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Abstract 

Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo 

induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from 

sequences based on their distinctive sequence signatures.  

Areas covered: We overview twenty years of progress in the sequence-based prediction of MoRFs which 

resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides and lipids. 

These methods range from simple discriminant analysis to sophisticated deep transformer networks that 

use protein language models. They generate relatively accurate predictions as evidenced by the results of 

a recently published community-driven assessment. 

Expert opinion: MoRFs prediction is a mature field of research that is poised to continue at a steady pace 

in the foreseeable future. We anticipate further expansion of the scope of MoRF predictions to additional 

partner molecules, such as nucleic acids, and continued use of recent machine learning advances. Other 

future efforts should concentrate on improving availability of MoRF predictions by releasing, maintaining 

and popularizing web servers and by depositing MoRF predictions to large databases of protein structure 

and function predictions. Furthermore, accurate MoRF predictions should be coupled with the equally 

accurate prediction and modelling of the resulting structures of complexes. 
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1 Introduction 

Intrinsically disordered regions (IDRs) are regions in protein sequences that lack stable structure under 

physiological conditions [1-4]. Several bioinformatics studies demonstrate that proteins with IDRs are 

present across the entire taxonomy, with much higher rates of occurrence in the eukaryotic organisms [5-

9]. Many IDRs interact with ligands that include a broad spectrum of biomolecules, such as proteins, 

peptides, DNA, RNA, lipids, and a variety of small molecules that include drugs [10-18]. The 

conformational flexibility of IDRs offers certain advantages when compared to ordered (structured) 

regions, including the one-to-many binding where one IDR interacts with multiple different molecules 

[19-23]. One of the most common types of interacting IDRs is the molecular recognition feature (MoRF) 

[11,24]. MoRFs are relatively short sequence segments that are embedded in longer IDRs and that 

typically undergo disorder-to-order transitions when interacting with ligands [11,24,25]. Some MORF 



regions can remain partly or even fully disordered in the bound state [26,27]. The limits on the MoRF 

region lengths differs across studies, with some defining them as in the 10 to 70 consecutive amino acids 

range [24,25] while other works considering shorter segments that span between 5 and 25 residues in 

length [11,24,28]. Moreover, MoRFs were classified into several types that are defined based on the 

primary type of the secondary structure that they fold into upon binding, i.e., α-MoRFs (composed mostly 

of α-helices), β-MoRFs  (mostly β-sheets), γ-MoRFs (irregular structures), and complex-MoRFs (mixed 

secondary structures) [25]. A recent bioinformatics study that investigated nearly 900 species suggested 

that 20 to 30% of IDRs, depending on the taxonomic assignment, include MoRF regions [11]. 

Importantly, sequences of the MoRF segments have unique signatures that differ from other types of 

disordered and ordered regions [11]. These differences motivated the development of computational 

sequence-based predictors of MoRFs [29,30]. Scientists use these predictive tools in a wide range of 

investigations. For instance, one of the most popular MoRF predictors, MoRFpred [31], has been utilized 

recently to investigate cell signaling pathways [32], 20S proteasome substrates [33], a variety of viral 

proteomes including SARS-CoV-2 [34], rotavirus [35], and hepatitis E [36], and interactomes of YY1 

[37], SNED1 [38], and G0S2 [39] proteins. Moreover, MoRF predictions have clinical relevance, as the 

dysfunction of proteins with binding IDRs was found to be associated with a number of human diseases 

[40-42]. One of the results of this disfunction is misfolding that may induce a range of conformational 

illnesses including the prion, Alzheimer's, polyQ and Parkinson's diseases and the Down's syndrome 

[41,43]. Furthermore, MoRF-containing proteins have regulatory and signaling functions that 

fundamentally rely on the protein-ligand interactions, and their dysfunction was linked to cardiovascular 

diseases, cancers, and viral pathogenesis [34,35,40,44,45]. A few specific examples include the tau and 

Aβ proteins that are associated with conformational diseases, BRCA-1, p53 and AFP proteins that are 

involved in cancers, and viral capsid proteins that were shown to be implicated in the pathogenesis of 

viral infections [34-36,40,45,46]. We note that these findings relied on bioinformatics analyses that took 

advantage of high-quality predictions of binding IDRs [34-36,40,45,46].  

