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Abstract 

 
Membrane proteins are an important class of 

proteins that serve as channels, receptors, and energy 
transducers in a cell membrane. Knowledge of a given 
type of cell membrane protein is crucial for 
determining its function. This paper introduces an 
automated, in-silico method for identifying different 
types of membrane proteins based on their amino acid 
composition. Our method applies a novel, composite 
protein sequence representation that includes seven 
feature sets. The performance of the proposed method 
was tested on two large datasets and was compared 
with eight competing prediction methods. The results 
indicate that our method outperforms existing 
methods, provides improved predictions for the 
transmembrane protein types, and obtains 87% and 
98% accuracy for the jackknife test and test on an 
independent dataset, respectively.  
 
1. Introduction 
 
Information about millions of known proteins is stored 
in several open-access databases, including PDB, 
SWISS-PROT, and NCBI. PDB (Protein Data Bank) is 
a manually curated database of about 45,000 tertiary 
protein structures. SWISS-PROT is another manually 
curated database that includes partial 
functional/structural annotation for approximately 
275,000 proteins. By far the largest, the NCBI 
(National Center for Biotechnology Information) 
database currently contains over 3.3 million protein 
chains, but without structural and functional 
information. The large and widening gap between the 
number of annotated proteins and all known proteins 
serves as a motivation to develop computational 
models that use the knowledge of annotated proteins to 
predict functional/structural information for the 
remaining proteins. 

Cell membrane proteins are very important 
components of a cell. They carry out many of the 

functions that are imperative to the cell's survival. As a 
consequence of their importance, they became an 
attractive target for both basic research and drug 
design [1]. Knowledge of a given type of cell 
membrane protein is crucial in determining its 
function. Determining the type of a membrane protein 
using traditional experimental methods is costly and 
time-consuming. Therefore, an automatic method of 
identifying thousands of uncharacterized proteins is 
highly desirable. Membrane proteins are classified into 
transmembrane proteins, which span across the 
membrane, and anchored proteins, which are attached 
to the membrane on one side. Five main sub-types of 
membrane proteins are usually considered [2]: Type I 
Transmembrane, Type II Transmembrane, Multipass 
Transmembrane, Lipid Chain-Anchored Membrane, 
and GPI-Anchored Membrane.  

The classification of membrane protein chains into 
their corresponding types is usually accomplished in 
two steps. First, the sequences are converted into a 
feature based representation which is next fed into a 
classifier. The previous attempts to classify membrane 
protein can be divided into two categories: (1) methods 
that use amino acid composition to represent the input 
sequences [2]; (2) methods that use pseudo-amino acid 
composition to represent the sequences [3]. The latter 
representation incorporates the sequence-order, while 
the former is based on simple order-independent 
counts. The methods that use the amino acid 
composition apply various classifiers such as 
Hamming distance [4], Euclidian distance [5], 
ProtLock [6], and covariant discriminant analysis [2]. 
The methods based on pseudo amino acid composition 
are generally more accurate. They apply Hamming 
distance [3], Euclidian distance [3], ProtLock [3], 
covariant discriminant analysis [3], support vector 
machine [7,8], fuzzy K-nearest neighbor [9], optimized 
evidence-theoretic K-nearest neighbor [10], supervised 
locally linear embedding [11], and various ensembles 
of classifiers [1,12], to classify the protein membrane 
sequences. 



The two most recent contributions, both of which 
use pseudo-amino acid composition and an ensemble 
of classifiers, are:  
- A stacked generalization based method that 

combines the results of two lower level classifiers 
(a support vector machine and an instance-based 
learner) through a meta-classifier (C4.5 decision 
tree) to maximize the classification accuracy [1].  

- An ensemble of classifiers that is formed by 
merging a set of nearest neighbor (NN) classifiers 
[12]. Each of these NN classifiers is defined in a 
different pseudo amino acid composition space.  

In addition to cell membrane protein type 
classification, there is a large amount of related work 
with a broader focus, e.g., protein structural class 
prediction [13] and protein subcellular location 
prediction [14]. 

