Unstructural biology of the dengue virus proteins

Fanchi Meng¹, Reaid A. Badierah², Hussein A. Almehdar², Elrashdy M. Redwan²,³, Lukasz Kurgan¹ and Vladimir N. Uversky²,⁴,⁵

1 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
2 Biological Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
3 Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
4 Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
5 Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia

Keywords
dengue virus; intrinsically disordered protein; protein function; protein structure; proteome

Correspondence
E. M. Redwan, Biological Sciences Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
Fax: +96 602 640 0736
Tel: +96 656 702 8262
E-mail: redwan1961@yahoo.com
L. Kurgan, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
Fax: +1 780 492 1811
Tel: +1 780 492 5488
E-mail: lkurgan@ece.ualberta.ca
V. N. Uversky, Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard MDC07, Tampa, FL 33612, USA
Fax: +1 813 974 7357
Tel: +1 813 974 5816
E-mail: vuversky@health.usf.edu

(Received 17 January 2015, revised 1 June 2015, accepted 15 June 2015)
doi:10.1111/febs.13349

In this study, we used a wide spectrum of bioinformatics techniques to evaluate the extent of intrinsic disorder in the complete proteomes of genotypes of four human dengue virus (DENV), to analyze the peculiarities of disorder distribution within individual DENV proteins, and to establish potential roles for the structural disorder with respect to their functions. We show that several proteins (ER, E, 1, 2A and 4A) are predicted to be mostly ordered, whereas four proteins (C, 2k, NS3 and NS5) are expected to have high disorder levels. The profiles of disorder propensities are similar across the four genotypes, except for the NS5 protein. Cleavage sites are depleted in polymorphic sites, and have a high propensity for disorder, especially relative to neighboring residues. Disordered regions are highly polymorphic in type 1 DENV but have a relatively low number of polymorphic sites in the type 4 virus. There is a high density of polymorphisms in proteins 2A and 4A, which are depleted in disorder. Thus, a high density of polymorphism is not unique to disordered regions. Analysis of disorder/function association showed that the predominant function of the disordered regions in the DENV proteins is protein–protein interaction and binding of nucleic acids, metals and other small molecules. These regions are also associated with phosphorylation, which may regulate their function.

Abbreviations
CLV, cleavage site; DENV, dengue virus; ELM, eukaryotic linear motif; IDP, intrinsically disordered protein; IDPR, intrinsically disordered protein region; MoRF, molecular recognition feature; NS, non-structural protein.
Introduction

Dengue fever virus (DENV) is a member of the family Flaviviridae in the genus Flavivirus, that, among other members, includes hepatitis C virus, West Nile virus and yellow fever virus [1]. The Flavivirus genus consists of nearly 80 viruses, many of which are arthropod-borne human pathogens that cause a variety of diseases, including dengue fever, plus the associated dengue hemorrhagic fever and dengue shock syndrome, Japanese encephalitis and yellow fever [2]. There are four antigenically related serotypes of the dengue virus (DENV-1, DENV-2, DENV-3 and DENV-4). All four serotypes are known to cause the full spectrum of disease [3]. Infection with one of these serotypes provides immunity for life, but to only that serotype [4]. Therefore, persons living in a dengue endemic area are at risk of encountering secondary infection with other DENV serotypes.

DENV is an arbovirus (arthropod-borne virus) that is primarily transmitted between humans and Aedes aegypti which breed in domestic and peri-domestic water containers. A sylvatic cycle (whereby jungle primates and mosquito vectors perpetuate the virus) has been documented in Southeast Asia and West Africa, but it is presently uncertain to what extent this cycle contributes to human infections [5]. It is believed that this virus displays enzootic maintenance cycles that involve Aedes mosquitoes, which breed in tree holes and transmit the virus between monkeys, from monkeys to humans, and between humans. Zoonotic cycles of dengue virus transmission involving monkeys and forest Aedes species have been documented in Malaysia [6], Sri Lanka [7] and West Africa [5]. The vector in Malaysia is Aedes niveus; the species implicated in West Africa are Aedes furcifer, Aedes taylori, Aedes luteocephalus, Aedes opok and Aedes africanus. Therefore, although Aedes aegypti is considered as the most important vector, other Aedes species also may play a role in transmission of the infection [8]. Curiously, another member of the Flavivirus genus, Aedes flavivirus, has been shown to be transmitted vertically from one mosquito to another [9].