Dozens of MoRF predictors have been developed to date, prompting the need to survey them. The last 

time the MoRF predictors were comprehensively surveyed was in 2019 [30]. That review provided a brief 

historical overview, covered 13 predictors (shown in bold font in Table 1), and discussed their predictive 

performance by relying on results collected from several articles that introduce individual predictors [30]. 

Several more recent surveys that focused on a broader collection of methods that predict binding IDRs 

also listed and briefly summarized the MoRF predictors [47-49]. These broader predictors target binding 

regions that are not limited in length and are not necessarily embedded in longer IDRs, and which interact 

with specific ligand types. Some popular examples include ANCHOR [50] and ANCHOR2 [51] that 

target protein and peptide binding IDRs; DisoRDPbind [52], DeepDISObind [53], and DisoFLAG [54] 

that predict DNA and RNA binding IDRs; and DisoLipPred [55], MemDis [56], and DisoFLAG that 

focus on the lipid binding IDRs. Importantly, the recent surveys discussed MoRF predictors in passing 

and lacked coverage of the newest tools, beyond 2020 [47] and 2021 [48,49]. Motivated by the 

promiscuity and functional importance of MoRFs in nature, substantial amount of recent efforts towards 

the development of MoRF predictors, and a number of modern machine learning advances that were 

utilized in these efforts, herein we provide an updated, comprehensive and practical overview of the 

MoRF prediction area. In particular, we cover 25 methods, provide an insightful historical overview that 

spans the 20 years of these development efforts, highlight recent advances that include use of deep 

learning algorithms and protein language models, and summarize evaluation of representative methods 

based on arguably more objective results from a large community-organized assessment (compared to the 

past survey). In addition, as developers of these tools and authors of some of the past surveys, we also 

offer our opinion on the current issues and future progress in this active area of research.



Table 1. Detailed summary of MoRF predictors. Methods are sorted chronologically; bold font denotes methods covered in the 2019 survey [30]. 'Predictive 
model' column includes Feed Forward Network (FNN), Convolutional Network (CN), Bidirectional Long Short-Term Memory (BLSTM) network, and Support 
Vector Machine (SVM).  'Availability' column includes web server (WS), source code (SC), both (WS+SC), never available (NA; original article does not 
provide information on availability), and no longer available (NLA; original article provides links to WS and/or SC but these links no longer work). 'URL' gives 
pages where a given method was available as of September 2024. 'Citations' column includes total citations with annual citations inside brackets; these data were 
collected from Google Scholar in September of 2024. For methods published in multiple articles, we use the reference with the highest citation count to avoid 
duplicate counting. 

Method name  
(year published) 

Ref. 

Uses 
machine 
learning 

(ML) 

Predictive model 

Uses deep 
learning 
(protein 
language 
model) 

Availability 
as of Sept 

2024 
URL 

Citations 
total  

(per year) 

α-MoRFpred (2005) [28] Yes Discriminant analysis No NA NA 703 (35.2) 
α-MoRFpred II (2007) [57] Yes FFN No NA NA 355 (19.7) 
retro-MoRFs (2010) [58] No Sequence alignment No NA NA 53 (3.5) 
MoRFpred (2012) [31,59] Yes SVM No WS http://biomine.cs.vcu.edu/servers/MoRFpred/ 367 (28.2) 
MFSPSSMpred (2013) [60] Yes SVM No NLA  68 (5.7) 

MoRFCHiBi (2015) [61] Yes SVM No WS+SC 
https://morf.msl.ubc.ca/index.xhtml (WS) 
https://gsponerlab.msl.ubc.ca/software/morf_chibi/ (SC) 83 (8.3) 

DISOPRED3 (2015) [62] Yes SVM No WS+SC 
http://bioinf.cs.ucl.ac.uk/psipred/ (WS) 
http://bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/ (SC) 886 (88.6) 

MoRFCHiBi SYSTEM (2015) [63,64]  Yes 
Meta predictor that combines 

MoRFCHiBi [61] and ESpritz [65] 
No WS+SC 

https://morf.msl.ubc.ca/index.xhtml (WS) 
https://gsponerlab.msl.ubc.ca/software/morf_chibi/ (SC) 146 (14.6) 

fMoRFpred (2016) [66] Yes SVM No WS http://biomine.cs.vcu.edu/servers/fMoRFpred/ 156 (17.3) 
Predict-MoRFs (2016) [67] Yes SVM No SC https://github.com/roneshsharma/Predict-MoRFs (SC) 34 (3.8) 
Fang et al. (2018) [68] Yes SVM No NA NA 8 (1.1) 
MoRFPred-plus (2018) [69] Yes SVM No SC https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus (SC) 52 (7.4) 