This paper introduces a novel, automated method 
for identifying the types of membrane proteins using 
their amino acid sequence as the only input. Our main 
goal was to improve classification accuracy when 
compared with existing approaches. First, each protein 
sequence was mapped into a novel feature-based 
vector. Next, the best performing classifier was 
selected to identify the type. Three conventional tests 
performed on two large benchmark datasets were used 
to evaluate the performance of the proposed method. 
The classification accuracy was compared with eight 
recently proposed methods in this domain. The unique 
characteristic of the proposed method is that the 
sequences are represented by seven features sets, while 
the existing methods usually use only one feature set. 

Section 2 describes the design of the proposed 
method. Section 3 presents and discusses our 
experimental results, and section 4 concludes the 
paper. 
 
2. Proposed Approach 
 
Preparation of the input for the classifiers is a crucial 
and time-consuming task. The classification accuracy 
depends on the features that are selected to represent 
the protein sequence. Section 3.1 describes the raw 
data that was used in this work. Section 3.2 describes 
the features that were considered as inputs for the 
classification model, and section 3.3 describes the 
methods used to select the best performing classifier. 
 
2.1 Data 
Two datasets were used to design and test our 
prediction system. These datasets are widely used to 
evaluate the performance of cell membrane protein 
classification systems [1-3,7-14], allowing for fair 

comparison with models described in the literature. 
The first dataset (Dataset 1) [3] was used to design the 
system. It contains 2059 cell membrane proteins, 
including 435 type-I transmembrane proteins, 152 
type-II transmembrane proteins, 1311 multipass 
transmembrane proteins, 51 lipid-chain anchored 
transmembrane proteins, and 110 GPI anchored 
transmembrane proteins. The second dataset (Dataset 
2) [2] was used for an independent test of the 
developed method. It contains 2625 proteins, including 
478 type-I transmembrane proteins, 180 type-II 
transmembrane proteins, 1867 multipass 
transmembrane proteins, 14 lipid-chain anchored 
transmembrane proteins, and 86 GPI anchored 
transmembrane proteins. 
 
2.2 Feature-based Sequence Representation 
There are 20 unique amino acids that are used as a 
protein’s building blocks. All amino acids have a 
common basic chemical structure, but different 
chemical properties due to differences in their side 
chains. A protein can be represented by a string of 
amino acids. Different proteins have different 
sequences, in terms of the ordering of their amino 
acids and length of the sequence. The first step in 
classifying proteins is to find a common way to 
represent the sequences. In this work, we adopt a 
feature vector to represent protein chains. Any protein, 
regardless of the length or composition of its sequence, 
can be mapped to our feature vector representation. 
We use 7 feature sets within our feature vector. These 
feature sets along with the corresponding number of 
features in each set are shown in Table 1. The 
proposed feature vector contains a total of 70 features. 

 
Table 1. Feature based sequence representation. 

Vector Feature Number of Features 
Amino Acid Composition 20 
Sequence Length 1 
2-Gram Exchange Group Frequency 36 
Hydrophobic Group 2 
Electronic Group 5 
Sum of Hydrophobicity 1 
R-Group 5 

 
1) Amino Acid Composition CVi {i=1:20}, which is 

the normalized frequency of occurrence of each of the 
twenty amino acids in the given protein’s amino acid 
sequence [1]. Therefore, this feature set includes 20 
features. 

2) Sequence Length L, which is defined as the total 
number of amino acids in the given protein’s amino 
acid sequence. 



3) 2-Gram Exchange Group Composition CVExGi 
{i=1:36} that is defined by converting the sequence 
into its equivalent 6-letter exchange group 
representation [15], (which was derived from the PAM 
matrix) where e1∈{H, R, K}, e2∈{D, E, N, Q}, 
e3∈{C}, e4∈{S, T, P, A, G}, e5∈{M, I, L, V}, and 
e6∈{F, Y, W}. The exchange groups are broader 
classes of amino acids that represent the effects of 
evolution. For example, all H, R, and K amino acids in 
the original sequence are replaced by e1. After the 
amino acids are replaced, the resulting sequence 
consists of an alphabet of only 6 different characters. 
We compute the frequency of occurrence of each 
possible 2-gram (pair) [16] of the consecutive 
exchange group amino acids. Therefore, this feature 
set takes into account the sequence of amino acids, 
rather than just their composition. This set includes a 
total of 62 = 36 features. 