Dengue occurs in epidemic and endemic proportions throughout tropical and sub-tropical regions of the world [10]. For example, dengue epidemics involving thousands of people and multiple strains recur in areas of tropical Asia, Africa, Australia and the Americas, where the Aedes aegypti mosquito is present. Since the 1980s, dengue fever and a severe form of the disease described for the first time in 1954, dengue hemorrhagic fever, have emerged as the most important arthropod-borne viral diseases of humans, as far as morbidity, mortality and economic cost are concerned [11,12]. More than 2.5 billion people inhabit tropical areas, where they are at risk of dengue infection, and an estimated 100 million cases of dengue fever [13] and 250,000 cases of life-threatening dengue hemorrhagic fever are reported annually on a worldwide basis [14].

The clinical manifestations of dengue virus infection are varied, ranging from mild sub-clinical symptoms to hemorrhagic fever and/or to dengue shock syndrome. The disease is graded according to severity as follows: non-specific febrile illness, classic dengue fever, dengue hemorrhagic fever (grades I and II) and dengue shock syndrome (grades III and IV) [15]. Classic dengue fever is characterized by sudden onset of fever in combination with various symptoms such as headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations and leucopenia [16].

In the Arabian peninsula, a pandemic of dengue-like disease appeared in the late 19th century (1870–1873), affecting populations in Yemen and Saudi Arabia [17,18]. It is believed that this outbreak started and ended in East Africa, appearing first in Tanzania in 1870, then spreading to Egypt, Saudi Arabia, Yemen, India, China, Indonesia, Vietnam, Laos and Cambodia, and finally ending in Mauritius in 1873 [19]. In 1994, dengue virus was isolated in Jeddah, Saudi Arabia, for the first time since the outbreaks of 19th century. The isolates were confirmed to be DENV-2 [20]. Between 1994 and 2006, there were four dengue outbreaks in Saudi Arabia. A new outbreak in Jeddah was reported in 2009 [18,21]. As three serotypes of the dengue virus have been found to be circulating in Saudi Arabia, it is likely that dengue has become endemic in this country [18,21], particularly in Jeddah province [22]. In view of the recent continuous epidemic in Jeddah province, and because dengue infection is currently considered as one of the major health problems in Jeddah, systematic and effective sero-epidemiological studies are required to determine the prevalence and incidence of dengue infection among the population within Jeddah province, and to monitor the effectiveness of the ongoing effort to control the epidemic. The requirement for such studies is supported by the current lack of the baseline prevalence data for dengue infection among various populations in Jeddah.

DENV is an enveloped positive-sense single-stranded RNA virus. The virion possesses an icosahedral envelope organization and a spherical nucleocapsid core, and has a diameter of 30 nm [23,24]. The DENV genome is approximately 11 kb long, with a 5' cap
structures as a whole or in part biologically active proteins do not have unique 3D with the numerous recent studies that clearly indicated have their roots in protein intrinsic disorder, in line intrinsically disordered regions [28,29]. Surrounding the open reading frame are S' and S' non-coding regions that contain conserved sequences. The existing RNA structures of non-coding regions may serve as cis-acting elements directing the processes of genome amplification, translation or packaging. Although it is not yet feasible to directly study the structures of flavivirus RNAs in vivo, the ability of RNA to adapt alternatively folded structures may regulate these competing processes [26].

Dengue viruses need to be able to survive in two different hosts, the vector and the reservoir, where they must replicate their genes while avoiding the hosts' counter-measures [27]. This dual host requirement is thought to limit the degree of evolution, because the virus must conserve amino acids that are critical for survival in the vector and the reservoir. Furthermore, many viral proteins are multi-functional because of the extremely small viral proteomes, which are typically limited to a bare minimum of structural proteins required for viral particle assembly and a set of non-structural proteins that are used to hijack many functional pathways of the host cell. This multi-functional ity has been attributed to the structural uniqueness of the viral proteins, which often contain functional intrinsically disordered regions [28,29].