OPAL (2018) [70] Yes SVM No WS+SC 
http://www.alok-ai-lab.com/tools/opal/ (WS) 
https://github.com/roneshsharma/OPAL/wiki/OPAL-download (SC) 69 (9.9) 

OPAL+ (2019) [71] Yes SVM No WS+SC 
http://www.alok-ai-lab.com/tools/opal_plus/ (WS) 
https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download (SC) 41 (6.8) 

en_DCNNMoRF (2019) [72] Yes CN Yes NLA  17 (2.8) 
MoRFMLP (2019) [73] Yes Hybrid of FFN and Naïve Bayes Yes NA  10 (1.7) 
MoRFMPM (2019) [74] Yes Minimax probability machine No SC https://github.com/HHJHgithub/MoRFs_MPM 8 (1.3) 
MoRFPred_en (2019) [75] Yes Hybrid of CNs and SVM Yes NLA  9 (1.5) 

SPOT-MoRF (2020) [76] Yes 
Hybrid of Inception-Residual-

Squeeze and Excitation network 
and BLSTM network 

Yes WS+SC 
https://sparks-lab.org/server/spot-morf/ (WS) 
http://zhouyq-lab.szbl.ac.cn/download/ (SC) 

51 (10.2) 
MoRFCNN (2021) [77] Yes CN Yes NA  6 (1.5) 
Res-BiLstm (2021) [78] Yes BLSTM network Yes SC https://github.com/Yanzziang/Transition_Disorder_Prediction (SC) 0 (0) 

MoRF-FUNCpred (2022) [79] Yes 
Ensemble of SVM, Logistic 

Regression, Decision Tree and 
Random Forest 

No SC https://github.com/LiangYu-Xidian/MoRF-FUNCpred (SC) 
5 (1.7) 

CoMemMoRFPred (2023) [80] Yes 
Meta predictor that combines 

flDPnn [81,82], DisoLipPred [55] 
and MoRFCHiBi [61] 

No WS http://biomine.cs.vcu.edu/servers/CoMemMoRFPred/ (WS) 
2 (1) 

MoRF_ESM (2024) [83] Yes Transformer network Yes (ESM-2) NA  0 (0) 
IDBindT5 (2024) [84] Yes FFN Yes (ProtT5) SC https://github.com/jahnl/binding_in_disorder (SC) 2 (2) 



2 Historical overview 

Table 1 summarizes key characteristics for the 25 MoRF predictors that include 7 methods that were 

released since 2020 and 12 methods that were not covered in the last survey [30]. This comprehensive list 

of methods was established by analyzing past surveys [30,47-49], manually scanning citations to the 

articles that introduce the listed predictors, and performing manual analysis of relevant PubMed searches. 

We focus our discussion of this active field of research on three important and complementary aspects. 

First, we provide a chronological historical overview that highlights major milestones. Second, we 

discuss availability of these 25 predictors and analyze relation of this aspect with their impact measured 

using citations. Third, we discuss recent community-driven efforts in measuring predictive performance 

and runtime and highlight the corresponding results for the MoRF predictors.  

Figure 1 presents a chronological record of the 20-years long development efforts and includes 

annotations of the five major milestones. The first milestone in 2005 marks publication of the first α-

MoRFpred method [28]. This method is limited to the prediction of the α-MoRFs and it was designed 

using a small dataset of 12 proteins with 14 α-MoRF regions. This design was improved two years later 

with the publication of α-MoRFpred-II by the same research group headed by Prof. Dunker [57]. 

MoRFpred-II used a larger training dataset with 99 proteins and 102 α-MoRFs and applied machine 

learning algorithm to produce the predictive model in a form of a shallow feed-forward neural network 

[57]. The second milestone (Figure 1) is the release of MoRFpred [31,59], the first tool that addresses 

prediction of generic MoRFs that are not limited to a particular MoRF type (as compared to the α-

MoRFs). This method was trained on a relatively large dataset with over 400 proteins and features a more 

advanced design that includes several sequence-derived inputs, such as an evolutionary profile and 

prediction of intrinsic disorder and solvent accessibility, which are input to a support vector machine 

model. MoRFpred was released as a free webserver that is available and operational to this date.  