4) Hydrophobic Group CVHGi {i=1:2}. The side 
chains may be polarized. Non-polar side chains are 
hydrophobic, while polar side chains are hydrophilic 
[17]. The hydrophobic amino acids include {A, C, F, I, 
L, M, P, V, W, Y} and the hydrophilic amino acids 
include {D, E, G, H, K, N, Q, R, S, T} [18]. This 
feature set counts the number of hydrophobic and 
hydrophilic amino acids in the protein sequence, and 
thus it includes two features. 

5) Electronic Group CVEGi {i=1:5}. The 
electronic group specifies whether a given amino acid 
is electrically neutral, donates electrons, or accepts 
electrons. For this feature set we again compute the 
frequency of amino acids in each of the electronic 
groups, which include donors {A, D, E, P}, weak 
donors {I, L, V}, acceptors {K, N, R}, weak acceptors 
{F, M, Q, T, Y}, and neutral {G, H, S, W}. Therefore, 
the electronic grouping corresponds to 5 features.   

6) Sum of Hydrophobicity Y. Each amino acid has 
an associated hydrophobic affinity, which is often 
measured using a hydrophobic index. The Eisenberg 
hydrophobic index, which was used to analyze 
membrane-associated helices [20], is applied in this 
feature set. This index is normalized and ranges 
between -2.53 for R (the least hydrophobic) and 1.38 
for I (the most hydrophobic). Simlarly to [21], we 
compute the sum of this hydrophobic index over all 
amino acids in the protein sequence, which gives one 
feature. 

7) R-Group CVRGi {i=1:5}. As discussed above, 
each amino acid has a different side chain. However, 
some of these side chains have similar characteristics 
and can be clustered into five R Groups: non-polar 
aliphatic {A, I, L, V}, glycine {G}, non-polar {F, M, 
P, W}, polar uncharged {C, N, Q, S, T, Y}, or charged 

∈{D, E, H, K, R} [21]. Compositions of amino acids 
in each of the above five groups is computed. 

The resulting feature vector, which consists of 70 
features grouped into seven features sets, constitutes 
the input for our classification model.  

 
2.3 Design of the Proposed Prediction Method 
To find the best performing classifier we updated our 
design iteratively based on a series of tests that were 
divided into three phases. We designed our system 
using the Weka1 environment [22]. The tests were 
performed utilizing 10 fold cross-validation on Dataset 
1. 
1) Phase 1 
Phase one was devoted to preparing the input data for 
classification. We computed 70 features (described in 
Section 2.2) for each sequence in Datasets 1 and 2.  
2) Phase 2 
We tested all 70 classifiers in Weka (except for certain 
models that required discrete input data) to compare 
their performance for this classification problem. 
These classifiers included Bayesian methods, 
regression, support vector machines, neural networks, 
instance based nearest neighbor methods, decision 
trees, rule based and cost based methods. The top 9 
classifiers according to their overall classification 
accuracy over 10 fold cross-validation on Dataset 1 are 
shown in Table 2.  
 

Table 2. Top 9 classifiers with the highest overall 
classification accuracy on Dataset 1. 

Index Classifier Accuracy 

1 Decision Tree with Naïve Bayes at the 
leaves 81.29 

2 Bagged Decision Tree 81.78 
3 Logistic Regression based metaclassifier 81.88 

4 Support Vector Machine with polynomial 
kernel 82.31 

5 Decorate based ensemble of Decision Trees 83.04 
6 Random Forest 83.04 

7 Neural Network with back propagation 
training 84.26 

8 K-nearest neighbor 85.76 

9 K* -nearest neighbor 86.30 

 
The overall classification accuracy of a model is an 

important factor, but not sufficient to select the best 
classifier for this problem. The accuracies for each 
membrane protein type are other factors that we 
considered in choosing the best performing classifier. 
Figure 1 shows the overall accuracy and the accuracy 
for each protein type for the top 9 classifiers. From 

                                                           
1 http://www.cs.waikato.ac.nz/ml/weka/ 



these 9 models we eliminated those that had the worst 
accuracies for individual protein types, and retained 
those that had the best accuracies for the different 
types. Among all models K* performed the best 
considering both overall and majority of per type 
accuracies.  
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Figure 1. Overall accuracy and accuracy for each 

membrane protein type for 9 best performing classifiers. 
 

