
 1

META MINING SYSTEM FOR SUPERVISED LEARNING

by

LUKASZ KURGAN

B.S., AGH University of Science and Technology, Krakow, Poland, 1998

M.S., AGH University of Science and Technology, Krakow, Poland, 1999

A thesis submitted to the

Faculty of the Graduate School in partial fulfillment

of the requirement for the degree of Doctor of Philosophy

Department of Computer Science

2003

 2

this thesis entitled:

Meta Mining Architecture for Supervised Learning

written by Lukasz Kurgan

has been approved for the Department of Computer Science

Dr. Krzysztof Cios (Chair of the Committee)

Dr. James Martin (Committee Member)

Date

a final copy of this thesis has been examined by the signatories, and we find that

both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

 iii

Kurgan, Lukasz (Ph.D., Computer Science)

Meta Mining System for Supervised Learning

Dissertation directed by Professor Krzysztof Cios

Supervised inductive machine learning is one of several powerful

methodologies that can be used for performing a Data Mining task. Data Mining

aims to find previously unknown, implicit patterns that exist in large data sets, but

are hidden among large quantities of data. These patterns describe potentially

valuable knowledge. Data Mining techniques have been focused on finding

knowledge, often expressed in terms of rules, directly from data. More recently, a

new Data Mining concept, called Meta Mining, was introduced. It generates

knowledge utilizing two-step procedure, where first meta-data is generated from

the input data, and next the meta-data is used to generate meta-rules that

constitute final data model.

In this dissertation we examine a new approach to generation of knowledge,

using supervised inductive learning methodologies combined with Meta Mining.

We propose a novel data mining system, called MetaSqueezer, for extraction of

useful patterns that carry new information about input supervised data set. The

major contribution of this thesis is design and development of the above system,

supported by extensive benchmarking evaluation results. Two key advantages of

the system are its scalability, which results from its linear complexity, and high

 iv

compactness of user-friendly data models that it generates. These two features

make it applicable for applications that use megabytes, or even gigabytes of data.

The fields contributing to this research are Inductive Machine Learning,

Data Mining and Knowledge Discovery, and Meta Mining. A study of existing

Machine Learning methodologies, which give similar results, is given to properly

situate the research and to help in evaluation of the system.

The usefulness of the system is evaluated theoretically and also empirically

via thorough testing. The results show that the system generates very compact

data models. They also confirm linear complexity of the system, which makes it

highly applicable to real data.

Results of application of the system to cystic fibrosis data are provided.

This application generated very useful results, as evaluated by the domain experts.

Dedication

To my brother, Michal, with the best wishes for successful and self-

fulfilling life-long journey.

 vi

Acknowledgements

I would like to thank all who helped me to complete this dissertation.

First, my appreciation goes to my advisor, Dr. Krzysztof Cios, whose

experience and continuous support helped me over the last few years to become a

successful researcher. I especially thank him for understanding and

encouragement for my research directions, which resulted in establishing a

fruitful and strong advisor-student relationship. You are the best!

I am grateful to the members of my dissertation committee, Dr. Andrzej

Ehrenfeucht, Dr. Clayton Lewis, Dr. Dennis Lezotte, and Dr. James Martin. Their

very much appreciated input helped me to clarify my understanding of the subject,

and thus to improve the quality of this work. I would like to thank Dr. Frank

Accurso and Marci Sontag, for providing cystic fibrosis data and helping to

understand the problems to be modeled. They not only helped me to provide a

strong validation for the system that is described here, but also enabled me to feel

importance of my research, by showing its applicability to important medical

problems. I also would like to thank Dr. Tom Altman for his valuable comments

and correction that greatly helped in improving and polishing this dissertation.

Last, but not least, I would like to thank my family for their continuing

support. I thank my parents, who always tried to explain that knowledge is the key

to the success, and for their continuing words of encouragement.

 vii

Contents

1 Introduction.. 1
1.1 Overview of Inductive Learning... 1

1.1.1 Basic Definitions.. 2
1.1.2 Supervised Inductive Learning .. 5
1.1.3 Inductive Learning via Search ... 6

1.1.3.1 The Search Space.. 6
1.1.3.2 Rule Validity Tests ... 9
1.1.3.3 Search Algorithms .. 11

1.1.4 Classification task .. 14
1.1.5 Knowledge Representation .. 15

1.1.5.1 Decision Trees .. 16
1.1.5.2 Production Rules... 17

1.1.6 Machine Learning and Data Mining .. 18
1.1.6.1 Why Data Mining and Knowledge Discovery? 19

1.2 Motivation... 20
1.3 Goal of the Research... 22

2 Related Work ... 25
2.1 Introduction... 25
2.2 Comparing ML Algorithms .. 27

2.2.1 Assessment of Validity .. 28
2.2.1.1 Repositories of Benchmarking Data Sets 29

2.2.2 Experimental Assessment of Scalability.. 30
2.3 Evaluation of Inductive Machine Learning Algorithms 33

2.3.1 Decision Tree Algorithms.. 34
2.3.2 Rule Algorithms... 35

3 Architecture of the MetaSqueezer System... 37
3.1 Introduction... 37

3.1.1 Meta Mining... 38
3.2 Overview of the MetaSqueezer System.. 42
3.3 The DataSqueezer Algorithm ... 44

3.3.1 The Algorithm.. 44
3.3.1.1 Theoretical Complexity Analysis ... 53

3.3.2 Experimental Evaluation.. 56
3.3.3 Comparison of DataSqueezer with Other Algorithms 58

3.3.3.1 Accuracy ... 58
3.3.3.2 Simplicity and Efficiency ... 60
3.3.3.3 Flexibility.. 63
3.3.3.4 Experimental Complexity Analysis .. 63

 viii

3.3.3.5 Summary of Experimental Evaluation...................................... 65
3.4 The CAIM Algorithm ... 66

3.4.1 Introduction to Discretization .. 67
3.4.2 The Algorithm.. 69

3.4.2.1 Definitions of Class-Attribute Interdependent Discretization .. 70
3.4.2.2 Discretization Criterion... 74
3.4.2.3 The CAIM Algorithm ... 77
3.4.2.4 Complexity Analysis... 78

3.4.3 Experimental Evaluation.. 80
3.4.4 Comparison of CAIM with other Algorithms...................................... 81

3.4.4.1 Accuracy, Simplicity, Efficiency, and Flexibility 82
3.4.4.2 Impact of the CAIM algorithm discretization on the Subsequent
Learning Task ... 85
3.4.4.3 Summary ... 88

4 The MetaSqueezer System... 90
4.1 Introduction... 90
4.2 MetaSqueezer System... 90

4.2.1 Theoretical Complexity Analysis... 94
4.3 Experimental Evaluation... 95

4.3.1 Comparison of MetaSqueezer with Other Algorithms 97
4.3.1.1 Accuracy ... 97
4.3.1.2 Simplicity and Efficiency ... 100
4.3.1.3 Flexibility.. 103
4.3.1.4 Experimental Complexity Analysis .. 104
4.3.1.5 Summary of Experimental Evaluation.................................... 107

5 Application of MetaSqueezer System to Analysis of Cystic Fibrosis Data..... 109
5.1 Introduction... 109

5.1.1 Significance.. 113
5.2 Understanding the Problem Domain... 114
5.3 Understanding the Data .. 118
5.4 Preparation of the Data ... 125

5.4.1 The Class Attributes... 130
5.4.2 The Time-Defining Attribute ... 133
5.4.3 Discretization ... 133
5.4.4 The Training Set for Task 1 ... 135
5.4.5 The Training Set for Task 2 ... 137
5.4.6 Refining the Project ... 139

5.5 Data Mining .. 141
5.5.1 Rule and Selector Ranking Tables ... 142
5.5.2 Experimental Results ... 151

5.6 Evaluation of the Discovered Knowledge .. 156
5.7 Using the Discovered Knowledge .. 169

 ix

5.7.1 Summary of Results ... 170

6 Summary .. 171
6.1 Summary and Significance ... 171
6.2 Future Work.. 174

References... 175

Appendix A Abbreviations ... 185

Appendix B Relevant Publications ... 186

Appendix C Detailed Test Results.. 189

Appendix D Results of Mining CF data using DataSqueezer Algorithm........... 202

 x

Tables

Table 1. Outcomes of the verification test. ... 10
Table 2. SPEC test results for the computer hardware configurations used in the

benchmarking tests.. 32
Table 3. Major properties of inductive ML algorithms .. 34
Table 4. Major properties of the DataSqueezer algorithm.................................... 48
Table 5. Sample training set for the DataSqueezer algorithm 50
Table 6. Sample rule table generated by the DataSqueezer algorithm 50
Table 7. Description of data sets used for benchmarking of DataSqueezer

algorithm ... 57
Table 8. Accuracy results for the DataSqueezer, CLIP4, and the other 33 ML

algorithms ... 59
Table 9. Number of rules and selectors, and running time results for the

DataSqueezer, CLIP4, and the other 33 ML algorithms............................... 61
Table 10. Summary of experimental complexity analysis results for the

DataSqueezer algorithm.. 64
Table 11. Summary of the benchmarking tests for the DataSqueezer algorithm . 66
Table 12. 2-D quanta matrix for attribute F and discretization scheme D............ 71
Table 13. Description of data sets used for benchmarking of CAIM algorithm... 80
Table 14. Comparison of the seven discretization algorithms using eight

continuous and mixed-mode data sets (bolded values indicate the best
results)... 83

Table 15. Comparison of the accuracies achieved by the CLIP4 and C5.0
algorithms for the eight data sets using the seven discretization schemes
(bolded values indicate the best results) ... 86

Table 16. Comparison of the number of rules/leaves generated by the CLIP4 and
C5.0 algorithms for the eight data sets using the seven discretization (bolded
values indicate the best results)... 87

Table 17. Summary of the benchmarking tests for the CAIM algorithm 88
Figure 15. Architecture of the MetaSqueezer system... 92
Table 18. Major properties of the MetaSqueezer system 93
Table 19. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the

other 33 ML algorithms .. 98
Table 20. Number of rules and selectors, and running time results for the

MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms.... 101
Table 21. Summary of experimental complexity analysis results for the

MetaSqueezer system.. 105
Table 22. Summary of the benchmarking tests for the DataSqueezer algorithm 107
Table 23. Summary of data cleaning performed with CF data 126
Table 24. List of irrelevant attributes from CF data ... 129

 xi

Table 25. Definition of the "CF pace (cf)" attribute ... 131
Table 26. Definition of the "CF type (cf)" attribute.. 132
Table 27. Definition of the "TemporalIntervals (cf)" attribute........................... 133
Table 28. The manual discretization of the CF data ... 134
Table 29. The discretization of the CF data using F-CAIM algorithm............... 135
Table 30. Summary of the refinements performed during the analysis of the CF

data .. 140
Table 31. Summary of training sets for the CF project....................................... 141
Table 32. Attribute and selector ranking table for the example data 146
Table 33. Color coded attribute and selector ranking table for the example data

... 147
Table 34. Color coded attribute and selector ranking table with removed irrelevant

attributes for the example data .. 148
Table 35. The 10 fold cross validation results for task 1 152
Table 36. The summary of test results for task 1.. 153
Table 37. The 10 fold cross validation results for task 2 154
Table 38. The summary of test results for task 2.. 155
Table 39. Summary of the benchmarking tests for the MetaSqueezer system ... 156

 xii

Figures

Figure 1. Process of learning rules by an IL algorithm... 4
Figure 2. Rule search process: a) bottom-up approach, b) top-down approach ... 12
Figure 3. Sample search graph.. 12
Figure 4. Search strategies .. 14
Figure 5. Classification task.. 15
Figure 6. Example decision tree represenation ... 17
Figure 7. Fields investigated in this dissertation... 24
Figure 8. Rule generation using decision trees including sample tree, rules

generated from it, and shared selectors... 35
Figure 9. The MM procedure.. 38
Figure 10. The pseudo-code of the DataSqueezer algorithm................................ 46
Figure 11. The Find S algorithm... 48
Figure 12. Relation between execution time and input data size for the

DataSqueezer algorithm.. 65
Figure 13. The pseudo-code of the CAIM algorithm ... 78
Figure 14. The pseudo-code of the CAIM algorithm ... 91
Figure 15. Architecture of the MetaSqueezer system... 92
Figure 16. Relation between execution time and input data size for the

MetaSqueezer and the DataSqueezer algorithms.. 105
Figure 17. The difference in ratios between the time and training data size 106
Figure 18. The six-step DMKD process model .. 112
Figure 19. The structure of the CF data .. 119
Figure 20. The relationship showing number of examples with particular number

of missing values for task 1 .. 137
Figure 21. The relationship showing number of examples with particular number

of missing values for task 2 .. 138
Figure 22. a) sub-table1 generated for data from interval 1 (I1), b) sub-table2

generated for data from interval 2 (I2), c) meta-table d) attribute and selector
ranking table.. 149

Figure 23. The evaluation of results for task 1 ... 162
Figure 24. The evaluation of results for task 2 ... 167

 1

Chapter 1

1 Introduction

This chapter provides an overview of Inductive Learning, with emphasis on

Data Mining and Machine Learning. It also explains the motivation and goal of

the research and talks about potential applications areas.

1.1 Overview of Inductive Learning

Humans attempt to understand their environment by using its simplified

version, called a model. Creation of such a model is called Inductive Learning

(IL). During the learning phase, humans try to recognize similarities among

objects and events in the environment, by observation. Next, they group similar

objects into classes and construct hypotheses used to predict behavior of the

members (examples) from these classes (Holland et al., 1986). The same activities

are also performed when knowledge is generated from input data. The generated

knowledge is not a mere copy of the input data, but rather consists of information

that is inferred from the data. Two inference techniques, which are used to derive

new knowledge, are (Holsheimer and Siebes, 1994):

• deduction, which is a technique that infers knowledge that is a logical

consequence of the information in the input data. It can be used if the data

describing some domain is proven to be correct. Most database management

systems (DBMSs) (e.g., relational DBMSs) can perform deduction via use

 2

of simple operators, like the join operator. Such join operator, when applied

to two relational tables, infers a relation between them. A research area

called deductive databases uses the idea of deduction to provide a user with

answers to queries (Ullman, 1989; Ullman and Zaniolo, 1990). Such

database is augmented with an inference system that is used to derive rules

that are used to answer user’s queries.

• induction, which infers knowledge that is generalized from the information

in the input data. The induction works by searching for regularities among

the data to provide high level summary of the information contained in the

data. It is usually performed in the form of a search for a correct hypothesis

(rule), or a set of them, which is guided by the examples from the input data.

IL generates hypotheses that are always correct for the input data, but only

plausible outside of the data.

1.1.1 Basic Definitions

Information about the environment is represented by a training data set.

Since most of current DBMSs are relational, the most popular representation form

for the data is a relational table, which consists of tuples. Each tuple represents

one or more objects (examples). We assume that the table stores information

about properties of the examples, in terms of attributes, but not the relationship

between the examples. We also assume that the training set consist of a single

table. The second assumption can be easily realized for all database schemas and

queries (Ullman, 1989). The table may include unknown values, which means that

 3

some of the attributes describing examples may be not known during the learning

process.

Definition 1. Training Set.

Let A = {A1, A2, …, Ak} be a set of attributes with their domains Dom1,

Dom2, …, Domk. The training set is a finite subset of universe U = Dom1 x Dom2

x … x Domk, and is defined as a table over A. An example is a tuple in the

training set.

The user of training set defines classes, also called concepts, in the data

(Michalski, 1983a). We assume that the training set contains one or more

attributes, called predicted attributes, which are used to denote the class of an

example. The remaining attributes are called predicting attributes. A class is

defined by a condition that involves combination of values of the predicted

attributes.

Definition 2. Class.

A class Ci is a subset of the training data set S, consisting of all objects that

satisfy the class condition condi: Ci = {examples ∈ S | condi(o)}. Examples that

satisfy condi are called positive examples, or examples of class Ci. The remaining

examples are called negative examples.

When the classes are defined, an IL algorithm can infer rules, or class

descriptions, from the training set. The rules are generated for each of the classes,

using only the predictive attributes. Rules generated for class Ci should describe

only the positive, and none of the negative examples.

 4

Definition 3. Rule.

Let A be the set of predicting attributes. A rule that describes class Ci is a

formula IF (A1 = c1) ∧ (A2 = c2) ∧ … ∧ (An = cn) THEN Ci, such that:

1. Ai ∈ A and i ≠ j → Ai ≠ Aj

2. ci ∈ Dom(Ai)

A rule can be also written as IF D THEN C, where D is called description

and C denotes the class for the rules was generated. The description is a

disjunction of elementary statements (i.e., (Ai = ci) called selectors. A rule

generated for class Ci is correct with respect to the training set if its description

covers positive examples, and none of negative examples.

The process of rule generation performed by an IL algorithm is shown in

Figure 1.

Figure 1. Process of learning rules by an IL algorithm

define

classes

generate

rules

C3

C2

C1

predicted predicting IF D1 THEN C1

IF D2 THEN C2

IF D3 THEN C3

 5

1.1.2 Supervised Inductive Learning

Two types of IL techniques can be distinguished (Carbonell et al, 1983). In

supervised learning, known also as learning from examples, an external teacher

defines classes and provides examples for each class. The learning algorithm

infers rules that describe common properties exhibited by the examples from the

training data for each class. These class descriptions usually take form of

classification rules “IF <description> THEN <class>”, which can be used to

predict the class of previously unseen examples or to find new and useful

regularities exhibited in the data. The teacher can define either one or multiple

classes (Dietterich and Michalski, 1983). In case of the single-class learning, the

teacher defines a single class C for which an IL algorithm generates rules. The

description must distinguish examples from class C (positive examples) from

examples which do not belong to class C (negative examples). This type of

learning is also called binary learning, since it used two classes of examples:

positive and negative. In multiple-class learning, the teacher defines a finite

number of classes C1, C2, …, Cc, for which an IL algorithm must find descriptions.

The algorithm generates rules for the ith class by treating examples from the class

Ci as positive examples, and examples belonging to any other class as negative

examples.

In unsupervised learning, also known as learning from observation,

inductive algorithm discovers the classes by itself based on common properties of

examples. Detailed discussions of these two learning models can be found in

 6

(Holsheimer and Siebes, 1994). In this work we are only concerned with the

development of a supervised IL system that performs both single- and multiple-

class learning tasks from supervised training data.

1.1.3 Inductive Learning via Search

The goal for any supervised IL algorithm is to generate a set of correct rules

for each of the classes defined by the teacher. The simplest approach to generate

such rules is to perform exhaustive search, also known as learning by enumeration,

which tries all possible descriptions to find these that best fit the class that is

currently being described. There are two major problems when learning by

enumeration. First, it is extremely complex, which leads to a very long learning

time. Second, the rules generated by enumeration will describe only examples

from some training set, when they should provide generalized description of the

examples that will also be able to describe examples from outside of the learning

set. Before we describe other learning methods, which are designed to overcome

the above problems, we provide several necessary definitions.

1.1.3.1 The Search Space

The search space <D, O, f > consists of a set of descriptions D, a set of

operations on these descriptions O, and a quality function f (Holsheimer and

Siebes, 1994).

 7

The description space D is a set of all possible descriptions for a particular

training set. Each description D has its corresponding subset of the training set S,

called cover σD(S).

Two main operations on D are: generalization and specialization. The goal

of the generalization is to weaken the description by making it to cover more

examples. On the other hand, specialization strengthens the description by

reducing the coverage.

Let assume that generalization operation was used to convert description D

into description D’. If an example is covered by D, it is also covered by D’, but

the reverse does not hold. Thus, the generalization operation is not truth

preserving. Simply, if D is correct, its generalization D’ may not be correct.

Definition 4. Generalization.

A set-description D = (A1 ∈ S1 ∧ … ∧ Ai ∈ Si ∧ … ∧ An ∈ Sn) is

generalized by extending the set of values for a particular attribute Ai to Si’ where

Si ⊂ Si’ ⊆ Domi.

Specialization is an inverse of the generalization operation, where Si is

replaced with Si’, and Si ⊃ Si’.

Quality function f is used to indicate quality of particular descriptions. Each

description must satisfy two conditions. First, it must be valid, which means that it

must classify unseen, i.e., not present in training set, examples correctly. Second,

it should be correct in terms of providing correct description with respect to one

of the classes defined by the user.

 8

Validity of the generated rules can be assessed using two criteria. First,

after the rules are generated, a classification test is performed. Such test applies

generated rules to test set, which was unseen during the learning process. The

rules are used to classify examples from the test set, and the results are compared

with class values, which are assigned to the test examples by the teacher.

Accuracy, defined below, is computed, and higher validity value is assigned to

rules that achieve higher accuracy. Second, the Ockham’s razor principle is used.

It says that the simpler the description, the more likely it is that it correctly

describes existing pattern in the data. The complexity of descriptions is most

commonly evaluated by the number of selectors that the description uses. Thus,

the validity is higher for simpler descriptions, or smaller complexity.

Correctness of the generated rules is assessed by stating that the entire set

of descriptions D for class Ci should cover all positive examples, and none of

negative examples, i.e., σD(S) = Ci. Most IL algorithms relax this requirement by

requiring that the description should describe significant majority of positive

examples, and may cover small number of negative examples. This relaxation is

due to data inconsistencies, i.e., the same example describes different classes,

missing values, and noise. It is usually assumed that correctness of the rules is

verified based on the design of IL algorithm that generates them.

 9

1.1.3.2 Rule Validity Tests

The most popular test to verify validity of generated rules is the accuracy

test. The test is defined as probability that an example covered by a description

actually belongs to the class that is described by that description.

%100
total
TPaccuracy =

where TP (true positive) is the number of correctly recognized test

examples, and total is the total number of test examples. A test example is

checked against all rules describing all classes.

Also, a more precise test measure called verification test can be used to test

the rules. The verification test is a standard test procedure in medicine, where

sensitivity and specificity analysis is used to better evaluate confidence in the

results (Cios and Moore, 2002). This work applies both, the accuracy and

verification tests, to provide a thorough verification of validity of rules generated

by the MetaSqueezer system.

The verification test consists of three evaluation criteria:

%100%100
FNTP

TP
positivehypothesis

TPysensitivit
+

==

%100%100
TNFP

TN
negativehypothesis

TNyspecificit
+

==

 %100%100
FNFPTNTP

TNTP
total

TNTPaccuracypredictive
+++

+
=

+
=

where TP (true positive) is the number of correct positive classifications,

TN (true negative) is the number of correct negative predictions, FP (false

 10

positive) is the number of incorrect positive predictions, and FN (false negative)

is the number of incorrect negative predictions. These values are computed based

on the possible test outcomes shown in Table 1.

Table 1. Outcomes of the verification test.

 test result positive test result negative
positive rule TP FN
negative rule FP TN

The predicative accuracy is equivalent to the accuracy. The remaining two

criteria give additional insight into the goodness of the generated rules. The

sensitivity measures how many of the examples described by the rules as positive

were truly positive. The specificity measures how many of the examples

described by the rules as negative were truly negative. Specificity and sensitivity

enable evaluation of how the rules perform on the positive and negative data

separately. This is very important when the numbers of positive and negative

examples are different. In this case, the accuracy provides just the average result

for positive and negative examples together, when true accuracy for positive

examples can be very different than accuracy for the negative examples. The

difference can be easily noticed when using sensitivity and specificity. Only the

results with high values for all three criteria can assure high confidence level in

the rules. A study by Kukar (Kukar et al., 1999) shows the importance of using,

and trade-offs between, the sensitivity and specificity. Advantages of using

verification test versus accuracy test were also shown in (Cios et al., 1998).

 11

1.1.3.3 Search Algorithms

IL can be seen as a search over the defined search space. The general

approach is to start with an initial description, and iteratively modify it via one of

the operators until its quality exceeds a user-defined threshold (Holsheimer and

Siebes, 1994). Two approaches for generation of rules are: data-driven, or bottom-

up approach, and model-driven, or top-down approach.

In the bottom-up search the initial description consists of all examples from

the training set that describe positive class. The initial description is correct with

respect to training set, but is too complex, and thus during search it is modified by

applying generalization operator. The search is based on multiple generalizations,

which are applied until the description is correct, with a certain tolerance, with

respect to the training set. The bottom-up search is shown in Figure 2a, where

filled circles depict positive examples, empty circles the negative examples, and

the description is shown by the shaded areas. The bigger the shaded area, the

more general the description is.

In the top-down search the initial description describes the entire universe,

or its subset, of the training set. The initial description is refined by applying both

generalization and specialization operators, until the quality of the description

exceeds a threshold. The top-down search is shown in Figure 2b.

 12

Figure 2. Rule search process: a) bottom-up approach, b) top-down approach

The search space can be modeled by a directed graph, where nodes

represent descriptions, and arcs represent operations. Figure 3 shows a sample

search graph, where a set of operations in O is applied to the initial description D1

to generate new descriptions D2i. The process of application of operations is

repeated until a goal node, which represents a description of sufficient quality, is

reached. Thus, the graph can be used to represent a search for rules, where a

particular sequence of operations is used to generate correct rules.

Figure 3. Sample search graph

2a

2b

D1

o2

o1 o2

o1 o3
o1

o2
o1 o2

o3

o1 o2
o3

D42 D41

D37 D36 D35 D34 D32 D33 D31

D22 D23 D21

 13

Two search strategies are: the irrevocable search, and the tentative search

(Nillson, 1982). In the irrevocable search, once an operation is selected and

applied to a description, it will never be reconsidered. This search executes a

single path thought the graph to generate a rule. In the tentative search, the once

an operation is selected and applied to a description, it may still be undone, to

perform a different operation for that description. The main reason for undoing an

operation is that the search identified that selection of a different operation would

lead to a better rule. The disadvantage of the latter search strategy is its high

computational cost, when compared with the irrevocable search.

Both of these search strategies can work in uninformed or informed mode.

In uninformed mode, an operation is chosen arbitrarily. In this case, using

irrevocable strategy leads to performing a depth-first search, while using tentative

strategy leads to either depth-first search with backtracking, or breath-first search

(Russel and Norvig, 1995). Uninformed searches are computationally expensive,

since many descriptions are generated, and for each of them correctness must be

evaluated. Informed, or heuristic, searches select operations based on a predefined

heuristic. The heuristic is used to select descriptions which are on the shortest

path to a goal node, and thus reducing computational complexity.

Finally, there are three types of search strategies: exhaustive search, beam

search, and hill climber search. The simplest strategy called exhaustive search

searches through all possible operators, for all possible nodes. It is

computationally expensive, and thus can be applied only to small search spaces.

 14

The beam search selects n best operations at each node, and searches only through

descriptions that resulted from applying the selected operations. The hill climber

algorithm, which is the least computationally expensive, selects a single operation

that gives the greatest improvement in terms of the quality of new description.

Both beam and hill climber strategies require heuristics to select nodes, while the

exhaustive search usually works in an uninformed mode. The exhaustive and

beam searches usually use the tentative strategy, while the hill climber uses an

irrevocable strategy. The three types of search strategies are visualized in Figure 4.

Other search methods, e.g., genetic algorithms, can also be used to perform the

search (Goldberg, 1989, Holland et al., 1986).

Figure 4. Search strategies

1.1.4 Classification task

A typical application of the rules generated by IL algorithms is

classification. A common feature of IL algorithms is their ability to almost

perfectly classify the training set, which corresponds to high correctness of the

generated rules. However, the true value of the rules generated by an algorithm

exhaustive hill climber beam

 15

should be evaluated only by testing them on new, unseen during learning, data.

Figure 5 shows how an IL algorithm is used to generate and test a data model

(rules) using input data, and how the model is used to perform a classification task.

First, input data is divided into disjoint training and testing sets. The training set is

used to generate rules, while testing data is used to evaluate validity of the

generated rules. Once the rules achieve satisfactory quality level, usually in terms

of accuracy of describing data from the test set, they are used to perform

classification on data that was not used during the training and testing process.

Figure 5. Classification task

1.1.5 Knowledge Representation

There are several models for representation of knowledge, propositional-

like, first order logic, and structured representation models (Holsheimer and

Siebes, 1994). In this work, we are only concerned with generation of knowledge

that utilizes the propositional-like model. The first order logic and the structured

representation are characterized by better expressive power, when compared with

 16

the propositional-like model. On the other hand, achieving this feature requires

substantial increase in complexity of the representation model. The propositional-

like representation is characterized by simplicity and offers enough expressive

power for use in IL. Since one of the goals of this work is to develop a system that

generates simple and easily understandable results, the propositional-like

representation was selected.

The propositional-like model uses logic formulas, consisting of attribute-

value conditions, which are used in conjunctions and/or disjunctions to express

rules. Two most popular propositional-like models are decision trees and

production rules.

1.1.5.1 Decision Trees

A decision tree is capable of expressing knowledge about data described by

a finite number of classes. The tree consists of nodes and labeled edges. Nodes

represent attributes, while edges represent possible values of the attributes. The

terminal nodes in the tree, called leaves, represent classes. The tree is used to

perform a classification of examples by following a path down the tree, starting

from the top (root) node, and descending down by following edges, corresponding

to the values of the attributes, until a leaf node is reached. The class value

assigned to the leaf node defines classification outcome. The decision tree

representation is utilized by decision tree algorithms. An example tree is shown in

Figure 6.

 17

Figure 6. Example decision tree represenation

1.1.5.2 Production Rules

A production rule is capable of expressing knowledge about data described

by a finite number of classes. It consists of a structure described by definition 3.

The description incorporates a conjunction of conditions on attributes. The main

advantages of production rules are their simplicity and modularity, i.e., a single

rule can be understood without reference to other rules.

Any decision tree can be converted into a set of production rules (Quinlan,

1987a). A single rule is generated for each leaf node, where class of the rule is

defined by a value assigned to the leaf. The rule is generated by following a path

that starts at the root node, and ends at the leaf node. The description of a rule

consists of selectors that are generated from nodes on the path. An example of a

rule generated from tree shown in Figure 6 is:

IF number of wheels = 2 AND engine = no THEN bicycle.

Other types of propositional-like representations include decision lists

(Rivest, 1987) and ripple-down rule sets (Holsheimer and Siebes, 1994). These

4 and
above

less
than 4yes

number of wheels

engine

2
1

4

unicycle

bicycle motorbike car

number of seats

motorbike

no

 18

types are more complex than decision tree and production rules, and thus are not

considered in this dissertation

1.1.6 Machine Learning and Data Mining

Since modern databases store very large quantities of data, the inference

process can be performed only by using computer driven algorithms. Automation

of the IL process has been extensively studied in the field of Machine Learning

(ML) field (Kodratoff, 1988; Langley, 1996; Mitchell, 1997; Cios et al., 1998).

ML is one of the most successful tools of Knowledge Discovery (KD). If we

define the KD as a nontrivial process of identifying valid, novel, potentially useful,

and ultimately understandable patterns from large collections of data (Fayyad et al.

1996a), then ML is concerned with a Data Mining (DM) step, which is one of the

most important steps of the knowledge discovery process (Brachman, R., and

Anand, 1996; Fayyad et al., 1996a; Cabena et al., 1998; Cios, 2001; Cios and

Kurgan, 2002b). ML can be defined as a field that “is concerned with the question

of how to construct computer programs that automatically improve with

experience” (Mitchell, 1997), or as “ability of a program to generate a new data

structure that is different from an old one, like production if…then… rules from

input numerical data” (Cios et al., 1998). Most ML algorithms use induction

process to generate the rules (Breiman et al., 1984; Michalski et al., 1986; Clark

and Niblett, 1989; Holte, 1993; Quinlan, 1993; Cios and Liu, 1995a; Cios and Liu,

1995b; Cios et al., 1997; Kaufman and Michalski, 1999; Cios and Kurgan, 2001;

Cios and Kurgan, 2002a; Kurgan and Cios, 2002a).

 19

The outcome of an inductive ML algorithm is explicit and usually takes

form of production rules, or decision trees that are usually converted into rules.

One of the reasons why rules generated by ML algorithms are useful is that they

are widely used for representing knowledge (e.g., in knowledge-based systems),

and can be easily interpreted, learned from, or modified by human experts

because of their modularity (Holsheimer and Siebes, 1994). This is one of the

main reasons why ML is the preferred DM method in situations where the user

needs to understand and validate the generated model, as in the case of medical

systems.

1.1.6.1 Why Data Mining and Knowledge Discovery?

DM was brought into attention in 1989 during the IJCAI Workshop on

Knowledge Discovery in Databases (KDD) (Piatetsky-Shapiro, 1991). The

workshops were continued annually until 1995, when the International

Conference on Knowledge Discovery and Data Mining (DMKD) became the

most important annual event for DMKD. The framework for DMKD research was

outlined in two books: “Knowledge Discovery in Databases“ (Piatesky-Shapiro

and Frawley, 1991) and „Advances in Knowledge Discovery and Data

Mining“ (Fayyad et al., 1996a). Since then numerous new DMKD conferences

such as ACM SIGKDD, SPIE, PKDD, SIAM, regional KDD conferences,

DMKD-related workshops, and journals like Data Mining and Knowledge

Discovery (1997), Journal of Knowledge and Information Systems (1999), and

IEEE Transactions on Knowledge and Data Engineering (1989) have become an

 20

integral part of the DMKD field. DMKD applies many artificial intelligence and

statistical techniques to the structured data such as databases (Matheus et al.,

1993; Fayyad et al., 1996b; Manilla, 1997). The DMKD is an exponentially

growing field with strong emphasis on applications (Cios and Kurgan 2002b). The

main DMKD research topics include discovery of strong patterns, determination

of concept dependencies, selection of representative data examples and most

relevant attributes, clustering, and, finally, methods for coping with data

deficiencies such as inconsistencies, missing values, and noise. In practice, the

terms DM, KD, and DMKD are almost synonymous and are used interchangeably

to describe DMKD. For consistency, from now on, we will be using the term DM

as the field where this work is situated. This thesis addresses development of a

DM system, and thus terms DMKD and KD are less appropriate, since they refer

to a discovery process, rather than a methodology for generation of knowledge.

1.2 Motivation

A very important problem of DM is the increasing amount of data that need

to be analyzed. Such data are generated on a daily basis by banks, insurance

companies, retail stores, medical institutions, research agencies, and on the

Internet. This explosion came into being through the ever increasing use of

computers, scanners, digital cameras, bar codes, etc. We are in a situation when

rich sources of data, stored in databases, warehouses, and other data repositories

are readily available. This, in turn, causes big interest of research and industrial

 21

communities in DM. We require tools to cope with analysis and understanding of

these huge amounts of data. In response, the DM community has developed

several successful algorithms over the last few years. A survey that presents a

comparison of 43 existing DM algorithms is presented in (Goebel and Gruenwald,

1999).

Still, one of the major difficulties is that many DM algorithms do not scale

well to huge volumes of data. A scalable DM algorithm is characterized by linear

increase of its runtime with the linear increase of the number of examples in the

data, and within a fixed amount of memory. Most of the DM algorithms are not

scalable, but there are several examples of tools that do scale well. They include

clustering algorithms (Zhang et al., 1996; Bradley et al., 1998; Ganti et al., 1999a),

ML algorithms (Shafer et al., 1996; Gehrke et al., 1998), and association rule

algorithms (Agrawal and Srikant, 1994; Agrawal et al., 1995; Toivonen, 1996).

An overview of scalable DM tools is given in (Ganti et al., 1999b). The most

recent approach for dealing with the scalability problem is the Meta Mining (MM)

concept. MM generates meta-knowledge from the meta-data generated by DM

algorithms (Spiliopoulou and Roddick, 2000). This is performed in two steps.

First step is concerned with generation of rules (data models) by a DM algorithm

from prepared subsets of the training set. Next, meta-knowledge is generated from

the generated rules. In this approach small data models are processed as input data

instead of huge amounts of the original data, which greatly reduces the

computational overhead (Kurgan and Cios, 2002a).

 22

Another problem addressed in this work is connected with a common

practice in the DM field, namely, that the researchers often omit discussion of the

complexity of generated models when presenting their results. This leads to the

development of algorithms that generate very complex models, which causes

difficulty with their understanding. This problem is very important in any domain

where the user is required to comprehend and understand the generated model

before applying it. A good example is medicine where medical professionals must

verify data models before using them in a clinical setting. One of the most

straightforward ways to improve understandability of the generated models is to

generate them using easy to understand representations, e.g., rules or trees, and to

generate models that are as compact as possible.