 

Figure 1. Timeline of the development of MoRF predictors. Color-coded bars denote modes of availability, which include Never 
Available (NA), No Longer Available (NLA), Source Code (SC), Web Server (WS), and Web Server and Code (WS+SC). Dark 
green callouts show major community assessment events. Light green callouts identify major milestones.  

The third milestone is defined by the first use of a deep learning-based model in the en_DCNNMoRF 

predictor that was published in early 2019 [72]. This marks a major shift in the design of the MoRF 

predictors since the substantial majority of the subsequently developed methods also rely on the deep 

neural network models, i.e., 8 out of 11 released since 2019 (Table 1). The en_DCNNMoRF’s model 

includes two deep convolutional neural networks which results are averaged to produce the final MoRF 

predictions [72]. The other deep learning-based MoRF predictors utilize a wide range of network 

topologies including feed forward networks [73,84], convolutional networks [75,77], recurrent networks 



[76,78], and transformers [83]. The fourth milestone marks the recent expansion of the scope of the 

MoRF predictors. Until 2023 these methods targeted prediction of MoRFs that interact with proteins and 

peptides. This can be explained by the fact that the ground truth annotations of these protein and peptide 

binding MoRFs, which were used for training and assessment of these methods, were relatively easy to 

collect from existing databases, such as Protein Data Bank [85] and MobiDB [86]. The first method that 

considers other types of partner molecules is CoMemMoRFPred, which predicts lipid binding MoRFs 

[80]. Development of this method was possible because of the preceding release of the MemMoRF 

database in 2021 [87], which was used to source the corresponding ground truth annotations. The most 

recent milestone is associated with the first use of the protein language models (PLMs), which occurred in 

2024 [83]. PLMs are used to generate inputs into the predictive models and they are typically applied in 

conjunction with deep neural networks, which is the case for both MoRF predictors that applied PLMs 

[83,84]. More specifically, MoRF_ESM uses the ESM-2 PLM [88] and a deep transformer network [83], 

and IDBindT5 uses the ProtT5 PLM [89] and a deep feed forward network [84]. We believe that this field 

of research has reached a mature stage, as evidenced by the steady rate of the development efforts over 

the last five year, after a spike between 2015 and 2019 (Figure 1). The new methods will continue to be 

released at a steady pace that will be fueled by the last three milestones, in particular the development of 

new deep network architectures and new PLMs, and expansion of the scope. 

3 Availability and impact 

We summarize the availability of 25 MoRF predictors in Table 1. We enumerated five scenarios: 

available as a web server (WS; 3 predictors); available as downloadable source code (SC; 6 predictors); 

available as both server and code (WS+SC; 6 predictors); never available (NA; 7 predictors) when the 

corresponding article that introduced a given method did not provide information on availability; and no 

longer available (NLA; 3 predictors) when the links to the code or server that were provided in the 

original article no longer work. The WS option is arguably convenient since users can easily access 

servers using a web browser and the entire prediction process is typically done in the server side without 

installing software on the user’s side. However, servers typically limit individual prediction requests to 

one protein or a small batch of proteins (for load balancing between users) and the runtime of a given 

prediction is affected by the current server load. The SC option is less convenient since the code has to be 

downloaded and installed by users and the computations have to be done on the user’s hardware. Some of 

these installations can be challenging since they rely on multiple third-party applications and may require 

specific hardware and/or software infrastructure. On the other hand, the SC option facilitates generation 

of predictions at a large scale and embedding of the corresponding predictor into other bioinformatics 

pipelines. Altogether, 15 of the 25 methods are available to the end users (60% availability rate), with 6 of 

them available as both WS and SC. This is similar to the recently estimated 65% availability rate for the 

predictors of the intrinsic disorder [90] and a bit higher than the below 50% availability for predictors of 

protein and nucleic acid binding residues [91,92]. 