In fact, many features expected for the viral proteins have their roots in protein intrinsic disorder, in line with the numerous recent studies that clearly indicated the wide spread of intrinsic disorder, whereby many biologically active proteins do not have unique 3D structures as a whole or in part [30–38]. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) exist as dynamic conformational ensembles [30,32,36,39–42], with varying levels of residual structure, ranging from collapsed (molten globule-like), to partially collapsed (pre-molten globule-like), and even highly extended (coil-like) conformations [33,35,42,43]. IDPs/IDPRs are typically involved in regulation, signaling and control pathways [32,35,37,42,44,45], complementing the traditional functions of ordered proteins [40,46–50]. These proteins are often involved in the pathogenesis of various human diseases [51,52]. IDPs/IDPRs are very common in all proteomes analyzed so far, with viruses possessing the largest variation in the content of disordered residues in their proteomes [53,54]. The high levels of intrinsic disorder allow many viral proteins to fulfill their biological roles, as multi-functionality is critically dependent on binding promiscuity and the ability to be involved in numerous interactions with host membranes, host nucleic acids and host proteins. It is also likely that flexible structures may help viral proteins to evade the host immune system [55–58]. Finally, the lack of structural constraints in IDPs/IDPRs may represent a means to support the high mutation rates that are characteristic of viruses [28]. In agreement with these considerations, our recent comprehensive in silico analysis revealed that intrinsic disorder is abundant in the completed proteomes of several human hepatitis C virus genotypes [59], as well as in the proteomes of the HIV-1 [60], and various serotypes of human papillomaviruses [61,62], that intrinsic disorder is peculiarly distributed within the individual viral proteins, and that there is an intricate connection between the structural disorder and the functions of the viral proteins [59–62].

In this study, to shed additional light on dengue virus biology, we used a wide spectrum of bioinformatics techniques to evaluate the abundance and functional roles of intrinsic disorder in DENV proteins. This analysis was performed in line with previous studies on the computational characterization of viral intrinsically disordered proteins [59–62].

Results

Translation of the DENV genome produces a single polypeptide, a DENV polyprotein consisting of approximately 3390 residues that requires further proteolytic processing to generate active viral proteins, which are classified as either structural or non-structural. All the structural proteins are located within the N-terminal part of the polyprotein. Among these structural proteins are the highly basic capsid protein C, the membrane precursor protein prM, and the envelope protein E. The remainder of the genome encodes a set of non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5), which play various roles in controlling, coordinating and regulating the various intracellular processes of the virus life cycle.

Overall disorder-based analysis of dengue polyproteins

Structural and functional annotations of the dengue polyproteins, including polymorphisms, trans- and intra-membrane regions, topological domains, func-
tional sites, eukaryotic linear motifs (ELMs), IDPRs (using all binary predictions from MFDp and predictions with a low false-positive rate, MFDp_H) and molecular recognition features (MoRFs), are summarized in Fig. 1. Figure 1A shows annotations over the 20 polyproteins from all dengue virus serotypes.

Fig. 1. Structural and functional annotations for the dengue virus polyproteins. Annotations are summarized over all 20 polyproteins in all virus serotypes (A), and over polyproteins for each of the four serotypes of this virus (B). From top to bottom: annotations of polymorphisms, transmembrane and intra-membrane regions (‘Trans’ and ‘Intra’), three types of topological domains (Topo-cy, -ex and -lu), functional sites (Func), six types of ELMs (ELM-CLV, -DEG, -DOC, -LIG, -MOD and -TRG), intrinsic disorder predicted by MFDp, including propensity scores and binary predictions using the default cut-off at 0.37, and by MFDp_H, based on a cut-off of 0.57, which corresponds to a low false-positive rate (0.05), disorder-promoting amino acids (DisProAA), and MoRFs predicted using MoRFpred, including propensity scores and binary predictions (using a default score threshold of 0.5). Dark colors (black, dark red, dark blue and dark green) indicate strong polymorphisms and annotations that are true for all polyproteins over the four virus serotypes or all polyproteins within a given virus serotype; light colors (gray, light red, light blue and light green) indicate weak polymorphisms and annotations that are true for at least half but not all polyproteins across the four virus serotypes or within a given virus serotype. Gray vertical lines indicate cleavage sites.
Unstructural biology of the dengue virus proteins

F. Meng et al.

Fig. 1. (Continued)
Figure 1B focuses on individual serotypes. The results are color-coded, whereby dark colors (black, dark red, dark blue and dark green) indicate strong polymorphisms and annotations that are true for all polyproteins in the considered dengue viruses or in a given serotype, whereas light colors (gray, light red, light blue, and light green) indicate weak polymorphisms or annotations that are true for at least half but not all of the polyproteins in all dengue viruses or in a given serotype.