Finally, the impact of this work can be summarized by putting it into a

broader context. IDC (http://www.idcresearch.com/), a well known provider of

technology intelligence and industry analysis, estimates that the DM tools market

will reach $1.85 billion in 2006. In 1998, Evangelos Simoudis of IBM, predicted

that "within five years, [data mining] will be as important to running a business as

the business systems are today".

1.3 Goal of the Research

The goal of this research was to design and implement a novel DM system

that applies supervised inductive ML for analysis of supervised data. The system

generates data models, in terms of rules, from supervised data. Referring to the

 23

discussion presented above, the designed system is characterized by (Kurgan and

Cios, 2002a; Kurgan and Cios, 2003a):

• ability to generate very compact models. The system generates a set of rules

that describe target concepts from supervised data. It generates not only

small number of rules, but the generated rules are very compact, in terms of

the number of selectors in their description. This is an important feature for

a decision maker who needs to evaluate and understand the rules. Also, by

the Ockham’s razor principle, generation of short descriptions results not

only in improved understandability, but also in probably better validity of

the rules.

• liner complexity, which is later shown both theoretically and experimentally.

This feature enables the use of the system for problems with megabytes and

even gigabytes of data. This is a very important advantage, since most of

the ML algorithms, except decision tree algorithms, do not scale well. The

MetaSqueezer system belongs to the family of rule algorithms, and as such

generates different, complementary to decision tree algorithms, types of

rules.

The system is characterized by all features of a modern IL algorithm, i.e.,

accurate classification, efficient generation of simple rules, and flexibility. It uses

a novel architecture based on the MM concept, which is the main reason for

achieving high compactness of rules. To the best of our knowledge, the

 24

MetaSqueezer system is the first ML-based system that works employing the MM

concept. The system provides advancement in the areas of Inductive Learning,

Data Mining, Machine Learning, and Meta Mining. The main fields contributing

to the research performed in this dissertation, and their interrelationship are shown

in Figure 7.

Figure 7. Fields investigated in this dissertation

Inductive
Learning

Machine
Learning

Meta
Mining

Data Mining

Data Mining and
Knowledge Discovery

most relevant

important

background

 25

Chapter 2

2 Related Work

This chapter describes state of the art of Machine Learning and Data

Mining fields. First, we provide background information including information

about several ML algorithms relevant to the MetaSqueezer system. Next, we

introduce necessary information for comparison with existing ML algorithms.

2.1 Introduction

The MetaSqueezer system uses inductive ML techniques to perform

generation of rules from input supervised data. Each supervised ML algorithm

should have these qualities:

• accurate classification – the generated rules need to accurately classify

examples which were unseen during learning,

• simple rules – the generated rules should be compact, since less complex

rules are easier to comprehend and are characterized, by the Ockham’s

razor, by improved validity,

• efficient rule generation – the algorithm must scale up to generate rules

for large data sets,

• flexibility – the algorithm should work on wide range of problems. In

case of supervised inductive learning, problems are characterized by

 26

type of attributes (discrete numerical, discrete nominal, continuous), and

presence of noise and missing values.

The first two qualities are typical for any IL task. The third, however,

requires ML algorithms to be scalable. Many early AI algorithms were designed

to work only for problems with small number of examples, but were not scalable

(Schank, 1991). Presently, the fundamental requirement for any DM and/or ML

algorithm is that it must be able to process large amount of data. The first three

qualities are typical in design of ML algorithms (Clark and Niblett, 1989), and

only state of the art ML algorithms exhibit all four qualities (Esposito et al., 2001,

Cios and Kurgan, 2002a).

There are also several other issues specific to ML. Many data sets, used by

ML algorithms, contain noise and missing values. Noise can be present in both

the predicting and predicted attributes. In the latter case, we have so called false

examples. Also, many data sets contain missing information, especially for

domains where the data was collected manually. Only some of the ML algorithms

are noise and missing data tolerant. A missing data tolerant algorithm can

generate the rules from the data that contain missing information. A noise tolerant

algorithm can generate rules that do not cover noisy examples. To show the

extend of the problem, Redman (Redman, 1998) points out that the data collected

by enterprise companies consist of about 1-5% errors, and are often redundant and

inconsistent.

 27

The last issue is the format of input data. Some of the data may incorporate

different types of attributes. The possible types include nominal, discrete

numerical and continuous data. While some of the ML algorithms are able to

work with all data types, other algorithms may not be able to work, for example

with continuous attributes, which in turn narrows down their application range.

Thus, a flexible inductive ML algorithm must be able to overcome all of the

above issues. The MetaSqueezer system not only exhibits the first three qualities,

but also satisfies the requirement of flexibility.

2.2 Comparing ML Algorithms

Since quality of inductive ML algorithm is characterized by multiple factors,

a rigorous method for their assessment is needed.

The accuracy quality requires that an algorithm must be correct and valid.

Correctness is exhibited by almost all ML algorithms. It is usually assured by a

proper design of the algorithm. Such design must assure that generated rules

describe only positive examples, while excluding negative examples. The

assessment of validity of rules consists of evaluation of their accuracy while

performing classification task on a test set. In this work, a more precise

verification test is used to assess validity of generated rules.

The simplicity is assessed by an evaluation of the complexity of generated

rules, and is usually measured as length of generated rules. Such simple

 28

evaluation is possible, since most of inductive ML algorithms use relatively

simple, relational-like knowledge representation models.

The scalability is reflected in the computational complexity of the

algorithms. This is often shown using benchmarking tests rather than formal

complexity analysis. Although most of inductive ML algorithms do not report

theoretical complexity, this work provides both theoretical and experimental

scalability evaluation for the system. Since scalability analysis is an experimental-

intensive activity, it requires a very precise definition concerning setup and

procedure of the performing test. These are explained in the sections below.

Finally, flexibility of an inductive ML algorithm is evaluated based on factors that

include input attribute types, noise resistance, and missing value resistance.

2.2.1 Assessment of Validity

The assessment of validity of rules is performed by computing accuracy or

verification tests while performing classification task with the generated rules on

a test set. Two procedures are utilized to perform such test:

• single-split testing. The test is performed by dividing the original data

into training and testing sets. The sets are disjoint, and the first one is

used to derive data model, and the second to test it. The test results using

the accuracy test report only accuracy, while test results using the

verification test report accuracy, sensitivity, and specificity.

• k-fold cross validation. In k-fold cross-validation, the data is divided into

k subsets of approximately equal size (Efron, 1979). Rules are generated

 29

k times by an IL algorithm, each time leaving out one of the subsets

from training, but using only the omitted subset to calculate tests for the

algorithm. Similarly, test results using the accuracy test report only

accuracy, while test results using the verification test report accuracy,

sensitivity, and specificity. The test results report mean values standard

deviations of the above criterions, averaging through all k tests. The 10-

fold cross validation is the most often used cross validation procedure.

The k-fold cross validation is a more reliable test procedure than the single-

split method. It shows the true performance, in terms of validity, of the tested IL

algorithm. On the other hand, using the single-split procedure may lead to fitting

the generated rules to the test set. This is possible since only one test is performed,

which may lead to falsifying the true performance of the tested algorithm.

When comparing an IL algorithm with other algorithms, the choice of one

of the above procedures depends on the test procedures done by researches who

developed the methods. If they performed the single-split method, the same

method must be used.

2.2.1.1 Repositories of Benchmarking Data Sets

There exist several repositories of standard benchmarking data sets, which

are widely used by researchers in the IL, ML, and DM communities to perform

testing and comparison between different algorithms. Sample repositories include

the University of California Irvine (UCI) Machine Learning Repository (Blake

and Merz, 1998), the UCI KDD Archive (Hettich & Bay, 1999), and the StatLib

 30

project repository (Vlachos, 2000). The repositories store a number of data sets,

which are characterized by different properties, such as different attribute types,

different number of classes, etc. This enables using them with many different IL

algorithms.

Some of standard benchmarking data sets are already prepared for testing

procedures. For most of such data sets, they are prepared for single-split test, and

thus for the sake of consistency between different tests performed using the same

data set, this testing procedure must be used. The system described here was

tested using standard data sets downloaded from the above repositories. It uses the

same test procedures as the procedures used by researchers who reported their

results. Doing this assures reliable comparison with similar algorithms.

2.2.2 Experimental Assessment of Scalability

The scalability of an IL algorithm is often evaluated by showing the

algorithm’s running time for benchmarking tests. To enable comparison of such

test between different algorithms, first the same data sets in the same test

configurations must be used. Second, a procedure for computing the running time

of algorithms, which were executed on different hardware platforms, must be

defined. The assumption is that each of the researchers may have only limited

hardware resources, and rather than forcing them to use the same hardware

platform, the results are recomputed to accommodate for using different platforms.

The most commonly used methods for direct comparison of running time

between algorithms on different hardware configurations are the SPEC

 31

benchmarking tests (SPEC, 2001). SPEC benchmark tests contain several

programs that perform floating-point or integer computations, which are intended

to measure performance of different hardware configurations. For example, the

benchmarking results study performed in (Lim, Loh & Shih, 2000), where 33 IL

algorithms were compared using standard benchmarking data sets, was performed

on three different hardware configurations. By using the SPECint92

benchmarking test, they converted all execution times into the execution time

achieved when using the DEC3000 model 300 system (DEC).

This work reports results in the same manner. All of the reported running

time results for the DataSqueezer algorithm and MetaSqueezer system were

converted into the running time when using the DEC system. This configuration

was used to be consistent with the results reported in the above study. Only the

results reported for the CAIM algorithm use the original running time, since the

entire test was performed on the same hardware configuration. Thus, we note that

when evaluating running time results, one should analyze ratio of the running

times between algorithms, rather then the exact numbers.

To show how the SPEC tests are used, an example recalculation of running

time between the hardware configuration used by the author, and the DEC system,

is presented. The hardware configurations used to perform the tests in this work is

as follows: Intel Pentium III 800 MHz (I800). The hardware configurations along

with the corresponding SPEC test results are given in Table 2.

 32

Table 2. SPEC test results for the computer hardware configurations used in the

benchmarking tests

To recalculate the running times the following steps are taken:

• The SPECint95 benchmarking test was used since I800 configuration was

not reported in the SPECint92 test, where DEC was reported. The Intel

Pro Adler 150MHz (I150) system was used as a bridge between the

SPECint92 and SPECint95 benchmarking tests.

• The CPU time ratio for I150 using DEC as the reference was calculated

as follows: DEC time = (I150 time) * (SPECint92 for I150) /

(SPECint92 for DEC) ≈ (I150 time) * 3.5.

• The ratio to transform the time from the I150 to I800 was calculated as:

I150 time = (I800 time) * (SPECint95 for I800) / (SPECint95 for I150) ≈

(I300 time) * 6.4.

• Both calculated above ratios were multiplied to calculate the CPU time

between DEC and I800. The final formula for the I800 is: DEC time ≈

22.4 * (I800 time).

Thus, the time achieved on I800 configuration is multiplied by 22.4 to

compute the time, which is equivalent to the time achieved using the DEC

configuration.

 Workstation SPECint92
results Workstation SPECint95

results
I150 Intel Pro Alder 150MHz 243.9 I150 Intel Pro Alder 150Mhz 6.08
DEC DEC 3000 Model 300 66.2 I800 Intel Pentium III 800MHz 38.9

 33

2.3 Evaluation of Inductive Machine Learning Algorithms

Three general categories of inductive ML algorithms are: decision trees,

rule algorithms, and their hybrids (Cios et al., 1998). An inductive decision tree

algorithm generates rules based on finding regularities in the data through data

manipulations that use entropy measures (Shannon, 1948) and involve generation

of a decision tree. Examples of decision tree algorithms are CART (Breiman,

1984), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and T1 (Holte, 1993). In

contrast, an inductive rule algorithm does not use entropy, and does not generate a

tree when generating rules. Representative rule algorithms are the AQ family of

algorithms (Michalski et al., 1986; Kaufmann and Michalski, 1999), DBLearn

(Cai et al., 1991; Han et al., 1992), KEDS (Rao and Lu, 1993), and DataSqueezer

(Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). The hybrid algorithms work

by combining entropy-based and non-entropy based approaches. They are

represented by CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991), and

CLIP family of algorithms (Cios and Kurgan, 2001; Cios and Kurgan 2002a).

Table 3, partially taken from (Holsheimer and Siebes, 1994), shows summary of

major properties of representative inductive ML algorithms.

 34

Table 3. Major properties of inductive ML algorithms

Algorithm Search Type Results Other Features
AQ15 top-down, beam production rules only discrete attributes
C4.5 top-down, hill climber decision tree all attribute types
CLIP4 top-down, beam production rules all attribute types
CN2 top-down, beam decision lists all attribute types

DataSqueezer top-down/bottom-up,
hill climber production rules all attribute types

DBLearn bottom-up, hill climber production rules only discrete attributes
ID3 top-down, hill climber decision tree only discrete attributes
KEDS top-down, exhaustive region-equation pair only discrete attributes
T1 top-down, hill climber decision tree 1 level tree, all attr. types

2.3.1 Decision Tree Algorithms

The decision tree algorithms are characterized by fast rule generation, high

validity of generated results, and high understandability of generated knowledge

representation. The T1, ID3, and C4.5, and other ML algorithm that are

extensions of them, use the hill climber search technique, which makes them

scalable. The CN2 algorithm is characterized by worse scalability, since it applies

beam search. Most of decision tree algorithms are also flexible in terms of being

able to process both discrete and continuous attributes, and being noise and

missing values tolerant. Their limitation is the output knowledge representation,

i.e., decision trees. There are two downsides to using decision trees:

• Large trees. Decision tree algorithms tend to grow very large trees for real

applications and, thus, may be difficult to interpret by humans (Holsheimer

and Siebes, 1994). Only few decision tree algorithms can generate rules that

are comparably compact relative to the rules generated by the rule

 35

algorithms. They have to apply pruning operation to shorten the rules

(Quinlan, 1986; Quinlan 1987b; Mingers, 1989; Esposito et al., 1997).

However, pruning adds additional computation overhead and, thus, may

worsen scalability.

• Dependent rules. Rules generated by the decision tree algorithms are

dependent, i.e., rules share selectors between each other. Since rules are

generated by traversing a tree from a leaf to the root node, different rules

share the same selectors, as illustrated in Figure 8. This prevents using

decision trees in an MM setting, since they would generate meta-rules,

which are biased towards the shared selectors.

Figure 8. Rule generation using decision trees including sample tree, rules

generated from it, and shared selectors

2.3.2 Rule Algorithms

The rule tree algorithms are characterized by slower rule generation, when

comparing to decision trees, relatively high validity of generated rules, and high

understandability of generated knowledge representation. AQ and CLIP4 apply

X

Y

Z

P

P

N

N

0

0

2

1

1

1

Rule 1: if X=1 then P
Rule 2: if X=0 and Y=1 then N
Rule 3: if X=0 and Y=0 and Z=1 then N
Rule 4: if X=0 and Y=0 and Z=2 then P

shared selectors:
- rule 2 and 3, and rule 2 and 4: X=0
- rule 3 and 4: X=0, and Y=0

 36

beam search technique, and thus are not scalable. For example, CLIP4 has O(s2)

complexity, where s is the number of examples in training set (Cios and Kurgan,

2002a). The DBLearn and DataSqueezer apply hill climber search, and their

scalability is similar to scalability of the decision tree algorithms. The

DataSqueezer algorithm has O(s) complexity (Kurgan and Cios, 2003a), while

DBLearn has worse complexity of O(s log s). Also, only DataSqueezer and

CLIP4 are flexible in terms of being able to process both discrete and continuous

attributes. They are being both noise and missing values tolerant. Other

algorithms, i.e., DBLearn and AQ15 can handle only discrete attributes.

The rules generated by rules algorithms do not exhibit dependencies. This

enables using them in an MM setting, in contrast to decision tree algorithms. Thus,

since the architecture of the MetaSqueezer system is based on an MM concept, a

rule algorithm was used to generate rules. The system utilizes DataSqueezer

algorithm, since it exhibits best properties among the studied rule algorithms.

DataSqueezer is characterized by linear running time, high validity of generated

rules, flexibility to handle both discrete and continuous attributes, noisy and

missing values resistance, and high understandability of generated rules. These

properties are supported by extensive benchmarking comparison shown in the

subsequent chapters.

 37

Chapter 3

3 Architecture of the MetaSqueezer System

In this chapter we give a high level overview of the MetaSqueezer system

and detailed description of all its components. The Meta Mining concept, which is

one of the key concepts used in the MetaSqueezer system, is also described. The

description of each component is followed by experimental and theoretical

evaluation and comparison with other IL algorithms. A detailed description of the

system along with its experimental evaluation is described in the next Chapter 4.

3.1 Introduction

The MetaSqueezer system uses supervised inductive ML methods and MM

concept (Kurgan and Cios, 2003a). MM is a generic framework for higher order

mining. Its main characteristic is generation of data models called meta-

knowledge (often meta-rules) from already generated data models (usually rules,

which are called meta-data) (Spiliopoulou and Roddick, 2000). An MM IL system

works in two steps. First, it divides the training set subsets and generates a data

model for each of them. Next, it takes the generated data models and generates

new meta-models from them. Since the MM concept is one of the fundamental

technologies utilized to develop the MetaSqueezer system, the following section

is used to introduce it to the reader.

 38

3.1.1 Meta Mining

The goal of the MM is to generate rules from rule sets generated by IL

algorithms. An IL algorithm, which works based on the MM concept, is shown in

Figure 9.

Figure 9. The MM procedure

 39

The MM is based on performing several steps in order to generate a final

data model. First, the training set is divided into n subsets. Each of these subsets is

fed into an IL algorithm to generate meta-data. The meta-data usually take form

of production rules or decision trees. Next, the meta-data is fed into another or the

same IL algorithm to generate meta-knowledge. The meta-knowledge is often in a

form of meta-rules. The meta-rules may use the same knowledge representation as

regular rules, i.e., production rulers, trees, etc., but they express knowledge about

the meta-data, rather then the original training set.

There are several advantages to using MM (Spiliopoulou and Roddick,

2000; Kurgan and Cios, 2003a):

• Generation of compact data models. Since an MM based system

generates results from data models, they reflect patters that are present in

meta-data. Thus, the results of MM are different than results of learning

from the original training set. Researchers argue that such results are

more suitable for describing knowledge that can be considered

interesting by users (Abraham and Roddick, 1999; Spiliopoulou and

Roddick, 2000; Roddick and Spiliopoulou, 2002). In many cases, the

meta-rules describe the most interesting information since often focus of

interest is directed to finding the information that is a confluence of rules

which describe a small subset of characteristics about the data (Abraham

and Roddick 1999).

 40

• Scalability. The learning algorithms are applied to small sets of data, i.e.,

subsets of the training set and meta-data, instead of to the huge amounts

of data stored in the training set. This results in reduction of

computational time for the systems that utilize non-linear algorithms to

generate data models.

• User-friendliness. Some argue that meta-mining is characterized by

improved tractability of generation of data models and improved ease of

finding changes in the data (Spiliopoulou and Roddick, 2000).

Although using MM has the advantage of reducing computational overhead

and providing compact data models, so far it received little attention in the

DMKD community.

One of the most natural application areas for MM is the temporal KD where

rules can be generated for particular time intervals and then meta-knowledge can

be discovered using MM. Instead of directly learning from the entire temporal

training data set, its parts that describe particular time intervals are learned to

generate meta-rules, and later used to generate the meta-knowledge. The MM

approach was applied to temporal association rule algorithms (Rainsford and

Roddick 1999). The MM in case of the temporal KD performs meta-knowledge

learning, which consists of the following steps (Abraham and Roddick, 1997):

1. rule set generation; In this step, individual snapshots of the data are

selected and learned from, and generated rules (meta-data) are

 41

collected into separate rule sets (timestamped for identification). The

generated rule sets are of the same type, and are generated using the

same settings of an IL algorithm to ensure full compatibility.

2. input preparation; In this step, generated rule sets are converted into a

consistent format to facilitate rule processing.

3. meta-rule set generation; In this step, a separation algorithm that takes

two adjacent, in a temporal sense, rule sets as input, compares them

and produces four categories of meta-rules: new, retired, unchanged,

and changed rules (some of which may be empty).

4. processing of categories; In this step, each meta-rule category is

processed individually to derive general characterizations for the

contents of each of the four (or possibly only some selected, e.g. new

and expired) categories.

Using MM in this setting results in generation of meta-knowledge that

describes changes in the data rather than the data itself. The above temporal MM

concept was extended to enable incremental discovery of meta-rules (Abraham

and Roddick 1999).

The system described here can be used for generation of data models from

any supervised data. In particular, the system can be used for analysis of ordered

data. Such data can be divided into subsets using one of the data attributes. One

example of such data is temporal data. Since the MetaSqueezer system does not

 42

utilize any temporal information, it uses the MM concept to generate regular, non-

temporal production rules. Sample applications of the system include analysis of

medical data, consumer transactions data, business decision making data, stock

market data and many others.

3.2 Overview of the MetaSqueezer System

The MetaSqueezer system uses an inductive ML algorithm to generate

meta-rules from supervised data (Kurgan and Cios, 2003a). The system generates

the meta-knowledge in a series of these steps (Kurgan and Cios, 2003a):

• Preprocessing:

o the training set is validated by repairing or removing incorrect

records, and marking unknown values,

o the validated data is transformed into the form suitable for further

processing. In case of the MetaSqueezer system, it is a single

relational table where a separate column holds an attribute that is

used to divide the data. The classes are generated for each data

record. They are usually derived from one of the attributes,

o continuous attributes, of the transformed data, are discretized (Cios

et al., 1998) by a supervised discretization algorithm CAIM

(Kurgan and Cios, 2001; Kurgan and Cios, 2002b; Kurgan and

Cios, 2003b),

o the data is divided into subsets using the prepared attribute;

 43

• Data Mining

o meta-data in the form of production rule sets are generated from

data for each of the defined subsets. The rules are generated using

supervised inductive ML algorithm called DataSqueezer (Kurgan

and Cios, 2002a; Kurgan and Cios, 2003a),

o for every set of rules a rule table is created. It stores the generated

rules in the format that is identical to the format of the original

input data, for detailed explanation see section 3.3.1. Each table

stores meta-data about the input data from one of the data subsets.

• Meta Mining

o meta-rules are generated from the rule tables. First, all the rule

tables are concatenated into a single table. Next, the meta-rules are

generated by applying the DataSqueezer algorithm to the combined

rule table. The meta-rules describe the most important patterns

associated with defined classes over the entire original training set.

The MetaSqueezer system uses the same ML algorithm, called

DataSqueezer, to generate both meta-data and meta-knowledge. This is because of

specific properties of the DataSqueezer algorithm, which are described in the

subsequent sections. The system is characterized by high accuracy and good

scalability because of its linear complexity, high compactness of generated meta-

knowledge, and flexibility. It works with nominal, and discrete and continuous

 44

numerical attributes. It also handles data with missing values and noise. The

above properties are discussed and shown in the subsequent sections.

Below, a detailed description of the system is given. Chapter 4 describes

components of the system, i.e., DataSqueezer and CAIM algorithms, together

with evaluation and comparison with other state of the art ML algorithms.

Chapter 5 describes the MetaSqueezer system. It also provides an evaluation and

comparison of the system with other state of the art ML systems. Finally, Chapter

6 is devoted to description of application of the system into a real-life problem

concerning analysis of cystic fibrosis data.

3.3 The DataSqueezer Algorithm

The DataSqueezer algorithm constitutes core element of the MetaSqueezer

system (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). It is utilized to

generate meta-data during the DM step and the meta-rules in the MM step.

DataSqueezer is an inductive ML algorithm that generates production rules

applying generalization operations, and irrevocable, informed hill climber search.

The algorithm applies a bottom-up, followed by top-down approach to generate

the rules. Next, we provide nomenclature necessary to give the pseudocode of the

algorithm, the pseudocode, and prose explanation of the algorithm.

3.3.1 The Algorithm

Let us denote the input data set by S. The sets of positive examples, SP, and

negative examples, SN, must satisfy these three properties: SP ∪ SN = S, SP ∩ SN =

 45

∅, SN ≠ ∅, and SP ≠ ∅. Examples are described by a set of K attribute-value pairs:

]#[1 jj
K
j vae =∧= , where aj denotes jth attribute with value vj ∈ dj (domain of

values of jth attribute), # is a relation (=, <, ≈, ≥, etc.), and K is the number of

attributes (Michalski, 1973; Michalski, 1983b). In case of the DataSqueezer

algorithm the relation is equality. An example e consists of set of selectors sj = [aj

= vj]. The DataSqueezer algorithm generates production rules in the form of: IF

(s1 AND … AND sm) THEN class = classi, where si = [aj = vj] is a single selector.

We define SP and SN as tables where rows represent examples and columns

correspond to attributes. Table of positive examples is denoted as POS and the

number of positive examples by NPOS, while the table and the number of negative

examples as NEG and NNEG, respectively. The POS and NEG tables are created by

inserting all positive and negative examples, respectively, where examples are

represented by rows and attributes by columns. Positive examples from the POS

table are described by the set of values: posi[j] where j=1,…,K, is the column

number, and i is the example number (row number in the POS table). The

negative examples are described similarly by a set of negi[j] values. The

DataSqueezer algorithm also uses tables that store intermediate results (GPOS for

POS table, and GNEG for NEG table), which are composed of K columns. Each

cell of the GPOS table is denoted as gposi[j], where i is a row number and j is a

column number, and similarly for GNEG table is denoted by gnegi[j]. The GPOS

table stores reduced subset of the data from POS, and GNEG table stores reduced

subset of the data from NEG. The meaning of reduction is explained later. Both,

 46

the GNEG and GPOS tables have an additional, (K+1)th column that stores number

examples from NEG and POS, which a particular row in GNEG and GPOS describes,

respectively. Thus, for example gpos2[K+1] stores number of examples from

POS, which are described by the 2nd row in GPOS table. Figure 10 shows the

pseudocode of the DataSqueezer algorithm (Kurgan and Cios, 2003a).

Figure 10. The pseudo-code of the DataSqueezer algorithm

The first step of the algorithm works in a bottom-up manner. It starts with

the most specific hypotheses, which cover individual examples. Next, it applies

generalization operator to generalize them until they incorporate two or more

selectors. This is performed for both positive and negative data. In the second step,

the algorithm applies a search procedure that generates rules from the generalized

Given: POS, NEG, K (number of attributes), S (number of examples)
Step1.
1.1 Initialize GPOS = []; i=1; j=1; k=1; tmp = pos1;
1.2.1 for k = 1 to K // for all attributes
1.2.2 if (posj[k] ≠ tmp[k] or posj[k] = ‘∗’)
1.2.3 then tmp[k] = ‘∗’; // ‘∗’ denotes missing value
1.2.4 if (number of non missing values in tmp ≥ 2)
1.2.5 then gposi = tmp; gposi[K+1] ++;
1.2.6 else i ++; tmp = posj;
1.3 set j++; and until j ≤ NPOS go to 1.2.1
1.4 Initialize GNEG = []; i=1; j=1; k=1; tmp = neg1;
1.5.1 for k = 1 to K // for all attributes
1.5.2 if (negj[k] ≠ tmp[k] or negj[k] = ‘∗’)
1.5.3 then tmp[k] = ‘∗’; // ‘∗’ denotes missing value
1.5.4 if (number of non missing values in tmp ≥ 2)
1.5.5 then gnegi = tmp; gnegi[K+1] ++;
1.5.6 else i ++; tmp = negj;
1.6 set j++; and until j ≤NNEG go to 1.5.1
Step2.
2.1 Initialize RULES = []; i=1; // where rulesi denotes ith rule stored in RULES
2.2 create LIST = list of all columns in GPOS
2.3 within every column of GPOS that is on LIST, for every non missing value a from selected column k

compute sum, sak, of values of gposi[K+1] for every row i, in which a appears (multiply every sak, by the
number of values the attribute k has)

2.4 select maximal sak, remove k from LIST, add “k = a” selector to rulesi
2.5.1 if rulesi does not describe any rows in GNEG
2.5.2 then remove all rows described by rulesi from GPOS, i=i+1;
2.5.3 if GPOS is not empty go to 2.2, else terminate
2.5.4 else go to 2.3
Output: RULES describing POS

 47

hypotheses. Each rule is generated in a top-down manner, since the search starts

with a single selector, and uses specialization by adding additional selectors until

the rule covers only positive examples, from the generalized positive hypotheses,

and none of the negative examples, from the generalized negative hypotheses.

The rule generation mechanism used by the DataSqueezer algorithm is

based on the inductive learning hypothesis (Mitchell, 1997). It states that any

hypothesis found to approximate the target function (defined by class attribute)

well, over a sufficiently large set of training examples, will also approximate the

target function well over other unobserved examples. Based on this assumption,

step 1 of the algorithm performs data reduction via use of the prototypical concept

learning. Step 1 is very similar to the Find S algorithm by Mitchell (Mitchell,

1997). For comparison, the Find S algorithm is shown in Figure 11. DataSqueezer

performs data reduction to generalize information stored in the original data. The

data reduction is performed by application of generalization operator in linear,

with respect the training set, manner. First, a very specific hypothesis that covers

an example is generated, and next it is generalized by using next and the

following examples. The data reduction is performed separately for both positive

and negative data. Step 2 of the algorithm generates rules by performing

irrevocable, informed hill climber search starting with an empty rule, and adding

selectors until the termination criterion fires. The max depth of the search is equal

to the number of attributes. Next, the examples covered by the generated rule are

 48

removed from the GPOS table and the process is repeated until all examples are

covered by generated rules.

Figure 11. The Find S algorithm

The Find S algorithm has several problems with the convergence to a

correct hypothesis (Mitchell, 1997). The DataSqueezer algorithm uses step 2 to

resolve them. Step 2 assures convergence to the correct and consistent with

training set hypothesis by using negative data. Each rule, while being generated,

is checked versus the set of generalized negative hypotheses. If the rule covers

any data in this set, a new selector is added to the rules making it more specific,

and thus able to better distinguish between positive and negative data. Only rules

that can describe positive data and none of the negative data are accepted. Thus,

the issue of inconsistency of generated hypotheses is resolved. The main

properties of the DataSqueezer algorithm are summarized in Table 4.

Table 4. Major properties of the DataSqueezer algorithm

Search Process Search Type Results Other Features
top-down in step1
bottom-up in step 2

irrevocable
hill climber production rules all attribute types, noise and

missing values resistant

For multi-class problems, the DataSqueezer algorithm generates a separate

set of rules for every class, each time generating rules that describe the currently

Find S Algorithm
1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x
 - For each attribute constraint ai in h
 IF the constraint ai in h is satisfied by x THEN do nothing
 ELSE replace ai in h by the next more general constraint that is satisfied by x
3. Output hypothesis h

 49

chosen (positive) class. The DataSqueezer algorithm utilizes CAIM algorithm to

perform front-end discretization of continuous attributes (Kurgan and Cios, 2001;

Kurgan and Cios, 2002b; Kurgan and Cios, 2003b).

The following section provides an answer to the question why the

DataSqueezer was chosen, among other ML algorithms, to be incorporated into

the MetaSqueezer system. The DataSqueezer algorithm was chosen because of its

five following characteristic features (Kurgan and Cios, 2002a; Kurgan and Cios,

2003a):

• it generates production rules that involve no more than one selector

per attribute. The number of selectors of a rule generated by the

DataSqueezer algorithm is bounded by the number of attributes in the

data. Similar property is exhibited only by decision tree algorithms. The

rule and hybrid algorithms generate rules that may involve multiple

selectors per single attribute.

This property enables storing generated rules in a table that has identical

structure with the original data table. The following example of patients

who are either directed to go home or to undergo a treatment, based on

some test results, is used to present this property. Every patient is

described by three attributes: temperature, heart blood flow results, and

chest pain type. The attributes can take on the following values:

temperature = {normal, low, high}, heart blood flow = {normal, low,

high}, and chest pain type = {1, 2, 3, 4}. Based on the values of the

 50

attributes, a decision is made for each patient. We note that the example

is used only to show how the algorithm is working, while the algorithm

is able to handle much more complex and larger training sets. The

DataSqueezer algorithm is used to generate a set of rules that describe

how the decision was made based on some historical data. A sample

historical data is shown in Table 5.

Table 5. Sample training set for the DataSqueezer algorithm

decision temperature heart blood flow chest pain type
home low normal 2
home low normal 3
home normal normal 3
home normal low 2
home normal low 1
treatment low high 4
treatment low low 4
treatment high normal 4

DataSqueezer generates the following three rules for the above data: “IF

temperature = normal THEN home”, “IF temperature = low AND heart

blood flow = normal THEN home”, and “IF chest pain type = 4 THEN

treatment”. The rules describe historical data and at the same time show

decision patterns. The three rules can be stored in a rule table shown in

Table 6. This table has identical format with the table shown in Table 5.

Table 6. Sample rule table generated by the DataSqueezer algorithm

decision temperature heart blood flow chest pain type
home normal * *
home low normal *
treatment * * 4

 51

The “*” symbol stands for missing value, and is used to denote attributes

that are not used in the rules. The rule table can be used as input to the

same algorithm that was used to generate the rules. This enables using

the DataSqueezer algorithm in an MM setting by running it again with

the generated rules (meta-data) as its input to produce the meta-rules.

The meta-rules describe patterns exhibited in the meta-data, and thus

they provide a well-focused and compact knowledge about the classes.

• it generates rules that are very compact in terms of the number of

used selectors. Experimental results, shown later, indicate that

DataSqueezer generates rules which involve small number of selectors.

This assures that the input data for the MM step of the MetaSqueezer

system are very compact and focused on describing the classes. This, in

turn, improves the results generated by the system. For comparison,

decision trees tend to grow very large and, thus, are difficult to interpret

by humans, unless pruning is used to shorten the rules. For details see

section 2.3.1.

• it can handle data with large number of missing values. The rule

generation procedure used by the DataSqueezer algorithm assures that it

can cope with data that has large number of missing values. This

property is especially valuable in an MM setting. The meta-data

generated by the DataSqueezer algorithm contains many missing values

since it provides a compact description of the original data. It omits

 52

some attributes and selectors, used in the original data, to provide

compact meta-data. The omitted values are substituted by missing values

in the rule tables, which are used as an input to the MM step.

The DataSqueezer algorithm uses only complete portion of the data. In

other words it uses all available information while ignoring missing

values. It uses all examples from the original data, even the examples

that contain missing values, by analyzing their complete values.

• it generates independent rules. Rules generated by the DataSqueezer

are independent of each other, i.e., the rule generation mechanism does

not allow for sharing of selectors between the rules. To compare, the

decision trees generate dependent rules, see section 2.3.1. If decision

trees were to be used in an MM setting, the generated meta-rules would

be biased towards the shared selectors. Thus, using decision trees can

results in omitting some of important patterns in the generated meta-

rules.

• it has linear complexity. Complexity analysis of the algorithm shows

that it is liner in respect to the number of examples in the data sets, i.e.,

O(m), where m is the number of examples. The theoretical complexity

analysis of the algorithm is shown in section 3.3.1.1.

The above discussion rules out decision tree algorithms as potential

candidates for incorporation in the MetaSqueezer system since they tend to grow

large trees as well as dependent rules. Since the DataSqueezer algorithm is

 53

characterized by the best features among the state of the art rule and hybrid

algorithms, see section 2.3.2, it was chosen to be used in the system.

3.3.1.1 Theoretical Complexity Analysis

In what follows, complexity of the DataSqueezer algorithm is estimated.

First we start by defining assumptions:

• s is number of examples, k is number of attributes, r is the number of

generated rules, and c is the number of classes in the problem,

• length of the RULES vector is k,

• size of all POS and NEG matrices is kO(s),

• s>>k, since this is required to apply ML algorithm,

• the r, c, and k are small constants. These constants were used in the

analysis to provide general complexity estimation, but the final

complexity is a function of s.