The selected K* method is an instance-based 
classifier [23]. The basic idea behind this type of 
classifiers is that similar instances should have similar 
class labels. First, an instance-based classification 
algorithm uses a distance function to determine which 
instance is most similar to a given test instance. 
Second, it uses a classification function which 
determines the final classification of the test instance 
based on class labels of the similar instances. A k-
nearest neighbor algorithm finds the k instances that 
are the most similar to the test instance. The predicted 
class label is equal to the most common class among 
the k nearest neighbors.  

The defining characteristic of the K* classifier is 
that it uses an entropy-based distance function. The 
classification step determines the probability that a 
given instance (protein) is in a certain class 

∑
∈

=
Cb

abPaCP )|()|(  

where P(x|y) is the conditional probability of x given y, 
a is the test instance, C is the current class label, and b 
is each instance from the training set known to be in 
class C. The category (class) with the highest 
probability is chosen as the prediction for the test 
instance. The “globalBlend” parameter of the 
algorithm specifies how many neighbors should be 
considered. Choosing 100% means that all neighbors 
have an equal weighting. Choosing 0% results in a 1-
nearest neighbor algorithm. 
3) Phase 3 

In this phase the K* classifier was tested with 
different parameters through 10 fold cross-validation 
to optimize the resulting overall accuracy. K* 
performed the best when the “globalBlend” parameter 
was equal to 38%. 

 

3. Results and Discussion 
 
Three test methods were used to evaluate the quality of 
the proposed prediction model [24]: (1) the re-
substitution (self-consistency) test; (2) the jackknife 
(leave-one-out) test; and (3) the independent dataset 
test. The self-consistency test involves training the 
model with Dataset 1, and then testing the model with 
the same Dataset 1. During the jackknife test, we 
designed and tested the model through n-fold cross 
validation on Dataset 1, where n is the size of the 
dataset. The independent dataset test involves training 
the model on Dataset 1, and then testing it on Dataset 
2. Among the three tests the jackknife test is the most 
objective [14]. This type of test is widely used to 
evaluate related prediction methods [2, 24-28].  

In addition to reporting overall accuracy, we also 
report the accuracy, specificity, and Matthew’s 
Correlation Coefficient for each membrane protein 
type for each test type. The Matthew’s Correlation 
Coefficient (MCC) is a number between -1 and 1. A 
value of 1 means the classifier is perfect, and always 
classifies correctly. A value of -1 means the classifier 
always classifies incorrectly. The results are given in 
Table 3.  
 
Table 3. Classification results for optimized K* classifier 

Test method  
Self-

consistency 
Jackknife Independent

Overall 99.9 86.9 97.1 
Type I 100 83.5 96.4 
Type II 100 52.6 80.6 

Multipass 100 95.8 99.0 
Lipid 100 45.1 78.6 

Accuracy
[%] 

GPI 99.1 61.5 96.5 
Type I 100 94.7 99.2 
Type II 100 98.3 99.8 

Multipass 99.9 83.4 93.9 
Lipid 100 99.9 99.9 

Specificity
[%] 

GPI 100 98.7 99.8 
Type I 1.00 0.77 0.95 
Type II 1.00 0.59 0.87 

Multipass 1.00 0.81 0.94 
Lipid 1.00 0.64 0.78 

MCC 

GPI 0.99 0.65 0.96 
 

The worst accuracies of about 50% are obtained for 
type II transmembrane and lipid-chain anchored 
membrane proteins. At the same time, type I and 
multipass types are predicted with 87% and 96% 
accuracy, respectively. The specificity values range 
between 95% and 100%, which shows that the 
proposed method is selective. The results show that the 
weakness of our model is in classifying lipid-chain-
anchored membrane proteins, while the model 



performs relatively well for transmembrane proteins. It 
is possible that the model performed the best for 
multipass transmembrane proteins because they 
constitute the majority of the samples in the two 
datasets. On the other hand, the number of samples for 
the lipid-chain anchored membrane proteins is the 
lowest, which could lead to the poorer quality of our 
method for this type. 

