1 63.7 58.1 65.7 57.7 3.19 60.9 
Time [msec] 6 4 5 8 4 5 6 3 6 5 1.4 5.2 msec 
# Rules 24 20 23 22 23 21 21 28 30 25 3.2 23.7 
# Selectors 93 64 75 73 76 71 68 98 101 83 13 80.2 
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DATA SET NAME: veh 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 58.8 65.9 63.5 65.9 60 56.5 47.1 52.9 63.5 61.7 6.02 59.6 
Specificity 86.3 88.8 87.6 88.2 86.9 85.3 82 84.6 88 87.3 2.04 86.5 
Sensitivity  54.8 62.9 61.7 62.2 58 55.1 55.4 53.7 65.2 58 4.02 58.7 
Time [msec] 8 8 5 8 3 7 3 7 8 11 2.49 6.8 msec 
# Rules 24 19 23 25 23 21 20 27 26 16 3.41 22.4 
# Selectors 43 39 41 48 45 37 39 51 44 24 7.39 41.1 
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DATA SET NAME: cmc 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 49.3 45.3 36.5 49.3 41.2 46.6 40.5 45.3 43.9 39 4.31 43.7 
Specificity 74.5 75.1 71.1 76.3 72.9 74.5 69.5 72.5 74.3 72.3 2.03 73.3 
Sensitivity  44.2 43 33.2 46.9 38 42 35.8 42 37.5 37.8 4.24 40.0 
Time [msec] 6 6 5 5 6 6 6 6 8 6 0.82 6 msec 
# Rules 20 26 14 21 19 23 22 21 18 18 3.26 20.2 
# Selectors 68 93 53 69 68 82 73 73 62 64 11 70.5 
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DATA SET NAME: cmc 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 40.5 54.7 35.8 45.3 41.2 46.6 46.6 57.4 43.9 53.2 6.81 46.5 
Specificity 68.9 74.5 69.3 70.5 69.7 72.6 75.2 77.1 70.9 75.8 2.99 72.4 
Sensitivity 35.3 46.4 37 41 40.3 39.5 45.8 54 37 51.9 6.44 42.8 
Time [msec] 6 13 10 7 6 8 0 4 10 9 3.62 7.3 msec 
# Rules 19 22 17 21 13 14 15 18 18 17 2.88 17.4 
# Selectors 47 56 42 50 29 37 39 38 45 38 7.67 42.1 
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DATA SET NAME: hea 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 77.8 74.1 85.2 81.5 85.2 66.7 81.5 77.8 74.1 85.2 6.06 78.9 
Specificity 44.4 61.5 75 83.3 78.6 62.5 80 50 53.8 66.7 13.5 65.6 
Sensitivity 94.4 85.7 93.3 80 92.3 72.7 82.4 100 92.9 94.4 8.34 88.8 
Time [msec] 0 0 1 2 0 0 0 0 0 0 0.67 0.3 msec 
# Rules 5 6 3 7 5 3 2 5 5 6 1.57 4.7 
# Selectors 18 21 8 30 20 9 5 17 18 25 7.81 17.1 
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DATA SET NAME: hea 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 85.2 81.5 74.1 81.5 74.1 66.7 74.1 85.2 77.8 88.9 6.77 78.9 
Specificity 62.5 88.9 41.7 71.4 57.1 80 62.5 72.7 69.2 92.3 15.1 69.8 
Sensitivity 94.7 77.8 100 92.3 92.3 58.8 90.9 93.8 85.7 85.7 11.7 87.2 
Time [msec] 1 3 0 1 0 0 1 3 0 3 1.32 1.2 msec 
# Rules 2 2 3 3 1 1 2 3 1 1 0.88 1.9 
# Selectors 4 5 6 4 1 2 6 7 1 1 2.31 3.7 
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DATA SET NAME: bos 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 70.6 72.5 70.6 63.3 64.7 62.7 68 72.5 70 85.1 6.43 70.0 