To estimate complexity of the entire algorithm, we break the process into

determination of the complexity for particular steps of the algorithm:

1. complexity of the initialization (line “Given” from the code from Figure 10)

kO(s) to derive POS matrix

kO(s) to derive NEG matrix

Thus, the total complexity of the initialization is: kO(s).

2. complexity of STEP 1 (lines 1.1-1.6 from the code from Figure 10)

Line 1.1: O(1)

Line 1.2.1: O(k) and applies to lines 1.2.2, and 1.2.3

 54

Line 1.2.2: O(1)

Line 1.2.3: O(1)

Lines 1.2.4-1.2.6: O(1)

Line 1.3: O(s) and applies to lines 1.2.1-1.2.6

Line 1.4: O(1)

Line 1.5.1: O(k) and applies to lines 1.5.2, and 1.5.3

Line 1.5.2: O(1)

Line 1.5.3: O(1)

Lines 1.5.4÷1.5.6: O(1)

Line 1.6: O(s) and applies to lines 1.5.1-1.5.6

Thus total estimated complexity of the STEP 1 is: O(1) + O(s) • [O(k) •

[O(1) + O(1)] + O(1) + O(1) + O(1)] + O(1) + O(s) • [O(k) • [O(1) + O(1)] +

O(1) + O(1) + O(1)] = O(1) + O(ks) + O(s) + O(s) + O(s) + O(1) + O(ks) + O(s)

+ O(s) + O(s) = O(ks).

3. complexity of STEP 2 (lines 2.1-2.5.4 from the code from Figure 10)

Line 2.1: O(1)

Line 2.2: O(1)

Line 2.3: O(ks) one sweep through GPOS is sufficient

Line 2.4: O(k) selection of max sak is precomputed in 2.3

Line 2.5.1: O(ks) one sweep through GNEG is required

Line 2.5.2: O(s)

 55

Line 2.5.3: O(r) and applies to lines 2.2-2.5.4, since this line

will execute “go to 2.2” r times

Line 2.5.4: O(k) and applies to lines 2.3-2.5.4, since the

longest rules has k selectors

Thus the total complexity of the STEP 2 is: O(1) + O(r) • [O(1) + O(k) •

[O(ks) + O(k) + O(ks) + O(s)]] = O(1) + O(r) • [O(1) + O(k2s) + O(k2) + O(k2s)

+ O(ks)] = O(1) + O(r) + O(rk2s) + O(rk2) + O(rk2s) + O(rks) = O(rk2s).

The complexity of the entire algorithm is estimated as a sum of

complexities for each of the algorithm’s steps as: kO(s) + O(ks) + O(rk2s) =

O(rk2s).

The above estimation concerns generation of rules for one class. The

complexity of generation of rules for the problems with c classes is cO(rk2s).

Since the number of generated rules r and number of classes c are usually small

constants, we can estimate that the expected running time of the algorithm is

O(k2s). Additionally, since number of attributes k is also usually a small constant,

the expected running time of the algorithm is estimated as O(s). This argument

shows that the DataSqueezer algorithm is linear. Linear complexity of the

DataSqueezer algorithms proves that it is scalable and can therefore be used with

data sets of large size.

 56

3.3.2 Experimental Evaluation

The DataSqueezer algorithm was extensively benchmarked to evaluate its

validity, simplicity, efficiency and flexibility. It was tested on 20 data sets. The

data sets were obtained from the University of California Irvine (UCI) Machine

Learning Repository (Blake and Merz, 1998), the UCI KDD Archive (Hettich &

Bay, 1999), and from the StatLib project data sets repository (Vlachos, 2000). The

reason for using standard benchmarking data sets is that it enables direct

comparison of performance of the DataSqueezer algorithm with other ML

algorithms that generate similar results. A detailed description of the data sets is

given in Table 7 Both, percent of missing values and percent of inconsistent

examples refer to already discretized training sets.

The benchmarking tests are characterized by diversity of training sets,

including their size, both in terms of number of examples and attributes, number

of classes, attribute types, and amount of missing values and noise in the data.

The range of the tests is characterized by:

• the size of training data sets: between 151 and 200K examples,

• the size of testing data sets: between 15 and 565K examples,

• the number of attributes: between 5 and 61,

• the number of classes: between 2 and 10,

• the attribute types: nominal, discrete numerical, and continuous

numerical,

• the percentage of examples with missing values: between 0 and 52.3,

 57

• the percentage of inconsistent, noisy examples: between 0 and 66.3.

Table 7. Description of data sets used for benchmarking of DataSqueezer

algorithm

set size # classes # attrib. test data % ex. with
missing

% inconsistent
examples

subsets

bcw 699 2 9 10CV 2.3 0 4
bld 345 2 6 10CV no 62.2 3
bos 506 3 13 10CV no 22.9 3
cmc 1473 3 9 10CV no 53.6 7
dna 3190 3 61 1190 no 0 8
hea 270 2 13 10CV no 1.9 3
led 6000 10 7 4000 no 66.3 10
pid 768 2 8 10CV no 60.9 4
sat 6435 6 37 2000 no 3.6 10
seg 2310 7 19 10CV no 0.8 6
smo 2855 3 13 1000 no 36.5 4
thy 7200 3 21 3428 no 1.8 6
veh 846 4 18 10CV no 6.7 4
vot 435 2 16 10CV no 0 3
wav 3600 3 21 3000 no 0 3
tae 151 3 5 10CV no 56.1 2

adult 48842 2 14 16281 7.4 31.9 10
cid 299285 2 40 99762 52.3 0.01 10
forc 581012 7 54 565892 0 6.4 5
mush 8124 2 22 2441 29.7 0 5

This diversity of the tests ensures that evaluation of the algorithm, which is

performed based on comparison with results achieved by other state of the art

inductive ML algorithms, is comprehensive and strong.

 58

3.3.3 Comparison of DataSqueezer with Other Algorithms

The tests compare accuracy of the rules, number of rules and selectors, and

execution time. The DataSqueezer algorithm was compared to CLIP4 algorithm

(Cios and Kurgan, 2002a), and 33 other inductive ML algorithms, for which the

results were published in (Lim et al., 2000). This study reports results on the first

16 data sets described in Table 7. The remaining 4 data sets were chosen because

of their larger size, and incorporation of larger amount of missing values. The last,

cid, data set was also used to perform experimental complexity analysis.

3.3.3.1 Accuracy

The tests, see Table 8, show verification test results for the DataSqueezer

and other ML algorithms (Kurgan and Cios, 2003a). For the 33 algorithms

maximum and minimum accuracy, after (Lim et al., 2000), is reported.

The mean accuracy of the DataSqueezer algorithm for the first 16 data sets

is 75.4%. To compare, the POLYCLASS algorithm achieved the highest mean

accuracy of 80.5% (Kooperberg et al. 1997). (Lim et al., 2000) calculated

statistical significance of error rates. It shows that the difference between the

mean accuracies of two algorithms is statistically significant at the 10% level if

they differ by more than 5.9 %. Close analysis of the results indicates that the

DataSqueezer algorithm’s accuracy is within the range of the best ML algorithms.

 59

Table 8. Accuracy results for the DataSqueezer, CLIP4, and the other 33 ML

algorithms

Reported accuracy
(Lim et al., 2000) DataSqueezer

set
max min

CLIP4
accuracy

(Cios and Kurgan,
2002a)

mean
accuracy

mean
sensitivity

mean
specificity

bcw 97 91 95 94 92 98
bld 72 57 63 68 86 44
bos 78 69 71 70 70 88
cmc 57 40 47 44 40 73
dna 95 62 91 92 92 97
hea 86 66 72 79 89 66
led 73 18 71 68 68 97
pid 78 69 71 76 83 61
sat 90 60 80 80 78 96
seg 98 48 86 84 83 98
smo 70 55 68 68 33 67
thy 99 11 99 96 95 99
veh 85 51 56 61 61 88
vot 96 94 94 95 93 96
wav 85 52 75 77 77 89
tae 77 31 60 55 53 79
MEAN 83.5 54.6 74.9 75.4 74.6 83.5

set algorithm (accuracy) (reference) mean
accuracy

mean
sensitivity

mean
specificity

NBTree (84) (Kohavi, 1996)

adult
C4.5 (84.5), C4.5-auto (85.5), Voted ID3-0.6
(84.4), T2 (83.2), 1R (80.5), CN2 (84), HOODG
(83.2), FSS Naive Bayes (86), IDTM (85.5),
Naive-Bayes (83.9), NN-1 (78.6), NN-3 (79.7),
OC1 (85) (Blake & Merz, 1998)

82 94 41

cid
C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0
boosted (95.4), Naïve-Bayes (76.8) (Hettich &
Bay, 1999)

91 94 45

forc [NN-backprop (70.0), Linear Discriminant
Analysis (58.0)] (Blackard, 1998) 55 56 90

[C4.5 (100), NBTree (96.5)] (Kohavi, 1996)
[STAGGER (95)] (Schlimmer, 1987) mush
[HILLARY (95)] (Iba, Wogulis & Langley,
1988)

100 100 100

MEAN mean best: 87.9 means worst: 77.1 82.0 86.0 69.0

 60

We also note that since the mean sensitivities and specificities achieved by

the algorithm have high and comparable values, the generated rules describe

correctly all classes in the data. The rules are not biased towards describing, for

example, only classes that are described by majority of examples.

The results achieved by the DataSqueezer for the latter four data sets also

place it among best ML algorithms. It achieves accuracies comparable to the

results obtained by other best ML algorithms for the adult, cid, and mush data sets.

 The results show that DataSqueezer generates very accurate rules, which

means that it is characterized by high validity.

3.3.3.2 Simplicity and Efficiency

The tests, see Table 9, also show number of rules, number of selectors, and

execution time for the DataSqueezer algorithm, and the other ML algorithms

(Kurgan and Cios, 2003a). Similarly, as for the accuracy tests, the algorithm is

compared with results achieved by 33 algorithms reported in (Lim et al., 2000),

and with results achieved by the CLIP4 (Cios and Kurgan, 2002a). For the 33

algorithms, the median number of rules (the authors reported the number of tree

leaves for 21 decision tree algorithms) and the maximum and minimum execution

time, as it was reported by the authors, is given. Additionally, for the

DataSqueezer and CLIP4, the number of selectors per rules is reported. The last

measure enables direct comparison of complexity of generated rules.

The mean number of rules generated by the DataSqueezer algorithm is 21.3.

In (Lim et al., 2000) the median number of tree leaves, which is equivalent to the

 61

number of rules, for the 21 tested decision tree algorithms was reported as 17.8.

The number of rules generated by the CLIP4 algorithm is 16.8. The number of

rules generated by the DataSqueezer algorithm is comparable to the reported

results. For the latter four data sets, the algorithm also achieves low number of

generated rules.

Table 9. Number of rules and selectors, and running time results for the

DataSqueezer, CLIP4, and the other 33 ML algorithms

Reported accuracy
(Lim et al., 2000) DataSqueezer

mean CPU time

CLIP4
(Cios and Kurgan, 2002a)

set

min [s] max [h]

median
of

leaves
mean

time [s]
mean #
rules

mean #
selectors

select
/rule

mean
time [s]

mean

rules

mean #
select

select/
rule

bcw 4s 2.7 7 5.1 4.2 121.6 29.0 0.2 4.5 12.8 2.8
bld 5s 1.5 10 6.6 9.7 272.4 28.1 0.1 3.4 14.0 4.1
bos 9s 5.5 11 35.8 10.5 133.5 12.7 0.4 19.8 107 5.4
cmc 12s 23.9 15 46 8 60.7 7.6 1.3 20.2 70.5 3.5
dna 2s 475.2 13 662.8 8 90 11.3 12.5 39.0 97.0 2.5
hea 4s 3.3 6 2.2 11.6 192.3 16.6 0.1 4.7 17.1 3.6
led 1s 12.4 24 166.4 41 189 4.6 3.8 51 194 3.8
pid 7s 2.5 7 5.8 4 64.1 16.0 0.2 1.8 8.0 4.4
sat 8s 73.2 63 3696.7 61 3199 52.4 21.3 57 257 4.5
seg 28s 75.6 39 614.6 39.2 1169.9 29.8 6.1 57.3 219 3.8
smo 1s 3.8 2 90.5 18 242 13.4 1.1 6 12 2.0
thy 3s 16.1 12 164.2 4 119 29.8 1.3 7 28 4.0
veh 14s 14.1 38 45.3 21.3 380.7 17.9 1.2 23.7 80.2 3.4
vot 2s 25.2 2 4.4 9.7 51.7 5.3 0.1 1.4 1.6 1.1
wav 4s 4.3 16 43.1 9 85 9.4 0.4 22 65 2.9
tae 6s 10.2 20 0.7 9.3 273.2 29.4 0.2 21.2 57.2 2.7

MEAN 6.9 s 46.8 h 17.8 5 min
49.4 s 16.8 415.3 19.6 3.1 s 21.3 77.5 3.4

adult N/A 16839 72 7561 105.0 399.4 61 395 6.5
cid N/A --- --- --- --- 5,938.0 15 95 6.3
forc N/A 21542 63 2438 38.7 582.0 59 2105 35.7
mush N/A 257.4 2 18 9.0 0.1 8 21 2.6
MEAN N/A --- --- --- --- 1729.9 35.8 654.0 12.8

 62

Next, DataSqueezer was analyzed in terms of the number of selectors, and

the number of selectors per rule, which it generates. The number of selectors per

rule generated by the algorithm for the 16 data sets is 3.4. Hence, on average,

each rule generated by the DataSqueezer algorithm involves only 3.4 attribute-

values pairs in the rule description. This is significantly less than the number of

selectors per rule achieved by the CLIP4 algorithm (about 80% less). For

comparison, the average number of attributes, without considering number of

values they can take on, for the first 16 data sets is 17.3. Hence, the DataSqueezer

uses on average only 20% of the attributes in the generated rules. Similarly, for

the latter four data sets, DataSqueezer generates rules, which on average use only

40% of the attributes, since the average number of attributes for these data sets is

32.5. One can conclude that the rules generated by the DataSqueezer are very

compact. The algorithm not only generates easy to understand format of generated

knowledge, i.e., production rules, but also the rules are very short are, therefore,

simple.

The DataSqueezer’s average execution time for the first 16 data sets is 3.1

seconds. In (Lim et al., 2000) the authors reported the minimum execution time of

5 seconds for C4.5 algorithm (Quinlan, 1993; Quinlan 1996). The results show

the DataSqueezer algorithm is much faster than any of the 33 ML algorithms.

This shows that the algorithm generates the knowledge efficiently. It is also

 63

interesting to note that the POLYCLASS algorithm, which achieved the best

accuracy, had an average execution time of 3.2h.

3.3.3.3 Flexibility

Based on the high validity (accuracy), simplicity and efficiency, which

were achieved by the algorithm for the diverse range of the training sets, the

algorithms is also highly flexible. It achieves very good performance for data sets

that include both large number of examples with missing values (e.g., adult, cid,

mush data sets), and large number of inconsistent, and thus noisy examples (e.g.,

bld, cmc, led, pid, smo, tae, and adult data sets). The algorithm also achieves very

good performance for the data sets that incorporate both large number of missing

and inconsistent examples (e.g., adult data set). We note, that the tests were

performed for data sets that incorporate all three types of attributes: nominal,

discrete numerical, and continuous numerical. Thus, the DataSqueezer algorithm

is also characterized by very high flexibility.

3.3.3.4 Experimental Complexity Analysis

DataSqueezer was also experimentally tested to show additional validation

of its linear complexity. The tests were performed using the cid data set, see Table

7. The data set includes 40 attributes and 300K of data samples, which assures the

accuracy of the provided analysis. The training part of the original data set was

used to derive training sets for the complexity analysis. The training sets were

derived by selecting a number of examples from the beginning of the original

 64

training set. A standard procedure of using training sets of doubled size for each

test, to verify if the execution time is also doubled, was used. The results are

summarized in Table 10 (Kurgan and Cios, 2003a). The table shows the time

ratios for the subsequent experiments, along with the results of the verification

test, and the number of generated rules and selectors.

Table 10. Summary of experimental complexity analysis results for the

DataSqueezer algorithm

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size

(ratio) --- 2 2 2 2 2 2 2 1.56

Time 30msec 58msec 98msec 2sec
47msec

6sec
90msec

18sec
89msec

47sec
13msec

2min
16sec

29msec

4min
25sec

09msec
Time - Ratio --- 1.93 1.69 2.52 2.79 2.74 2.50 2.95 1.94

Accuracy 87.9 89.9 88.1 87.7 87.9 89.3 89.4 89.1 90.5
Sensitivity 90.3 92.3 90.7 90.3 90.5 92.1 92.2 91.8 93.5
Specificity 52.0 45.6 48.7 49.1 48.4 46.5 46.4 47.3 45.4

Rules 11 13 10 12 12 13 14 13 15
Selectors 74 80 57 77 74 81 88 83 95

Figure 12 visualizes the results. The figure shows a graph of relation

between execution time and size of the data. It uses logarithmic scale on both axes

to help visualize data points for low values.

 65

cid dataset

10

100

1000

10000

100000

100 1000 10000 100000 1000000

train data size

time [msec]
DataSqueezer

Figure 12. Relation between execution time and input data size for the

DataSqueezer algorithm

The experimental results show linear relationship between the execution

time and size of the input data for both algorithms, and thus agree with the

theoretical complexity analysis. The time ratio is always close to the data size

ratio, which implies that the DataSqueezer algorithm has linear complexity.

3.3.3.5 Summary of Experimental Evaluation

To summarize, two main advantages of the DataSqueezer algorithm are the

compactness of the generated rules and low computational cost. The experimental

results show that the algorithm strongly exhibits all four qualities of supervised

inductive ML algorithms. It efficiently generates very simple rules that perform

with high accuracy on test sets. It is also flexible to handle all types of attributes,

and training sets that incorporate high number of noisy and missing values

 66

examples. Table 11 summarizes the results of the experimental evaluation of the

DataSqueezer algorithm.

Table 11. Summary of the benchmarking tests for the DataSqueezer algorithm

accuracy simplicity efficiency flexibility

high high very high

highly flexible:
handles all attribute types

noise resistant
missing values resistant

The results place the DataSqueezer algorithm among the best ML

algorithms. The reader is encouraged to examine Appendix C for detailed results,

which include graphs and detailed reports from 10 fold cross validation runs.

3.4 The CAIM Algorithm

Since the DataSqueezer algorithm handles only numerical or nominal data,

the CAIM discretization algorithm is used as a front-end to handle continuous

attributes (Kurgan and Cios, 2001; Kurgan and Cios, 2002b; Kurgan and Cios,

2003b). There are many other inductive ML algorithms, e.g., AQ algorithms,

CLIP algorithms, and CN2 algorithm that can handle only numerical or nominal

data. It was also observed that some other ML algorithms that handle continuous

attributes still perform better with discrete-valued attributes (Catlett, 1991; Kerber,

1992).

 67

3.4.1 Introduction to Discretization

Discretization transforms a continuous attribute’s values into a finite

number of intervals and associates with each interval a numerical, discrete value.

For mixed-mode (continuous and discrete) data, discretization is usually

performed prior to the learning process (Catlett, 1991; Dougherty et al., 1995;

Fayyad and Irani, 1992; Pfahringer, 1995). Discretization can be broken into two

tasks. The first task is to find the number of discrete intervals. Only some

discretization algorithms perform this; often the user must specify the number of

intervals, or provide a heuristic rule (Ching et al., 1995). The second task is to

find the width or the boundaries for the intervals, given the range of values of a

continuous attribute. The CAIM algorithm automatically selects the number of

discrete intervals and, at the same time, finds the width of every interval based on

the interdependency between the classes and attribute values.

Discretization algorithms can be divided into two categories:

• unsupervised algorithms that discretize attributes without taking into

account respective class labels. The two representative algorithms are

equal-width and equal-frequency discretizations (Chiu, 1991). The

equal-width discretization algorithm determines the minimum and

maximum values of the discretized attribute, and then divides the range

into a user-defined number of equal width discrete intervals. The equal-

frequency algorithm determines the minimum and maximum values of

the discretized attribute, sorts all values in ascending order, and divides

 68

the range into a user-defined number of intervals so that every interval

contains the same number of sorted values.

• supervised algorithms discretize attributes by taking into account the

interdependence between class labels and the attribute values. The

representative algorithms are: maximum entropy (Wong and Chiu, 1987),

Patterson-Niblett (Patterson and Niblett, 1987), which is built into a

decision trees algorithm (Quinlan, 1993), Information Entropy

Maximization (IEM) (Fayyad and Irani, 1993), and other information-

gain or entropy-based algorithms (Dougherty et al., 1995; Wu, 1996),

statistics-based algorithms, e.g., ChiMerge (Kerber, 1992) and Chi2 (Liu

and Setiono, 1997), class-attribute interdependency algorithms, e.g.,

CADD (Ching et al., 1995), and clustering-based algorithms, e.g., K-

means discretization (Tou and Gonzalez, 1974).

In addition, quantization methods (Linde et al., 1980) are also used to

design discretization algorithms, e.g., the adaptive quantizer algorithm (Chan,

1991). Since large numbers of possible attribute values slows down and makes

inductive learning ineffective, one of the main goals of a discretization algorithm

is to significantly reduce the number of discrete intervals derived for a continuous

attribute (Catlett, 1991). At the same time the algorithm should maximize the

interdependency between discrete attribute values and class labels, as this

minimizes the information loss due to discretization. As always, a satisfactory

trade-off between these two goals needs to be achieved.

 69

The CAIM algorithm discretizes an attribute into the smallest number of

intervals and maximizes the class-attribute interdependency, and thus makes the

subsequently performed ML task much easier. The algorithm automatically

selects the number of discrete intervals without any user supervision. It uses class-

attribute interdependency as defined in (Ching et al., 1995).

The CAIM algorithm was compared with six well-known discretization

algorithms, almost always resulting in the smallest number of discrete intervals

and the highest class-attribute interdependency. The CAIM algorithm and the six

algorithms were used to discretize several continuous and mixed-mode data sets.

The data sets were used with two ML algorithms - the CLIP4 (Cios and Kurgan,

2001; Cios and Kurgan 2002a), and C5.0 (Data Mining Tools, 2002), algorithms -

to generate the rules. The accuracy of the rules shows that the application of the

CAIM algorithm as a front-end discretization algorithm significantly improves

performance of classification and also reduces the number of generated rules.

3.4.2 The Algorithm

Before describing the CAIM algorithm, the necessary background

information is given. First, class-attribute interdependent discretization is

described. Next, the CAIM discretization criterion, which is the core element of

the CAIM algorithm, is described.

 70

3.4.2.1 Definitions of Class-Attribute Interdependent Discretization

The CAIM algorithm’s goal is to find the minimum number of discrete

intervals while minimizing the loss of class-attribute interdependency. The

algorithm uses class-attribute interdependency information as the criterion for the

optimal discretization. Next, several definitions to define the criterion are

introduced (Ching, 1995).

A supervised classification task requires a training data set consisting of S

examples, where each example belongs to only one of C classes. Let F indicate

any of the continuous attributes from the mixed-mode data. Then there exists a

discretization scheme D on F, which discretizes the continuous domain of

attribute F into n discrete intervals bounded by the pairs of numbers:

]}d ,(d ,],d ,(d],d ,{[d :D n1-n2110 …

where d0 is the minimal value and dn is the maximal value of attribute F,

and the values are arranged in ascending order. These values constitute the

boundary set {d0, d1, d2, …, dn-1, dn} for discretization D.

Each value of attribute F can be classified into only one of the n intervals

defined above. Membership of each value within a certain interval for attribute F

may change with the change of the discretization D. The class variable and the

discretization variable of attribute F are treated as two random variables defining

a two-dimensional frequency matrix (called quanta matrix) that is shown in Table

12.

 71

Table 12. 2-D quanta matrix for attribute F and discretization scheme D

Interval Class [d0, d1] … (dr-1, dr] … (dn-1, dn]
Class Total

C1
:

Ci
:

CC

q11
:

qi1
:

qC1

…
…
…
…
…

q1r
:

qir
:

qCr

…
…
…
…
…

 q1n
:

qin
:

qCn

M1+
:

Mi+
:

MC+

Interval Total M+1 … M+r … M+n M

In Table 12, qir is the total number of continuous values belonging to the ith

class that are within interval (dr-1, dr], Mi+ is the total number of objects belonging

to the ith class, and M+r is the total number of continuous values of attribute F that

are within the interval (dr-1, dr], for i=1,2…,C and, r= 1,2, …, n.

The estimated joint probability of the occurrence that attribute F values are

within the interval Dr = (dr-1, dr], and belong to class Ci can be calculated as:

M
q

FDCpp ir
riir ==)|,(.

The estimated class marginal probability that attribute F values belong to

class Ci, pi+, and the estimated interval marginal probability that attribute F values

are within the interval Dr = (dr-1, dr] p+r are as follows:

M
M

Cpp i
ii

+
+ ==)(and

M
M

FDpp r
rr

+
+ ==)|(.

The Class-Attribute Mutual Information between the class variable C and

the discretization variable D for attribute F given the 2-D frequency matrix shown

in Table 12 is defined as:

 72

∑∑
= = ++

=
C

i

n

r ri

ir
ir pp

p
pFDCI

1 1
2log)|,(.

Similarly, the Class-Attribute Information (Fayyad and Irani, 1992) and the

Shannon’s entropy of the given matrix are defined, respectively, as:

∑∑
= =

+=
C

i

n

r ir

r
ir p

ppFDCINFO
1 1

2log)|,(and ∑∑
= =

=
C

i

n

r ir
ir p

pFDCH
1 1

2
1log)|,(.

Given the three latter equations, the Class-Attribute Interdependence

Redundancy (CAIR) criterion (Wong and Liu, 1975) and Class-Attribute

Interdependence Uncertainty (CAIU) (Huang, 1996) criterion are defined as

follows:

)|,(
)|,()|,(

FDCH
FDCIFDCR = and

)|,(
)|,()|,(

FDCH
FDCINFOFDCU = .

The CAIR criterion is used in the Class-Attribute Dependent Discretizer

(CADD) algorithm (Ching, 1995). The CAIR criterion is used to measure the

interdependence between classes and the discretized attribute (the larger its value

the better correlated are the class labels and the discrete intervals) (Cios et al,

1998). It is also independent of the number of class labels and the number of

unique values of the continuous attribute. The same holds true for the CAIU

criterion, but with a reverse relationship. The CADD algorithm has the following

disadvantages:

• it uses a user-specified number of intervals when initializing the

discretization intervals,

 73

• it initializes the discretization intervals using a maximum entropy

discretization method; such initialization may be the worst starting point

in terms of the CAIR criterion,

• the significance test used in the algorithm requires training for selection

of a confidence interval.

The CAIU and CAIR criteria were both used in the CAIUR discretization

algorithm (Huang, 1996). The CAIUR algorithm avoided the disadvantages of the

CADD algorithm generating discretization schemes with higher CAIR values, but

at the expense of a very high computational cost, making it inapplicable for

discretization of continuous attributes that have a large number of unique values.

The CAIM algorithm has the following three goals:

• to maximize the interdependency between the continuous-valued attribute

and its class labels,

• to achieve the minimum number of discrete intervals possible,

• to perform the discretization task at reasonable computational cost so that

it can be applied to continuous attributes with large number of unique

values.

The CAIM algorithm avoids the disadvantages of the CADD and CAIUR

algorithms. It works in a top-down manner, dividing one of the existing intervals

into two new intervals using a criterion that results in achieving the optimal class-

attribute interdependency after the split, and starts with a single, [do, dn], interval.

 74

3.4.2.2 Discretization Criterion

The Class-Attribute Interdependency Maximization (CAIM) criterion

measures the dependency between the class variable C and the discretization

variable D for attribute F, for a given quanta matrix (see Table 12), and is defined

as:

n
MFDCCAIM

n

r r

r∑
= += 1

2max

)|,(,

where: n is the number of intervals, r iterates through all intervals, i.e.,

r=1,2,...,n, maxr is the maximum value among all qir values (maximum

value within the rth column of the quanta matrix), i=1,2,...,C, M+r is the total

number of continuous values of attribute F that are within the interval (dr-1,

dr].

The CAIM criterion is a heuristic measure that is used to quantify the

interdependence between classes and the discretized attribute. It has the following

properties:

• the larger the value of CAIM criterion the higher the interdependence

between the class labels and the discrete intervals. The bigger the

number of values belonging to class Ci within a particular interval (if the

number of values belonging to Ci within the interval is the largest then Ci

is called the leading class within the interval) the higher the

 75

interdependence between Ci and the interval. The goal of maximizing

the interdependence between classes and the discrete intervals can be

translated into achieving the largest possible number of values that

belong to a leading class within all intervals. The CAIM criterion

accounts for the trend of maximizing the number of values belonging to

a leading class within each interval by using maxi. The value of CAIM

criterion grows when values of maxr grow, which relates to the increase

of the interdependence between the class labels and the discrete intervals.

The highest interdependence between the class labels and the discrete

intervals (and at the same time the highest value of CAIM) is achieved

when all values within a particular interval belong to the same class for

all intervals. In this case, maxr = M+i and CAIM=S/n,

• it takes on real values from the interval [0, S] where S is the number of

values of the continuous attribute F,

• the criterion generates discretization schemes where each interval has all

of its values grouped within a single class label. This observation

motivated us to use the maxr values within each of the n intervals, and

summing them for all intervals,

• the squared maxi value is divided by the M+i for two reasons:

o to account for the negative impact that values belonging to classes

other than the class with the maximum number of values within an

 76

interval have on the discretization scheme. The more such values the

bigger the value of M+i , which in turn decreases the value of CAIM.

o to scale the maxr
2 number. Because the division factor M+i is always

greater than or equal to maxr, the overflow error will not happen

during calculations. To avoid the overflow, the calculation is

performed by first dividing maxr by M+i and then multiplying the

result by maxr, i.e.,

r
i

r

i

r

M
ascalculatedis

M
maxmaxmax 2

++

,

• because the algorithm favors discretization schemes with smaller

numbers of intervals, the summed value is divided by the number of

intervals n,

• the Mi+ values from the quanta matrix are not used because they are

defined as the total number of objects belonging to the ith class, which

does not change with different discretization schemes.

The value of the CAIM criterion is calculated with a single pass over the

quanta matrix. The CAIM criterion has similar properties to the CAIR criterion

but the experimental results show that the CAIM criterion tends to generate a

much smaller number of intervals and using it results in achieving higher

interdependency. The CAIM criterion is used by the CAIM algorithm to perform

discretization.

 77

3.4.2.3 The CAIM Algorithm

The optimal discretization scheme can be found by searching over the space

of all possible discretization schemes to find the one with the highest value of the

CAIM criterion. Such a search for a scheme with the globally optimal value of

CAIM is highly combinatorial and time consuming. Thus, the CAIM algorithm

uses a greedy approach, which searches for the approximate optimal value of the

CAIM criterion by finding local maximum values of the criterion. Although this

approach does not guarantee finding the global maximum, it is both

computationally inexpensive and closely-approximates the optimal discretization

scheme, which is shown in section 3.4.4. The algorithm consists of these two

steps:

• initialization of the candidate interval boundaries and the initial

discretization scheme,

• consecutive additions of a new boundary that results in the locally highest

value of the CAIM criterion.

The pseudocode of the CAIM algorithm is given in Figure 13.

The algorithm starts with a single interval that covers all possible values of

a continuous attribute, and divides it iteratively. From all possible division points

that are tried (with replacement) in 2.2., it chooses the division boundary that

gives the highest value of the CAIM criterion. The algorithm assumes that every

discretized attribute needs at least the number of intervals equal to the number of

 78

classes since this assures us that the discretized attribute can improve subsequent

classification.

Figure 13. The pseudo-code of the CAIM algorithm

The CAIM algorithm implements a balance between a reasonable

computational cost and finding the optimal discretization scheme. Despite the

greedy manner in which the algorithm works, the discretization schemes it

generates have very high class-attribute interdependency and always a small

number of discretization intervals. For the data sets used in the experimental

section, the CAIM algorithm generated discretization schemes with the smallest

number of intervals that assures low computational cost, and always achieved

very high class-attribute interdependency, which results in significant

improvement in the subsequently performed classification tasks.

3.4.2.4 Complexity Analysis

In what follows we determine the complexity of the algorithm for

discretizing a single attribute. The CAIM algorithm’s time bound is determined

Given: Data consisting of S examples, C classes, and continuous attributes Fi
For every Fi do:
Step1.
1.1 find maximum (dn) and minimum (do) values of Fi
1.2 form a set of all distinct values of Fi in ascending order, and initialize all possible interval boundaries B

with minimum, maximum and all the midpoints of all the adjacent pairs in the set
1.3 set the initial discretization scheme as D:{[d0, dn]}, set GlobalCAIM=0
Step2.
2.1 initialize k=1;
2.2 tentatively add an inner boundary, which is not already in D, from B, and calculate corresponding CAIM

value
2.3 after all the tentative additions have been tried accept the one with the highest value of CAIM
2.4 if (CAIM > GlobalCAIM or k<C) then update D with the accepted in step 2.3 boundary and set

GlobalCAIM=CAIM, else terminate
2.5 set k=k+1 and go to 2.2
Output: Discretization scheme D

 79

by the calculation of the CAIM criterion in step 2.2. In the worst case, the CAIM

criterion is calculated in O(C⋅S) time, where S is the number of distinct values of

the discretized attribute, C is the number of classes in the problem, and usually is

a small constant. The CAIM algorithm starts with a single interval, and as

experimental results show, the expected number of intervals per attribute is O(C).

Thus, the time bound for calculation of the CAIM value can be estimated as

O(C2). The CAIM values are calculated in O(S) time for all candidate boundaries

in step 2.2. This gives the total time of step 2.2 as O(S⋅C2). Step 2.2 is executed in

the worst case in O(S), and the results show that the expected number of intervals

is again O(C), thus we can estimate that step 2.2 is executed in O(C). Therefore,

the time bound for Step 2 of the CAIM algorithm is O(C)⋅O(S⋅C2) = O(S⋅C3).

Sorting in step 1.2 takes O(S⋅log S) time, and determines the time for Step1.

Depending on the value of C, which for most inductive machine learning

applications is a small constant, the expected running time of the algorithm is

O(S⋅log S). This shows that the CAIM algorithm can be applied to large problems.

The remaining costs of the algorithm include building the quanta matrix

given the discretization scheme in O(S) time (this time adds to calculating the

CAIM value), updating the discretization scheme in step 2.4 in O(S) time, and

updating the global CAIU value in O(C) time. All these costs are negligible.

 80

3.4.3 Experimental Evaluation

Below, the results of the CAIM algorithm along with the other six leading

discretization algorithms on the eight well-known continuous and mixed-mode

data sets are presented. The smo data, see Table 13, set was obtained from the

StatLib project data sets repository (Vlachos, 2000), and remaining data sets were

obtained from the University of California Irvine ML Repository (Blake and Merz,

1998). Detailed description of the data sets is shown in Table 13.

Table 13. Description of data sets used for benchmarking of CAIM algorithm

Data sets Properties
iris sat thy wav ion smo hea pid

of classes 3 6 3 3 2 3 2 2

of examples 150 6435 7200 3600 351 2855 270 768

of training / testing
examples

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

of attributes 4 36 21 21 34 13 13 8

of continuous
attributes

4 36 6 21 32 2 6 8

The benchmarking tests are characterized by diversity of training sets,

including their size, both in terms of number of examples and attributes, and

number of classes. The range of the tests is characterized by:

• the size of training data sets: between 150 and 7200 examples,

• the number of attributes: between 4 and 36,

• the number of classes: between 2 and 6.

This diversity of the tests ensured that evaluation of the algorithm, which is

performed based on comparison with results achieved by other state of the art

discretization algorithms, is comprehensive and strong.

 81

3.4.4 Comparison of CAIM with other Algorithms

Tests were performed for the CAIM algorithm and six other discretization

algorithms. The six discretization algorithms were:

• two unsupervised algorithms: equal-width and equal frequency,

• four supervised algorithms: Patterson-Niblett, IEM, Maximum Entropy

and CADD.

