
Learning fuzzy cognitive maps with
required precision using genetic
algorithm approach

W. Stach, L. Kurgan, W. Pedrycz and M. Reformat

Fuzzy cognitive maps (FCMs) are a powerful and convenient tool for

describing and analysing dynamic systems. Their generic design is

performed manually, exploits expert knowledge and is quite tedious,

especially in the case of larger systems. This shortcoming is alleviated

by completing the design of FCMs through learning carried out on

experimental data. Comprehensive experiments reveal that this

approach helps design models of required accuracy in an automated

manner.

Introduction: Fuzzy cognitive maps (FCMs), introduced by Kosko

[1], represent a given dynamic system as a set of concepts and mutual

relationships among them. The FCM models were developed and

used in numerous research and industrial areas, such as electrical

and software engineering, supervisory systems, medicine, political

science, military science, history etc. The main drawback of FCMs is

related to their manual, based on expert knowledge, and relatively

complex development phase. Therefore only small models are being

developed. A few methods for automated or semi-automated learning

of FCMs have been proposed to date [2]. So far, for no method has

convergence been demonstrated [3]. Recently, we developed and

comprehensively tested on synthetic, randomly generated, FCM

models a new genetic algorithm (GA) based approach to the auto-

mated learning of FCMs. The new method is able to learn the model

from data, and therefore substitutes for the expert. This Letter

investigates the hypothesis that increasing the size of input data

leads to improving the quality of the learned FCM model, and

executes comprehensive tests on several new published models.

Fig. 1 Diagram of proposed learning method

– – – Typical application of proposed learning method
–––– Test procedure
The Figure should be read starting at the bottom left corner and following in
clockwise manner.

Learning method: The proposed learning method develops an FCM,

called the candidate FCM, from input data using a genetic algorithm,

see Fig. 1. Given a system consisting of N concepts, the FCM model

can be described fully by its connection matrix, which consists of

N(N� 1) variables assuming values in [�1, 1] [1]. Simulation of an

FCM consists of computing the new state of the system, described by

a state vector, from a previous state of the system, over a number of

successive iterations. The state vector specifies values of all concepts

in a particular iteration. The learning uses experimental data con-

sisting of consecutive state vectors obtained for different initial

conditions. Each two successive states of the system from any state

vector can be used during learning. Defining C(t) as an initial vector

and C(tþ 1) as system response (i.e. next state), the input data can

be expressed as a set of (initial vector, system response) pairs. The

number of these pairs determines the size of the training data.

A fitness function that constitutes the core of the genetic algorithm

is defined as a normalised error between state vectors generated by a

candidate FCM and the experimental data. Different fitness functions

based on L1, L2 and L1 norm have been tested; we found that L2-norm

provides the best convergence. Other parameters of the GA, such as

population size, number of generations, mutation mechanisms etc.,

were established experimentally to optimise the performance of

learning for FCM models of different sizes and levels of mutual

relationships.

Experiments: To demonstrate that the proposed learning method is

valid and accurate, a comprehensive set of tests on diverse, published

in the literature, FCM models was performed. Because of the manual

development method, those FCMs are relatively small and consist of

about five, and no more than ten, nodes. The experiments involved

two models composed of five nodes: control process (referred later as

Model 5.1) [4], heat exchanger (Model 5.2) [5]; two eight-node

models: control process (Model 8.1) [6], European Monetary Union

and the risk of war (Model 8.2) [7]; and two models that consist of ten

nodes: virtual squad of soldiers (Model 10.1) [8], and health issues

(Model 10.2) [9]. The experiments used input data generated from or

reported in the corresponding References.

Quality of the generated candidate FCM is evaluated according to

several criteria. In general, the only available information about the

modelled system is the input data, see Fig. 1. Thus, the first criterion

measures the difference between data generated by the candidate FCM

and the given input data set. Normalised least square error measure is

reported as error-L2. However, knowledge of the original FCM model

allows for more detailed and richer comparison considering the differ-

ence between the models. An average absolute difference between

corresponding entries in the connection matrices is reported here as

error-weight. Learning precisely the connection matrix is crucial,

since most relationships, expressed by its cell values, come with

some meaning. Experiments aim to analyse the relationship between

the input data size (length) and the quality of solution for different FCM

model sizes.
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Fig. 2 Error-L2 against input data size

Results: Experiments reveal that the proposed method produces

high quality FCM models both in terms of similarity to those

proposed by experts (expressed by the connection matrix), and quality

of fitting the input data. Fig. 2 shows error-L2 against input data size

for the six models. The models generated for small input data sizes

resulted in small error-L2 values, but large error-weight, see Fig. 3.

This indicates that, because input data were short, they can be

generated accurately by different FCM models. We note that resulting

candidate FCM will correctly generate the input data, but at the same

time it may not correctly generalise knowledge about the underlying

model, which is expressed by the connection matrix, i.e. it will

generate an incorrect state vector for a different initial condition.

Increasing the input data size initially leads to slight degradation of

the quality of fitting input data, but at the same time the error-weight

decreases. This shows that it is harder to approximate larger input

data when multiple models provide accurate approximation, but the
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learned solutions start to converge to an optimal solution. By further

increasing the size of input data, both error-L2 and error-weight

converge to zero, which indicates that only one solution exists for

longer input data, and the generated candidate FCM is identical to the

expert’s model.
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Fig. 3 Error-weight against input data size

The second finding shows the relation between the size of input data

size and the convergence of the candidate FCM to the desired (original)

model, see Fig. 3. We note that insufficient size of input data results

in high value of error-weight, and therefore the generated model is

substantially different from the desired solution. By increasing size of

available data, the candidate FCM converges to the desired solution

with user-required accuracy. In general, the larger the number of con-

cepts in the model, the larger the size of input data is necessary to

achieve high accuracy of the model. We stress that these observations

are valid throughout all models considered in this study.

Conclusions: Overall, the proposed learning method led to promising

results. Three important conclusions can be drawn: (1) given input

data of sufficient size, the method can generate FCM models that are

identical to models proposed by domain experts; (2) increasing size of

input data improves accuracy of learning; and (3) multiple different

models can

be generated from input data of small size, and therefore insufficient

size of input data may result in poor quality of learning. We note that

the developed method constitutes an important milestone towards

eliminating human intervention in developing FCM models.
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