Analysis of the data summarized in Fig. 1 shows that several proteins are predicted to be highly structured (e.g. proteins ER, E, NS1, NS2A and NS4A), whereas four proteins are expected to have relatively high amounts of disorder (proteins C, 2k, NS3 and NS5). Also, proteolytic cleavage sites have a high propensity for disorder, especially relative to neighboring residues. This is a very important observation that clearly indicates the role of intrinsic disorder in processing of the viral polyprotein and the maturation of individual viral proteins. This is in agreement with the important notion that proteolytic digestion is orders of magnitude faster in unstructured protein regions. Such enrichment was expected, as MoRFs were originally defined as disorder-based potential binding domains. Such enrichment and depletion of the disordered and MoRF-containing regions, and their relationship with functional and structural annotations.

Content of MoRFs and IDPRs from the dengue virus

Figure 2 summarizes the content of disordered and MoRF residues from IDPRs and MoRF regions, respectively, for each of the 12 proteins expressed by the dengue virus. The content is defined as the fraction of disordered or MoRF residues in a given protein (the number of disordered or MoRF residues divided by the total number of residues in a given protein). The content values were calculated for the same protein over the 20 genomes and separately for each virus serotype. This analysis provides further support for the observations made based on study of the DENV polyproteins, namely that DENV proteins C, 2k, NS3 and NS5 have a relatively high disorder content, whereas proteins ER, E, NS1, NS2A and NS4A are relatively more structured. As ER and 2k are enriched in disorder-based protein binding sites, it is likely that ER may also have some disorder in the C-terminus. Overall, the proteins in the dengue virus have a relatively low amount of disorder and MoRF regions. These results are consistent across all the DENV serotypes.

<table>
<thead>
<tr>
<th>Content of IDPRs and MoRFs in proteins from the dengue virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins and peptides</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>All types</td>
</tr>
<tr>
<td>content of type 1</td>
</tr>
<tr>
<td>content of type 2</td>
</tr>
<tr>
<td>content of type 3</td>
</tr>
<tr>
<td>content of type 4</td>
</tr>
</tbody>
</table>

Fig. 2. Content of disordered and MoRF residues for each of the 12 proteins and peptides expressed by the dengue virus. The content values (the number of disordered or MoRF residues divided by the number of all residues in a given protein) were computed over all serotypes and for each of the four virus serotypes. The values are color-coded: a dark red background indicates a high content (> 0.1), light red indicates moderate content (between 0.05 and 0.1, inclusive), and blue indicates a low content (< 0.05).
Enrichment in intrinsic disorder, MoRF regions, and polymorphisms of the functional regions in the dengue virus

We analyzed the amount of polymorphic sites, disordered and MoRF residues in the functional sites in the dengue virus. The results of this analysis are shown in Fig. 3. We categorized these quantities as enriched, depleted or neutral based on the ratio of the rates of occurrence of polymorphic, disordered or MoRF residues in a given type of functional region versus the entire polyprotein. First, we calculate the number of polymorphic, disordered or MoRF residues in the entire polyprotein, and divide it by the total number of residues in this region type. Then, we calculate the number of polymorphic, disordered or MoRF residues in a given type of functional region, and divide it by the total number of residues in these polyproteins. Finally, we divide the first result by the second. We performed these calculations over the 20 genomes (columns labeled ‘all’ in Fig. 3) and separately over the genomes from each of the four virus serotype (columns numbered 1, 2, 3 and 4 in Fig. 3). Ratios above 1 and below 1 indicate enrichment and depletion, respectively. For example, IDPRs in cleavage sites (CLV regions) show a ratio of 6.2, which means that they occur 6.2 times more often in these functional sites compared to the overall genome. This analysis revealed that cleavage sites are substantially enriched in disorder and depleted in polymorphic sites. Transmembrane regions are enriched in MoRFs and polymorphic sites, whereas intra-membrane regions are enriched in polymorphic sites. Figure 3 also shows that the topological luminal domains are enriched in polymorphisms, whereas cytoplasmic topological domains are enriched in disorder and MoRF sites. For individual serotypes, the functional sites lack enrichment of polymorphic sites, and are characterized by depletion in disorder and MoRF residues. Targeting ELM sites are enriched in MoRFs, and several types of ELMs (cleavage sites, degrons, sites of post-translational modification, and targeting sites) are enriched in disorder. MoRF regions are enriched in polymorphic sites. Curiously, disordered regions are highly polymorphic in DENV-1 but have a low number of polymorphic sites in DENV-2 and DENV-4. MoRF residues are enriched in disorder, and disordered residues are enriched in MoRFs, as expected.