The unsupervised algorithms require the user to specify the number of

discrete intervals. In our experiments we used the following heuristic formula to

estimate the number of intervals: nFi = M / (3C), where nFi is the number of

intervals for attribute Fi, M is the number of examples, and C is the number of

classes (Wong and Chiu, 1987). The supervised algorithms apply their own

criteria to generate an appropriate number of discrete intervals.

All seven algorithms were used to discretize the eight data sets. The

goodness of the discretization algorithm was evaluated based on the CAIR

criterion value, the number of generated intervals, and the execution time.

To quantify the impact of the selection of a discretization algorithm on the

classification task performed subsequently by a ML algorithm, the discretized

data sets were used to generate rules by ML algorithms. The CLIP4 algorithm was

used to represent the hybrid algorithms, and the C5.0 algorithm to represent

decision tree algorithms. The classification goodness was measured using

accuracy and the number of rules. The results were compared among the seven

discretization algorithms, for all data sets and both learning algorithms.

 82

3.4.4.1 Accuracy, Simplicity, Efficiency, and Flexibility

Evaluation of the discretization algorithms was performed using the CAIR

criterion since one of the goals of discretization is to maximize the class-attribute

interdependence (Wong and Liu, 1975). This can be done by finding a

discretization scheme, DMAX, out of all possible discretization schemes, D, such

that: CAIR(DMAX) ≥ CAIR(Di) ∀(Di∈D) (Ching et al. 1995).

The CAIM criterion has the same properties as the CAIR criterion, but

since it is a new heuristic measure, the CAIR criterion was used instead. The

higher the value of the CAIR criterion, the higher the interdependence between

the class labels and the discrete intervals. Table 14 shows the CAIR value, the

number of discrete intervals, and the execution time for the 10-fold cross

validation tests on 8 data sets, and the seven discretization schemes (Kurgan and

Cios, 2002b). The discretization was done using the training folds, and the testing

folds were discretized using the already generated discretization scheme. The

direct comparison of results can be performed by looking at the rank column in

Table 14. The rank value is defined as each algorithm’s rank for a particular data

set among the seven algorithms, averaged over the eight data sets.

The CAIM algorithm achieved the highest class-attribute interdependency

for 5 out of 8 data sets, and for wav and ion data sets had the second and third

highest, respectively. The CAIM algorithm was behind the competitors for only

the smo data set, but this data set has only 2 continuous attributes out of 13. For

this test, the CAIM algorithm achieved the highest rank (1.9) among all compared

 83

algorithms, and this rank is significantly better than 3.1 achieved by the

Information Entropy Maximization algorithm, which was the second best. The

results show that the greedy approach combined with the CAIM criterion work in

practice resulting, on average, in higher interdependence between class and

attribute variables than the interdependence achieved by other algorithms. This, in

turn, implies that the CAIM algorithm is characterized by high accuracy.

Table 14. Comparison of the seven discretization algorithms using eight

continuous and mixed-mode data sets (bolded values indicate the best results)

Data set
Criterion Discretization

Method iris std sat std thy std wav std ion std smo std hea std pid std
RANK

mean

Equal Width 0.40 0.01 0.24 0 0.071 0 0.068 0 0.098 0 0.011 0 0.087 0 0.058 0 4.0
Equal Frequency 0.41 0.01 0.24 0 0.038 0 0.064 0 0.095 0 0.010 0 0.079 0 0.052 0 5.4
Paterson-Niblett 0.35 0.01 0.21 0 0.144 0.01 0.141 0 0.192 0 0.012 0 0.088 0 0.052 0 3.5
Maximum Entropy 0.30 0.01 0.21 0 0.032 0 0.062 0 0.100 0 0.011 0 0.081 0 0.048 0 5.9
CADD 0.51 0.01 0.26 0 0.026 0 0.068 0 0.130 0 0.015 0 0.098 0.01 0.057 0 3.4
IEM 0.52 0.01 0.22 0 0.141 0.01 0.112 0 0.193 0.01 0.000 0 0.118 0.02 0.079 0.01 3.1

CAIR
mean value
through all
intervals

CAIM 0.54 0.01 0.26 0 0.170 0.01 0.130 0 0.168 0 0.010 0 0.138 0.01 0.084 0 1.9
Equal Width 16 0 252 0 126 0.48 630 0 640 0 22 0.48 56 0 106 0 4.8
Equal Frequency 16 0 252 0 126 0.48 630 0 640 0 22 0.48 56 0 106 0 4.8
Paterson-Niblett 48 0 432 0 45 0.79 252 0 384 0 17 0.52 48 0.53 62 0.48 4.0
Maximum Entropy 16 0 252 0 125 0.52 630 0 572 6.70 22 0.48 56 0.42 97 0.32 4.4
CADD 16 0.71 246 1.26 84 3.48 628 1.43 536 10.26 22 0.48 55 0.32 96 0.92 3.6
IEM 12 0.48 430 4.88 28 1.60 91 1.50 113 17.69 2 0 10 0.48 17 1.27 2.1

total # of
intervals

CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0 1.3
Equal Width 0.02 0.01 26.63 2.02 4.74 0.05 8.04 0.26 1.21 0.02 0.32 0.01 0.08 0.01 0.27 0.01 1.3
Equal Frequency 0.03 0.01 26.11 0.55 4.85 0.16 8.46 0.21 1.29 0.06 0.31 0.01 0.08 0 0.27 0.01 1.5
Paterson-Niblett 0.12 0.01 82.52 2.36 32.98 1.60 176.8 4.13 14.35 2.75 1.44 0.06 0.42 0.01 2.44 0.01 6.4
Maximum Entropy 0.03 0 30.36 1.42 11.01 0.65 26.76 1.66 3.33 0.39 0.45 0.05 0.14 0.02 0.58 0.05 3.5
CADD 0.08 0.01 54.19 1.81 65.46 13.62 435.5 24.68 17.88 0.65 1.05 0.16 0.69 0.05 3.91 0.30 6.6
IEM 0.05 0 49.90 1.77 10.56 0.35 59.14 3.16 2.57 0.32 0.53 0.01 0.14 0.01 0.77 0.05 4.1

time [s]

CAIM 0.05 0.01 53.36 1.90 11.50 0.47 46.13 3.68 2.51 0.25 0.64 0.01 0.13 0.01 0.70 0.01 4.1

The CAIM algorithm generated discretization scheme with the smallest

number of intervals for 6 data sets, as compared with six other discretization

algorithms. For the smo and hea data sets, it generated the second smallest

number of intervals. Again, the rank of CAIM was significantly better than the

 84

ranks of other discretization algorithms. Smaller numbers of discrete intervals

reduces the size of the data and helps to better understand the meaning of the

discretized attributes. This is a significant advantage of the CAIM algorithm that

further shows its usefulness and proves that the algorithm is characterized by high

simplicity.

Unsupervised discretization algorithms achieved the shortest execution time

since they do not process any class related information; they require less

computation time and generate results that are less suited for the subsequent ML

tasks. Among supervised algorithms, the Maximum Entropy algorithm achieved

the best average rank. The second fastest were IEM and CAIM algorithms; they

worked well on larger data sets like thy or wav, which is important for real-life

applications. The results for IEM, CAIM, and Maximum Entropy algorithms

show that they are the most efficient among supervised methods, with comparable

performance.

The above results show good applicability of the CAIM algorithm, which

generates small numbers of intervals that are highly interdependent with class

labels, with speeds comparable to the fastest supervised discretization algorithms.

Based on the accuracy, simplicity, and efficiency achieved on diverse

training datasets, the algorithm was shown to be highly flexible.

 85

3.4.4.2 Impact of the CAIM algorithm discretization on the Subsequent

Learning Task

The discretized data sets were used as input to CLIP4 and C5.0 algorithms

to generate rules. The accuracy and the number of rules were compared for the

seven discretization algorithms. Since C5.0 can generate data models from

continuous attributes, its performance while generating rules from raw data,

against the results achieved using discretized data using the seven algorithms was

also compared. Direct comparison of results can be seen by looking at the RANK

column in Table 15 that shows the accuracy (Kurgan and Cios, 2002b).

On average, the best accuracy for the two inductive ML algorithms was

achieved for the data that was discretized using the CAIM algorithm. Using

CLIP4 and C5.0 to generate a data model, the difference between the rank

achieved by the CAIM algorithm and the next best IEM algorithm, and built-in

discretization, in the case of C5.0, is over 1.0. In the case of using the CLIP4

algorithm to generate a data model, the average accuracy of the rules was the

highest for data discretized with the CAIM algorithm. The second best accuracy

was achieved for the data discretized with the IEM algorithm, while accuracies

using the remaining discretization algorithms were lower and comparable to each

other.

 86

Table 15. Comparison of the accuracies achieved by the CLIP4 and C5.0

algorithms for the eight data sets using the seven discretization schemes (bolded

values indicate the best results)

Data sets
iris Sat thy wav ion smo hea pid Algor. Discretization

Method acc std acc std acc std acc std acc std acc std acc std acc std

RANK
mean

Equal Width 88.0 6.9 77.5 2.8 91.7 1.9 68.2 2.2 86.9 6.4 68.6 2.0 64.5 10.1 65.5 6.5 4.6
Equal Frequency 91.2 7.6 76.3 3.4 95.7 2.4 65.4 2.9 81.0 3.7 68.9 2.8 72.6 8.2 63.3 6.3 4.8
Paterson-Niblett 87.3 8.6 75.6 3.9 97.4 0.6 60.9 5.2 93.7 3.9 68.9 2.7 68.5 13.6 72.7 5.1 4.3
Maximum Entropy 90.0 6.5 76.4 2.7 97.3 0.9 63.5 2.9 82.9 4.8 68.7 2.8 62.6 9.8 63.4 5.1 5.3
CADD 93.3 4.4 77.5 2.6 70.1 13.9 61.5 3.4 88.8 3.1 68.8 2.5 72.2 11.4 65.5 4.2 3.9
IEM 92.7 4.9 77.2 2.7 98.8 0.5 75.2 1.7 92.4 6.9 66.9 2.6 75.2 8.6 72.2 4.2 2.9

CLIP4
accuracy

CAIM 92.7 8.0 76.4 2.0 97.9 0.4 76.0 1.9 92.7 3.9 69.8 4.0 79.3 5.0 72.9 3.7 1.8
Equal Width 94.7 5.3 86.0 1.6 95.0 1.1 57.7 8.2 85.5 6.4 69.2 5.4 74.7 5.2 70.8 2.8 5.3
Equal Frequency 94.0 5.8 85.1 1.5 97.6 1.2 57.5 7.9 81.0 12.4 70.1 1.7 69.3 5.7 70.3 5.4 6.0
Paterson-Niblett 94.0 4.9 83.0 1.0 97.8 0.4 74.8 5.6 85.0 8.1 70.1 3.2 79.9 7.1 71.7 4.4 4.3
Maximum Entropy 93.3 6.3 85.2 1.5 97.7 0.6 55.5 6.2 86.5 8.8 70.2 3.9 73.3 7.6 66.4 5.9 5.6
CADD 93.3 5.4 86.1 0.9 93.5 0.8 56.9 2.1 77.5 11.9 70.2 4.7 73.6 10.6 71.8 2.2 5.4
IEM 95.3 4.5 84.6 1.1 99.4 0.2 76.6 2.1 92.6 2.9 69.7 1.6 73.4 8.9 75.8 4.3 3.3
CAIM 95.3 4.5 86.2 1.7 98.9 0.4 72.7 4.2 89.0 5.2 70.3 2.9 76.3 8.9 74.6 4.0 2.1

C5.0
accuracy

Built-in 92.7 9.4 86.4 1.7 99.8 0.4 72.6 3.6 87.0 9.5 70.1 1.3 76.8 9.9 73.7 4.9 3.3

The average accuracy of rules generated by the C5.0 algorithm shows that

the best results are achieved after discretization of data with the CAIM algorithm.

The second best results were achieved by discretizing data using the IEM

algorithm and C5.0 with its built-in discretization. Discretization using the

remaining algorithms resulted in achieving significantly worse accuracies on the

average. The accuracy results show that the CAIM algorithm generates the

discrete data that results in improved performance of subsequently used

supervised inductive ML algorithms when compared to the data generated by the

other discretization algorithms. Table 16 shows the classification results in terms

of number of generated rules (Kurgan and Cios, 2002b).

 87

Table 16. Comparison of the number of rules/leaves generated by the CLIP4 and

C5.0 algorithms for the eight data sets using the seven discretization (bolded

values indicate the best results)

Data sets
iris sat thy wav ion smo pid hea Algor. Discretization

Method # std # std # std # std # std # std # std # std

RANK
mean

Equal Width 4.2 0.4 47.9 1.2 7.0 0.0 14.0 0.0 1.1 0.3 20.0 0.0 7.3 0.5 7.0 0.5 3.8
Equal Frequency 4.9 0.6 47.4 0.8 7.0 0.0 14.0 0.0 1.9 0.3 19.9 0.3 7.2 0.4 6.1 0.7 3.5
Paterson-Niblett 5.2 0.4 42.7 0.8 7.0 0.0 14.0 0.0 2.0 0.0 19.3 0.7 1.4 0.5 7.0 1.1 2.6
Maximum Entropy 6.5 0.7 47.1 0.9 7.0 0.0 14.0 0.0 2.1 0.3 19.8 0.6 7.0 0.0 6.0 0.7 3.6
CADD 4.4 0.7 45.9 1.5 7.0 0.0 14.0 0.0 2.0 0.0 20.0 0.0 7.1 0.3 6.8 0.6 3.5
IEM 4.0 0.5 44.7 0.9 7.0 0.0 14.0 0.0 2.1 0.7 18.9 0.6 3.6 0.5 8.3 0.5 3.0

CLIP4
rules

CAIM 3.6 0.5 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.5 0.5 1.9 0.3 7.6 0.5 2.1
Equal Width 6.0 0.0 348.5 18.1 31.8 2.5 69.8 20.3 32.7 2.9 1.0 0.0 249.7 11.4 66.9 5.6 4.9
Equal Frequency 4.2 0.6 367.0 14.1 56.4 4.8 56.3 10.6 36.5 6.5 1.0 0.0 303.4 7.8 82.3 0.6 5.8
Paterson-Niblett 11.8 0.4 243.4 7.8 15.9 2.3 41.3 8.1 18.2 2.1 1.0 0.0 58.6 3.5 58.0 3.5 3.3
Maximum Entropy 6.0 0.0 390.7 21.9 42.0 0.8 63.1 8.5 32.6 2.4 1.0 0.0 306.5 11.6 70.8 8.6 5.8
CADD 4.0 0.0 346.6 12.0 35.7 2.9 72.5 15.7 24.6 5.1 1.0 0.0 249.7 15.9 73.2 5.8 4.9
IEM 3.2 0.6 466.9 22.0 34.1 3.0 270.1 19.0 12.9 3.0 1.0 0.0 11.5 2.4 16.2 2.0 3.5
CAIM 3.2 0.6 332.2 16.1 10.9 1.4 58.2 5.6 7.7 1.3 1.0 0.0 20.0 2.4 31.8 2.9 1.9

C5.0
rules

Built-in 3.8 0.4 287.7 16.6 11.2 1.3 46.2 4.1 11.1 2.0 1.4 1.3 35.0 9.3 33.3 2.5 3.1

The rank achieved by the CAIM algorithm, for experiments performed with

CLIP4 and C5.0 algorithms, shows that on average it had the smallest number of

rules. Closer analysis of the results shows that the CLIP4 algorithm generates a

small number of rules for all data sets discretized using the seven discretization

algorithms. The average rank results show that discretizing data using Paterson-

Niblett algorithm resulted in an average number of rules similar to the number of

rules for data models generated using data discretized with the CAIM algorithm.

On the other hand, the number of leaves (rules) generated by the C5.0 algorithm

varied significantly over the data sets. The three discretization algorithms that

work best with the C5.0 algorithm are: the CAIM algorithm, the Paterson-Niblett

algorithm, and the IEM algorithm. Also, similarly low numbers of leaves were

 88

generated when using the C5.0’s built-in discretization. Among these four

discretization algorithms, discretizing the data using the CAIM algorithm resulted

in the smallest average number of leaves.

The above tests show that using CAIM algorithm not only results in

accurate, efficient, simple, and flexible discretization, but also results in

significant improvement in accuracy and simplicity of results generated by

subsequently applied inductive ML algorithms.

3.4.4.3 Summary

To summarize, the CAIM algorithm is a very efficient algorithm for

discretization of continuous attributes. It generates very accurate and simple

discretization schemes, when comparing to other state of the art discretization

algorithms. It also improves accuracy and simplicity of results generated by

inductive ML algorithms, when generating rules on discretized data. Table 17

summarizes the results of the experimental evaluation of the CAIM algorithm.

Table 17. Summary of the benchmarking tests for the CAIM algorithm

accuracy simplicity efficiency flexibility

very high very high high
highly flexible

improves accuracy and simplicity of
subsequently used inductive ML algorithms

The results place the DataSqueezer algorithm among the best discretization

algorithms.

 89

The CAIM algorithm is used in the MetaSqueezer system because of its

advantages shown above. Namely, it discretizes continuous attributes into

(possibly) the smallest number of intervals, which results in better compactness of

the discretized data. It maximizes class-attribute interdependency, which results in

minimization of the information loss due to discretization, and improving results

achieved by the subsequently performed inductive ML task. The CAIM algorithm

also selects, on its own, the number of discrete intervals.

 90

Chapter 4

4 The MetaSqueezer System

This chapter provides detailed description of the system. The description is

followed by experimental and theoretical evaluation and comparison with other IL

algorithms. In the Chapter 5 we will describe application of the system to analysis

of cystic fibrosis data.

4.1 Introduction

The MetaSqueezer system is suitable to efficiently generate production

rules for large quantities of supervised data (Kurgan and Cios, 2003a). The system

uses MM concept for generation of rules. The rules are generated using a three-

step process: preprocessing, DM, and MM. MetaSqueezer generates production

rules by repeatedly applying the IL algorithm, DataSqueezer, which works based

on the generalization operations, and irrevocable, informed hill climber search.

The DataSqueezer algorithm is used in the DM step to generate meta-data, and

again in the MM step to generate meta-rules, which constitute outcome from the

MetaSqueezer system.

4.2 MetaSqueezer System

The pseudo-code of the MetaSqueezer system follows:

 91

Figure 14. The pseudo-code of the CAIM algorithm

During the preprocessing step, the raw data are first preprocessed by

performing data validation and transformation. The resulting data is divided into

training subsets that are discretized using the CAIM algorithm, and then fed into

the DM step. DM generates meta-data from the data subsets. The DataSqueezer

algorithm is used to generate the meta-data, in terms of rules generated for each of

the training subsets. Next, in the Meta Mining step the meta-data generated for

each of the subsets is concatenated and fed again into the DataSqueezer algorithm

to generate meta-rules. The detailed architecture of the MetaSqueezer system is

shown in Figure 15.

Given: supervised data organized into n training subsets, and describing c classes
1. use the DataSqueezer algorithm to generate rule sets, RSi, i = 1,2…n, for all training subsets
2. for each RSi generate a rule table RTi, i = 1,2…n
3. use the DataSqueezer algorithm to generate set of meta-rules from a data table being a concatenation

of all RTi
Result: the generated meta-rules

 92

Figure 15. Architecture of the MetaSqueezer system

Since the MetaSqueezer applies the DataSqueezer algorithm to generate

both meta-data and meta-rules, its properties are the same as the properties of the

DataSqueezer algorithm, see Table 18.

subset 1 subset 2 subset 3 subset n

CAIM
Discretization

CAIM
Discretization

CAIM
Discretization

CAIM
Discretization

DataSqueezer
Inductive ML

DataSqueezer
Inductive ML

DataSqueezer
Inductive ML

DataSqueezer
Inductive ML

META RULES

RAW DATA

validation and transformation of the data

DataSqueezer
Inductive ML

Rule table 1

Meta data 1

PR
EP

R
O

C
ES

SI
N

G

D
A

TA
M

IN
IN

G
M

ET
A

-M
IN

IN
G

Rule table 2

Meta data 2

Rule table 3

Meta data 3

Rule table n

Meta data n

SUPERVISED VALIDATED DATA

 93

Table 18. Major properties of the MetaSqueezer system

Search Process Search Type Results Other Features
top-down and
bottom-up

irrevocable
hill climber

production meta-
rules

all attribute types, noise and
missing values resistant

The MetaSqueezer system has the following characteristic features:

• it generates production rules that involve no more than one selector per

attribute. This is because the DataSqueezer algorithm, which is used to

generate meta-rules, generates rules with a single selector per attribute.

• it generates rules that are very compact in terms of the number of used

selectors. Experimental results, shown in section 4.3, indicate that the

MetaSqueezer system generates rules that involve small number of

selectors, even smaller than for the rules generated from the same

training data by the DataSqueezer algorithm. The main reason for the

compactness is application of the MM concept in the MetaSqueezer

system. Since the outcome from the system, meta-rules, are generated

from already generated meta-data, they provide information about

patterns exhibited in the already summarized data.

• it can handle data with large number of missing values and large number

of noisy examples, since it applies the DataSqueezer algorithm that is

highly noise and missing values resistant.

• it generates independent rules, since it applies the DataSqueezer

algorithm, which generates independent rules.

 94

• it has linear complexity. Complexity analysis of the MetaSqueezer

system shows that it is liner in respect to the number of examples in the

data sets, i.e., O(s), where s is the number of examples. The theoretical

complexity analysis of the system is shown in section 4.2.1.

• it generates highly user friendly results. The system provides very easy to

understand representation of generated meta-rules, which consists of

attribute and selector tables. Such tables are inferred directly from the

rules. The tables are generated using a procedure described in section

5.5.1.

The above properties of the system show its high applicability to real-life

problems that concern high volumes of input data, and require providing simple

and easy to comprehend results. The system is flexible, since it can be applied to

all types of attributes, is noise and missing values resistant, and provides very

accurate and compact rules. These properties are shown in the subsequent sections.

4.2.1 Theoretical Complexity Analysis

The complexity of the MetaSqueezer system is determined by complexity

of the DataSqueezer algorithm. Assuming that s is the number of examples in the

original data set, the MetaSqueezer system divides the data into n subsets, of s/n

size. In the DM step, the MetaSqueezer system uses DataSqueezer algorithm n

times, which gives total complexity of nO(s/n) = O(s), since complexity of the

DataSqueezer algorithm is O(s). In the MM step, the DataSqueezer algorithm is

run once with the data of size O(s). Thus, complexity of the MetaSqueezer system

 95

is O(s) + O(s) = O(s). The complexity of the preprocessing step was omitted,

since the reported in the literature complexity results always omit this step in

calculations. As the results of the theoretical analysis, the MetaSqueezer system

has linear complexity. This result is also supported experimentally in section

4.3.1.4.

4.3 Experimental Evaluation

The MetaSqueezer system was extensively benchmarked to show its

validity, simplicity, efficiency, and flexibility. The benchmarking procedure is

very similar to the procedure described for the DataSqueezer algorithm. It was

tested on 20 standard benchmarking data sets. The data sets were obtained from

the University of California Irvine (UCI) Machine Learning Repository (Blake

and Merz, 1998), the UCI KDD Archive (Hettich & Bay, 1999), and from the

StatLib project data sets repository (Vlachos, 2000). Using standard

benchmarking data sets enables direct comparison of performance of the

MetaSqueezer system and other ML algorithms that generate similar results. The

benchmarking setup was developed mainly to perform comparison between the

MetaSqueezer system and the DataSqueezer algorithm; e.g., both were tested on

the same data sets. The comparison between the DataSqueezer and MetaSqueezer

is a vital part of the benchmarking tests, since it provides validation for the

development of the system. Since the MetaSqueezer system uses the

 96

DataSqueezer algorithm, a strong reason, proven via tests, should be provided to

validate creation of the MetaSqueezer system.

The detailed description of the data sets is given in Table 7. Both, percent

of missing values and percent of inconsistent examples refer to already discretized

training sets. The number of subsets column refers to the number of subsets

generated from the initial training set during the preprocessing step of the

MetaSqueezer system. This is a user-defined number, and depends mostly on the

size of the data, i.e., the larger the data the bigger the number of subsets should be

used. The number of subsets for the 20 data sets was between 2 for the smallest

tea data set, and 10 for the largest led, sat, adult, and cid datasets.

The benchmarking tests are characterized by strong diversity of training

sets, including their size, both in terms of number of examples and attributes,

number of classes, attribute types, and amount of missing values and noise in the

data. The range of the tests is characterized by:

• the size of training data sets: between 151 and 200K examples,

• the size of testing data sets: between 15 and 565K examples,

• the number of attributes: between 5 and 61,

• the number of classes: between 2 and 10,

• the attribute types: nominal, discrete numerical, and continuous

numerical,

• the percentage of examples with missing values: between 0 and 52.3,

• the percentage of inconsistent, noisy examples: between 0 and 66.3,

 97

• the number of training data subsets: between 2 and 10.

The diversity of the tests ensures that evaluation of the MetaSqueezer

system, which is performed based on comparison with results achieved by other

state of the art inductive ML algorithms including the DataSqueezer algorithm, is

comprehensive and strong.

4.3.1 Comparison of MetaSqueezer with Other Algorithms

The tests compare accuracy of the rules, number of rules and selectors, and

execution time. The MetaSqueezer system was compared to DataSqueezer

algorithm (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a), CLIP4 algorithm

(Cios and Kurgan, 2002a), and 33 other inductive ML algorithms, for which the

results were published in (Lim et al., 2000). This study reports results on the first

16 data sets described in Table 7. The remaining 4 data sets were chosen because

of their larger size, and incorporation of larger amount of missing values. The last,

cid, data set was also used to perform experimental complexity analysis of the

MetaSqueezer system.

4.3.1.1 Accuracy

To evaluate accuracy of the MetaSqueezer system, the verification test was

performed. The summary of the test results is shown in Table 19. The table shows

minimum and maximum accuracy for the 33 inductive ML algorithms (Lim et al.,

2000), accuracy for the CLIP4 algorithm, and accuracy, sensitivity, and

specificity for the MetaSqueezer system and the DataSqueezer algorithm (Kurgan

 98

and Cios, 2003a). Only the MetaSqueezer algorithm works using the MM concept,

which required dividing the training set into subsets. The remaining algorithms

use original data sets, which were not divided into subsets, as input.

Table 19. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the

other 33 ML algorithms

Reported accuracy
(Lim et al., 2000) DataSqueezer MetaSqueezer

set
max min

CLIP4
accuracy

(Cios and Kurgan, 2002a) mean
accuracy

mean
sensitivity

mean
specificity

mean
accuracy

mean
sensitivity

mean
specificity

bcw 97 91 95 94 92 98 93 97 85
bld 72 57 63 68 86 44 70 93 38
bos 78 69 71 70 70 88 71 70 86
cmc 57 40 47 44 40 73 47 43 72
dna 95 62 91 92 92 97 90 89 95
hea 86 66 72 79 89 66 79 87 70
led 73 18 71 68 68 97 69 69 97
pid 78 69 71 76 83 61 75 83 59
sat 90 60 80 80 78 96 74 73 95
seg 98 48 86 84 83 98 81 81 97
smo 70 55 68 68 33 67 67 33 69
thy 99 11 99 96 95 99 96 86 99
veh 85 51 56 61 61 88 60 59 87
vot 96 94 94 95 93 96 94 92 99
wav 85 52 75 77 77 89 78 78 89
tae 77 31 60 55 53 79 52 51 76
MEAN 83.5 54.6 74.9 75.4 74.6 83.5 74.8 74.0 82.1

set algorithm (accuracy) (reference) mean
accuracy

mean
sensitivity

mean
specificity

mean
accuracy

mean
sensitivity

mean
specificity

NBTree (84) (Kohavi, 1996)

adult
C4.5 (84.5), C4.5-auto (85.5), Voted ID3-0.6 (84.4),
T2 (83.2), 1R (80.5), CN2 (84), HOODG (83.2), FSS
Naive Bayes (86), IDTM (85.5), Naive-Bayes (83.9),
NN-1 (78.6), NN-3 (79.7), OC1 (85) (Blake & Merz,
1998)

82 94 41 81 95 33

cid
C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0
boosted (95.4), Naïve-Bayes (76.8) (Hettich & Bay,
1999)

91 94 45 90 93 49

forc [NN-backprop (70.0), Linear Discriminant Analysis
(58.0)] (Blackard, 1998) 55 56 90 55 36 89
[C4.5 (100), NBTree (96.5)] (Kohavi, 1996)
[STAGGER (95)] (Schlimmer, 1987) mush
[HILLARY (95)] (Iba, Wogulis & Langley, 1988)

100 100 100 100 99 100

MEAN mean best: 87.9 means worst: 77.1 82.0 86.0 69.0 81.5 80.8 67.8

 99

The average accuracy of the MetaSqueezer system for the first 16 data sets

is 74.8%, while for the DataSqueezer algorithm is 75.4%. The difference in

accuracy is insignificant, showing that the results generated by the MetaSqueezer

system achieve the same accuracy as the results generated by the DataSqueezer

algorithm. Also, the difference in accuracy between the two algorithms for the

latter four data sets is insignificant. Both generate very accurate rules for them.

This is a significant achievement of the MetaSqueezer system, since it provides

more compact rules (when compared to the DataSqueezer algorithm), which is

shown in the next section, without trading their accuracy.

To situate the MetaSqueezer system among other inductive ML algorithms

we compare it with the 33 algorithms from the (Lim et al., 2000) study. The

POLYCLASS algorithm (Kooperberg et al. 1997) achieved the highest mean

accuracy of 80.5% among the 33 algorithms. Also, the (Lim et al., 2000)

calculated statistical significance of error rates, which shows that a difference

between the mean accuracies of two algorithms is statistically significant at the

10% level if they differ by more than 5.9 %. Analysis of the results shows that the

MetaSqueezer system’s accuracy is within the range of POLYCLASS, as well as

all other ML algorithms, including CLIP4 and DataSqueezer. The accuracies

achieved by the MetaSqueezer system place it among the best inductive ML

algorithms. The mean sensitivities and specificities achieved by the MetaSqueezer

system have high and comparable values. This is a very desirable property, which

means that the generated rules describe correctly all classes in the data, i.e., the

 100

rules are not biased towards describing, for example, only classes that are

described by majority of examples. The same property was exhibited by the

DataSqueezer system. The MetaSqueezer system again preserved a positive

property originally exhibited by the DataSqueezer algorithm.

The results show that the MetaSqueezer system generates very accurate

rules, which means that it is characterized by high validity. The validity of the

MetaSqueezer system is comparable to validity achieved by the DataSqueezer

algorithm.

4.3.1.2 Simplicity and Efficiency

The simplicity and efficiency related tests are used to validate if the

MetaSqueezer system generates compact and easy to understand rules, and if it

generates them quickly. The tests report number of rules, number of selectors, and

execution time. Table 20 shows the results for the MetaSqueezer system, the

DataSqueezer algorithm, and the other ML algorithms (Kurgan and Cios, 2003a).

The MetaSqueezer system is compared with results achieved the DataSqueezer

algorithm, by 33 algorithm reported in the (Lim et al., 2000), and with results

achieved by the CLIP4 (Cios and Kurgan, 2002a). For the 33 algorithms, the

median number of rules (the authors reported the number of tree leaves for 21

decision tree algorithms) and the maximum and minimum execution time, as it

was reported by the authors, is given. Additionally, for the MetaSqueezer,

DataSqueezer, and CLIP4 number of selectors per rules is reported. The last

measure enables direct comparison of complexity of generated rules.

 101

Table 20. Number of rules and selectors, and running time results for the

MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms

Reported accuracy
(Lim et al., 2000) DataSqueezer MetaSqueezer

mean CPU time

CLIP4
(Cios and Kurgan, 2002a)

set

min [s] max [h]
median #
of leaves mean time

[s]
mean #
rules

mean #
selectors

select
/rule

mean time
[s]

mean #
rules

mean #
select

select/
rule

mean time
[s]

mean #
rules

mean #
select

select/
rule

bcw 4s 2.7 7 5.1 4.2 121.6 29.0 0.2 4.5 12.8 2.8 0.7 6.3 12.3 1.9
bld 5s 1.5 10 6.6 9.7 272.4 28.1 0.1 3.4 14.0 4.1 0.3 2.6 7.7 3.0
bos 9s 5.5 11 35.8 10.5 133.5 12.7 0.4 19.8 107 5.4 0.9 17.9 56.3 3.1
cmc 12s 23.9 15 46 8 60.7 7.6 1.3 20.2 70.5 3.5 1.6 17.4 42.1 2.4
dna 2s 475.2 13 662.8 8 90 11.3 12.5 39.0 97.0 2.5 22.8 34.0 53.0 1.6
hea 4s 3.3 6 2.2 11.6 192.3 16.6 0.1 4.7 17.1 3.6 0.3 1.9 3.7 1.9
led 1s 12.4 24 166.4 41 189 4.6 3.8 51 194 3.8 4.9 51 141 2.8
pid 7s 2.5 7 5.8 4 64.1 16.0 0.2 1.8 8.0 4.4 0.6 2.1 9.3 4.4
sat 8s 73.2 63 3696.7 61 3199 52.4 21.3 57 257 4.5 24.0 55 104 1.9
seg 28s 75.6 39 614.6 39.2 1169.9 29.8 6.1 57.3 219 3.8 6.4 50.7 89.3 1.8
smo 1s 3.8 2 90.5 18 242 13.4 1.1 6 12 2.0 1.3 3 11 3.7
thy 3s 16.1 12 164.2 4 119 29.8 1.3 7 28 4.0 1.6 6 6 1.0
veh 14s 14.1 38 45.3 21.3 380.7 17.9 1.2 23.7 80.2 3.4 1.5 22.4 41.4 1.8
vot 2s 25.2 2 4.4 9.7 51.7 5.3 0.1 1.4 1.6 1.1 0.4 1 1 1.0
wav 4s 4.3 16 43.1 9 85 9.4 0.4 22 65 2.9 0.4 16 16 1.0
tae 6s 10.2 20 0.7 9.3 273.2 29.4 0.2 21.2 57.2 2.7 0.3 14.7 27.8 1.9

MEAN 6.9 s 46.8 h 17.8 5 min
49.4 s 16.8 415.3 19.6 3.1 s 21.3 77.5 3.4 4.3 s 18.9 38.9 2.2

adult N/A 16839 72 7561 105.0 399.4 61 395 6.5 231.8 19 64 3.4
cid N/A --- --- --- --- 5,938.0 15 95 6.3 6,115.4 6 34 5.7
forc N/A 21542 63 2438 38.7 582.0 59 2105 35.7 416.0 33 699 21.2
mush N/A 257.4 2 18 9.0 0.1 8 21 2.6 0.4 6 16 2.7
MEAN N/A --- --- --- --- 1729.9 35.8 654.0 12.8 1,690.9 16.0 203.3 8.3

The mean number of rules generated by the MetaSqueezer system is 18.9,

while for the DataSqueezer algorithm is 21.3. The median number of tree leaves,

which is equivalent to the number of rules, for the 21 tested decision tree

algorithms, was reported as 17.8 (Lim et al., 2000). The number of rules

generated by the CLIP4 algorithm is 16.8. For the latter four data sets, the

MetaSqueezer system also achieves low number of generated rules. The number

 102

of rules generated by the MetaSqueezer system is comparable to the reported

results, and most importantly, lower than the number of rules generated by the

DataSqueezer algorithm. For the latter four data sets, the difference is significant,

since the MetaSqueezer system generates on the average over 50% less rules. This

difference was achieved for largest considered data sets, which shows that the

user can potentially obtain smaller rule sets for large data sets. This result

confirms one of the main advantages of the MetaSqueezer system, namely that it

generates very simple and easy to understand knowledge, in terms of the number

of rules.