Specificity 90.2 90.9 84.1 89.8 82.5 81.5 85.1 87.6 93.3 93.4 4.33 87.8 
Sensitivity 69.7 71.3 68.6 67.4 64.5 63.7 68.4 72.5 67.8 85.6 6.13 69.9 
Time [msec] 2 3 0 2 2 2 2 1 1 2 0.82 1.7 msec 
# Rules 18 20 20 17 23 23 22 18 20 17 2.3 19.8 
# Selectors 89 108 112 89 124 131 116 97 109 96 14.3 107 
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DATA SET NAME: bos 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 66.7 72.5 56.9 72.5 73.5 80.4 74.5 72.5 70 69.6 6.11 70.9 
Specificity 83.3 87.3 78.4 87.3 84.9 90.2 87.6 85.9 86.9 84.5 3.2 85.6 
Sensitivity 67 73.4 56.3 74.1 71.1 79.7 73.3 70 71.9 64.9 6.34 70.2 
Time [msec] 2 6 7 2 1 1 5 2 7 6 2.51 3.9 msec 
# Rules 17 16 18 17 20 20 18 16 17 20 1.6 17.9 
# Selectors 47 51 53 47 68 67 57 50 53 70 8.83 56.3 
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DATA SET NAME: bld 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 60 71.4 74.3 60 74.3 71.4 68.6 57.1 62.9 76.7 7.06 67.7 
Specificity 23.5 43.8 46.2 27.8 30.8 43.8 50 41.7 100 33.3 21.5 44.1 
Sensitivity 94.4 94.7 90.9 94.1 100 94.7 88.2 65.2 40.9 95.2 18.5 85.9 
Time [msec] 0 0 2 0 0 0 0 2 0 0 0.84 0.4 msec 
# Rules 4 3 3 4 3 4 4 2 3 4 0.7 3.4 
# Selectors 17 13 12 16 12 16 17 8 12 17 3.06 14.0 
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DATA SET NAME: bld 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 71.4 71.4 62.9 68.6 62.9 74.3 65.7 74.3 80 66.7 5.52 69.8 
Specificity 25 50 38.9 42.1 13.3 38.5 56.3 41.7 30 44.4 12.4 38.0 
Sensitivity 95.7 82.6 88.2 100 100 95.5 73.7 91.3 100 100 8.91 92.7 
Time [msec] 0 2 3 2 2 2 1 2 0 0 1.07 1.4 msec 
# Rules 2 2 3 4 2 3 3 2 3 2 0.7 2.6 
# Selectors 6 8 11 13 5 7 9 5 6 7 2.63 7.7 
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DATA SET NAME: tae 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 62.5 50 56.3 43.8 43.8 56.3 62.5 50 62.5 57.1 7.28 54.5 
Specificity 81.9 77 81.8 77 72.7 77.5 81 74 84.6 80.6 3.77 78.8 
Sensitivity 42.6 57.2 54.2 49.8 45.6 46.8 62.4 58.3 67.5 44.4 8.38 52.9 
Time [msec] 2 2 0 2 0 0 0 0 2 0 1.03 0.8 msec 
# Rules 17 24 22 23 21 22 17 22 20 24 2.53 21.2 
# Selectors 40 63 58 69 57 60 44 57 52 72 9.99 57.2 
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DATA SET NAME: tae 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 43.8 56.3 43.8 43.8 62.5 25 75 56.3 56.3 57.1 13.6 52.0 
Specificity 73.9 79.5 68.1 72.1 79.4 66.4 82.9 80.1 79.5 75 5.54 75.7 
Sensitivity 48.4 65.8 33.3 44.4 58.3 25.6 63 64.8 56.9 50 13.5 51.1 
Time [msec] 0 2 0 0 4 1 0 4 0 2 1.64 1.3 msec 
# Rules 9 15 17 13 18 12 16 16 16 15 2.67 14.7 
# Selectors 15 27 30 21 37 21 34 35 32 26 7.13 27.8 