We investigated whether the mode (lack) of availability is associated with impact of MoRF predictors, 

which we approximate based on their citations in Google Scholar as of September 2024 (Table 1). We 

quantified the total number of citations and the annual number of citations (total divided by the number of 

years since publication), and we used the latter to compare impact across methods. We excluded 

predictors from 2024 since their citation data is not reliable. The 25 MoRF predictors were cited 

altogether about 3100 times. More importantly, we found that predictors that offer WS were cited at a 

much higher rate, i.e., median annual citations of 17.3 for the methods available as only WS and 10.1 for 

the tools available as code and web server, when compared with the other three options, i.e., median 

annual citations of 2.6, 2.8 and 1.7 for the predictors that were never available, no longer available, and 

available as only SC, respectively. Our observation that availability of the WS option substantially boosts 

citations agrees with a recently released broader analysis of the availability and impact of sequence based 

predictors of protein structure and function [93]. We hypothesize that tools available as WSs are more 

popular because users may need their predictions in an ad hoc manner that would not justify the 



installation effort and/or may not have the computational resources and experience needed to install and 

run the predictors locally.  

4 Predictive performance 

Assessments of the predictions of ligand binding IDRs were included in the two recently completed 

community-organized Critical Assessment of Intrinsic disorder (CAID) events: CAID1 in 2021 [94] and 

CAID2 in 2023 [95] (Figure 1). This inclusion demonstrates the importance and relevance of MoRF 

predictors. These evaluations were performed by independent assessors who evaluated predictors that 

were provided by their authors before the event started. A large number of predictors was tested on blind 

test datasets (authors of predictors did not have access to the test proteins) using community-accepted 

metrics that quantify predictive quality. The CAID evaluations are arguably more objective when 

compared to the smaller-scale tests that are performed when individual predictive tools are published. 

Moreover, the fact that the participating predictors are run by the same assessors on the same hardware 

platform facilitates reliable and consistent comparison of runtime. 

 

Figure 2. Comparison of predictive performance for the prediction of binding IDRs in the CAID2 experiment [95]. The 
performance was measured using AUC (y-axis), AUPRC (x-axis), F1 (callouts) and runtime measured per 1000 amino acids long 
protein (callouts). MoRF predictors are highlighted by bold font in red color in the callouts. 

CAID2 evaluated 32 predictors of binding IDRs that included 4 MoRF predictors: DISOPRED3 [62], 

MoRFchibi_light and MoRFchibi_web that are part of the MoRFchibi SYSTEM [63,64], and OPAL [70]. 

Figure 2 summarizes these results by comparing the top 10 predictors of binding IDRs that were ranked 

based on two popular metrics: Area Under the ROC Curve (AUC; y-axis in Figure 2) and Area Under the 



Prediction-Recall Curve (AUPRC, x-axis in Figure 2). Following CAID2, we also include the F1 metric 

that quantifies performance based on the highest point on the precision–recall curve, i.e., maximal F1 

values that can be obtained by a given predictor [95] (callouts in Figure 2). We observed that 3 of the 4 

MoRF predictors were ranked among the top 10 predictors of binding IDRs in CAID2 (Figure 2). These 

three methods secured the highest AUPRC values and relatively high AUC values, which placed them in 

the best top-right quadrant in Figure 2. Moreover, their F1 scores were 0.36 for MoRFchibi_web, 0.35 for 

OPAL, and 0.34 for MoRFchibi_light. MoRFchibi_web was arguably the best predictor when considering 

both the predictive performance and runtime. It generated predictions in about 2.5 minutes per protein, 

secured the highest AUPRC of 0.284, the second highest AUC of 0.751, and MCC of 0.36, behind only 

the ENSHROUD method that obtained nearly identical AUC of 0.753 and MCC of 0.36 but much lower 

AUPRC of 0.252. Altogether, these results demonstrate that current MoRF predictors offer competitive 

levels of predictive performance. 

5 Expert opinion 

Computational prediction of MoRFs in protein sequences is a mature field of research with deep historical 

roots that stretch over 20 years. We show that the current tools are relatively accurate and that recently 

developed methods already took advantage of recent machine learning advances including the use of 

sophisticated deep neural networks (e.g., transformers) and protein language models (e.g., EMS-2 and 

ProtT5). We believe that these efforts will continue at a steady pace in the foreseeable future as new deep 

network architectures and PLMs will be developed and released. In particular, we observe a recent trend 

in the development of PLMs that began to target specific classes/families of proteins, with examples of 

ProGen that focuses on certain families of lysozymes [96] and IgLM on antibodies [97]. Similar efforts 

towards developing PLMs that target proteins with MoRFs should drive further improvements in 

accuracy for the MoRF predictors. We also foresee further expansion of the scope of the MoRF 

predictions to additional types of partner molecules, such as DNAs and RNAs.  