Next, the MetaSqueezer system was analyzed in terms of the number of

selectors, and the number of selectors per rule, which it generates. The number of

selectors per rule generated by the system for the 16 data sets is 2.2. It means that

on average each rule generated by the MetaSqueezer system involves only 2.2

attribute-values pairs in the description of the rule. This is significantly less than

the number of selectors per rule achieved by the DataSqueezer algorithm (35%

less), and the CLIP4 algorithm (almost 90% less). This is primarily caused by

application of the MM concept where the meta-rules, which are reported here, are

generated from meta-data. The remaining algorithms generate rules directly from

the input data. This is yet another confirmation of the one of the main advantages

of the MetaSqueezer system, namely that it generates very simple and easy to

understand knowledge, in terms of achieving high compactness of the rules

expressed in the small number of selectors in the rule description. Both, low

 103

number of rules, and very small number of selectors within each rule, together

with very simple format of generated rules, i.e., production rules, make the results

generated by the system very easy to comprehend, evaluate, and use. This is a

very significant advantage of the MetaSqueezer system. It validates usefulness of

the system for real-life applications concerning learning from supervised data, and

assures that the results generated by the system are very simple.

MetaSqueezer’s execution time for the 16 datasets was 4.3 seconds. The

minimum execution time reported in (Lim et al., 2000) was 5 seconds for C4.5

algorithm (Quinlan, 1993; Quinlan 1996). The results show that the MetaSqueezer

system is faster than any of the 33 ML algorithms. The only faster algorithm is the

DataSqueezer algorithm which achieved execution time of 3.1 seconds. The

MetaSqueezer system is build using the DataSqueezer algorithm and it is not

surprising to see that both perform comparably well. The slightly worse results

achieved by the MetaSqueezer system can be explained by additional computation

overhead connected with dividing the data into subsets. The MetaSqueezer system

generates the knowledge very efficiently. It is also interesting to note that the

POLYCLASS algorithm, which achieved the best accuracy, had a mean execution

time of 3.2h.

4.3.1.3 Flexibility

The tests show that the MetaSqueezer system is characterized by high

validity (accuracy), simplicity and efficiency. Since these results were achieved

for a diverse range of the training sets, the system is also highly flexible. It

 104

achieves excellent results for data sets that include large number of examples with

missing values (e.g., adult, cid, mush data sets), large number of noisy examples

(e.g., bld, cmc, led, pid, smo, tae, and adult data sets), and both large number of

missing and noisy examples (e.g., adult data set). Also, the system is flexible

since it achieves excellent performance on the test sets that incorporate all three

types of attributes: nominal, discrete numerical, and continuous numerical. Thus,

the MetaSqueezer system is also characterized by very high flexibility.

4.3.1.4 Experimental Complexity Analysis

The MetaSqueezer system was experimentally tested to provide additional

validation of its linear complexity. As in the experimental complexity analysis

performed with the DataSqueezer algorithm, the tests were performed using the

cid data set, Table 7. The data set includes 40 attributes and 300K of data samples,

which assures accuracy of the complexity analysis. The training part of the

original data set was used to derive training sets for the complexity analysis. The

training sets were derived by selecting a number of examples from the beginning

of the original training set. A standard procedure of using training sets of doubled

size for each test, to verify if the execution time was also doubled, was used. The

results are summarized in Table 21 (Kurgan and Cios, 2003a). The table shows

time ratios for the subsequent experiments, along with the results of the

verification test, and the number of generated rules and selectors.

 105

Table 21. Summary of experimental complexity analysis results for the

MetaSqueezer system

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size

(ratio) --- 2 2 2 2 2 2 2 1.56

Time 65msec 1sec
27msec

2sec
31msec

4sec
72msec

10sec
44msec

24sec
71msec

55sec
43msec

2min
31sec

71msec

4min
33sec

01msec
Time - Ratio --- 1.95 1.81 2.04 2.21 2.34 2.24 2.74 1.80

Accuracy 93.6 90.6 90.3 92.0 92.5 91.7 90.5 90.9 90.2
Sensitivity 99.6 94.9 93.8 96.3 97.2 95.9 93.7 94.1 93.0
Specificity 1.9 25.7 37.1 26.5 20.6 28.1 41.8 41.7 49.0

Rules 38 11 14 17 18 13 11 11 6
Selectors 173 67 76 106 98 66 72 67 34

cid dataset

10

100

1000

10000

100000

100 1000 10000 100000 1000000

train data size

time [msec] MetaSqueezer

DataSqueezer

Figure 16. Relation between execution time and input data size for the

MetaSqueezer and the DataSqueezer algorithms

The results are visualized in Figure 16. The figure shows a graph of relation

between execution time and size of the data for both MetaSqueezer system and

DataSqueezer algorithm. The results for both algorithms are shown to compare

 106

their performance. The graph uses logarithmic scale on both axes to help visualize

data points of low values.

The results show linear relationship between the execution time and the size

of input data, for both MetaSqueezer and DataSqueezer, and thus agree with the

theoretical complexity analysis. The linearity is confirmed by observing that the

time ratio is always close to the data size ratio. The difference in ratios between

the time and training data size is shown in Figure 17. It shows that the ratio

difference does not grow with the growing size of input data.

-0.3
-0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

0 1 2 3 4 5 6 7 8 9
experim ent num ber

difference
between ratios

Ratio differences for MetaSqueezer
Ratio differences for DataSqueezer

Figure 17. The difference in ratios between the time and training data size

The slightly higher values of time ratio can be explained by computational

overhead for preparation of the input data. However, it is important that the

overhead does not increase with the increase of the input data size. The graph in

Figure 16 shows that the MetaSqueezer system has additional overhead connected

with division of input data into subsets, which becomes insignificant with the

growing size of the input data. This property is exhibited by initially lower

execution time of the DataSqueezer algorithm, where the difference in execution

 107

time between the MetaSqueezer system and the DataSqueezer algorithm shrinks

with growth of the size of data.

4.3.1.5 Summary of Experimental Evaluation

To summarize, the three main advantages of the MetaSqueezer system are

the compactness of the generated rules, low computational cost, and user-

friendliness of the generated results. Experimental results show that the system

strongly exhibits all four qualities of supervised inductive ML algorithms, i.e.,

accuracy, simplicity, efficiently, and flexibility. It generates rules very efficiently

since it is characterized by linear complexity. It also generates very simple rules

that perform with high accuracy. Still, it is sufficiently flexible to handle all types

of attributes, and training sets that incorporate high number of noisy and missing

values examples. Using the results of the analysis of the system’s qualities, the

advantages of the MetaSqueezer system are verified. It generates both compact

and user-friendly rules since it generates small number of short rules, and the

rules are in easy to comprehend format, i.e., production rules. Table 11

summarizes the results of the experimental evaluation of the MetaSqueezer

system.

Table 22. Summary of the benchmarking tests for the DataSqueezer algorithm

accuracy simplicity efficiency flexibility

high very high very high

highly flexible:
handles all attribute types

noise resistant
missing values resistant

 108

The results place the MetaSqueezer system among the best inductive ML

algorithms. The reader is encouraged to inspect Appendix C for detailed results,

which include graphs and detailed reports from 10 fold cross validation runs.

 109

Chapter 5

5 Application of MetaSqueezer System to Analysis of Cystic

Fibrosis Data

In this chapter we describe application of the system to analysis of data

describing patients with cystic fibrosis. The goal was to provide answers for two

data mining goals specified by the owners of the data: finding factors related to

the pace of the disease development, and to different type of the disease.

5.1 Introduction

The MetaSqueezer system was used to perform analysis of medical data.

The project was carried out using the DMKD process model, which is described

next.

Several researchers have described a series of steps that constitute the KD

process. They range from very simple models, incorporating few steps that

usually include data collection and understanding, data mining, and

implementation, to more sophisticated models like the nine-step model proposed

by Fayyad et al. (Fayyad et al., 1996c). This project applies the six-step DMKD

process model as defined by (Cios et al., 2000a; Cios, 2001; Cios and Kurgan,

2002b). The advantage of this model is that it is based on an industry initiated

study that led to the development of an industry- and tool-independent DM

 110

process model (Wirth and Hipp, 2000; CRISP-DM, 2001). The model’s

usefulness for this project is supported by its successful applications to several,

mostly medical, problem domains (Sacha et al., 2000; Cios et. al, 2000a; Cios et.

al., 2000b; Kurgan et al., 2001). The goal of designing the DMKD process model

is to develop a set of processing steps that would be followed by practitioners

when executing DMKD projects. The purpose of such design is to help plan, work

through, and reduce the overall costs of the project by outlining the DMKD

process, and by describing procedures performed in each of the steps. The DMKD

process model describes a range from problem specification to deployment of the

results, i.e. discovered knowledge.

The six-step DMKD process is described as follows:

1. Understanding the problem domain. In this step the project is defined,

including definition of objectives, and learning domain specific

terminology and methods. A high-level description of the problem,

including the requirements and restrictions is analyzed. The project goals

are translated into DMKD goals and the project plan, which includes

selection of suitable DM tools, is prepared.

2. Understanding the data. This step includes collection of the data, and

decision regarding which data will be used (including its format and size).

Next, initial data exploration is performed to verify usefulness of the data

in respect to the goals identified in step 1.

 111

3. Preparation of the data. In this step, the data that will be used as input for

DM tools in step 4 is chosen. The step may involve sampling of data,

performing correlation and significance tests, data cleaning like checking

of completeness of data examples, assigning classes to data examples,

removing or correcting noise, missing values, etc. The cleaned data can be

further processed by feature selection and extraction algorithms (to reduce

dimensionality), by derivation of new attributes (say by discretization),

and by summarization of data (data granularization). New data records,

meeting specific input requirements of the given DM tools, are formed.

4. Data mining. This step applies DM tools to discover new information from

the data prepared in step 3. First, the training and testing procedures are

designed. Next, the data model is constructed using one of the chosen DM

tools, and the generated data model is verified by using testing procedures.

Data mining tools include many types of algorithms, e.g., machine

learning, rough and fuzzy sets, Bayesian methods, evolutionary computing,

neural networks, clustering, association rules etc. Detailed description of

these algorithms, together with specifications of their application areas,

can be found in (Cios et al., 1998).

5. Evaluation of the discovered knowledge. This step includes understanding

of the results, checking whether the new information is novel and

interesting, interpretation of the results, and checking their impact on the

project goals. Approved models are retained.

 112

6. Using the discovered knowledge. This step consists of planning where and

how the discovered knowledge will be used.

The just described DMKD process model is visualized in Figure 18, after

(Cios and Kurgan, 2002b).

Figure 18. The six-step DMKD process model

The important issues are the iterative and interactive aspects of the process.

Since any changes and decisions made in one of the steps can result in changes in

later steps, feedback loops may be necessary. The feedback paths are shown by

dashed lines in Figure 18. They are by no means exhaustive.

Following, the discussion concerning significance of the project is provided.

Next, the project is described using the six step DMKD process model.

 113

5.1.1 Significance

The project concerns analysis of cystic fibrosis data. The data set is

temporal in nature, and as such needs specific learning tools. The MetaSqueezer

system can be easily used for analysis of temporal data, and thus was chosen to

perform analysis.

Despite extensive literature search only one other application of inductive

ML techniques to analysis of temporal medical data was found. A system by

(Karimi and Hamilton, 2000) discovers very limited temporal relations using

Bayesian Networks and inductive machine learning algorithm C4.5 (Quinlan,

1993). The two algorithms are used to find relations between temporarily

consecutive records but without generalizing temporal rules for the entire period

of time. Also, the MM concept was not used in the system.

Although the MetaSqueezer system does not discover any temporal

relationships, it can be used to derive non temporal patters, in terms of production

rules, that describe the data across the time, but using meta-data that describes

data within particular temporal intervals. Also, other important factors, like

efficiency of the system and compactness of results that it generates, decided on

application of the system in this project.

Medical applications often aim to describe patterns in disease development

and to predict therapy effectiveness. The application of the MetaSqueezer system

can be included within the first category. Our goal is to discover patterns

(important factors) that are associated with different paces of development of

 114

cystic fibrosis disease. As a secondary goal, the system was used to find important

factors associated with particular gene types that cause cystic fibrosis.

5.2 Understanding the Problem Domain

Since the MetaSqueezer system is applied to medical data describing cystic

fibrosis (CF) patients, first the disease is introduced. CF is a genetic disease

affecting approximately 30,000 children and adults in the United States (Cystic

Fibrosis Foundation, 2002). One in 31 Americans, and one in 28 Caucasians,

which translates into more than 10 million people carry the defective gene causing

CF. They do not exhibit the symptoms, and thus they do not know about the

disease. An individual must inherit a defective copy of the CF gene from each of

the parents to become affected. Statistically, when two carriers conceive a child,

there is a 25 percent chance that the child will have CF, a 50 percent chance that

the child will be a carrier, and a 25 percent chance that the child will be a non-

carrier.

CF is a deadly disease that affects multiple systems, including the

respiratory system, digestive system, endocrine system, and reproductive system.

It has multiple symptoms including very salty-tasting skin, persistent coughing,

wheezing or pneumonia, excessive appetite but poor weight gain, and bulky stools.

CF is diagnosed usually by the sweat test, which measures amount of salt in the

sweat. A high chloride level indicates that a person has CF.

 115

The treatment of CF depends upon multiple factors like stage of the disease

and which organs are involved. In case of the most severely affected organ, the

lungs, the disease is treated usually by chest physical therapy, and antibiotics,

which are used to treat lung infections. When CF affects the digestive system, the

patients are required to eat an enriched diet and take replacement vitamins and

enzymes (Cystic Fibrosis Foundation, 2002).

One of fundamental assumptions in the project was for the medical staff to

provide only the necessary minimum background knowledge to us. The main

reason for that was to assure that the research will not be biased toward finding

solutions that would confirm accuracy of the MetaSqueezer system based on the

domain knowledge. By following this assumption, a true evaluation of the system

was provided.

The project goal is to perform analysis of data concerning patients with CF.

Although CF is an extensively studied disease, the amount of available data and

support of well qualified medical staff were important and sufficient factors that

lead to starting the project. The predicted outcome of the investigation was to

provide new findings that may advance knowledge about the disease and its

treatment methods. Also, the investigation was an opportunity to confirm

correctness of the system, for example by finding results, which are already

described in literature.

The two goals defined by clinicians were:

 116

• task 1 is to discover patterns (important factors) that influence the pace of

the development of CF. Although CF affect multiple systems, the one

system that is used to indicate the progress of the disease is the

pulmonary system. It is interesting that for some patients the disease

progresses very fast, while for others it progresses relatively slow. There

are some known factors that are related to the pace of the disease, but

still much of them probably remain unknown. Thus, the first goal was to

discover such factors that are related to different, predefined paces of the

disease development based on historical data concerning CF patients.

• task 2 is to discover important factors that are related to particular kinds

of CF. CF is a genetic disease. As for such, genotypes related to the

disease are described. Our task was to find factors that are related to

different, predefined types of CF based on historical data concerning CF

patients.

The CF data is temporal in nature. It describes several hundreds of CF

patients in time. For each patient multiple visits are recorded. Most of the patients

are monitored between their birth and death. For each visit multiple attributes

describing demographical information, various lab results, and diagnostic

information are recorded. It is a known fact that the data describes different

relationships depending on the stage of the disease. Thus, any investigation that

uses such data must be able to separate the data into subsets corresponding to

particular stages of the disease.

 117

In the next step the two goals were redefined into mining goals:

• Task 1. Such mining goal can be defined as a supervised inductive

learning task. Categorical class attribute must be defined, which will

group the data into subsets corresponding to patients who exhibit

different pace of the disease development. Also, since the data is

temporal, another attribute will be used to divide the data across the time

domain. The attribute will describe the stage of the disease based on the

status of a pulmonary function test.

• Task 2. Such goal can be also defined as a supervised inductive learning

task. Thus, a categorical class attribute that describes patients in terms of

the particular type of CF they have must be defined. Next, similarly as

for the first task, the data must be divided in temporal manner by using

attribute(s) describing patient’s lung functions.

After analyzing both tasks, the MetaSqueezer system was identified as a

DM tool capable to provide desired results. There are four factors that decided

about choosing the system:

• it generates very simple to understand rules. This project requires

physicians to be able to analyze and comprehend the rules. This is

necessary to evaluate and use the results. The system not only generates

small number of rules, but also very compact rules, which tremendously

helps in their analysis

 118

• it is scalable. The system has linear complexity and thus can be used with

large quantities of data. The estimated size of the CF data set was about

20K examples by around 200 attributes, and thus an efficient system is

necessary to generate the results.

• it can handle large quantities of missing values. Since the CF data is a

real-life, clinical data set, it is expected that it will contain large

quantities of missing information. The MetaSqueezer system is able to

handle data sets which contain significant amount of missing values

since such data is always used an an input to the MM step. The

DataSqueezer which is a core inductive ML algorithm used within the

system is proven to generate accurate results even in presents of

significant amount of missing information.

• it can handle temporal data. Although the system does not provide

temporal-like knowledge representation, it can be succesfully applied to

temporal data. The DM step of the MetaSqueezer system accepts

multiple training data sub sets, which can represent temporally organized

subsets of the original data.

5.3 Understanding the Data

The data used in this project was donated by Dr. Frank Accurso, pediatric

pulmonologist from Denver Children’s Hospital. It was collected starting in 1982.

It includes demographical information about patients, clinical information

 119

including a variety of lab tests, and diagnoses. The data includes information

about 856 patients. It was stored in the MS Access 97 using seven relational

tables. The tables, together with the relational dependencies (shown as links) are

shown in Figure 19.

Figure 19. The structure of the CF data

Detailed description of each of the tables is provided below:

• VISITS (vis) table

o The table holds the most important information relevant to patient’s

visits to the clinic. One of the attributes, which is stored in the visits

 120

table is the FEV% attribute that will be used as the time-defining

attribute, as well as the class attribute.

o Statistical information:

 15,199 examples

 26 attributes, numerical and binary

 183,845 missing values; 46.5% of the total number of values

 no keys are defined

• ADDDAYS (add) table

o The table holds administrative information, like patient admission

information, kind of sickness that patient had when admitted, etc.

o Statistical information:

 2,141 examples

 9 attributes, binary, textual, numerical, and date/time

 3,011 missing values; 15.6% of the total number of values

 no keys are defined

• DEMOGRAPHICS (dem) table

o The table holds demographical information about patients, like gender,

race, ethnicity, family situation, etc.

o Statistical information:

 856 examples

 40 attributes, binary, textual, numerical, and date/time

 18,317 missing values; 53.5% of the total number of values

 121

 “patno” is defined as the primary key

• DIAGNOSIS2 (dia) table

o The table holds diagnostic information. Although each patient is

diagnosed with CF, the tests that lead to the diagnosis are indicated,

and values for theses tests are provided. The table holds two attributes,

Genotype1 and Genotyp2, that will be used to define the class attribute

o Statistical information:

 856 examples

 89 attributes, binary, textual, numerical, and date/time

 42,336 missing values; 55.6% of the total number of values

 no keys are defined

• CULTURE_LAST (cul) table

o The table holds a variety of laboratory test results

o Statistical information:

 6,904 examples

 65 attributes, numerical and textual

 235,054 missing values; 52.4% of the total number of values

 no keys are defined

• MICROCHEMISTRY (mic) table

o The table holds a variety of laboratory test results

o Statistical information:

 3,138 examples

 122

 65 attributes, numerical

 146,307 missing values; 71.7% of the total number of values

 no keys are defined

• HEMATOLOGY (hem) table

o The table holds a variety of laboratory test results

o Statistical information:

 2,348 examples

 27 attributes, numerical and textual

 22,043 missing values; 34.8% of the total number of values

 no keys are defined

Because of the confidentiality issues, all identification information was

removed from the data before it was used in the project. The data holds only

relevant clinical information.

There are several issues with the CF data. First, as expected, it contains

significant amount of missing information. For example, MICROCHEMISTRY,

CULTURE_LAST, and DIAGFNOSIS2 tables contain more than half of missing

information. Second, it can be also expected that since the data was inserted

manually by the physicians, it will contain also substantial amount of incorrect

records. Next, the tables contain different attributes: numerical, textual, and

binary, which need to be handled by the learning algorithm. The tables also

possibly include large quantities of irrelevant information, in terms of attributes,

 123

which may be removed before the learning process is executed. All these issues

need to be addressed in the next step.

Below, the FEV%, Genotype 1, and Genotype 2 attributes are described.

These attributes will be used to derive classes for both tasks, and to divide the

data into temporal intervals:

• FEV% (Forced Expiratory Volume in One Second % Predicted) attribute

is stored in the VISITS table. It describes the amount of air that can be

forced out in one second after taking a deep breath. Since one of the

most significant symptoms of CF is obstruction of lungs, the lungs

function tests are very good indicator of the stage of the disease. In case

of the CF data, the test result indicates the stage of the disease better than

the timestamp information, because different patients are diagnosed and

start treatment at different age. Another advantage of FEV% is its

independence of patient characteristics like weight, age, race, etc., since

these characteristics are used to compute its values. The FEV% is used

as the attribute to define temporal intervals for both tasks. It is also used

to define the class attribute for the first task. Since goal of this task is to

discover important factors that influence the pace of CF development,

several categories of the disease development pace were defined using

the FEV% attribute. The choice of the FEV% attribute was suggested by

Dr. Accurso who is the owner of the data set.

 124

• Genotype 1 and Genotype 2 attributes are stored in the DIAGNOSIS2

table. The CF is caused by at least 1000 different genetic mutations, but

approximately 70% of the mutations are found to be delta F508 gene,

making it the most common CF mutation (Cystic Fibrosis Genetic

Analysis Consortium, 1990; Cystic Fibrosis Mutation Database, 2003).

The CF data includes two attributes describing the genetic mutations:

Genotype 1 and Genotype 2. These attributes are used to distinguish

different kinds of CF. Since the second mining task is to find important

factors that are related to particular kinds of CF, combination of the two

attributes will be used to provide class labels for the task. According to

Dr. Accurso, four kinds of CF need to be defined: 1) both Genotype 1

and Genotype 2 are F508, 2) Genotype 1 is F508 and Genotype 2 is any

other genotype, 3) Genotype 2 is F508 and Genotype 1 is any other

genotype, 4) both Genotype 1 and Genotype 2 are not F508.

In summary, the data was identified to hold all information necessary to

carry out the project. More specifically, several attributes that may be used to

derive classes and temporal subsets for both learning tasks were identified. Also,

the amount and variety of information included in the CF data gives a strong

reason to believe that interesting patters may be discovered.

 125

5.4 Preparation of the Data

Before the CF data will be used to generate rules using the MetaSqueezer

system, it needs to be preprocessed. This usually involves removing or correcting

noise and missing values, sampling and reorganizing the data, assigning classes to

examples, identifying temporal intervals, etc. The cleaned data is later discretized

since the MetaSqueezer system works only with discrete data. As with most of the

DM projects, it is expected that this step consumes most of the allocated time

(Cabena et. al, 1998, Cios and Kurgan, 2002b). It is well recognized that data

preparation is a very important task that greatly affects the outcome of the entire

project, and thus it often takes a significant portion of the total project effort

The CF data is stored in seven relational tables. As a first step, a manual

data checking and cleaning was performed. It is expected that this task will

consume significant amount of time since the CF data contains significant amount

of errors and inconsistencies. Since the data concerns medical domain, problems

are expected connected with physician’s interpretation that is written in an

unstructured free-text English (text fields in the database), which is very difficult

to standardize and thus difficult to mine (Cios and Moore, 2002). To point out

some of the problems, the values of the FEV% attribute from VISITS table should

be in the range [0; 200], but some records have bigger values. Since the

information stored in this attribute is critical for the MetaSqueezer system, this

problem needs to be carefully corrected. Another problem is presence of null

 126

attributes. Such attributes have null values for all tuples (rows) and thus should be

deleted. Almost all tables in the CF data contain attributes that are null.

Table 23. Summary of data cleaning performed with CF data

Table Fixed inconsistencies Fixed errors
DEMOGRAPHICS sex : F → f, Female → f, M → m, Male → m

group: nbs → NBS
marital: u → Unknown, m → Married, s → Single, d → Divorced
mecil: No → no, NO → no, Yes → yes, y → yes, Treated Surg →
TreatedSurgically, tr surgically → TreatedSurgically, trsurg →
TreatedSurgically, treated surgically → TreatedSurgically, surg →
TreatedSurgically, surgery → TreatedSurgically, Treated Surgically →
TreatedSurgically, Treated Med → med
jaun: Unknown → unk, Untreated → unt, untreated → unt, treated → trt,
No → no, NO → no, Treated → trt
bfed: Yes → yes, No → no, NO → no, y → yes, YES → yes, YYES →
yes, n → no
dcmot: y → yes, n → no, Yes → yes, YES → yes, Y → yes, NO → no, No
→ no
deltype: Vaginal → vagnl

marital: o, 1

ADDAYS EXTENDEDCRC : n → N

NONE

CULTURE_LAST SOURCE: SPUTUM → Sputum
SOURCE2: Throat cx → Throat Cx
VIRUSDETECTED: N → n, Y → y, ND → n
Adeno: N → n, Y → y
CMV: N → n, Y → y
FLU: N → n
ParafluI: N → n, Y → y
ParafluII: N → n
ParafluIII: N → n
Rhino: N → n
Coxsa: N → n
Polio: N → n
RSVCX: N → n
RSVRAPID: N → n

VIRUSDETECTED: +, =

DIAGNOSIS2 Status : unknown → Unknown
site1: other → OTHER, Other → OTHER, Oher → OTHER
val2: M → m
site2: other → OTHER, Other → OTHER
site3: other → OTHER, Other → OTHER
Geno: removed entire attribute
Date of NPD: removed entire attribute
Date Post card Sent: removed entire attribute

age@diagnosis: -73.9,-93.3
age@sweate3: -73.9,-94.2,-93.3
Geno: entirely NULL attribute
Date of NPD: entirely NULL attribute
Date Post card Sent: only a single date
10/19/2001
Genotypes2: comment
sweatna1: 878

HEMATOLOGY pivka: NEG → Neg

pivka: 77,0.4,0.99
IIAg: NEG
empty records for PatNo: 1948, 514, 97,
112, 893, 194, 665, 1940, 248

MICROCHEMISTRY BUNoperand: S → s
Ca:mg/dL;MEQ/L: meq/l → MEQ/L
VitAmeas: UG/DL → ug/dl, MCG/DL → mcg/dl, ug/dL → ug/dl
IGECom: removed entire attribute

empty record for PatNo: 863, 642, 561,
956, 640
IGECom: entirely NULL attribute

VISITS NONE FEV%: values above 150: 151, 158,
164, 166, 808, 982
Inpt: delete examples with Inpt=1
PulseOximetry: delete values > 100

 127

The two main manual operations were performed to clean the CF data. First,

the consistency of attributes was corrected by merging together their

corresponding values. Such operation is caused by inconsistent format of inserted

data, and must be performed since inductive ML algorithms do not recognize such

correspondence. Next, erroneous values of attributes were identified and removed.

This was performed for all of the tables, and is summarized in Table 23.

After the data was cleaned, it was converted into a single relational table. In

order to merge the seven tables several join operation were performed. The tables

were merged in pairs, where results of one join operation were merged with next

table. The following procedure was applied to generate a single table out of the

seven original tables:

1. join on DEMOGRAPHICS and DIAGNOSIS2 with “patno (dem) EQUAL

TO patno (dia)”

2. join on VISITS-imp and the previous join result with with “patno (vis)

EQUAL TO patno (dem)”

3. join on the previous join result and ADDDAYS with with “patno (vis)

EQUAL TO Patno (add) AND visdate1 (vis) CLOSEST TO ADMDATE

(add)”

• additional conditions were: “visdate1 (vis) ≤ ADMDATE (add)” AND

“ADMDATE (add) – visdate1 (vis) ≤ 90 days”

4. join on the previous line result and CULTURE-LAST with with “patno (vis)

EQUAL TO patno (cul) AND visdate1 (vis) CLOSEST TO date (cul)”

 128

• additional conditions: “|date (cul) – visdate1 (vis)| ≤ 90 days”

5. join on the previous line result and MICROCHEMISTRY with with “patno

(vis) EQUAL TO Pat. (mic) AND visdate1 (vis) CLOSEST TO Date (mic)”

• additional conditions: “|Date (mic) – visdate1 (vis)| ≤ 90 days”

6. join on the previous line result and HEMATOLOGY with with “patno (vis)

EQUAL TO patno (hem) AND visdate1 (vis) CLOSEST TO date (hem)”

• additional conditions: “|date (hem) – visdate1 (vis)| ≤ 90 days”

7. join on the previous line result and PERCENTILES with with “patno (vis)

EQUAL TO patno (per) AND visdate1 (vis) EQUAL TO date (per)”

• this join operation concern a new data table that is described later in the

section.

The next data preparation step consists of removing attributes that are

irrelevant to the performed tasks. After consultation with Dr. Accurso, the

attributes listed in Table 24 were removed. The attributes were found either

irrelevant from the medical point of view or containing too much noise or missing

information to be used for learning.

After removal of attributes, temporal intervals and class labels are

generated. Finally, the data is discretized using both the manual discretization,

and F-CAIM algorithm (Kurgan and Cios, 2003b). The outcome of this step are

two relational tables that include discrete attributes, an attribute that defines class

labels, one per each table, and another attribute that defines temporal intervals

 129

used to divide data in the DM step of the MetaSqueezer system. One of the

generated tables is used for the first tasks, while the other for the second task.

Table 24. List of irrelevant attributes from CF data

table name attribute name
VISITS visdate1, Dictation, Other, AdultCenter, FVC, FVC%, FEV1, FEF25-

75, , FEF25-75% , ACT, MAC , TSF, SSF, HeightforAgeZ,
WeightforAgeZ, WeightforHeightZ, HC, %IBW

DEMOGRAPHICS Insurance, Comment, Study, Smokinginthehome, cffam, lunghx,
motallrg, fatallrg, siballrg, , bleng , ofc, distress, resus, jaun, formage

DIAGNOSIS2 DOB, Ifmoved-where?, Status-Comment, othexplain, DateDiagnosis,
irtdate1, irtdate2, irtdate3, swedate1, swedate2, swedate3, swedate4,
Comment, GenotypeDate, Accession., GenoComment, Sex,
DateofEnzymeStart, Sendapostcard, birthstate, Status, Unknown,
swetamt1, val1, site1, age@sweat1, swetamt2, val2, site2, age@sweat2,
swetamt3, val3, site3, age@sweate3, swetamt4, val4, site4,
age@sweat4, SweatTestOriginal, GenotypeOriginal, GenotypeSite,
GENOGROUP, CauseofDeath, dateofEnzymestartoperand,
TomNemeth?, NasalPotentialDifference, age@diagnosis

ADDAYS ADMDATE, DISCHGDATE, INDICATION(DX), COMMENT1,
EXTENDEDCRC

MICROCHEMISTRY Date, Clinic, CRCvisit, age, IGEoper, BUNoperand, ALKoperand,
Camg/dL;MEQ/L, VitD25-OH/Operand, VitAmeas, Gamma-Eoperand,
TRYPoperand, CG/OPERAND, Lipase, TotalE, OGTT-FastingGlucose,
OGTT-30minuteGlucose, OGTT-60minutesGlucose, OGTT-
90minutesGlucose, OGTT-120minutesGlucose, ZPP, Gluthathione,
VitAoperand, po4, ca19

HEMATOLOGY date, crcvisit, Clinic, BASOS/OPERAND, EOS/OPERAND,
CRP/Operand, pivka, IIAg

CULTURE_LAST date, BASE, BASE2, BASE3, BASE4, BASE5, power, power2,
power3, power4, power5, Comment, Comment2, crcvisit, HOSPITAL,
CFPATHOGEN, PolymorphicCellsDe, EpithelialCellsDet,
GramNegativeRodDe, GramPositiveRod, GramNegativeDiploc,
GramNegativePleorm, GramPositiveCocci, GramPositiveCocci2,
PseudomonasAerugino, PseudomonasAerugin2, HFlu, HOSPITAL2,
SOURCE2, VIRUSDETECTED, Adeno, CMV, FLU, ParafluI,
ParafluII, ParafluIII, Rhino, Coxsa, Polio, RSVCX, RSVRAPID,
RSVTECHNIQUE

other patno, FEV% (vis), Genotypes1 (dia), Genotypes2 (dia) because of
correlation with class and time-defining attributes

The step of data preparation was highly iterative. Following, the final

outcome, derived after several iterations, is described. Also, a brief description of

all iterations is summarized at the end of this section.

 130

The MetaSqueezer system can be applied to generate rules from supervised

temporal data, such as CF data. The training set needs to be organized in a

relational table where each column holds a single attribute, and each tuple

describes a single example. In case of analysis of CF data, there are two attributes

that must be included in the table:

• one that stores class labels. Class labels are usually derived from one of

the data attributes and define the target concept. In case of Task 1, they

describe the pace of the disease development, and in case of the task 2

they describe different types of CF. The “CF pace (cf)” attribute was

generated to describe classes for task 1, while “”CF type (cf)” attribute

was generated to describe classes for task 2.

• one that stores time-defining information. The MetaSqueezer system

works with training set that is divided into subsets. These subsets are

defined for example as temporal intervals, and as such will include data

that is associated with particular stages of the CF. The same time-

defining attribute, called “TemporalIntervals (cf)”, is used for both tasks.

Following, the description of the class and time-defining attributes is

provided.

5.4.1 The Class Attributes

These are two class attributes, one per each task. The first attribute

describes pace of the disease development, which is used to define classes for task

 131

1. The attribute was derived based on “visdate1” and “FEV%” attributes using the

following procedure:

• remove all examples with missing “visdate1” or ”patno” or “FEV%”

o “visdate1” describes the visit data, while “patno” describes unique

patient number

• remove all examples for

o “visitdate1” at patient’s age ≤ 7 years

o all patients with 5 or less visits, because of possibility of

inaccuracies for the linear curve fitting

• recalculate “visdate1” into the “dayno” that describes number of days

since the first visit for each patient

• perform linear curve fitting (y=a*x+b) to determine pace of the disease

development for each of the patients

o use “dayno” as x, and “FEV%” as y coordinate

o use slope of the linear interpolation of the above relation to

determine the pace of CF.

The “CF pace (cf)” attributes is defined in Table 25.

Table 25. Definition of the "CF pace (cf)" attribute

CF pace (cf) slope a description # patients # data points
FastDegrad [-inf, -0.01) fast pace of degradation 68 2221
SlowDegrad [-0.01, -0.005) intermediate pace of degradation 64 2241
NoChange [-0.005, 0.005) no change 165 5847

Improv [0005, inf) slow pace of improvement 60 1598
Unknown unknown missing (no slope for a patient) 499 4613

 132

The total number of negative slopes, which define degradation, was 227,

positive slopes, which define improvement, was 130, while the total number of

patients for whom the slopes were computed was 357. The first four categories

from Table 25 define the examples that will be used to generate rules, while the

last category defines examples that will be removed. This means that the first task

is the 4-class supervised inductive learning task. The definition of the intervals of

the slope was decided by Dr. Accurso.

The second class attribute describes different types of CF and is used to

define classes for task 2. The attribute was derived based on “Genotype 1” and

“Genotype 2” attributes, as shown in Table 26.

Table 26. Definition of the "CF type (cf)" attribute

CF type Genotypes1 Genotypes2 # examples
Type1 F508 F508 8386
Type2 F508 not F508 5329
Type3 not F508 F508 0
Type4 not F508 not F508 969
Type5 either or both unknown 1836

The first four categories define the examples that will be used to generate

rules, while the last category defines examples that will be removed. The Type2

and Type3 classes were merged together, and thus the second task is the 3-class

supervised inductive learning task. The definition of the types was decided by Dr.

Accurso.

 133

5.4.2 The Time-Defining Attribute

The time-defining attribute, which is used to divide the data into subsets for

the DM step of the MetaSqueezer system is derived from the FEV% attribute.

There are 6 discrete values of the attribute, shown in Table 27, defined.

Table 27. Definition of the "TemporalIntervals (cf)" attribute

TemporalIntervals (cf) > min FEV% ≤ max FEV% # examples
1 0 40 824
2 40 60 1474
3 60 80 2281
4 80 100 2973
5 100 1000 1686
0 FEV% empty,

error, <0, >1000
7282

The first five categories define the examples that will be used to generate

rules, while the last category defines examples that will be removed. This means

that the training sets for both tasks are divided into 5 subsets during the DM step

of the MetaSqueezer system. The definition of the intervals of the FEV% attribute

was decided by Dr. Accurso.

5.4.3 Discretization

After deriving class and time-defining attributes, the data was discretized.