 

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

 -5
0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], # 
[units ]

Time [msec]
# Rules
# Selectors

 
 

 

 

 



 197

DATA SET NAME: pid 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 80.5 75.3 68.8 83.1 83.1 74 75.3 72.7 66.2 77.3 5.62 75.7 
Specificity 58.3 48.1 53.1 65.4 58.3 56.7 72 62.5 56 83.9 10.3 61.4 
Sensitivity 90.6 90 80 92.2 94.3 85.1 76.9 77.4 71.2 72.7 8.48 83.0 
Time [msec] 2 0 2 0 0 1 0 0 1 2 0.92 0.8 msec 
# Rules 2 2 1 2 2 3 2 2 1 1 0.63 1.8 
# Selectors 8 9 4 8 8 14 10 9 5 5 2.91 8.0 
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DATA SET NAME: pid 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 79.2 77.9 77.9 75.3 70.1 68.8 75.3 75.3 63.6 81.3 5.41 74.5 
Specificity 64 59.3 64 60.9 48.4 53.3 45.5 65.5 50 80.8 10.4 59.2 
Sensitivity 86.5 88 84.6 81.5 84.8 78.7 87.3 81.3 72.3 81.6 4.71 82.7 
Time [msec] 0 6 1 2 4 5 2 4 1 2 1.95 2.7 msec 
# Rules 2 3 2 2 2 3 2 1 2 2 0.57 2.1 
# Selectors 10 14 7 8 9 13 9 4 10 9 2.83 9.3 
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DATA SET NAME: seg 

- results of tests with the DataSqueezer algorithm 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 84 86.6 84.4 78.8 85.7 81 81 84.8 85.3 83.5 2.49 83.5 
Specificity 97.6 97.9 97.8 96.7 98 97.3 97.2 97.5 97.6 97.7 0.39 97.5 
Sensitivity 84.2 85.4 85.2 79.2 83.7 80.9 81.1 84.3 84.5 83.9 2.09 83.2 
Time [msec] 27 23 27 28 28 27 31 28 32 22 3.06 27.3 msec 
# Rules 51 55 66 59 56 60 60 50 59 57 4.67 57.3 
# Selectors 188 201 251 215 215 240 235 185 230 225 22 219 
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DATA SET NAME: seg 

- results of tests with the MetaSqueezer system 
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN 

Accuracy 80.1 81.4 77.1 79.7 84 80.5 82.7 82.7 79.7 77.9 2.17 80.6 
Specificity 96.6 96.9 96.2 96.6 97.4 96.8 97.1 97.1 96.8 96.3 0.38 96.8 
Sensitivity 81.5 81.4 77.6 79.8 84.5 80.2 82.5 81.9 79.9 75.8 2.48 80.5 
Time [msec] 23 40 27 23 34 28 22 28 20 41 7.43 28.6 msec 
# Rules 47 46 60 49 45 52 52 48 58 50 4.97 50.7 
# Selectors 79 82 109 89 74 85 96 89 102 88 10.6 89.3 
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DATA SET NAME: dna 

results of tests with the DataSqueezer 
algorithm 

 
Trials 1 

Accuracy 92.0 
Sensitivity 92.4 
Specificity 97.1 
Base Line 51.2 
Time 56 msec 
# Rules 39 
# Selectors 97 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 89.6 
Sensitivity 89.3 
Specificity 94.9 
Base Line 51.2 
Time 1 sec 2 msec 
# Rules 34 
# Selectors 53  

 

DATA SET NAME: led 

results of tests with the DataSqueezer 
algorithm 

 
Trials 1 

Accuracy 68.4 
Sensitivity 68.2 
Specificity 96.5 
Base Line 10.8 
Time  17 msec 
# Rules 51 
# Selectors 194 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 68.9 
Sensitivity 68.9 
Specificity 96.6 
Base Line 10.8 
Time 22 msec 
# Rules 51 
# Selectors 141  

 

DATA SET NAME: sat 

results of tests with the DataSqueezer 
algorithm 

 
Trials 1 

Accuracy 79.5 
Sensitivity 77.7 
Specificity 96.2 
Base Line 24.2 
Time  95 msec 
# Rules 57 
# Selectors 257 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 74.4 
Sensitivity 73.4 
Specificity 94.5 
Base Line 24.2 
Time  1 sec 7 msec 
# Rules 55 
# Selectors 104  

 

DATA SET NAME: smo 

results of tests with the DataSqueezer 
algorithm 

 
Trials 1 

Accuracy 68.3 
Sensitivity 33.3 
Specificity 66.7 
Base Line 70.2 
Time  5 msec 
# Rules 6 
# Selectors 12 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 66.8 
Sensitivity 32.6 
Specificity 68.7 
Base Line 70.2 
Time  6 msec 
# Rules 3 
# Selectors 11  
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DATA SET NAME: thy 

results of tests with the DataSqueezer 
algorithm 
 

Trials 1 
Accuracy 96.2 
Sensitivity 94.6 
Specificity 98.8 
Base Line 32.5 
Time  6 msec 
# Rules 7 
# Selectors 28 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 96.2 
Sensitivity 85.9 
Specificity 98.7 
Base Line 32.5 
Time  7 msec 
# Rules 6 
# Selectors 6  