Given that this field has reached the mature stage, we believe that efforts should be shifted to improving 

the availability of the MoRF predictions to the end users. This could be done in three complementary 

ways. First, the authors of the new predictors should be required to offer and maintain a web server for 

their tools. This should substantially increase impact, as we demonstrated empirically for the already 

published predictors, and we argue that the corresponding cost is relatively low. We believe that the 

requirement to support web servers for an extended period of time should be enforced at the point of their 

publication. Several venues stipulate these requirements including the Bioinformatics journal (application 

notes articles; minimum of two years of support), Journal of Molecular Biology (“Computation 

Resources for Molecular Biology” issue; three years of support), and Nucleic Acids Research journal 

(web server issue; five years of support). These requirements should be unified and potentially extended 

to over five years, which in our view would benefit both the developers (boosted impact) and users 

(improved access). Second, the web servers of the leading MoRF predictors should be popularized via 

inclusion into centralized predictive resources, which provide easy access to multiple predictors that cover 

a broad spectrum of structural and functional aspects of proteins. Several such resources are available 

including (alphabetically) Brewery [98,99], CAID prediction portal [100], DEPICTER [101,102], 

MULTICOM [103,104], PredictProtein [105,106], RIDAO [107] and PSIPRED workbench [108,109]. As 

of October 2024, the CAID portal includes three MoRF predictors (DISOPRED3, MoRFchibi SYSTEM, 

and OPAL) [100], DEPICTER covers the MoRFchibi SYSTEM [102], and PSIPRED workbench 

includes DISOPRED3 [109]. These efforts should be strengthened by expanding into other resources. 

Third, pre-computed results generated by MoRF predictors should be made available via the existing 

databases of the intrinsic disorder predictions, which include D2P2 [110], MobiDB [86,111] and 

DescribePROT [112,113]. These resources offer access to large collections of pre-computed predictions 

that span hundreds and even thousands of organisms, and which can be conveniently searched and 

obtained nearly instantly via a web interface. These databases address several issues related to the direct 

use of predictors which could be difficult (i.e., finding server or code could be challenging and making 



predictions could be time-consuming) and wasteful (different users make the same predictions when 

studying the same proteins). However, predictors still have to be used when attempting to obtain results 

for proteins that are not included in these databases. We note that as of October 2024 DescribePROT 

includes prediction of the MoRFchibi SYSTEM [102] for 2.3 million proteins from 273 organisms while 

the other two databases do not cover MoRF predictions. Adding MoRF predictors to the other resources, 

particularly MobiDB that covers 245 million proteins, would substantially improve the availability of the 

MoRF predictions.  

Prediction of the MoRFs in protein sequences should be subsequently followed by modelling structures of 

the resulting protein-protein, protein-peptide, protein-lipid complexes (i.e., MoRFs typically fold upon 

binding). Modelling these interactions for IDRs, including MoRF regions, is rather challenging and 

relatively few suitable tools are currently available. One of the first methods that can handle docking for 

intrinsically disordered regions is IDP-LZerD [114,115]. Importance of docking for modelling these 

interactions can be supported with numerous examples, such as the work on the intrinsically disordered 

NUPR1 protein [116-118]. A relatively recent investigation of methods for docking with IDRs reveals 

that three tools produce relatively good results [119]: IDP-LZerD [114,115], CABS-Dock [120] and 

AlphaFold-Multimer [121]. However, the atomic-level details of the structures that they produce require 

further improvements [119]. Coupling accurate sequence-based MoRF predictions with an equally 

accurate subsequent predictions of the complex structure would provide powerful means to enable a more 

comprehensive understanding of the protein-ligand interactions. These investigations, particularly when 

performed jointly between these two research communities, deserve more attention. 

Article highlights 

• 25 sequence-based MoRF predictors were developed over the last two decades 

• Current MoRF predictors address interactions with proteins, peptides and lipids 

• Recently developed MoRF predictors utilize sophisticated deep neural networks and protein language 

models 

• Predictors available as web servers are much more impactful than those that are available as source 

code or that are not available 

• Accessibility of MoRF predictions should be improved by releasing, maintaining and popularizing 

web servers and including pre-computed MoRF predictions in databases of disorder predictions 

• Accurate MoRF predictions should be coupled with equally accurate predictions of the resulting 

structures of protein-ligand complexes 
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