The proposed method was also compared with eight 
competing methods that were published after 2001; see 
Table 4.  
 

Table 4. Comparison of the overall accuracy with eight 
competing methods. 

Test method 
Classifier Ref. Self-

consistency 
Jack-
knife 

Inde-
pendent 

K* this 
paper 99.9 86.9 97.7 

Ensemble of NNs [12] not available 85.8 96.8 
Fuzzy KNN [9] not available 85.6 95.7 
Stacking [1] 98.7 85.4 94.3 
OET-KNN [10] 99.5 84.7 94.2 
Weighted SVM [8] 99.9 82.4 90.3 
SLLE [11] not available 82.3 95.7 
Augmented 
covariant 
discriminant 

[3] 90.9 80.9 87.5 

SVM [7] not available 80.4 85.4 
 

Table 4 shows that prediction methods based on 
nearest neighbor (NN) and k-nearest neighbor (KNN) 
classifiers, including the proposed method, perform 
quite well, suggesting that this type of the classifier is 
an appropriate choice for the membrane type 
prediction problem. Our method produced the highest 
accuracies for both the jackknife and the independent 
dataset tests. The proposed method improved the error 
rate of the jackknife and independent dataset test by 
8% (1.1/14.2) and 28% (0.9/3.2), respectively, when 
compared with the second best ensemble classifier 
[12]. Table 5 provides a detailed breakdown of 
differences in prediction quality between the proposed 
and the second best methods. 

 
Table 5. Comparison of results. 

Jackknife test Independent set test 
[12] This paper [12] This paper

Type I 81.2 83.5 96.0 96.4
Type II 44.7 52.6 79.4 80.6

Multipass 95.8 95.8 99.0 99.0
Lipid 47.1 45.1 57.1 78.6

Accuracy 
[%] 

GPI 60.0 61.5 90.7 96.5 
Type I 0.737 0.772 0.950 0.955
Type II 0.527 0.587 0.862 0.875

Multipass 0.800 0.810 0.934 0.940
Lipid 0.654 0.638 0.675 0.784

MCC 

GPI 0.640 0.652 0.915 0.958 

 
When compared with the ensemble classifier 

published in [12], the proposed method improves 
predictions for type I and type II transmembrane 
proteins, while providing comparable quality for the 
anchored and multipass proteins. 
 
4. Conclusion 
 
Empirical tests on two benchmark datasets indicate 
that the proposed method outperforms state-of-the-art 
existing methods, as it achieves the highest accuracies 
for both the jackknife and the independent dataset 
tests. Results show that our method improves the 
quality of prediction for transmembrane proteins when 
compared with the second best ensemble-based 
method. At the same time, there is still some room for 
further improvement, as the jackknife test accuracy of 
the proposed method equals 86.9%. The quality of the 
prediction model is highly dependent on the features 
used to represent the sequences. In contrast to existing 
methods that use either composition or pseudo 
composition to represent sequences, the proposed 
method uses seven feature sets for the same task. We 
believe that this more comprehensive representation 
resulted in the reported improvements.  

Although the proposed feature representation is a 
step in the right direction, there may be other features 
that were not considered in this work that might 
provide further improvements. This challenging 
protein classification problem can also be improved by 
using related classification problems such as a method 
proposed by Koza, which aims at classifying protein 
segments (segments of protein sequence) into 
transmembrane / non-transmembrane classes [29]. This 
method could help in designing new features that 
would improve the contrast between anchored and 
transmembrane proteins. 
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