 

DATA SET NAME: wav 

results of tests with the DataSqueezer 
algorithm 
 

Trials 1 
Accuracy 76.7 
Sensitivity 76.6 
Specificity 88.8 
Base Line 35.8 
Time  2 msec 
# Rules 22 
# Selectors 65 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 77.6 
Sensitivity 77.5 
Specificity 89.0 
Base Line 35.8 
Time  2 msec 
# Rules 16 
# Selectors 16  

 

 DATA SET NAME: mush 

results of tests with the DataSqueezer 
algorithm 
 

Trials 1 
Accuracy 99.9 
Sensitivity 99.7 
Specificity 100 
Base Line 53.3 
Time   6 msec 
# Rules 8 
# Selectors 21 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 99.5 
Sensitivity 99 
Specificity 100 
Base Line 53.3 
Time  19 msec 
# Rules 6 
# Selectors 16  

 

DATA SET NAME: adult 

results of tests with the DataSqueezer 
algorithm 
 

Trials 1 
Accuracy 81.5 
Sensitivity 93.9 
Specificity 41.4 
Base Line 75.9 
Time  17 sec 83 msec 
# Rules 61 
# Selectors 395 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 80.6 
Sensitivity 94.6 
Specificity 33.4 
Base Line 75.9 
Time  10 sec 35 msec 
# Rules 19 
# Selectors 64  
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DATA SET NAME: forc 

results of tests with the DataSqueezer 
algorithm 
 

Trials 1 
Accuracy 54.8 
Sensitivity 56.2 
Specificity 90.0 
Base Line 14.3 
Time  25 sec 98 msec 
# Rules 59 
# Selectors 2105 

results of tests with the MetaSqueezer 
system 

Trials 1 
Accuracy 55.3 
Sensitivity 35.8 
Specificity 88.8 
Base Line 14.3 
Time  18 sec 57 msec 
# Rules 33 
# Selectors 699  

 

DATA SET NAME: cid 

- results of tests with the DataSqueezer algorithm 

 

 

 

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523 
Train data size - 
Ratio --- 2 2 2 2 2 2 2 1.56 

Time 30msec 58msec 98msec 2sec 47msec 6sec 90msec 18sec 
89msec 

47sec 
13msec 

2min 16sec 
29msec 

4min 25sec 
09msec 

Time - Ratio --- 1.93 1.69 2.52 2.79 2.74 2.50 2.95 1.94 
Accuracy 87.9 89.9 88.1 87.7 87.9 89.3 89.4 89.1 90.5 
Sensitivity 90.3 92.3 90.7 90.3 90.5 92.1 92.2 91.8 93.5 
Specificity 52.0 45.6 48.7 49.1 48.4 46.5 46.4 47.3 45.4 
# Rules 11 13 10 12 12 13 14 13 15 
# Selectors 74 80 57 77 74 81 88 83 95 

 

- results of tests with the MetaSqueezer system 
Trials 1 

Accuracy 90.2 
Sensitivity 93.0 
Specificity 49.0 
Base Line 93.8 
Time  4 min 33 sec 01 msec 
# Rules 6 
# Selectors 34 
 

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523 
Train data size - 
Ratio --- 2 2 2 2 2 2 2 1.56 

Time 65msec 1sec 27msec 2sec 31msec 4sec 72msec 10sec 
44msec 

24sec 
71msec 

55sec 
43msec 

2min 31sec 
71msec 

4min 33sec 
01msec 

Time - Ratio --- 1.95 1.81 2.04 2.21 2.34 2.24 2.74 1.80 
Accuracy 93.6 90.6 90.3 92.0 92.5 91.7 90.5 90.9 90.2 
Sensitivity 99.6 94.9 93.8 96.3 97.2 95.9 93.7 94.1 93.0 
Specificity 1.9 25.7 37.1 26.5 20.6 28.1 41.8 41.7 49.0 
# Rules 38 11 14 17 18 13 11 11 6 
# Selectors 173 67 76 106 98 66 72 67 34 

 

Trials 1 
Accuracy 90.5 
Sensitivity 93.5 
Specificity 45.4 
Base Line 93.8 

Time  4 min 25 sec 09 msec 
# Rules 15 

# Selectors 95 
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Appendix D 

Results of Mining CF data using DataSqueezer Algorithm 

Results for task 1 

The following attribute and selector importance table was generated by the 

DataSqueezer algorithm, when applying to the input data for task 1 and using the 

same parameters as the parameters as for the MetaSqueezer system. Evaluation of 

findings, which was performed by Dr. Frank Accurso and Marci Sontag, is shown 

in the marks column. 