First, each attribute was evaluated to belong to one of three categories: discrete,

continuous for manual discretization, and continuous for automated discretization.

The discrete attributes were left unchanged. The continuous for manual

discretization attributes were discretized by Dr. Accurso. This was performed to

 134

generate discrete attribute, where their values have medical representation. The

summary of manual discretization is provided in Table 28.

Table 28. The manual discretization of the CF data

attribute name # of discrete
intervals

discretization schema

dob (dia) 3
(-inf, 12/31/1981) → before82, (01/01/1982,
12/31/1992) → 82till92, (01/01/1993, present) →
after92

DateOfDeath (dia) 2 any value → true, empty → false
crcvisit1 (vis) 2 0 → 0, non 0 → non0
Birthstate (dem) 2 CO → CO, non CO → notCO
moteduc (dem) 2 <=12 → 12andbelow, >12 → above12
fateduc (dem) 2 <=12 → 12andbelow, >12 → above12
gestage (dem) 2 <=38 → 38andbelow, >38 → above38

bwt (dem) 3 <2.5 → below2.5, <2.5, 3.2> → between2.5and3.2,
>3.2 → above3.2

apgar1 (dem) 3 <5 → below5, <5, 8) → 5till8, >=8 → 8andabove
apgar5 (dem) 3 <5 → below5, <5, 8) → 5till8, >=8 → 8andabove

dayshop (dem) 3 <5 → below5, <5, 15> → between5and15, >15 →
above15

ALB@DXINTERVIEW
(dia) 3 <=2.5 → 2.5andbelow, (2.5, 3> → 2.5till3, >3 →

above3
pseuda (cul) 2 0 → 0, non 0 → non0
pseudm (cul) 2 0 → 0, non 0 → non0
pseudc (cul) 2 0 → 0, non 0 → non0
Xanthamonas(psmaltophilia)
(cul) 2 0 → 0, non 0 → non0

otherpseud (cul) 2 0 → 0, non 0 → non0
stapha (cul) 2 0 → 0, non 0 → non0
hflu (cul) 2 0 → 0, non 0 → non0
Aspegillus (cul) 2 0 → 0, non 0 → non0
NonTBMycobacterium (cul) 2 0 → 0, non 0 → non0
EColi (cul) 2 0 → 0, non 0 → non0
Klebsiella (cul) 2 0 → 0, non 0 → non0
Alcaligienesxylosoxidans
(Achromobacter) 2 0 → 0, non 0 → non0

BranhCat (cul) 2 0 → 0, non 0 → non0

IGE (mic) 3 <100 → below100, <100,1000> → 100till1000, >1000
→ above1000

alb (mic) 3 <=2.5 → 2.5andbelow, (2.5, 3> → 2.5till3, >3 →
above3

age@diagnosis (dia) 4 <=0.25 → below025, (0.25,2> → 025till2, (2,7> →
2till7, >7 → above7

 135

The continuous for automated discretization attributes were discretized

using the supervised discretization algorithm F-CAIM (Kurgan and Cios, 2003b).

The F-CAIM algorithm is a modification of the original CAIM algorithm, which

exhibits the same properties as CAIM, but is faster. Since it is a supervised

discretization algorithm, it discretizes an attribute using class labels. Thus, the

algorithm discretizes each attribute twice, separately for each of the tasks. The list

of attributes discretized using the F-CAIM algorithm is shown in Table 29.

Table 29. The discretization of the CF data using F-CAIM algorithm

table name attribute name
VISITS vis_hgt1, vis_wght1, PulseOximetry
DEMOGRAPHICS motage, fatage
DIAGNOSIS2 HCT@DXINTERVIEW, irt1, age@irt1, irt2, age@irt2, irt3, age@irt3,

swetna1, swetk1, swetcl1, swetna2, swetk2, swetcl2, swetna3, swetk3,
swetcl3, swetna4, swetk4, swetcl4

MICROCHEMISTRY na, k, cl, CO2, Glucose, bun, alkphos, ast, prot, ca, PHOS-S, VitD25-OH,
prealb, rbp, vita, alphae, Gamma-E, TRYP2, lipids, cg, Zinc,
GLYCOHGB, GGTP-S, IU/LGPT/ALT, LDH-S, CHOLESTEROL-S,
CREAT-S, BILI-TOTAL, E/L, BetaCarotene, HemA1C, BileAcid

HEMATOLOGY wbc, rbc, hgb, hct, mcv, mch, mchc, rdw, segs, bands, lymphs, relymph,
monos, basos, eos, esr, PMNElastase

CULTURE_LAST BASEpower, BASEpower2, BASEpower3, BASEpower4
PERCENTILES WAZ, HAZ, WHZ

5.4.4 The Training Set for Task 1

The task 1 goal it to discover factors related to different paces of the

development of CF. Thus, the training set uses “CF pace (cf)” attribute as the

class attribute, and “TemporalInterval (cf)” as the attribute to divide the data into

subsets during the DM step of the MetaSqueezer system. The training set was

derived from the original data first by removing noise and inconsistencies,

 136

merging the seven tables, removing irrelevant attributes, defining class and time-

defining attributes, and finally discretizing the remaining continuous attributes.

Two more steps were performed to generate final version of the training set:

• examples that include incomplete critical information, in terms of class or

temporal information, were removed. Thus, all examples that have “CF

pace (cf)” = Unknown OR “TemporalInterval (cf)” = 0 were removed.

Total of 11,872 examples were removed.

• examples that incorporate too many missing values were removed. This

was performed to remove all examples that contain large number of

missing values introduced by performing join operations. During the join,

if a tuple from one table was not matched with a tuple from another table,

it was padded with missing values. If an example was not matched

during several subsequent joins, as a result it contains many missing

values, and can be treated as an outlier and thus removed. To decide

which examples will be removed, a graph that shows relationship

between the number of missing values and number of examples that

have the number of missing values was used, see Figure 20.

 137

MISSING VALUES for TASK1

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

missing values

ex

am
pl

es
 w

ith
 th

e

of

m
is

si
ng

 v
al

ue
s

of examples
% of examples
threshols

Figure 20. The relationship showing number of examples with particular number

of missing values for task 1

The graph shows a peak of number of missing values above 115 missing

values per example. This high peak is associated with the examples that

were padded with zeros during join operations, and thus might be removed

without impairing the quality of learning. The examples with more than 115

missing values were removed. Total of 2,316 examples were removed.

After applying the above preprocessing steps, the training set for task 1

consists of 5,448 examples described by 160 attributes, and with total number of

values of 871,680. The number of missing values is 492,961, which constitutes

56.6 % of the entire set.

5.4.5 The Training Set for Task 2

The task 2 goal it to discover factors related to different types of CF. Thus,

the training set uses “CF type (cf)” attribute as the class attribute, and

“TemporalInterval (cf)” as the attribute to divide the data into subsets during the

 138

DM step of the MetaSqueezer system. The training set for task 2 was derived the

same way as the training set for the task 1, except the last two steps for which the

description follows:

• examples that include incomplete critical information, in terms of class or

temporal information, were removed. Thus, all examples that have “CF

type (cf)” = Type5 OR “TemporalInterval (cf)” = 0 were removed. Total

of 7,538 examples were removed.

• examples that incorporate too many missing values were removed.

Similarly as for the training set for the task 1, a graph that shows

relationship between the number of missing values and number of

examples that have the number of missing values was used, see Figure

21.

MISSING VALUES for TASK2

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
missing values

ex

am
pl

es
 w

ith
 th

e

of

m
is

si
ng

 v
al

ue
s

of examples
% of examples
threshold

Figure 21. The relationship showing number of examples with particular number

of missing values for task 2

 139

Similarly as for the training set for the task 1, based on the analysis of the

graph, the examples with more than 115 missing values were removed.

Total of 2,472 examples were removed.

After applying the above preprocessing steps, the training set for task 2

consists of 6,022 examples described by 160 attributes, and with total number of

values of 963,520. The number of missing values is 541,860, which constitutes

56.2 % of the entire set.

5.4.6 Refining the Project

The described above preprocessing steps were developed in highly iterative

manner, which is a common practice in case of DMKD projects. Following, a

summary of the iterations, including brief description of the changes, reasons, and

description of affected DMKD steps is provided.

Since the start of the project, the CF data was identified as very challenging

training set. Several reasons, like large amount of missing information, incorrect

records, large number of attributes, and structure of the CF data, were identified

as sources of possible difficulties. The project was performed slowly, with several

iterations, and careful revisions of the performed work. Four formal meetings

were held to evaluate the progress and direct the research. Also, numerous other

informal meeting and discussion have taken place. The results of these meeting

are summarized in Table 30, which shows all major iterations during the CF

project.

 140

Table 30. Summary of the refinements performed during the analysis of the CF

data

current
DMKD step

returned to reasons for
modifications

summary of modifications

Data Mining Preparation
of the Data

incomplete
and difficult to
evaluate
results

modification of the join operation, hand-coded
discretization of several attributes, removal of
several irrelevant attributes, redesign of the “CF
pace (cf)” attribute, new format of displaying the
results

Evaluation of
the
Discovered
Knowledge

Understandi
ng of the
Data

unsatisfactory
results

New data table, which describes weight and height
percentiles was added, modification of the join
operation to accommodate for the new table, hand-
coded discretization of several attributes that were
discretized automatically, deletion of examples with
high number of missing values, removal of several
irrelevant attributes

Evaluation of
the
Discovered
Knowledge

Data Mining invalidated
results

10 fold cross validation test procedures,
improvement in the new format of displaying the
results, removed minor data inconsistencies

The above iterations represent only the major modifications performed

during the project. They were performed at different steps of the DMKD process

and resulted in the refinement of the process by returning, modifying, and

repeating some of the previously performed steps. The redesign of the approach

was guided by both the medical the DM personnel. The main reason for

performing these refinements was unsatisfactory quality of results. The performed

modification resulted in improving the quality of the training sets, and improving

quality of representation of the results. It is very important to note that all of the

performed refinements resulted in substantial improvement of the quality of the

approach. The above work provides a strong validation of the iterative nature of

DMKD projects.

 141

5.5 Data Mining

The goal of the DM step is to generate new and useful knowledge from the

data prepared in the preceding steps. In case of the CF data, the DM step

consisted in two separate tasks. Task 1 was to discover important factors related

to predefined paces of the development of the disease. Task 2 was to discover

important factors related to predefined types of the CF. During the Preparation of

the Data step, two training sets, one per each task, were prepared. Summary

information about the sets is shown in Table 31.

Table 31. Summary of training sets for the CF project

set size # classes # attrib. test data % missing
values

% inconsistent
examples

subsets

CF1 5448 4 160 10CV 56.6 0 5
CF2 6022 3 160 10CV 56.2 0 5

The DM task for both training sets is very difficult because of the two

following observations:

• both training sets are characterized by very large number of missing

values. For both datasets, all examples contain some missing values, and

total number of missing information is larger than the amount of

complete information.

• both training sets are described by a large number of attributes, which

constitute about half of the original attributes from the raw CF data.

Because of the very large number of attributes, it can be expected that

 142

the data is very specific, i.e. there are very little common patterns

between different patients. Thus generated rules may be long.

The first factor was overcome by application of the MetaSqueezer system.

The system is proven to be missing values resistant. The results generated by the

system for the CF data again prove its ability to cope with data containing large

amount of missing information.

The second factor was overcome by development of an alternative

knowledge representation. The rules, generated by the MetaSqueezer, were

transformed into tables, called rule and selector ranking tables, which show

association of particular attributes and selectors with particular class values and

within particular training subsets. These tables are computed from the rules, and

provide compact and very easy to understand summary of information contained

in the generated rules sets.

5.5.1 Rule and Selector Ranking Tables

The tables are generated from rules by adopting procedure proposed by

(Cios and Kurgan, 2002a). Background information and description of the

procedure is given below.

The attribute and selector ranking tables are used to rank attributes and

selectors by assigning to them a goodness value that quantifies relevance of the

attributes to a particular learning task. The building of the tables is based on

computing goodness of each attribute and selector using classification rules

generated by the MetaSqueezer system or the DataSqueezer algorithm. The

 143

attribute and selector goodness is computed in three steps (Cios and Kurgan,

2002a):

1. Each rule generated by the MetaSqueezer system or DataSqueezer

algorithm consists of multiple selectors and has assigned goodness value

equal to the number of positive examples it covers. The goodness is

computed during rule generation. Its value is converted into percentage

of the size of positive training data.

2. Each selector is assigned a goodness value equal to the goodness of the

rule it comes from. Goodness of the same selectors from different rules

is summed up, and then scaled to the (0,100) range. 100 is assigned to

the highest summed value, and the remaining summed values are scaled

accordingly. Scaling of the goodness values is necessary because the

summed goodness for a particular selector can have value over 100, and

only its ratio to other selector goodness is important.

3. For each attribute the sum of scaled goodness for all its selectors is

computed and divided by the number of attribute values to obtain the

goodness of the attribute.

The following example shows how to compute attribute and selector tables

for data shown in Table 5. The DataSqueezer generated these two rules for class

home: “IF temperature = normal THEN home” (goodness 3), and “IF temperature

= low AND heart blood flow = normal THEN home” (goodness 2). The goodness

of rules is converted in the following manner: rule 1 describes 3 out of 5 examples

 144

from class home. Thus, its goodness is 3/5= 60%. Rule 2 describes 2 out of 5

examples from class home, so its goodness is 2/5= 40%. Below the list of all

selectors and their goodness values, computed as a sum of goodness of rules that

use the selector is given:

((temperature, normal); goodness 60), ((temperature, low); goodness 40),

((temperature, high); goodness 0)

((heart blood flow, normal); goodness 40), ((heart blood flow, low);

goodness 0), ((heart blood flow, high); goodness 0)

((chest pain type, 1); goodness 0), ((chest pain type, 2); goodness 0), ((chest

pain type, 3); goodness 0) ((chest pain type, 4); goodness 0)

After scaling the selector goodness values to the [0-100] range, the updated

goodness values are as follows:

((temperature, normal); goodness 100), ((temperature, low); goodness 66.7),

((temperature, high); goodness 0)

((heart blood flow, normal); goodness 66.7), ((heart blood flow, low);

goodness 0), ((heart blood flow, high); goodness 0)

((chest pain type, 1); goodness 0), ((chest pain type, 2); goodness 0), ((chest

pain type, 3); goodness 0) ((chest pain type, 4); goodness 0)

For attribute “temperature” we have the following selectors and their

goodness values: ((temperature, normal); goodness 100), ((temperature, low);

goodness 66.7), ((temperature, high); goodness 0)

 145

That gives the goodness of the attribute as (100+66.7+0)/3 = 55.6. Similarly,

the goodness of the “heart blood flow” attribute is 22.2 and goodness of the “chest

pain type” attribute is 0. The attribute and selector goodness for the rules

describing class home are as follows:

ATTRIBUTE : temperature (55.60 goodness)

values: normal (100.00), low (66.70), high (0.00),

ATTRIBUTE : heart blood flow (22.20 goodness)

values: normal (66.70), low (0.00), high (0.00),

ATTRIBUTE : chest pain type (0.00 goodness)

values: 1 (0.00), 2 (0.00), 3 (0.00), 4 (0.00),

The DataSqueezer generates the following rule for class treatment: “IF

chest pain type = 4 THEN treatment” (goodness 3). Following the same

computations, the attribute and selector goodness for the rules describing class

treatment are:

ATTRIBUTE : chest pain type (25.00 goodness)

values: 1 (0.00), 2 (0.00), 3 (0.00), 4 (100.00),

ATTRIBUTE : heart blood flow (0.00 goodness)

values: normal (0.00), low (0.00), high (0.00),

ATTRIBUTE : temperature (0.00 goodness)

values: normal (0.00), low (0.00), high (0.00),

 146

Next, the computed goodness values are used to generate the attribute and

selector ranking tables. The table generated for the above example is shown in

Table 32.

Table 32. Attribute and selector ranking table for the example data

attribute value class home class treatment
temperature 55.6 0
temperature normal 100 0
temperature low 66.7 0
temperature high 0 0
heart blood flow 22.2 0
heart blood flow normal 66.7 0
heart blood flow low 0 0
heart blood flow high 0 0
chest pain type 0 25
chest pain type 1 0 0
chest pain type 2 0 0
chest pain type 3 0 0
chest pain type 4 0 100

The table is used to analyze the generated rules in terms of finding

important attributes and selectors that were found to be correlated with a

particular class. The main reason for generation of such tables is simplicity of

their analysis. Instead of analyzing many possible rules, the user is shown a

simple table that lists the degree of association between an attribute or a selector

and a desired class. The degree of association is computed from the rules, and

thus is validated by the procedures used to validate the rules. The table greatly

simplifies the task of understanding and analysis of the results. Once the user

finds an interesting correlation, all rules that were used to compute it can be

pulled and displayed.

 147

After developing the tables and using them in the CF project, one more

modification was proposed and implemented. To make the analysis of the table

easier, the values representing the degree of association were color-coded. Three

thresholds were designed: for value of 0 the corresponding cell in the table is

white, for values from (0, 50) interval the color is gray, and for values from [50,

100] interval the color is black. The white color shows no association relationship.

The gray color shows an association, while the black color shows a strong

association. This greatly simplified the analysis of the table making it a very user-

friendly and easy to carry-out task. As an example, the above table in color coded

version is shown in Table 33.

Table 33. Color coded attribute and selector ranking table for the example data

attribute value class home class treatment
temperature
temperature normal
temperature low
temperature high
heart blood flow
heart blood flow normal
heart blood flow low
heart blood flow high
chest pain type
chest pain type 1
chest pain type 2
chest pain type 3
chest pain type 4

To even further improve the simplicity of the table, the attributes and

selectors that do not exhibit association with any of the classes may be removed

from it. Table 34 show the attribute and selector ranking table with removed

attributes and selectors.

 148

Table 34. Color coded attribute and selector ranking table with removed irrelevant

attributes for the example data

attribute value class home class treatment
temperature
temperature normal
temperature low
heart blood flow
heart blood flow normal
chest pain type
chest pain type 4

The attribute and selector tables are generated from rules generated by the

MetaSqueezer system. A separate table is generated from rules generated by the

DataSqueezer for each of the training subsets, called sub-tablei, where i is a subset

index. Another table is generated for the meta-rules generated in the meta mining

step of the system; called meta-table. The attribute and selectors tables are

generated in three steps. First all sub-tablei tables are merged into a single

attribute and selectors table, where entries for each of the classes are subdivided

into specific intervals. Next, the meta-table is used to adjust the values in the

existing attribute and selector table. If a specific entry exists in both tables, the

value in the attribute and selector table will be summed with the value from the

meta-table. Otherwise it is left unchanged. Finally, the values in the attribute and

selector table are scaled to the (0,100) range. The table shows the associations

between each of the attributes and selectors used in the rules, and the class

attribute, separately for each input subset. An example table, generated from rules

generated for the CF data, is shown later in the chapter.

 149

An example attribute and selector ranking table resulting from manipulating

a sub-table1, a sub-table2, and a meta-table is shown in Figure 22.

attribute value class home class treatment
temperature
temperature normal
temperature low
heart blood flow
heart blood flow normal
chest pain type
chest pain type 4

a)

attribute value class home class treatment
temperature
temperature normal
heart blood flow
heart blood flow normal
chest pain type
chest pain type 3
chest pain type 4

b)

attribute value class home class treatment
temperature normal
heart blood flow
heart blood flow normal
chest pain type
chest pain type 4

c)

attribute value class home class treatment
 I1 I2 I1 I2

temperature
temperature normal
temperature low
heart blood flow
heart blood flow normal
chest pain type
chest pain type 3
chest pain type 4

d)

Figure 22. a) sub-table1 generated for data from interval 1 (I1), b) sub-table2

generated for data from interval 2 (I2), c) meta-table d) attribute and selector

ranking table.

The main use of the attribute and selector ranking table is to enable human

evaluation of the generated rules by domain experts. Since often they have limited

time to perform the evaluations any method, like the one just described, that

simplifies the task is always welcome. Analysis of attribute and selector ranking

tables is performed by the following procedure:

• analysis of the class attribute to generate a list of values that can be

grouped based on similarities inferred from available background

knowledge. This list, called the class list, includes each of the values

 150

separately, but may include some grouping of values. This step concerns

analysis of values from the first row in the attribute and selector ranking

table. In the example table in Figure 22d, the class list consists of

{(home), (treatment)},

• finding significant attributes and selectors described in the attribute and

selector ranking table. Each of the rows of the table, except the first,

describes degree of association of a particular attribute or selector and

class values described by the shaded areas in columns. For each attribute

we find if grey or black areas that represent association of an attribute

with all classes are related to any of the elements from the class list. If

they are related to one element from the list then add the attribute or

selector to the list of, possibly, significant selectors and attributes. This

list contains an attribute or selector name along with the names of

classes from the class list, to which the attribute exhibits association

together with information about the degree of this association, and

information for which intervals it was exhibited. In case of the example

table in Figure 22d, the list of significant selectors and attributes consists

of the following five entries: {(temperature normal, strong association

with class home in I1 and I2), (temperature low, association with class

home in I1), (heart blood flow normal, strong association with class

home in I1 and I2), (chest paint type, strong association with class

 151

treatment in I1 and I2), (chest pain type 4, strong association with class

treatment in I1 and I2)}.

• evaluation of findings from the list of the significant attributes and

selectors. This is usually performed by domain experts who decide

validity and usefulness of each of the generated associations.

The attribute and selector ranking tables generated from the training data

for both tasks in the CF project, along with evaluation performed by medical

professionals are described in section 5.6.

5.5.2 Experimental Results

Both training sets were used as an input to the MetaSqueezer system. First,

the system was used to generate a set of production rules. Next, the rules were

evaluated, in terms of performing two sets of tests for each of the defined tasks:

• first test generates a set of rules from the entire training set. The rules are

used to generate the attribute and selector ranking tables, and tested on

the same training set. The results report accuracy on the training data,

number of generated rules and selectors. This set is used to provide

results that are analyzed by the clinicians.

• second test takes the training set and performs 10 fold cross validation

with the system with the same setting as for the first test. The results

report verification test results, running time, and number of rules and

selectors for each of the ten runs, and their mean values. The results of

the second test provide reliable analysis of the simplicity, accuracy,

 152

efficiency, and flexibility of the system, but could not be used by the

clinicians since ten different rule sets are generated. Instead, this set is

used to provide validation of results generated for the first set since both

test are performed for the same system settings.

Table 35 shows results achieved by the MetaSqueezer system for the

training set for task 1 and when performing 10 cross validation test. The table

shows accuracy, specificity, sensitivity, running time, and number of rules and

selectors achieved in each of the ten runs, and their corresponding mean and

standard deviation values.

Table 35. The 10 fold cross validation results for task 1

Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean
Accuracy 57.8 58.2 65.1 60.6 59.1 59.1 66.8 60.4 61.7 61.5 2.94 61.0
Specificity 88.9 89.3 90.2 88.8 90 89.6 91.2 90.5 91 89.8 0.8 89.9
Sensitivity 57 59.2 60.1 63.3 60.7 52.6 63.4 58.4 59 56.6 3.22 59.0
Time
[msec] 8663 8501 8169 8537 8428 8794 8663 8360 8413 9010 239 1min 25sec

53msec
Rules 452 448 428 494 493 345 470 435 356 434 50.5 436
Selector 4437 4320 4125 4710 4720 3393 4603 4213 3460 4196 467 4.22E+03

The results show that the system generates accurate rules. Two factors need

to be considered to evaluate accuracy of the system. First, the data contain only

about 44% of complete information. Second, the default hypothesis, where the

most frequent class is selected, for that training set has 34.2% accuracy. Thus the

rules generated by the MetaSqueezer system are accurate, since they achieve 61%

accuracy for the 10 CV tests, which is significantly better than the default

hypothesis, and they are generated from data containing high amount of missing

 153

information. Also, the rules achieve high and comparable with accuracy values of

sensitivity and specificity, which further proves their high quality. The simplicity

of results generated by the system is also high. The system generates only 436

rules for almost 6000 examples described by 160 attributes. The average number

of selectors per rule, which is 9.7, is very low. The system generates the rules in

about 86 seconds, which is a very good result considering the size of the training

set. Thus, the system is also characterized by high efficiency. The system is also

highly flexible since it generates accurate and simple results for input data that

contain all attribute types, and is characterized by high number of missing values.

The summary of results achieved when generating rules from the entire

training set for the task 1 is shown in Table 36. The table compares the results

with the results achieved during the 10 CV tests.

Table 36. The summary of test results for task 1

Test type accuracy # rules # selectors
Using training set 67.6 498 4838
10 CV, mean values 61.0 436 4220

The results show that the MetaSqueezer generates slightly more accurate

rules when using the entire training set as the input. This is a common result,

which shows that accuracy of results can be increased when using more data. The

results show that the rules generated by the system can be trusted as a source of

useful and reliable information about the patterns which are associated with

different paces of CF.

 154

Table 37 shows the results achieved by the MetaSqueezer system for the

training set for task 2 and when performing 10 cross validation test. Similarly as

for task 1, the table shows accuracy, specificity, sensitivity, running time, and

number of rules and selectors achieved in each of the ten runs, and their

corresponding mean and standard deviation values.

Table 37. The 10 fold cross validation results for task 2

Trial 1 2 3 4 5 6 7 8 9 10 StDev Mean
Accuracy 57.4 54.1 69.8 41.3 53.6 51.1 73.8 71 69.3 73.1 11.3 61.4
Specificity 88.6 86.7 89.8 88.3 85.5 91.2 92.2 88.7 89 90.1 1.97 89
Sensitivity 71 67.5 66.4 54.6 64.1 57.4 73.8 73.2 68 76.9 7.11 67.3
Time
[msec] 16918 16289 17865 15709 16626 15720 17550 17232 17765 17577 811 2min 49sec

25msec
Rules 498 490 804 215 502 204 791 770 758 749 233 578
Selector 5211 5073 8387 2238 5240 2039 8307 8093 7916 7648 2.44E+3 6.02E+3

The results show that the system generates accurate rules. Again, we note

that the data contain only about 44% of complete information, and the default

hypothesis for that training set has 46.0% accuracy. Thus the rules generated by

the MetaSqueezer system are accurate, sine they achieve 61% accuracy for the 10

CV tests, which is significantly better than the default hypothesis, and they are

generated from data containing high amount of missing information. The rules

achieve also high and comparable with accuracy values of sensitivity and

specificity, which provides additional validation of their high quality. The

simplicity of results generated by the system is also high. The system generates

only 578 rules for almost 6000 examples described by 160 attributes. Thus, the

average number of selectors per rule, which is 10.4, is very low. The system

 155

generates the rules in about 170 seconds, and thus is also characterized by high

efficiency. Finally, the system is highly flexible since it generates accurate and

simple results for input data that contain all attribute types, and is characterized by

high number of missing values. The results achieved by the MetaSqueezer for the

training data describing task 2 are comparable, in terms of quality, to the results

achieved for the task 1.

The summary of results achieved when generating rules from the entire

training set for the task 2 is shown in Table 38. The table compares the results

with the results achieved during the 10 CV tests.

Table 38. The summary of test results for task 2

Test type accuracy # rules # selectors
Using training set 77.2 790 4809
10 CV, mean values 61.4 578 6020

Similarly as for task 1, the results show that the MetaSqueezer generates

more accurate rules when using the entire training set as the input. The results

show that the rules generated by the system can be trusted as a source of useful

and reliable information about the patterns which are associated with different

kinds of CF.

The summary of results achieved by the MetaSqueezer system for both

tasks is shown in Table 39.

 156

Table 39. Summary of the benchmarking tests for the MetaSqueezer system

task accuracy simplicity efficiency flexibility
1 high high very high highly flexible
2 high high high highly flexible

5.6 Evaluation of the Discovered Knowledge

The DM step generated two sets of rules, one set for each of the defined

tasks. The rules were transformed into the rule and selector tables, which were

presented to the domain experts.

The tables were analyzed by using the following 4 grade scale:

• 1+ was assigned for trivial, not useful results. By default such mark was

simply omitted from being displayed on the table. The associations

described by that mark are considered not useful from the medical

perspective.

• 2+ was assigned for results that are of little interest. The associations

described by that mark are considered of marginal value from the

medical perspective.

• 3+ was assigned for interesting, but already known results. The

associations described by that mark are considered interesting, but were

already discovered by other researchers. Such results are used to provide

validation of the results generated by the system.

• 4+ was assigned for very interesting, and unknown results. The

associations described by that mark are of the highest value, since they

 157

show very important finding which are not yet confirmed or reported in

the professional literature. Such findings, if found, are the basis for

evaluating the entire project as successful. Also, they directly lead to

high quality publication in a known medical journal.

The evaluation was performed by Dr Frank Accurso, who is a cystic

fibrosis expert, director of the CF care center, with background in pediatric

pulmonology. The analysis of the results was performed manually based on the

attribute and selector ranking tables for the two tasks, using the procedure

described in 5.5.1.

The table describing results for the first task, shown in Figure 23, was

analyzed in these steps:

• the class list consists of {(improv), (nochange), (slowdegrad),

(fastdegrad), (nochange, improve), (improve, slowdegrad), (slowdegrad,

fastdegrad), (nochange, slowdegrad, fastdegrad)}. It includes elements

that consist of tuples of class values; the groupings were considered as

valuable by the domain experts.

• the list of significant selectors and attributes is shown below

attribute or selector degree of association classes intervals
CFtypes Type4 association slowdegrad TI5
vis_wght1 [54.40, 104.00) association

association
nochange
slodegrad

TI5
TI2

vis_wght1 [54.40, 104.00) association
association

fastdegrad
slowdegrad

TI3
TI4

dob association
association

nochange
slowdegrad

TI1, TI4
TI1, TI3, TI4

dob before1982 association
association

nochange
slowdegrad

TI5
TI2, TI3

race Indian association slowdegrad TI5
race Black association improv TI1, TI3, TI4
race Asian association slowdegrad TI4

 158

group C association
association
association

nochange
slowdegrad
fastdegrad

TI4
TI1, TI2

TI1, TI2, TI4
group NSB association improve

no change
slowdegrad
fastdegrad

TI1, TI2, TI3, TI4, TI5
TI1, TI2, TI3, TI4

TI1, TI4
TI1

group MI association improv TI1, TI2
group FN association improv TI2, TI3
motage association nochange

slowdegrad
TI1, TI2, TI4

TI4
motage [22.50, 48.50) association improve

no change
slowdegrad
fastdegrad

TI1, TI4, TI5
TI1, TI2, TI3, TI4, TI5

TI1, TI4
TI1, TI4

motage [19.50, 22.50) association slowdegrad
fastdegrad

TI2
TI3

birthord 4 association slowdegrad
fastdegrad

TI1, TI2
TI4

numsib 3 association nochange
slowdegrad

TI2
TI4

numsib 4 association fastdegrad TI1, TI2, TI3
cfsib 1 association slowdegrad

fastdegrad
TI1, TI2, TI4

TI4
deltype cspln association slowdegrad

fastdegrad
TI1, TI4

TI1
deltype unk association improv

nochange
TI2, TI3, TI4
TI1, TI2, TI4

deltype vagbr association improv TI4
mecil association improv

nochange
TI4

TI1, TI4
mecil unk association improv TI5
mecil TreatedSurgically association fastdegrad TI4
irt association slowdegrad TI4
irt No association fastdegrad

slowdegrad
nochange

TI1, TI2
TI2, TI3

TI5
irt Yes association nochange

slowdegrad
TI4
TI4

FalseNeg association slowdegrad TI4
FalseNeg - association slowdegrad TI2, TI3
FalseNeg No association slowdegrad TI4
Clinic Transplant association fastdegrad TI5
age@irt1 association nochange TI1, TI2
irt2 [324.00, 826.00) association nochange

slowdegrad
TI4
TI1

age@irt2 [-0.50, 27.50) association fastdegrad TI2
irt3 association improv TI3
sweatna1 [44.5, 50.00) association slowdegrad TI2, TI3
sweatk1 [24.50, 46.00) association improv

nochange
TI3, TI4, TI5
TI1, TI2, TI4

sweatcl1 [-11.00, 95.50) association improv TI1, TI2, TI4
sweatna2 association nochange

slowdegrad
TI1, TI2, TI3

TI3
sweatk2 association nochange TI2
sweatk2 [19.50, 58.50) association nochange

slowdegrad
TI1, TI2, TI4

TI1, TI4

 159

sweatcl2 association nochange TI2, TI3, TI4
sweatna3 [75.00, 109.00) association improv

nochange
TI3

TI1, TI3
sweatk3 [5.50, 26.50) association improv

nochange
TI3
TI1

sweatcl3 [99.50, 113.00) association nochange TI3
sweatk4 [10.50, 39.50) association improv TI3
tobraresistent? Suscept. association slowdegrad TI3
tobraresistent? NotDone association improv TI5
ciproresistant? Suscept. association fastdegrad TI3
na [129.00, 143.00) association slowdegrad TI4
prot [-1.95, 7.95) association slowdegrad TI4
vita [0.44, 748.00) association slowdegrad TI4
wbc [4.05, 18.00) association slowdegrad TI4
hct [27.40, 45.50) association slowdegrad TI4
mch [24.90, 91.40) association slowdegrad TI4
machc [30.40, 35.80) association slowdegrad TI4
rdw [-0.85, 15.40) association slowdegrad TI4
HAZ [-2.91, -1.87) association fastdegrad TI1
WZH [-1.80, 1.51) association fastdegrad

slowdegrad
TI3
TI4

age@diagnosis 025till2 association fastdegrad
slowdegrad

TI2, TI3, TI5
TI2, TI3

age@diagnosis above7 association nochange TI5

• evaluation of the findings from the list of significant attributes and

selectors is shown, by marks, in Figure 23, which were assigned by the

experts based on their expertise of the domain. The marks were proposed

and assigned by Dr. Accurso and Marci Sontag.