ATRIBUTE VALUE MARK CLASS 
IMPROV 

CLASS 
NOCHANGE 

CLASS 
SLOWDEGRAD 

CLASS 
FASTDEGRAD

 CFtypes (cf)      
 CFtypes (cf)  Type1      
 CFtypes (cf)  Type2      
 TemporalIntervals (cf)  4      
 TemporalIntervals (cf)  5      
 vis_hgt1 (vis)      
 vis_hgt1 (vis)  [105.00,180.00)      
 vis_wght1 (vis)      
 vis_wght1 (vis)  [22.10,54.40)      
 dob (dem)      
 dob (dem)  82till92      
 dob (dem)  before82      
 race (dem)      
 race (dem)  Caucasian      
 race (dem)  Black 3+     
 group (dem)      
 group (dem)  C      
 group (dem)  NBS 3+     
 group (dem)  MI 3+     
 marital (dem)      
 marital (dem)  Married      
 motage (dem) 3+     
 motage (dem)  [22.50,48.50)      
 birthord (dem)      
 birthord (dem)  3      
 birthord (dem)  2      
 birthord (dem)  1      
 birthord (dem)  4      
 numsib (dem)      
 numsib (dem)  2      
 numsib (dem)  1      
 numsib (dem)  3      
 numsib (dem)  0      
 numsib (dem)  4      
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 cfsib (dem)      
 cfsib (dem)  0      
 deltype (dem)      
 deltype (dem)  vagnl      
 deltype (dem)  csemg      
 deltype (dem)  cspln      
 deltype (dem)  unk      
 mecil (dem)  no      
 irt (dia)  No      
 irt (dia)  Yes      
 FalseNeg (dia)      
 FalseNeg (dia)  -      
 FalseNeg (dia)  No      
 Clinic (dia)      
 Clinic (dia)  Billings      
 Clinic (dia)  Adult      
 Clinic (dia)  Denver      
 Clinic (dia)  Colo.Spgs      
 Clinic (dia)  GreatFalls      
 irt1 (dia)  [389.00,766.00)      
 irt1 (dia)  [79.50,373.00)      
 age@irt1 (dia)      
 age@irt1 (dia)  [-0.50,5.50)      
 age@irt1 (dia)  [5.50,8.50)      
 irt2 (dia)  [87.50,322.00)      
 swetna1 (dia)      
 swetna1 (dia)  [54.50,152.00)      
 swetk1 (dia)      
 swetk1 (dia)  [24.50,46.00)      
 swetk1 (dia)  [4.50,16.50)      
 swetk1 (dia)  [16.50,24.50)      
 swetcl1 (dia)      
 swetcl1 (dia)  [101.00,157.00)      
 swetcl1 (dia)  [-11.00,95.50) 3+     
 swetna2 (dia)      
 swetna2 (dia)  [22.00,101.00)      
 swetk2 (dia)  [19.50,58.50)      
 swetcl2 (dia)      
 swetcl2 (dia)  [26.50,108.00)      
 swetk3 (dia)  [5.50,26.50)      
 swetk4 (dia)  [10.50,39.50)      
 SOURCE (cul)  Sputum      
 SOURCE (cul)  ThroatCulture      
 tobraresistent? (cul)      
 tobraresistent? (cul)  No      
 ciproresistant? (cul)      
 ciproresistant? (cul)  No      
 meropenemresistant? (cul)      
 meropenemresistant? 
(cul)  No     

 

 WAZ (per)      
 WAZ (per)  [-1.93,1.51)      
 HAZ (per)      
 HAZ (per)  [-1.87,2.50)      
 BASEpower (cul)  [-1.00,2E4)      
 BASEpower2 (cul)  [-1.75,7.5E6)      
 BASEpower3 (cul)      
 BASEpower3 (cul)  [-1.75,1.1E8)      
 BASEpower4 (cul)      
 BASEpower4 (cul)  [-5E3,1.25E5)      
 age@diagnosis (dia)      
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 age@diagnosis (dia)  025till2      
 age@diagnosis (dia)  below025      

 

Results for task 2 

The following attribute and selector importance table was generated by the 

DataSqueezer algorithm, when applying to the input data for task 2 and using the 

same parameters as the parameters as for the MetaSqueezer system. Evaluation of 

findings, which was performed by Dr. Frank Accurso and Marci Sontag, is shown 

in the marks column. 

ATRIBUTE VALUE MARK CLASS TYPE1 CLASS TYPE2 CLASS TYPE4
 CFpace (cf)     
 CFpace (cf)  NoChange     
 CFpace (cf)  SlowDegrad     
 CFpace (cf)  Improv 3+    
 TemporalIntervals (cf)  4     
 vis_hgt1 (vis)     
 vis_hgt1 (vis)  [102.00,188.00)     
 vis_wght1 (vis)     
 vis_wght1 (vis)  [15.30,53.30)     
 PulseOximetry (vis)  [92.50,101.00)     
 dob (dem)  82till92     
 race (dem)     
 race (dem)  Caucasian     
 race (dem)  Unknown     
 group (dem)     
 group (dem)  C 2+    
 group (dem)  NBS 2+    
 marital (dem)     
 marital (dem)  Married     
 marital (dem)  Unknown     
 motage (dem)     
 motage (dem)  [25.50,37.50)     
 motage (dem)  [15.10,24.50)     
 birthord (dem)     
 birthord (dem)  3     
 birthord (dem)  2     
 birthord (dem)  1     
 birthord (dem)  4     
 numsib (dem)     
 numsib (dem)  2     
 numsib (dem)  1     
 numsib (dem)  0     
 cfsib (dem)     
 cfsib (dem)  1     
 cfsib (dem)  0     
 deltype (dem)     
 deltype (dem)  vagnl     
 deltype (dem)  unk     
 mecil (dem)     
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 mecil (dem)  no     
 dcmot (dem)     
 dcmot (dem)  yes     
 Clinic (dia)     
 Clinic (dia)  Billings     
 Clinic (dia)  Adult     
 Clinic (dia)  Denver     
 Clinic (dia)  Colo.Spgs     
 Clinic (dia)  GreatFalls     
 irt1 (dia)  [112.00,285.00)     
 age@irt1 (dia)  [-0.50,2.50)     
 irt2 (dia)     
 irt2 (dia)  [93.00,477.00)     
 age@irt2 (dia)  [8.50,67.50)     
 swetna1 (dia)     
 swetna1 (dia)  [47.50,80.50)     
 swetna1 (dia)  [85.50,1.24E3)     
 swetna1 (dia)  [80.50,85.50)     
 swetk1 (dia)     
 swetk1 (dia)  [31.50,105.00)     
 swetk1 (dia)  [20.50,31.50)     
 swetcl1 (dia)     
 swetcl1 (dia)  [86.50,113.00)     
 swetcl1 (dia)  [-11.00,86.50)     
 swetna2 (dia)     
 swetna2 (dia)  [60.50,139.00)     
 swetk2 (dia)     
 swetk2 (dia)  [13.50,32.50)     
 swetcl2 (dia)     
 swetcl2 (dia)  [85.50,153.00)     
 SOURCE (cul)  Sputum     
 SOURCE (cul)  ThroatCulture     
 tobraresistent? (cul)     
 tobraresistent? (cul)  NotDone     
 tobraresistent? (cul)  No     
 ciproresistant? (cul)     
 ciproresistant? (cul)  NotDone     
 ciproresistant? (cul)  No     
 meropenemresistant? (cul)     
 meropenemresistant? 
(cul)  NotDone     

 meropenemresistant? 
(cul)  No     

 WAZ (per)     
 WAZ (per)  [-1.75,1.36)     
 HAZ (per)     
 HAZ (per)  [-1.53,2.53)     
 BASEpower (cul)     
 BASEpower (cul)  [-0.50,1.15E3)     
 BASEpower2 (cul)     
 BASEpower2 (cul)  [-1.75,752.00)     
 BASEpower3 (cul)     
 BASEpower3 (cul)  [-0.50,5.5E7)     
 BASEpower4 (cul)     
 BASEpower4 (cul)  [-2.5E3,2.5E3)     
 age@diagnosis (dia)     
 age@diagnosis (dia)  below025     
 age@diagnosis (dia)  2till7     

 