CLASS
FASTDEGRAD CLASS IMPROV CLASS

NOCHANGE
 CLASS
SLOWDEGRAD ATRIBUTE VALUE MARK

TI1TI2TI3TI4TI5 TI1TI2TI3TI4TI5 TI1TI2 TI3TI4 TI5 TI1TI2 TI3TI4TI5

 CFtypes (cf)
 CFtypes (cf) Type1
 CFtypes (cf) Type2
 CFtypes (cf) Type4 2+
 vis_hgt1 (vis)
 vis_hgt1 (vis) [105.00,180.00)
 vis_wght1 (vis)
 vis_wght1 (vis) [22.10,54.40)
 vis_wght1 (vis) [54.40,104.00)
 vis_wght1 (vis) [16.90,22.10)
 PulseOximetry (vis) [86.50,101.00)
 dob (dem)
 dob (dem) 82till92
 dob (dem) before82
 race (dem)
 race (dem) Caucasian

 160

 race (dem) Indian
 race (dem) Black 3+
 race (dem) Asian
 group (dem)
 group (dem) C 3+/4+
 group (dem) NBS 3+/4+
 group (dem) MI 3+/4+
 group (dem) FN 3+/4+
 marital (dem)
 marital (dem) Married
 marital (dem) Unknown
 marital (dem) Divorced
 motage (dem)
 motage (dem) [22.50,48.50) 3+
 motage (dem) [19.50,22.50) 3+
 birthord (dem)
 birthord (dem) 3
 birthord (dem) 2
 birthord (dem) 1
 birthord (dem) 4
 numsib (dem)
 numsib (dem) 2
 numsib (dem) 1
 numsib (dem) 3
 numsib (dem) 0
 numsib (dem) 4
 numsib (dem) 5
 cfsib (dem)
 cfsib (dem) 1
 cfsib (dem) 0
 deltype (dem)
 deltype (dem) vagnl
 deltype (dem) csemg
 deltype (dem) cspln
 deltype (dem) unk
 deltype (dem) vagbr
 mecil (dem)
 mecil (dem) unk
 mecil (dem) TreatedSurgically 2+
 mecil (dem) no
 irt (dia)
 irt (dia) No
 irt (dia) Yes
 FalseNeg (dia)
 FalseNeg (dia) -
 FalseNeg (dia) No
 Clinic (dia)
 Clinic (dia) Billings
 Clinic (dia) Adult
 Clinic (dia) Denver
 Clinic (dia) Colo.Spgs
 Clinic (dia) GreatFalls
 Clinic (dia) Transplant
 irt1 (dia)
 irt1 (dia) [79.50,373.00)
 age@irt1 (dia)
 age@irt1 (dia) [-0.50,5.50)
 irt2 (dia) [324.00,826.00)

 161

 irt2 (dia) [87.50,322.00)
 age@irt2 (dia) [-0.50,27.50)
 irt3 (dia) [79.00,201.00)
 swetna1 (dia)
 swetna1 (dia) [54.50,152.00)
 swetna1 (dia) [44.50,50.00)
 swetk1 (dia)
 swetk1 (dia) [24.50,46.00) 4+
 swetk1 (dia) [16.50,24.50)
 swetcl1 (dia)
 swetcl1 (dia) [101.00,157.00)
 swetcl1 (dia) [-11.00,95.50) 3+
 swetna2 (dia)
 swetna2 (dia) [22.00,101.00)
 swetk2 (dia)
 swetk2 (dia) [19.50,58.50)
 swetk2 (dia) [11.50,19.50)
 swetcl2 (dia)
 swetcl2 (dia) [108.00,123.00)
 swetcl2 (dia) [26.50,108.00)
 swetna3 (dia) [75.00,109.00)
 swetk3 (dia) [5.50,26.50)
 swetcl3 (dia) [99.50,113.00)
 swetk4 (dia) [10.50,39.50)
 SOURCE (cul)
 SOURCE (cul) Sputum
 SOURCE (cul) ThroatCulture
 tobraresistent? (cul)
 tobraresistent? (cul) Suscept. 2+
 tobraresistent? (cul) NotDone
 tobraresistent? (cul) No
 ciproresistant? (cul)
 ciproresistant? (cul) Suscept.
 ciproresistant? (cul) No
 meropenemresistant? (cul)
 meropenemresistant?
(cul) No

 na (mic) [129.00,143.00) 2+
 prot (mic) [-1.95,7.95) 2+
 vita (mic) [0.44,748.00) 2+
 wbc (hem) [4.05,18.00) 2+
 hct (hem) [27.40,45.50) 2+
 mch (hem) [24.90,91.40) 2+
 mchc (hem) [30.40,35.80) 2+
 rdw (hem) [-0.85,15.40) 2+
 WAZ (per)
 WAZ (per) [-1.93,1.51)
 HAZ (per)
 HAZ (per) [-2.91,-1.87) 3+
 HAZ (per) [-1.87,2.50)
 WZH (per) [-1.80,1.51)
 BASEpower (cul)
 BASEpower (cul) [-1.00,2E4)
 BASEpower2 (cul)
 BASEpower2 (cul) [-1.75,7.5E6)
 BASEpower3 (cul)
 BASEpower3 (cul) [-1.75,1.1E8)
 BASEpower4 (cul)

 162

 BASEpower4 (cul) [-5E3,1.25E5)
 age@diagnosis (dia)
 age@diagnosis (dia) 025till2 3+
 age@diagnosis (dia) below025
 age@diagnosis (dia) above7

Figure 23. The evaluation of results for task 1

The results generated by the MetaSqueezer system for task 1 can be broken

into two parts:

• confirmatory results marked by 3+ describe relationships that were

known previously, but give confidence in the correctness of the

performed analysis. The findings include the following correlations and

their medical interpretation:

o black race and improvement of the disease; the finding suggests that

the patients who are black may have less severe disease, possibly

less severe CF mutations or other genetic modifiers,

o C group and degradation of the disease for small values of FEV%;

the finding suggests that patients who are conventionally diagnosed

may have a faster decline in FEV1 during advanced stages of the

disease

o NBS groups and improvement of the disease; the finding suggests

that the benefits of newborn screening may result in stable or

improving lung function in childhood, which may be the result of

closer follow-up in early childhood,

o MI and FN groups and improvement of the disease for small values

of FEV%; the finding suggests that improvement may be seen in

 163

FEV1 in children who are false negative on the screen or who are

diagnosed through meconium ileus after their decline in FEV1 has

occurred,

o [22.50,48.50) values of motage and improvement or stable state of

the disease; the finding suggests that children of mothers over the

age of 22 years tend to have stable lung function,

o [19.50,22.50) values of motage and degradation of the disease for

medium values of FEV%; the finding suggests that children with

moderate lung disease who have young mothers (between 19.5 and

22.5 years) tend to have a decline in lung function,

o [-11.00,95.50) values of sweatcl1 and improvement of the disease;

the finding suggests that children with lower sweat chloride values

(<95.5) may have less severe lung disease,

o [-2.91,-1.87) values of HAZ and degradation of the disease for small

values of FEV%; this finding suggests that children with height

stunting and severe disease may have a rapid decline in FEV1,

o 025till2 values of age@diagnosis and degradation of the disease; the

finding suggests that children who were diagnosed after the initial

newborn period may have a more rapid decline in pulmonary

function,

 164

• new findings marked by 4+ describe findings that may be significant

medically. The findings include the following correlation and its medical

interpretation:

o [24.50,46.00) value of sweatk1 and the improvement of the disease;

the finding suggests that there is a possible significance to CF of

genes that modify potassium levels.

The results show not only that the system generated accurate results for the

task 1, based on 10 confirmatory findings, but also that the system discovered one

significant finding concerning potassium levels in sweat.

The table describing results for the second task, Figure 24, was analyzed in

as follows:

• the class list consists of {(type1), (type2), (type4)},

• the list of significant selectors and attributes is shown below.

attribute or selector degree of association classes intervals
CFpace Improv association type4 TI1, TI2, TI4
vis_wght [79.80, 104.00) association type4 TI3
PulseOximetry association type4 TI4
dob association type1 TI1, TI4
dob before82 association type2 TI3, TI5
race Indian association type4 TI1
race Black association type2 TI3
group C association type4 TI1, TI2, TI4
group NSB association type1

type2
type4

TI1, TI2, TI3, TI4
TI1, TI2, TI4
TI1, TI2, TI4

marital divorced association type2 TI5
marital separated association type4 TI4
motage association type4 TI2
motage [15.10, 24.50) association type2 TI1
birthord 4 association type2 TI2, TI3
numsib 4 association type1 TI2
deltype csemg association type2 TI2
deltype cspin association type4 TI4
deltype unk association type2 TI1, TI2, TI3, TI4
apgar1 5till8 association type1 TI4
irt association type2 TI5

 165

irt No association type2 TI3, TI5
irt Yes association type1 TI1
FalseNeg association type2 TI5
FalseNeg - association type2 TI5
Clinic Transplant association type2 TI5
irt1 association type3 TI2
irt1 [391.00, 759.00) association type1 TI2
irt1 [48.50, 112.00) association type2 TI1
age@irt2 [8.50, 67.50) association type1 TI1, TI2, TI4
sweatna1 [47.50, 80.50) association type2 TI4
sweatna1 [80.50, 85.50) association type2 TI1, TI2
sweatna1 [6.00, 47.50) association type4 TI2
sweatk1 association type4 TI4
sweatk1 [31.50, 105.00) association type4 TI4
sweatlcl1 [-11.00, 86.50) association type2 TI1, TI5
sweatlcl1 [153.00, 171.00) association type4 TI2
sweatna2 association type1 TI1, TI2, TI3, TI4, TI5
sweatk2 association type1 TI1, TI2, TI4
sweatna3 [68.50, 106.00) association type1 TI1
sweatk3 [15.50, 28.50) association type1 TI3
sweatlcl3 [98.50, 114.00) association type1 TI3
tobraresistent? Suscept. association type4 TI2, TI3
ciproresistant? Suscept. association type4 TI2
meropenemresistant? Suscept. association type4 TI3
ast [9.50, 145.00) association type4 TI1
WZH [-1.11, 1.31) association type1 TI4
age@diagnosis 2till7 association type4 TI2

• evaluation of findings from the list of the significant attributes and

selectors is shown by marks in Figure 24, assigned by Dr. Accurso and

Marci Sontag.

CLASS TYPE1 CLASS TYPE2 CLASS TYPE4
ATRIBUTE VALUE MARK TI1 TI2 TI3 TI4 TI5 TI1 TI2 TI3 TI4 TI5 TI1 TI2 TI3 TI4 TI5

 CFpace (cf)
 CFpace (cf) NoChange
 CFpace (cf) FastDegrad
 CFpace (cf) SlowDegrad
 CFpace (cf) Improv 3+
 vis_hgt1 (vis)
 vis_hgt1 (vis) [102.00,188.00)
 vis_wght1 (vis)
 vis_wght1 (vis) [15.30,53.30)
 vis_wght1 (vis) [53.30,79.80)
 vis_wght1 (vis) [79.80,104.00)
 PulseOximetry (vis)
 PulseOximetry (vis) [92.50,101.00)
 dob (dem)
 dob (dem) 82till92
 dob (dem) before82
 race (dem)

 166

 race (dem) Caucasian
 race (dem) Unknown
 race (dem) Indian
 race (dem) Black
 group (dem)
 group (dem) C 2+
 group (dem) NBS 2+
 marital (dem)
 marital (dem) Married
 marital (dem) Unknown
 marital (dem) Divorced
 marital (dem) Separated
 motage (dem)
 motage (dem) [25.50,37.50)
 motage (dem) [15.10,24.50)
 birthord (dem)
 birthord (dem) 3
 birthord (dem) 2
 birthord (dem) 1
 birthord (dem) 4
 numsib (dem)
 numsib (dem) 2
 numsib (dem) 1
 numsib (dem) 0
 numsib (dem) 4
 cfsib (dem)
 cfsib (dem) 1
 cfsib (dem) 0
 deltype (dem)
 deltype (dem) vagnl
 deltype (dem) csemg
 deltype (dem) cspln
 deltype (dem) unk
 apgar1 (dem) 5till8
 mecil (dem)
 mecil (dem) no
 dcmot (dem)
 dcmot (dem) yes
 irt (dia)
 irt (dia) No
 irt (dia) Yes
 FalseNeg (dia)
 FalseNeg (dia) -
 Clinic (dia)
 Clinic (dia) Billings
 Clinic (dia) Adult
 Clinic (dia) Denver
 Clinic (dia) Colo.Spgs
 Clinic (dia) GreatFalls
 Clinic (dia) Transplant
 irt1 (dia)
 irt1 (dia) [391.00,759.00) 3+
 irt1 (dia) [112.00,285.00)
 irt1 (dia) [48.50,112.00)
 age@irt1 (dia) [-0.50,2.50)
 irt2 (dia)
 irt2 (dia) [93.00,477.00)
 age@irt2 (dia) [8.50,67.50)
 swetna1 (dia)
 swetna1 (dia) [47.50,80.50)
 swetna1 (dia) [85.50,152.0)

 167

 swetna1 (dia) [80.50,85.50)
 swetna1 (dia) [6.00,47.50)
 swetk1 (dia)
 swetk1 (dia) [31.50,105.00)
 swetk1 (dia) [4.50,19.50)
 swetk1 (dia) [20.50,31.50)
 swetcl1 (dia)
 swetcl1 (dia) [113.00,153.00)
 swetcl1 (dia) [86.50,113.00)
 swetcl1 (dia) [-11.00,86.50)
 swetcl1 (dia) [153.00,171.00)
 swetna2 (dia)
 swetna2 (dia) [60.50,139.00)
 swetk2 (dia)
 swetk2 (dia) [13.50,32.50)
 swetcl2 (dia)
 swetcl2 (dia) [85.50,153.00)
 swetna3 (dia) [68.50,106.00)
 swetk3 (dia) [15.50,28.50)
 swetcl3 (dia) [98.50,114.00)
 SOURCE (cul)
 SOURCE (cul) Sputum
 SOURCE (cul) ThroatCulture
 tobraresistent? (cul)
 tobraresistent? (cul) Suscept.
 tobraresistent? (cul) NotDone
 tobraresistent? (cul) No
 ciproresistant? (cul)
 ciproresistant? (cul) Suscept.
 ciproresistant? (cul) NotDone
 ciproresistant? (cul) No
 meropenemresistant? (cul)
 meropenemresistant?
(cul) NotDone

 meropenemresistant?
(cul) No

 meropenemresistant?
(cul) Suscept.

 ast (mic) [9.50,145.00)
 WAZ (per)
 WAZ (per) [-1.75,1.36)
 HAZ (per)
 HAZ (per) [-1.53,2.53)
 WZH (per) [-1.11,1.31)
 BASEpower (cul)
 BASEpower (cul) [-0.50,1.15E3)
 BASEpower2 (cul)
 BASEpower2 (cul) [-1.75,752.00)
 BASEpower3 (cul)
 BASEpower3 (cul) [-0.50,5.5E7)
 BASEpower4 (cul)
 BASEpower4 (cul) [-2.5E3,2.5E3)
 age@diagnosis (dia)
 age@diagnosis (dia) 025till2
 age@diagnosis (dia) below025
 age@diagnosis (dia) 2till7

Figure 24. The evaluation of results for task 2

 168

The results generated by the MetaSqueezer system for task 2 include only

several confirmatory findings. The findings include the following correlations and

their medical interpretation:

o improvement of the disease and Type 4 CF; the finding suggests that

Children with 2 non-F508 mutations may have mild lung disease,

o [391.00,759.00) values of irt1 and Type 1 CF for medium values of

FEV%; the finding suggests that children with high IRT values at

birth have moderate lung disease.

The results show that the system generates accurate results for the task 2,

based on 2 confirmatory findings. No new and significant findings were

discovered for task 2. The future work will include redefining classes for this task.

They will include five distinct genotypes, instead of currently defined 3. This, in

turn, may lead to discovery of new and significant findings that were not yet

found because of too big granularity of class definitions.

As an additional validation of the usefulness of the MetaSqueezer system,

as applied to the CF data, we show in Appendix D a comparison of the results it

generated with the results generated when applying the DataSqueezer algorithm to

the same data. The results, in terms of attribute and selector importance tables

generated by the DataSqueezer algorithm show that:

• since the DataSqueezer operates on the entire data set, the tables show

only associations between attributes and selectors and classes, which

limits analytical capabilities of the user,

 169

• after performing analysis of the tables, using a procedure identical to the

procedure described for analysis of results generated by the

MetaSqueezer system, the following was found:

o the results for task 1 include only five 3+ (confirmatory) findings.

They overlap with findings of the MetaSqueezer system. Remaining

confirmatory findings and the significant finding that were

discovered by the MetaSqueezer system, as well as other findings,

were not present in the results by the DataSqueezer algorithm.

o the results for task 2 include only one 3+ (confirmatory) finding. It

overlaps with findings of the MetaSqueezer system. Remaining

confirmatory findings that were discovered by the MetaSqueezer

system, as well as other findings, were not present in the results

generated by the DataSqueezer algorithm.

The above direct comparison of the results generated by the MetaSqueezer

system and the DataSqueezer algorithm shows clearly the advantages of the Meta

Mining system. The system is able to generate more useful results from the same

data when compared with a data mining algorithm.

5.7 Using the Discovered Knowledge

The DMKD process, which was used in the project, appears to be very

practical. The iterative process used for the generation of results significantly

improved results generated by the MetaSqueezer system. The system generated

 170

two kinds of results: 12 confirmatory findings that prove the correctness of the

system, and most importantly 1 significant new finding that shows that the system

is capable of generation of useful results.

5.7.1 Summary of Results

The outcome of the project was evaluated as very successful by the domain

experts. In their opinion the results constitute material that can be published in a

high quality medical journal. The publication will be written upon running task 2

with new definition of classes. Even in case of not generating any new findings

for that task, the new finding discovered for task 1 was evaluated as sufficient

basis for the publication. The new finding discovered for task 1 was classified as

possibly medically significant, and thus may help to bring new insights into this

very important disease.

 171

Chapter 6

6 Summary

In this chapter we summarize significance of our research, provide

conclusions, and describe future work.

6.1 Summary and Significance

The main goal of the our research was to develop an inductive supervised

ML system that is efficient, generates simple and accurate results, and is flexible

to be applied to a variety of input data formats and data containing noise and

missing values. As a result, a novel learning system was developed based on the

meta-mining concept. To the best of our knowledge, the system is the first that

applies an inductive ML algorithm within an MM setting to generate a set of

production rules. The application of the MM concept resulted in achieving several

desirable properties: generation of compact data models, scalability, user-

friendliness in terms of the transparency of the learning process, and most

importantly, simplicity of generated results.

There are several reasons why the MetaSqueezer system has proven to be

successful. It satisfies all four criteria, defined in Chapter 2, which define a

successful supervised IL system:

• It generates rules that result in accurate classification.

 172

The benchmarking tests showed that the system generates rules that

accurately classify test data even in the presence of noise and

inconsistencies. The MetaSqueezer system achieves error rates that are

within the range of error rates achieved by the most accurate IL algorithm.

• It generates simple rules

The benchmarking tests show that the system generates small number of

very compact rules. The system generates rules that on average use 2.2

selectors in the rule’s descriptor, which is between 35% and 90% less than

the number of selectors generated by other supervised ML algorithm.

• It generates rules very efficiently

The theoretical complexity analysis shows that the system has linear

complexity. The benchmarking tests show that the average CPU execution

time of the system is 4.3 seconds, which is the best execution time among

all compared inductive ML algorithms, except the DataSqueezer algorithm

itself. Both results show that the system can be successfully applied to

very large data sets.

• It is very flexible

The MetaSqueezer system was tested on very large data sets, both in terms

of number of examples and attributes. The data sets included all types of

attributes, i.e., discrete numerical, discrete nominal, continuous, and binary.

They also included data sets with large amounts of noisy and missing

 173

information. Thus, the system is very flexible and robust since it generates

high quality results for the diverse types of data.

In other words, the performed benchmarking tests of the system clearly

show its two main advantages, namely high compactness of the generated rules

and very low computational cost. These results place the MetaSqueezer system

among the best inductive ML algorithms.

The usefulness of the system was also proven by applying it to a real-life

project concerning analysis of CF data. The difficulty of the project was caused

by the complexity of the data, high number of missing values, and our weak

background knowledge about the disease. Despite that, the system generated

meaningful and useful results that can be used to enhance understanding of the

disease. The results generated by the system not only confirmed its correctness by

“discovering” knowledge already known by the CF experts about some

relationships, but also provided a new significant finding about the disease. The

new finding is medically important, and concerns potassium levels in sweat. More

specifically, it is related to the possible significance to CF of genes that modify

potassium levels.

To summarize, the research was proven to be useful in several ways. It

proposes, thoroughly tests, and applies a novel inductive supervised ML system.

The results show high potential of the system. It can be used to generate non-

 174

temporal data models for supervised data, including ordered and temporal data.

The ability of the system to very efficiently generate very simple and easy to

understand rules makes it one of the best inductive supervised ML systems.

6.2 Future Work

The future work will include applications of the system to projects possibly

concerning various domains including medicine, banking, and retail stores data.

The immediate work will concentrate on a follow up on the CF project, where

analysis of task 2 will be refined by redefining the class attribute.

Another task concerns investigation of alternative ways of displaying the

results generated by the MetaSqueezer system. The dissertation describes one new

format, in terms of attribute and selector ranking tables generated directly from

the rules. The tables were used, with great success, to display and analyze results

of the CF project. In the future, a study to evaluate this and other ways of

displaying the generated rules will be performed. It will take into account human

cognitive processes, especially information of how people assimilate new

knowledge to increase the usefulness of the proposed system (Pazzani, 2000).

 175

References

Abraham, T., and Roddick, J.F., Discovering Meta-rules in Mining Temporal and
Spatio-Temporal Data, Proceedings of the Eighth International Database
Workshop, pp. 30-41, 1997

Abraham, T., and Roddick, J. F., Incremental Meta-mining from Large Temporal
Data Sets, Advances in Database Technologies, Proceeding of the First
International Workshop on Data Warehousing and Data Mining (DWDM'98),
Berlin, Germany, Lecture Notes in Computer Science. 1552, pp.41-54, 1999

Agrawal, R., and Srikant, R., Fast Algorithms for Mining Association Rules,
Proceedings of the 20th International Conference on Very Large Databases,
Santiago, Chile, 1994

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I., Fast
Discovery of Association Rules, Advances in Knowledge Discovery and Data
Mining, Chapter 12, AAAI/MIT Press, 1995

Blackard, J.A., Comparison of Neural Networks and Discriminant Analysis in
Predicting Forest Cover Types, Ph.D. dissertation, Department of Forest
Sciences, Colorado State University, Fort Collins, Colorado, 1998

Blake, C.L., and Merz, C.J., UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/ ~mlearn/MLRepository.html, Irvine, CA: University of
California, Department of Information and Computer Science, 1998

Brachman, R., and Anand, T., The Process of Knowledge Discovery in
Databases: A human-centered Approach, In Fayyad, U.M., Piatesky-Shapiro,
G., Smyth, P., and Uthurusamy, R., (Eds) Advances in Knowledge Discovery
and Data Mining, AAAi/MIT Press, 1996

Bradley, P., Fayyad, U., and Reina, C., Scaling Clustering Algorithms to Large
Databases, Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining, Menlo Park, California, pp. 9-15, 1998

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J., Classification and
Regression Trees, Wadsworth & Brooks, 1984

Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., Zanasi, A., Discovering Data
Mining: From Concepts to Implementation, Perentice Hall, 1998

 176

Cai, Y., Cercone, N., and Han, J., Attribute-Oriented Induction in Relational
Databases, In Piatetsky-Shapiro, G., and Frawley, W.J., Knowledge Discovery in
Databases, AAAI Press, pp.213-228, 1991

Carbonell, J.G., Michalski R.S., and Mitchell, T., An Overview of Machine
Learning, In Michalski, R.S., Carbonell J.G., and Mitchell, T.M., Machine
Learning, and Artificial Intelligence Approach, vol. 1, Morgan-Kaufmann,
pp.3-24, 1983

Catlett, J., On Changing Continuous Attributes into Ordered Discrete Attributes,
Proceedings of the European Working Session on Learning, pp.164-178, 1991

Chan, C.C., Bartur, C., and Srinivasasn, A., Determination of Quantization
Intervals in Rule Based Model for Dynamic Systems, Proceedings of the IEEE
Conference on System, Man, and Cybernetics, Charlottesville, VA, pp.1719-
1723, 1991

Ching, J.Y., Wong, A.K.C., and Chan, K.C.C., Class-Dependent Discretization
for Inductive Learning from Continuous and Mixed Mode Data, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 7, pp.
641-651, 1995

Chiu, D., Wong, A., and Cheung, B., Information Discovery through Hierarchical
Maximum Entropy Discretization and Synthesis, Knowledge Discovery in
Databases, G. Piatesky-Shapiro and W.J. Frowley, ed., MIT Press, 1991

Cios, K.J. and Liu, N., An Algorithm Which Learns Multiple Covers Via Integer
Linear Programming, Part I - The CLILP2 Algorithm, Kybernetes, vol. 24, no 2,
pp. 29-50, 1995a

Cios, K.J. and Liu, N., An Algorithm Which Learns Multiple Covers Via Integer
Linear Programming, Part II – Experimental Results And Conclusions,
Kybernetes, vol. 24, no 3, pp. 24-36, 1995b

Cios, K.J., Wedding, D.K. and Liu, N, CLIP3: Cover Learning Using Integer
Programming, Kybernetes, 26(4-5): 513-536 (The Norbert Wiener 1997
Outstanding Paper Award), 1997

Cios, K. J., Pedrycz, W., and Swiniarski, R., Data Mining Methods for Knowledge
Discovery, Kluwer, 1998

Cios, K.J., Teresinska, A., Konieczna, S., Potocka, J., and Sharma, S., Diagnosing
Myocardial Perfusion from PECT Bull’s-eye Maps - A Knowledge Discovery
Approach, IEEE Engineering in Medicine and Biology Magazine, Special issue
on Medical Data Mining and Knowledge Discovery, 19(4), pp. 17-25, 2000a

 177

Cios, K.J., Kurgan, L., Mitchell, S, Bailey, M., Duckett, D., and Gau, K., Report
for the OAI Phase I Collaborative Core Research Project on Data Mining and
Knowledge Discovery, the 2000 Ohio Aerospace Institute (OAI)
Collaborations Forum, Cleveland, OH, 2000b

Cios, K.J. (Ed.), Medical Data Mining and Knowledge Discovery, Springer, 2001

Cios, K. J. and Kurgan, L., Hybrid Inductive Machine Learning: An Overview of
CLIP Algorithms. In: Jain, L.C. & Kacprzyk, J. (Eds.), New Learning
Paradigms in Soft Computing, Physica-Verlag (Springer), pp. 276-322, 2001

Cios, K.J., and Kurgan, L., Hybrid Inductive Machine Learning Algorithm that
Generates Inequality Rules, Information Sciences, Special Issue on Soft
Computing Data Mining, accepted, 2002a

Cios, K. J., and Kurgan, L., Trends in Data Mining and Knowledge Discovery, In:
Pal N.R., Jain, L.C. and Teoderesku, N. (Eds.), Knowledge Discovery in
Advanced Information Systems, Springer, to appear, 2002b

Cios, K.J., and Moore, G.W., Uniqueness of Medical Data Mining, Artificial
Intelligence in Medicine, 26:1-2, pp.1-24, 2002

Clark, P., and Niblett, T., The CN2 Algorithm, Machine Learning, 3, pp.261 283,
1989

Clark, P., and Boswell, R., Rule induction with CN2: Some Recent Improvements.
Proceedings of the Fifth European Machine Learning Conference (EWSL-91),
Berlin, Germany, pp.151-163, 1991

CRISP-DM, www.crisp-dm.org, 2001

Cystic Fibrosis Foundation, http://www.cff.org/, 2002

Cystic Fibrosis Mutation Database, http://www.genet.sickkids.on.ca/cftr/, 2003

Cystic Fibrosis Genetic Analysis Consortium, Worldwide Survey of the
[Delta]F508 Mutation- Report from the Cystic Fibrosis Genetic Analysis
Consortium, American Journal of Human Genetics, 47, pp.354-359, 1990

Data Mining Tools, http://www.rulequest.com/see5-info.html, 2002

Dietterich, T.G., and Michalski, R.S., A Comparative Review of Selected
Methods for Learning from Examples, In Michalski, R.S., Carbonell J.G., and
Mitchell, T.M., Machine Learning, and Artificial Intelligence Approach, vol. 1,
Morgan-Kaufmann, pp.41-81, 1983

 178

Dougherty, J., Kohavi, R., and Sahami, M., Supervised and Unsupervised
Discretization of Continuous Features, Proceedings of the Twelfth International
Conference on Machine Learning, pp. 194-202, 1995

Efron, B., Computers and the Theory of Statistics, SIAM Review, 21, pp.460-480,
1979

Esposito, F., Malerba, D., and Semeraro, G., A Comparative Analysis of Methods
for Pruning Decision Trees, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:5, pp.476-491, 1997

Esposito, F., Malerba, D., Marengo, V., Inductive Learning From Numerical And
Symbolic Data: an Integrated Framework, Intelligent Data Analysis, 5:6, pp.445-
461, 2001

Fayyad, U.M., and Irani, K.B., On the Handling of Continuous-Valued Attributes
in Decision Tree Generation, Machine Learning, vol. 8, pp. 87-102, 1992

Fayyad, U.M., and Irani, K.B., Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, San Francisco, CA,
Morgan Kaufmann, pp.1022-1027, 1993

Fayyad, U.M., Piatesky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in
Knowledge Discovery and Data Mining, AAAi/MIT Press, 1996a

Fayyad, U.M., Piatesky-Shapiro, G., Smyth, P., From Data Mining to Knowledge
Discovery, In: Advances in Knowledge Discovery and Data Mining, Fayyad,
U.M., Piatesky-Shapiro, G., Smyth, P., and Uthurusamy, R.(Eds.), AAAi/MIT
Press, pp.1-34, 1996b

Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth, P., Knowledge Discovery and
Data Mining: Towards a Unifying Framework, Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD96),
Portland, OR. AAAI Press, 1996c

Goebel, M., and Gruenwald, L., A Survey of Data Mining Software Tools,
SIGKDD Explorations, 1(1), pp. 20-33, 1999

Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A.L., French, J.C., Clustering
Large Data sets in Arbitrary Metric Spaces, Proceedings of the 15th
International Conference on Data Engineering (ICDE), pp.502-511, 1999a

Ganti, V., Gehrke, J., and Ramakrishnan, R., Mining Very Large Databases, IEEE
Computer, 32(8), pp.38-45, 1999b

 179

Gehrke, J., Ramakrishnan, R., and Ganti, V., RainForest - a Framework for Fast
Decision Tree Construction of Large Data sets, Proceedings of the 24th
International Conference on Very Large Data Bases, San Francisco, pp. 416-
427, 1998

Goldberg, D.E., Genetics Algorithm in Search, Optimization and Machine
Learning, Addison-Wesley, 1989

Han, J., Cai, Y., and Cercone, N., Knowledge Discovery in Databases: An
Attribute-Oriented Approach, Proceedings of the 18th Conference on Very Large
Databases, pp.547-559, Canada, 1992

Hettich, S. and Bay, S. D., The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer
Science, 1999

Holland, J.H., Escaping Brittleness: the Possibilities of General Purpose
Algorithms Applied to Parallel Rule-Base Systems, In Michalski, R.S., Jaime,
G.C., and Mitchell, T.M. (Eds), Machine Learning, an Artificial Intelligence
Apprach, vol. 2, Morgan Kaufmann, 1986

Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, P.R., Induction:
Processes of Inference, Learning and Discovery, Computational Models of
Cognition and Perception, MIT Press, Cambridge, 1986

Holsheimer, M., and Siebes, A., Data Mining: The Search for Knowledge in
Databases, Technical report CS-R9406, P.O. Box 94079, 1090 GB Amsterdam,
1994

Holte, R.C., Very Simple Classification Rules Perform Well on Most Commonly
Used Data Sets, Machine Learning, 11:63-90, 1993

Huang, W., Discretization of Continuous Attributes for Inductive Machine
Learning, Master’s Thesis, Department of Computer Science, University of
Toledo, Ohio, 1996

Iba, W., Wogulis, J. & Langley, P., Trading off Simplicity and Coverage in
Incremental Concept Learning, Proceedings of the Fifth International
Conference on Machine Learning, Ann Arbor, Michigan, Morgan Kaufmann,
pp.73-79, 1988

Karimi, K., and Hamilton, H.J., Finding Temporal Relations: Causal Bayesian
Networks vs. C4.5, Proceedings of the Twelfth International Symposium on
Methodologies for Intelligent Systems (ISMIS'2000), Charlotte, NC, USA, pp.
266-273, 2000

 180

Kaufman, K.A., and Michalski, R.S., Learning from Inconsistent and Noisy Data:
The AQ18 Approach, Proceedings of the Eleventh International Symposium on
Methodologies for Intelligent Systems, Warsaw, Poland, pp.411-419, 1999

Kerber, R., ChiMerge: Discretization of Numeric Attributes, Proceedings of the
Ninth International Conference on Artificial Intelligence (AAAI-91), pp. 123-
128, 1992

Kodratoff, Y., Introduction to Machine Learning, Morgan-Kaufmann, 1988

Kohavi, R., Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree
Hybrid, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pp.202-207, 1996

Kooperberg, C., Bose, S. & Stone, C.J., Polychotomous Regression, Journal of
the American Statistical Association, 92, pp.117-127, 1997

Kukar, M., Kononenko, I., Groselj, C., Kralj,K., and Fettich, J., Analyzing and
Improving the Diagnosis of Ischemic Heart Disease with Machine Learning,
Artificial Intelligence in Medicine, 16:1, pp.25-50, 1999

Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. and Goodenday, L.S.,
Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis,
Artificial Intelligence in Medicine, 23(2), pp. 149-169, 2001

Kurgan, L., and Cios, K.J., Discretization Algorithm that Uses Class-Attribute
Interdependence Maximization, Proceedings of the 2001 International
Conference on Artificial Intelligence (IC-AI 2001), Las Vegas, Nevada,
pp.980-987, 2001

Kurgan, L., and Cios, K.J., DataSqueezer Algorithm that Generates Small
Number of Short Rules, IEE Proceedings: Vision, Image and Signal Processing,
submitted, 2002a

Kurgan, L., and Cios, K.J., CAIM Discretization Algorithm, IEEE Transactions
of Knowledge and Data Engineering, accepted, 2002b

Kurgan, L., & Cios, K. J., Meta-Mining Architecture for Learning from
Supervised Data, submitted, 2003a

Kurgan, L., and Cios, K.J., Fast Class-Attribute Interdependence Maximization
(CAIM) Discretization Algorithm, Proceeding of the 2003 International
Conference on Machine Learning and Applications (ICMLA'03), pp.30-36, Los
Angeles, 2003b

 181

Langley, P., Elements of Machine Learning, Morgan-Kaufmann, 1996

Lim, T.-S., Loh, W.-Y., and Y.-S., Shih, A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty-three Old and New Classification
Algorithms, Machine Learning, 40, pp.203-228, 2000

Linde, Y., Buzo, A., Gray, R.M., An Algorithm for Vector Quantizer Design,
IEEE Transactions on Communications, vol. 28:1, pp. 84-95, 1980

Liu, H., and Setiono, R., Feature Selection via Discretization, IEEE Transactions
on Knowledge and Data Engineering, vol. 9, no. 4, pp.642-645, 1997

Manilla, H., Methods and Problems in Data Mining, Proceedings of the
International Conference on Database Theory, pp. 41-55, 1997

Matheus, C.J., Chan, P.K., and Piatesky-Schapiro, G., Systems for Knowledge
Discovery in Databases, IEEE Transactions on Knowledge and Data
Engineering, 5:6, pp.903-913, 1993

Michalski, R. S. Discovering Classification Rules Using Variable-Valued Logic
System VL1, Proceedings of the Third International Joint Conference on
Artificial Intelligence, pp.162-172, 1973

Michalski, R.S., A Theory and Methodology of Inductive Learning, In Michalski,
R.S., Carbonell J.G., and Mitchell, T.M., Machine Learning, and Artificial
Intelligence Approach, vol. 1, Morgan-Kaufmann, pp.83-143, 1983a

Michalski, R. S., A Theory and Methodology of Inductive Learning, In Michalski,
R., Carbonell, J., & Mitchell, T.M. (Eds.), Machine Learning, Tioga Press,
pp.83-129, 1983b

Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N., The Multipurpose
Incremental Learning System AQ15 and Its Testing Application to Three
Medical Domains, Proceedings of the Fifth National Conference on Artificial
Intelligence, pp. 1041 1045, 1986

Mingers, J., An Empirical Comparison of Pruning Methods for Decision Tree
Induction, Machine Learning, 4:2, pp.227-243, 1989

Mitchell T.M., Machine Learning, McGraw-Hill, 1997

Nillson, N.J., Principles of Artificial Intelligence, Spriger-Verlag, 1982

Paterson, A., and Niblett, T.B., ACLS Manual, Edinburgh: Intelligent Terminals,
Ltd, 1987

 182

Pazzani, M.J., Knowledge discovery from data?, IEEE Intelligent Systems, pp.10-
13, March/April 2000

Pfahringer, B., Compression-Based Discretization of Continuous Attributes,
Proceedings of the Twelfth International Conference on Machine Learning,
pp.456-463, 1995

Piatesky-Shapiro, G., Knowledge Discovery in Real Databases: A Report on the
IJCAI-89 Workshop, AI Magazine, 11(5), pp. 68-70, Jan. 1991

Piatetsky-Shapiro, G., and Frawley, W., (Eds), Knowledge Discovery in
Databases, AAAI/MIT Press, 1991

Quinlan, J.R., Induction of Decision Trees, Machine Learning, 1, pp.81-106, 1986

Quinlan, J.R., Generating Production Rules from Decision Trees, Proceedings of
the Tenth International Joint Conference on Artificial Intelligence, pp.304-307,
1987a

Quinlan, J. R., Simplifying Decision Trees, International Journal of Man-
Machine Studies, 27:3, pp.221-248, 1987b

Quinlan, J.R., C4.5 Programs for Machine Learning, Morgan Kaufmann, San
Francisco, 1993

Quinlan, J.R., Improved Use of Continuous Attributes in C4.5, Journal of
Artificial Intelligence Research, 7, pp.77-90, 1996

Rainsford, C.P., and Roddick, J.F., Adding Temporal Semantics to Association
Rules, Proceeding of the Third European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD'99), Prague, Lecture
Notes in Artificial Intelligence, 1704, pp.504-509, 1999

Rao, R.B., Lu, S.C-Y., A Knowledge-Based Equation Discovery System for
Engineering Domains, IEEE Expert, pp.37-41, August 1993

Redman, T.C., The Impact of Poor Data Quality on the Typical Enterprise,
Communications of the ACM, 41:2, pp.79-81, 1998

Rivest, R.L., Learning Decision Lists, Machine Learning, 2, pp.229-246, 1987

Roddick, J.F., and Spiliopoulou, M., A Survey of Temporal Knowledge
Discovery Paradigms and Methods, IEEE Transactions on Knowledge and
Data Engineering, 14:4, pp.750-767, 2002

 183

Russel, S., and Norvig, P., Artificial Intelligence, A Modern Approach, Prentice
Hall, 1995

Sacha, J.P., Cios, K.J., and Goodenday, L.S., Issues in Automating Cardiac
SPECT Diagnosis. IEEE Engineering in Medicine and Biology Magazine,
special issue on Medical Data Mining and Knowledge Discovery, 19(4), pp.
78-88, 2000

Schlimmer, J.S., Concept Acquisition through Representational Adjustment,
(Technical Report 87-19), Ph.D. dissertation, Department of Information and
Computer Science, University of California, Irvine, 1987

Shafer, J., Agrawal, R., and Mehta, M., SPRINT: A Scalable Parallel Classifier
for Data Mining, Proceedings of the 22nd International Conference on Very
Large Data Bases, San Francisco, pp. 544-555, 1996

Shank, R.C., Where is AI, AI Magazine, winter 1991, pp.38-49, 1991

Shannon, C.E. A Mathematical Theory of Communication, The Bell Systems
Technical Journal, 27, pp.379-423, 1948

SPEC, Standard Performance Evaluation Corporation, http://www.spec.org/spec/,
2001

Spiliopoulou, M., and Roddick, J. F., Higher Order Mining: Modelling and
Mining the Results of Knowledge Discovery, Data Mining II – Proceedings of
the Second International Conference on Data Mining Methods and Databases,
Cambridge, UK, pp.309-320, 2000

Toivonen, H., Sampling Large Databases for Association Rules, Proceedings of
the 22nd International Conference on Very Large Data Bases, San Francisco,
pp. 134-145, 1996

Tou, J.T., and Gonzalez, R.C., Pattern Recognition Principles, Addison-Wesley,
1974

Ullman, J.D., Principles of Database and Knowledge-base Systems, vol. 2,
Computer Science Press, New York, 1989

Ullman, J.D., and Zaniolo, C., Deductive Databases: Achievements and Future
Directions, SIGMOD Record, 19(4), pp.75-82, 1990

Wirth, R., and Hipp, J., CRISP-DM: Towards a Standard Process Model for Data
Mining, Proceedings of the Fourth International Conference on the Practical

 184

Applications of Knowledge Discovery and Data Mining, Manchester, UK, pp.
29-39, 2000

Wong, A.K.C., and Chiu, D.K.Y., Synthesizing Statistical Knowledge from
Incomplete Mixed-Mode Data, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 9, pp. 796-805, 1987

Wong. A.K.C., and Liu, T.S., Typicality, Diversity and Feature Pattern of an
Ensemble, IEEE Transaction on Computers, vol. 24, pp.158-181, 1975

Wu, X., A Bayesian Discretizer for Real-Valued Attributes, the Computer Journal,
vol. 39, 1996

Vlachos, P., StatLib Project Repository, http://lib.stat.cmu.edu, 2000

Zhang, T., Ramakrishnan, R., Livny, M., BIRCH: An Efficient Data Clustering
Method for Very Large Databases, Proceedings of the SIGMOD Conference,
pp.103-114, 1996

 185

Appendix A

Abbreviations

CAIM – Class-Attribute Interdependency Maximization (algorithm), see section

3.4

CF – Cystic Fibrosis, see section 5.2

CLIP4 – Cover Learning using Inductive Programming version 4, see section

2.3.2

DM – Data Mining, see section 1.1.6

DMKD – Data Mining and Knowledge Discovery, see section 1.1.6

F-CAIM – Fast Class-Attribute Interdependency Maximization (algorithm), see

section 5.4.3

KD – Knowledge Discovery, see section 1.1.6

IL – Inductive Learning, see section 1.1

ML – Machine Learning, see section 1.1.6

MM – Meta Mining, see section 3.1.1

 186

Appendix B

Relevant Publications

The content of this dissertation is supported by several refereed articles that

were published, accepted or submitted to international journals and conferences.

A full list of the publications can be found at the end of this appendix. Below, an

outline of the contents of each publication and their relevant appearance within

the body of the dissertation are given.

The first chapter provides introduction to the dissertation. Its latter parts,

especially the description of the research goals, were based on two papers that

propose and describe the DataSqueezer algorithm and the MetaSqueezer system

(Kurgan and Cios, 2002a; Kurgan and Cios, 2003a). Also, a book chapter was

used to provide an overview of the DM and ML fields (Cios and Kurgan, 2002b).

The second chapter describes related work. The definition of qualities of

inductive ML algorithms was based on (Cios and Kurgan, 2002a). The discussion

of rule algorithms was supported by two papers that describe a rule algorithm

called DataSqueezer (Kurgan and Cios, 2002a; Kurgan and Cios, 2003a).

Similarly the discussion of hybrid algorithms was supported by two papers that

describe a family of hybrid algorithms called CLIP (Cios and Kurgan, 2001; Cios

and Kurgan, 2002a).

The third chapter provides an overview of the MetaSqueezer system and

describes its major elements. The system’s overview is based on (Kurgan and

 187

Cios, 2003a). The description of the DataSqueezer system is based on (Kurgan

and Cios, 2002a; Kurgan and Cios, 2003a). These papers propose and provide

detailed description of the DataSqueezer algorithm. The benchmarking results of

the DataSqueezer algorithms are based on (Kurgan and Cios, 2003a). Also, the

results which were used in comparison of the DataSqueezer algorithm with other

inductive ML algorithms were taken from (Cios and Kurgan, 2002a). The

description of the CAIM algorithm is based on (Kurgan and Cios, 2001; Kurgan

and Cios, 2002b; Kurgan and Cios, 2003b). The benchmarking results of the

CAIM were taken from (Kurgan and Cios, 2002b).

The fourth chapter provides detailed description of the MetaSqueezer

system. The description of the system together with its benchmarking tests were

based on (Kurgan and Cios, 2003a). Also, two papers were used to provide results

that were used in comparison of the MetaSqueezer system with other inductive

ML algorithms (Kurgan and Cios, 2002a; Cios and Kurgan, 2003a).

The fifth chapter provides description of the project where the

MetaSqueezer system is used to analyze data concerning CF patients. The project

was carried using the six step DMKD process model. Experience from application

of the model to another medical problem, concerning analysis of cardiac SPECT

data, was used to proceed with and describe the project (Kurgan et al., 2001).

Also, description of the process model was taken from (Cios and Kurgan, 2002b).

Implementation and description of the F-CAIM algorithm, which was used to

discretize the CF data, was based on (Kurgan and Cios, 2003b). Finally, another

 188

paper was used to design the attribute and selector ranking tables that were used

to display and analyze results generated in the project (Cios and Kurgan, 2002a).

List of Relevant Publications:

Cios, K. J. and Kurgan, L., Hybrid Inductive Machine Learning: An Overview of
CLIP Algorithms. In: Jain, L.C. & Kacprzyk, J. (Eds.), New Learning
Paradigms in Soft Computing, Physica-Verlag (Springer), pp. 276-322, 2001

Cios, K.J., and Kurgan, L., Hybrid Inductive Machine Learning Algorithm that
Generates Inequality Rules, Information Sciences, Special Issue on Soft
Computing Data Mining, accepted, 2002a

Cios, K. J., and Kurgan, L., Trends in Data Mining and Knowledge Discovery, In:
Pal N.R., Jain, L.C. and Teoderesku, N. (Eds.), Knowledge Discovery in
Advanced Information Systems, Springer, to appear, 2002b

Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. and Goodenday, L.S.,
Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis,
Artificial Intelligence in Medicine, 23(2), pp. 149-169, 2001

Kurgan, L., and Cios, K.J., Discretization Algorithm that Uses Class-Attribute
Interdependence Maximization, Proceedings of the 2001 International
Conference on Artificial Intelligence (IC-AI 2001), Las Vegas, Nevada,
pp.980-987, 2001

Kurgan, L., and Cios, K.J., DataSqueezer Algorithm that Generates Small
Number of Short Rules, IEE Proceedings: Vision, Image and Signal Processing,
submitted, 2002a

Kurgan, L., and Cios, K.J., CAIM Discretization Algorithm, IEEE Transactions
of Knowledge and Data Engineering, accepted, 2002b

Kurgan, L., & Cios, K. J., Meta-Mining Architecture for Learning from
Supervised Data, submitted, 2003a

Kurgan, L., and Cios, K.J., Fast Class-Attribute Interdependence Maximization
(CAIM) Discretization Algorithm, Proceeding of the 2003 International
Conference on Machine Learning and Applications (ICMLA'03), pp.30-36, Los
Angeles, 2003b

 189

Appendix C

Detailed Test Results

DATA SET NAME: bcw

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 97.1 95.7 95.7 94.3 90 92.9 97.1 90 97.1 92.8 2.78 94.3
Specificity 100 100 100 90.5 95.7 95.5 100 95.5 100 100 3.3 97.7
Sensitivity 94.3 93.8 94.2 95.9 87.2 91.7 94.9 87.5 95.9 88.4 3.45 92.4
Time [msec] 0 1 0 1 0 2 1 0 2 0 0.82 0.7 msec
Rules 4 4 6 5 4 5 6 4 4 3 0.97 4.5
Selectors 11 12 17 14 12 14 17 11 11 9 2.66 12.8

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -2
0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: bcw

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 91.4 92.9 90 100 90 88.6 95.7 92.9 94.3 91.3 3.34 92.7
Specificity 80.8 82.6 80 100 84.2 72 92 85.7 83.3 86.7 7.44 84.7
Sensitivity 97.7 97.9 95.6 100 92.2 97.8 97.8 95.9 100 94.9 2.4 97.0
Time [msec] 2 3 8 4 2 0 3 1 3 4 2.16 3 msec
Rules 6 7 5 7 7 7 7 7 6 4 1.06 6.3
Selectors 14 17 10 13 14 11 12 14 10 8 2.63 12.3

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 190

DATA SET NAME: vot

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 93.2 97.7 97.7 90.9 93.2 97.7 95.5 88.6 95.5 94.7 3.05 94.5
Specificity 100 100 100 87.5 88.2 100 100 92.9 94.4 100 5.16 96.3
Sensitivity 90 95.5 95.8 92.9 96.3 96.4 91.7 86.7 96.2 92.9 3.26 93.4
Time [msec] 0 0 1 0 0 0 0 0 1 2 0.7 0.4 msec
Rules 1 1 1 2 2 1 2 2 1 1 0.52 1.4
Selectors 1 1 1 2 3 1 3 2 1 1 0.84 1.6

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: vot

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 100 97.7 86.4 93.2 95.5 95.5 93.2 95.5 95.5 92.1 3.65 94.4
Specificity 100 93.3 100 95.7 100 100 100 100 100 100 2.39 98.9
Sensitivity 100 100 76.9 90.5 92.9 93.8 88 92.3 91.7 89.3 6.52 91.5
Time [msec] 0 3 2 0 2 0 5 1 3 0 1.71 1.6 msec
Rules 1 1 1 1 1 1 1 1 1 1 0 1
Selectors 1 1 1 1 1 1 1 1 1 1 0 1

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -1

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 191

DATA SET NAME: veh

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 64.7 57.6 56.5 64.7 64.7 63.5 64.7 55.3 63.5 55.6 4.24 61.1
Specificity 89 85.8 87 89.2 88.9 88.9 88.9 86 88 85.3 1.56 87.7
Sensitivity 62.7 57.9 57.3 62.2 64.5 59.1 63.7 58.1 65.7 57.7 3.19 60.9
Time [msec] 6 4 5 8 4 5 6 3 6 5 1.4 5.2 msec
Rules 24 20 23 22 23 21 21 28 30 25 3.2 23.7
Selectors 93 64 75 73 76 71 68 98 101 83 13 80.2

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: veh

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 58.8 65.9 63.5 65.9 60 56.5 47.1 52.9 63.5 61.7 6.02 59.6
Specificity 86.3 88.8 87.6 88.2 86.9 85.3 82 84.6 88 87.3 2.04 86.5
Sensitivity 54.8 62.9 61.7 62.2 58 55.1 55.4 53.7 65.2 58 4.02 58.7
Time [msec] 8 8 5 8 3 7 3 7 8 11 2.49 6.8 msec
Rules 24 19 23 25 23 21 20 27 26 16 3.41 22.4
Selectors 43 39 41 48 45 37 39 51 44 24 7.39 41.1

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specificity
sensitivity
base line

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 192

DATA SET NAME: cmc

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 49.3 45.3 36.5 49.3 41.2 46.6 40.5 45.3 43.9 39 4.31 43.7
Specificity 74.5 75.1 71.1 76.3 72.9 74.5 69.5 72.5 74.3 72.3 2.03 73.3
Sensitivity 44.2 43 33.2 46.9 38 42 35.8 42 37.5 37.8 4.24 40.0
Time [msec] 6 6 5 5 6 6 6 6 8 6 0.82 6 msec
Rules 20 26 14 21 19 23 22 21 18 18 3.26 20.2
Selectors 68 93 53 69 68 82 73 73 62 64 11 70.5

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: cmc

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 40.5 54.7 35.8 45.3 41.2 46.6 46.6 57.4 43.9 53.2 6.81 46.5
Specificity 68.9 74.5 69.3 70.5 69.7 72.6 75.2 77.1 70.9 75.8 2.99 72.4
Sensitivity 35.3 46.4 37 41 40.3 39.5 45.8 54 37 51.9 6.44 42.8
Time [msec] 6 13 10 7 6 8 0 4 10 9 3.62 7.3 msec
Rules 19 22 17 21 13 14 15 18 18 17 2.88 17.4
Selectors 47 56 42 50 29 37 39 38 45 38 7.67 42.1

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

 -10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 193

DATA SET NAME: hea

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 77.8 74.1 85.2 81.5 85.2 66.7 81.5 77.8 74.1 85.2 6.06 78.9
Specificity 44.4 61.5 75 83.3 78.6 62.5 80 50 53.8 66.7 13.5 65.6
Sensitivity 94.4 85.7 93.3 80 92.3 72.7 82.4 100 92.9 94.4 8.34 88.8
Time [msec] 0 0 1 2 0 0 0 0 0 0 0.67 0.3 msec
Rules 5 6 3 7 5 3 2 5 5 6 1.57 4.7
Selectors 18 21 8 30 20 9 5 17 18 25 7.81 17.1

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

 -5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: hea

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 85.2 81.5 74.1 81.5 74.1 66.7 74.1 85.2 77.8 88.9 6.77 78.9
Specificity 62.5 88.9 41.7 71.4 57.1 80 62.5 72.7 69.2 92.3 15.1 69.8
Sensitivity 94.7 77.8 100 92.3 92.3 58.8 90.9 93.8 85.7 85.7 11.7 87.2
Time [msec] 1 3 0 1 0 0 1 3 0 3 1.32 1.2 msec
Rules 2 2 3 3 1 1 2 3 1 1 0.88 1.9
Selectors 4 5 6 4 1 2 6 7 1 1 2.31 3.7

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -1
0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 194

DATA SET NAME: bos

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 70.6 72.5 70.6 63.3 64.7 62.7 68 72.5 70 85.1 6.43 70.0
Specificity 90.2 90.9 84.1 89.8 82.5 81.5 85.1 87.6 93.3 93.4 4.33 87.8
Sensitivity 69.7 71.3 68.6 67.4 64.5 63.7 68.4 72.5 67.8 85.6 6.13 69.9
Time [msec] 2 3 0 2 2 2 2 1 1 2 0.82 1.7 msec
Rules 18 20 20 17 23 23 22 18 20 17 2.3 19.8
Selectors 89 108 112 89 124 131 116 97 109 96 14.3 107

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -20
0

20

40
60
80

100

120
140
160

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: bos

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 66.7 72.5 56.9 72.5 73.5 80.4 74.5 72.5 70 69.6 6.11 70.9
Specificity 83.3 87.3 78.4 87.3 84.9 90.2 87.6 85.9 86.9 84.5 3.2 85.6
Sensitivity 67 73.4 56.3 74.1 71.1 79.7 73.3 70 71.9 64.9 6.34 70.2
Time [msec] 2 6 7 2 1 1 5 2 7 6 2.51 3.9 msec
Rules 17 16 18 17 20 20 18 16 17 20 1.6 17.9
Selectors 47 51 53 47 68 67 57 50 53 70 8.83 56.3

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specificity
sensitivity
base line

0

10

20
30
40

50
60

70
80

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 195

DATA SET NAME: bld

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 60 71.4 74.3 60 74.3 71.4 68.6 57.1 62.9 76.7 7.06 67.7
Specificity 23.5 43.8 46.2 27.8 30.8 43.8 50 41.7 100 33.3 21.5 44.1
Sensitivity 94.4 94.7 90.9 94.1 100 94.7 88.2 65.2 40.9 95.2 18.5 85.9
Time [msec] 0 0 2 0 0 0 0 2 0 0 0.84 0.4 msec
Rules 4 3 3 4 3 4 4 2 3 4 0.7 3.4
Selectors 17 13 12 16 12 16 17 8 12 17 3.06 14.0

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: bld

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 71.4 71.4 62.9 68.6 62.9 74.3 65.7 74.3 80 66.7 5.52 69.8
Specificity 25 50 38.9 42.1 13.3 38.5 56.3 41.7 30 44.4 12.4 38.0
Sensitivity 95.7 82.6 88.2 100 100 95.5 73.7 91.3 100 100 8.91 92.7
Time [msec] 0 2 3 2 2 2 1 2 0 0 1.07 1.4 msec
Rules 2 2 3 4 2 3 3 2 3 2 0.7 2.6
Selectors 6 8 11 13 5 7 9 5 6 7 2.63 7.7

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -2
0
2

4
6
8

10

12
14
16

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 196

DATA SET NAME: tae

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 62.5 50 56.3 43.8 43.8 56.3 62.5 50 62.5 57.1 7.28 54.5
Specificity 81.9 77 81.8 77 72.7 77.5 81 74 84.6 80.6 3.77 78.8
Sensitivity 42.6 57.2 54.2 49.8 45.6 46.8 62.4 58.3 67.5 44.4 8.38 52.9
Time [msec] 2 2 0 2 0 0 0 0 2 0 1.03 0.8 msec
Rules 17 24 22 23 21 22 17 22 20 24 2.53 21.2
Selectors 40 63 58 69 57 60 44 57 52 72 9.99 57.2

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

 -10
0

10

20
30
40
50

60
70
80

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: tae

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 43.8 56.3 43.8 43.8 62.5 25 75 56.3 56.3 57.1 13.6 52.0
Specificity 73.9 79.5 68.1 72.1 79.4 66.4 82.9 80.1 79.5 75 5.54 75.7
Sensitivity 48.4 65.8 33.3 44.4 58.3 25.6 63 64.8 56.9 50 13.5 51.1
Time [msec] 0 2 0 0 4 1 0 4 0 2 1.64 1.3 msec
Rules 9 15 17 13 18 12 16 16 16 15 2.67 14.7
Selectors 15 27 30 21 37 21 34 35 32 26 7.13 27.8

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%] accuracy
specif icity
sensitivity
base line

 -5
0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 197

DATA SET NAME: pid

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 80.5 75.3 68.8 83.1 83.1 74 75.3 72.7 66.2 77.3 5.62 75.7
Specificity 58.3 48.1 53.1 65.4 58.3 56.7 72 62.5 56 83.9 10.3 61.4
Sensitivity 90.6 90 80 92.2 94.3 85.1 76.9 77.4 71.2 72.7 8.48 83.0
Time [msec] 2 0 2 0 0 1 0 0 1 2 0.92 0.8 msec
Rules 2 2 1 2 2 3 2 2 1 1 0.63 1.8
Selectors 8 9 4 8 8 14 10 9 5 5 2.91 8.0

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -2
0
2

4
6
8

10

12
14
16

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: pid

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 79.2 77.9 77.9 75.3 70.1 68.8 75.3 75.3 63.6 81.3 5.41 74.5
Specificity 64 59.3 64 60.9 48.4 53.3 45.5 65.5 50 80.8 10.4 59.2
Sensitivity 86.5 88 84.6 81.5 84.8 78.7 87.3 81.3 72.3 81.6 4.71 82.7
Time [msec] 0 6 1 2 4 5 2 4 1 2 1.95 2.7 msec
Rules 2 3 2 2 2 3 2 1 2 2 0.57 2.1
Selectors 10 14 7 8 9 13 9 4 10 9 2.83 9.3

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

 -2
0
2

4
6
8

10

12
14
16

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 198

DATA SET NAME: seg

- results of tests with the DataSqueezer algorithm
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 84 86.6 84.4 78.8 85.7 81 81 84.8 85.3 83.5 2.49 83.5
Specificity 97.6 97.9 97.8 96.7 98 97.3 97.2 97.5 97.6 97.7 0.39 97.5
Sensitivity 84.2 85.4 85.2 79.2 83.7 80.9 81.1 84.3 84.5 83.9 2.09 83.2
Time [msec] 27 23 27 28 28 27 31 28 32 22 3.06 27.3 msec
Rules 51 55 66 59 56 60 60 50 59 57 4.67 57.3
Selectors 188 201 251 215 215 240 235 185 230 225 22 219

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

DATA SET NAME: seg

- results of tests with the MetaSqueezer system
Trials 1 2 3 4 5 6 7 8 9 10 stdev MEAN

Accuracy 80.1 81.4 77.1 79.7 84 80.5 82.7 82.7 79.7 77.9 2.17 80.6
Specificity 96.6 96.9 96.2 96.6 97.4 96.8 97.1 97.1 96.8 96.3 0.38 96.8
Sensitivity 81.5 81.4 77.6 79.8 84.5 80.2 82.5 81.9 79.9 75.8 2.48 80.5
Time [msec] 23 40 27 23 34 28 22 28 20 41 7.43 28.6 msec
Rules 47 46 60 49 45 52 52 48 58 50 4.97 50.7
Selectors 79 82 109 89 74 85 96 89 102 88 10.6 89.3

1015
202530
354045
505560
6570
758085
9095100

105110

1 2 3 4 5 6 7 8 9 10

trial #

[%]

accuracy
specif icity
sensitivity
base line

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

tr ial #

T [m sec], #
[units]

Time [msec]
Rules
Selectors

 199

DATA SET NAME: dna

results of tests with the DataSqueezer
algorithm

Trials 1

Accuracy 92.0
Sensitivity 92.4
Specificity 97.1
Base Line 51.2
Time 56 msec
Rules 39
Selectors 97

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 89.6
Sensitivity 89.3
Specificity 94.9
Base Line 51.2
Time 1 sec 2 msec
Rules 34
Selectors 53

DATA SET NAME: led

results of tests with the DataSqueezer
algorithm

Trials 1

Accuracy 68.4
Sensitivity 68.2
Specificity 96.5
Base Line 10.8
Time 17 msec
Rules 51
Selectors 194

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 68.9
Sensitivity 68.9
Specificity 96.6
Base Line 10.8
Time 22 msec
Rules 51
Selectors 141

DATA SET NAME: sat

results of tests with the DataSqueezer
algorithm

Trials 1

Accuracy 79.5
Sensitivity 77.7
Specificity 96.2
Base Line 24.2
Time 95 msec
Rules 57
Selectors 257

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 74.4
Sensitivity 73.4
Specificity 94.5
Base Line 24.2
Time 1 sec 7 msec
Rules 55
Selectors 104

DATA SET NAME: smo

results of tests with the DataSqueezer
algorithm

Trials 1

Accuracy 68.3
Sensitivity 33.3
Specificity 66.7
Base Line 70.2
Time 5 msec
Rules 6
Selectors 12

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 66.8
Sensitivity 32.6
Specificity 68.7
Base Line 70.2
Time 6 msec
Rules 3
Selectors 11

 200

DATA SET NAME: thy

results of tests with the DataSqueezer
algorithm

Trials 1
Accuracy 96.2
Sensitivity 94.6
Specificity 98.8
Base Line 32.5
Time 6 msec
Rules 7
Selectors 28

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 96.2
Sensitivity 85.9
Specificity 98.7
Base Line 32.5
Time 7 msec
Rules 6
Selectors 6

DATA SET NAME: wav

results of tests with the DataSqueezer
algorithm

Trials 1
Accuracy 76.7
Sensitivity 76.6
Specificity 88.8
Base Line 35.8
Time 2 msec
Rules 22
Selectors 65

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 77.6
Sensitivity 77.5
Specificity 89.0
Base Line 35.8
Time 2 msec
Rules 16
Selectors 16

 DATA SET NAME: mush

results of tests with the DataSqueezer
algorithm

Trials 1
Accuracy 99.9
Sensitivity 99.7
Specificity 100
Base Line 53.3
Time 6 msec
Rules 8
Selectors 21

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 99.5
Sensitivity 99
Specificity 100
Base Line 53.3
Time 19 msec
Rules 6
Selectors 16

DATA SET NAME: adult

results of tests with the DataSqueezer
algorithm

Trials 1
Accuracy 81.5
Sensitivity 93.9
Specificity 41.4
Base Line 75.9
Time 17 sec 83 msec
Rules 61
Selectors 395

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 80.6
Sensitivity 94.6
Specificity 33.4
Base Line 75.9
Time 10 sec 35 msec
Rules 19
Selectors 64

 201

DATA SET NAME: forc

results of tests with the DataSqueezer
algorithm

Trials 1
Accuracy 54.8
Sensitivity 56.2
Specificity 90.0
Base Line 14.3
Time 25 sec 98 msec
Rules 59
Selectors 2105

results of tests with the MetaSqueezer
system

Trials 1
Accuracy 55.3
Sensitivity 35.8
Specificity 88.8
Base Line 14.3
Time 18 sec 57 msec
Rules 33
Selectors 699

DATA SET NAME: cid

- results of tests with the DataSqueezer algorithm

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size -
Ratio --- 2 2 2 2 2 2 2 1.56

Time 30msec 58msec 98msec 2sec 47msec 6sec 90msec 18sec
89msec

47sec
13msec

2min 16sec
29msec

4min 25sec
09msec

Time - Ratio --- 1.93 1.69 2.52 2.79 2.74 2.50 2.95 1.94
Accuracy 87.9 89.9 88.1 87.7 87.9 89.3 89.4 89.1 90.5
Sensitivity 90.3 92.3 90.7 90.3 90.5 92.1 92.2 91.8 93.5
Specificity 52.0 45.6 48.7 49.1 48.4 46.5 46.4 47.3 45.4
Rules 11 13 10 12 12 13 14 13 15
Selectors 74 80 57 77 74 81 88 83 95

- results of tests with the MetaSqueezer system
Trials 1

Accuracy 90.2
Sensitivity 93.0
Specificity 49.0
Base Line 93.8
Time 4 min 33 sec 01 msec
Rules 6
Selectors 34

Train data size 1000 2000 4000 8000 16000 32000 64000 128000 199523
Train data size -
Ratio --- 2 2 2 2 2 2 2 1.56

Time 65msec 1sec 27msec 2sec 31msec 4sec 72msec 10sec
44msec

24sec
71msec

55sec
43msec

2min 31sec
71msec

4min 33sec
01msec

Time - Ratio --- 1.95 1.81 2.04 2.21 2.34 2.24 2.74 1.80
Accuracy 93.6 90.6 90.3 92.0 92.5 91.7 90.5 90.9 90.2
Sensitivity 99.6 94.9 93.8 96.3 97.2 95.9 93.7 94.1 93.0
Specificity 1.9 25.7 37.1 26.5 20.6 28.1 41.8 41.7 49.0
Rules 38 11 14 17 18 13 11 11 6
Selectors 173 67 76 106 98 66 72 67 34

Trials 1
Accuracy 90.5
Sensitivity 93.5
Specificity 45.4
Base Line 93.8

Time 4 min 25 sec 09 msec
Rules 15

Selectors 95

 202

Appendix D

Results of Mining CF data using DataSqueezer Algorithm

Results for task 1

The following attribute and selector importance table was generated by the

DataSqueezer algorithm, when applying to the input data for task 1 and using the

same parameters as the parameters as for the MetaSqueezer system. Evaluation of

findings, which was performed by Dr. Frank Accurso and Marci Sontag, is shown

in the marks column.

ATRIBUTE VALUE MARK CLASS
IMPROV

CLASS
NOCHANGE

CLASS
SLOWDEGRAD

CLASS
FASTDEGRAD

 CFtypes (cf)
 CFtypes (cf) Type1
 CFtypes (cf) Type2
 TemporalIntervals (cf) 4
 TemporalIntervals (cf) 5
 vis_hgt1 (vis)
 vis_hgt1 (vis) [105.00,180.00)
 vis_wght1 (vis)
 vis_wght1 (vis) [22.10,54.40)
 dob (dem)
 dob (dem) 82till92
 dob (dem) before82
 race (dem)
 race (dem) Caucasian
 race (dem) Black 3+
 group (dem)
 group (dem) C
 group (dem) NBS 3+
 group (dem) MI 3+
 marital (dem)
 marital (dem) Married
 motage (dem) 3+
 motage (dem) [22.50,48.50)
 birthord (dem)
 birthord (dem) 3
 birthord (dem) 2
 birthord (dem) 1
 birthord (dem) 4
 numsib (dem)
 numsib (dem) 2
 numsib (dem) 1
 numsib (dem) 3
 numsib (dem) 0
 numsib (dem) 4

 203

 cfsib (dem)
 cfsib (dem) 0
 deltype (dem)
 deltype (dem) vagnl
 deltype (dem) csemg
 deltype (dem) cspln
 deltype (dem) unk
 mecil (dem) no
 irt (dia) No
 irt (dia) Yes
 FalseNeg (dia)
 FalseNeg (dia) -
 FalseNeg (dia) No
 Clinic (dia)
 Clinic (dia) Billings
 Clinic (dia) Adult
 Clinic (dia) Denver
 Clinic (dia) Colo.Spgs
 Clinic (dia) GreatFalls
 irt1 (dia) [389.00,766.00)
 irt1 (dia) [79.50,373.00)
 age@irt1 (dia)
 age@irt1 (dia) [-0.50,5.50)
 age@irt1 (dia) [5.50,8.50)
 irt2 (dia) [87.50,322.00)
 swetna1 (dia)
 swetna1 (dia) [54.50,152.00)
 swetk1 (dia)
 swetk1 (dia) [24.50,46.00)
 swetk1 (dia) [4.50,16.50)
 swetk1 (dia) [16.50,24.50)
 swetcl1 (dia)
 swetcl1 (dia) [101.00,157.00)
 swetcl1 (dia) [-11.00,95.50) 3+
 swetna2 (dia)
 swetna2 (dia) [22.00,101.00)
 swetk2 (dia) [19.50,58.50)
 swetcl2 (dia)
 swetcl2 (dia) [26.50,108.00)
 swetk3 (dia) [5.50,26.50)
 swetk4 (dia) [10.50,39.50)
 SOURCE (cul) Sputum
 SOURCE (cul) ThroatCulture
 tobraresistent? (cul)
 tobraresistent? (cul) No
 ciproresistant? (cul)
 ciproresistant? (cul) No
 meropenemresistant? (cul)
 meropenemresistant?
(cul) No

 WAZ (per)
 WAZ (per) [-1.93,1.51)
 HAZ (per)
 HAZ (per) [-1.87,2.50)
 BASEpower (cul) [-1.00,2E4)
 BASEpower2 (cul) [-1.75,7.5E6)
 BASEpower3 (cul)
 BASEpower3 (cul) [-1.75,1.1E8)
 BASEpower4 (cul)
 BASEpower4 (cul) [-5E3,1.25E5)
 age@diagnosis (dia)

 204

 age@diagnosis (dia) 025till2
 age@diagnosis (dia) below025

Results for task 2

The following attribute and selector importance table was generated by the

DataSqueezer algorithm, when applying to the input data for task 2 and using the

same parameters as the parameters as for the MetaSqueezer system. Evaluation of

findings, which was performed by Dr. Frank Accurso and Marci Sontag, is shown

in the marks column.

ATRIBUTE VALUE MARK CLASS TYPE1 CLASS TYPE2 CLASS TYPE4
 CFpace (cf)
 CFpace (cf) NoChange
 CFpace (cf) SlowDegrad
 CFpace (cf) Improv 3+
 TemporalIntervals (cf) 4
 vis_hgt1 (vis)
 vis_hgt1 (vis) [102.00,188.00)
 vis_wght1 (vis)
 vis_wght1 (vis) [15.30,53.30)
 PulseOximetry (vis) [92.50,101.00)
 dob (dem) 82till92
 race (dem)
 race (dem) Caucasian
 race (dem) Unknown
 group (dem)
 group (dem) C 2+
 group (dem) NBS 2+
 marital (dem)
 marital (dem) Married
 marital (dem) Unknown
 motage (dem)
 motage (dem) [25.50,37.50)
 motage (dem) [15.10,24.50)
 birthord (dem)
 birthord (dem) 3
 birthord (dem) 2
 birthord (dem) 1
 birthord (dem) 4
 numsib (dem)
 numsib (dem) 2
 numsib (dem) 1
 numsib (dem) 0
 cfsib (dem)
 cfsib (dem) 1
 cfsib (dem) 0
 deltype (dem)
 deltype (dem) vagnl
 deltype (dem) unk
 mecil (dem)

 205

 mecil (dem) no
 dcmot (dem)
 dcmot (dem) yes
 Clinic (dia)
 Clinic (dia) Billings
 Clinic (dia) Adult
 Clinic (dia) Denver
 Clinic (dia) Colo.Spgs
 Clinic (dia) GreatFalls
 irt1 (dia) [112.00,285.00)
 age@irt1 (dia) [-0.50,2.50)
 irt2 (dia)
 irt2 (dia) [93.00,477.00)
 age@irt2 (dia) [8.50,67.50)
 swetna1 (dia)
 swetna1 (dia) [47.50,80.50)
 swetna1 (dia) [85.50,1.24E3)
 swetna1 (dia) [80.50,85.50)
 swetk1 (dia)
 swetk1 (dia) [31.50,105.00)
 swetk1 (dia) [20.50,31.50)
 swetcl1 (dia)
 swetcl1 (dia) [86.50,113.00)
 swetcl1 (dia) [-11.00,86.50)
 swetna2 (dia)
 swetna2 (dia) [60.50,139.00)
 swetk2 (dia)
 swetk2 (dia) [13.50,32.50)
 swetcl2 (dia)
 swetcl2 (dia) [85.50,153.00)
 SOURCE (cul) Sputum
 SOURCE (cul) ThroatCulture
 tobraresistent? (cul)
 tobraresistent? (cul) NotDone
 tobraresistent? (cul) No
 ciproresistant? (cul)
 ciproresistant? (cul) NotDone
 ciproresistant? (cul) No
 meropenemresistant? (cul)
 meropenemresistant?
(cul) NotDone

 meropenemresistant?
(cul) No

 WAZ (per)
 WAZ (per) [-1.75,1.36)
 HAZ (per)
 HAZ (per) [-1.53,2.53)
 BASEpower (cul)
 BASEpower (cul) [-0.50,1.15E3)
 BASEpower2 (cul)
 BASEpower2 (cul) [-1.75,752.00)
 BASEpower3 (cul)
 BASEpower3 (cul) [-0.50,5.5E7)
 BASEpower4 (cul)
 BASEpower4 (cul) [-2.5E3,2.5E3)
 age@diagnosis (dia)
 age@diagnosis (dia) below025
 age@diagnosis (dia) 2till7