Amino acid composition

We separated the amino acid types into order-promoting residues (W, F, Y, I, M, L, V, N, C and T) and disordered or MoRF residues in the functional sites. The amount is quantified as the ratios of the rate of occurrence of polymorphic, disordered and MoRF residues between a given type of functional region and the overall rate in the entire polyprotein. Ratios above 1 and below 1 correspond to the enrichment and depletion, respectively. A dark red background indicates high enrichment (ratio ≥ 1.2), light red background indicates neutral (slight enrichment) (ratio between 1 and 1.2, inclusive), light blue indicates neutral (slight depletion) (ratio between 0.8 and 1, exclusive), and dark blue indicates depletion (ratio ≤ 0.8).

Fig. 3. Number of polymorphic sites, intrinsically disordered residues and MoRF residues in functionally annotated regions. The functional sites include cleavage sites (CLV), transmembrane regions (Trans’), the intra-membrane region (‘Intra’), topological cytoplasmic, extracellular and luminal domains (Topo-cy, Topo-ex and Topo-lu), functional sites (Func), six types of ELMs (ELM_CLV, DEG, DOC, LIG, MOD and TRG), IDPRs and MoRFs. The amount is quantified as the ratios of the rate of occurrence of polymorphic, disordered and MoRF residues between a given type of functional region and the overall rate in the entire polyprotein. Ratios above 1 and below 1 correspond to the enrichment and depletion, respectively.
and disorder-promoting residues (A, G, R, D, H, Q, K, S, E and P) [74]. We have annotated the disorder-promoting amino acids (DisProAA) over all virus serotypes and within each serotype in Fig. 1A,B, respectively. Black vertical bars show regions of at least four consecutive disorder-promoting residues (the minimum size of disordered regions) for all polyproteins, and gray bars indicate regions that are found in at least half but not all polyproteins. Proteins ER and NS2A have few disorder-promoting regions, which supports our observation that these two proteins are highly structured. Also, the regions that are predicted as disordered are rich in disorder-promoting residues. We also quantified relative differences between the amino acid compositions of the 12 proteins that constitute the dengue polyprotein and the composition of a large set of structured proteins from the Protein Data Bank [75]. The structured proteins are a subset of all proteins in the Protein Data Bank that share < 25% sequence identity. The relative differences were computed using Composition Profiler [76]. We found that the two proteins that are enriched in disorder, C and 2k, are enriched in some disorder-promoting residues: R and K for protein C, and A and Q for 2k. Structured proteins in the dengue virus are depleted in disorder-promoting residues. The enrichment of the protein C in the positively charged residue R results in the overall high positive charge of this protein, which is needed for RNA binding.

Functional analysis of intrinsically disordered regions

We found 404 IDPRs in the 240 proteins from the 20 dengue polyproteins. We annotated their putative functions based on the protocol described previously [77,78]. Briefly, the function was predicted based on high similarity calculated based on local pairwise alignment against functionally annotated disordered regions obtained from the DisProt database [79]. We note that the same disordered region may be annotated with multiple functions, in agreement with studies that show that the same disordered region may bind multiple partners and perform multiple functions [30,37,80–83]. In total, we annotated 18 functions for 44 IDPRs. After eliminating functions that were predicted for fewer than three IDPRs, which have a higher propensity of being spurious, we obtained 12 functions for 44 IDPRs. Figure 4 summarizes these functions. It shows the fractions of putative IDPRs with a given function and the fraction of virus serotypes with a given function. Our analysis revealed that the predominant function of the DENV IDPRs is protein–protein binding. Disordered regions are also involved in various protein–ligand binding events, such as interactions of viral proteins with nucleic acids, metals and other small molecules. Viral IDPRs are associated with phosphorylation. The fact that disordered regions of the DENV proteins contain numerous phosphorylation sites is in agreement with observations...
that phosphorylation [84] and many other enzymatically catalyzed post-translational modifications are preferentially located within IDPRs [85].

Discussion

The primary site of replication of the DENV genome is the cytoplasm of infected host cells. Here, the viral RNA is translated into a polyprotein, which is then directed to the endoplasmic reticulum. The DENV proteome includes three structural proteins (C, prM/M and E), which are responsible for formation of the components of the virion, and seven non-structural proteins (NS1, NS2A/B, NS3, NS4A/B and NS5), which play various roles in viral RNA replication. Signal sequences within the polyprotein translocate NS1 and the ectodomains of prM and E into the lumen of the endoplasmic reticulum, whereas the C, NS3 and NS5 proteins are localized to the cytoplasm [86]. Figure 5 shows an over-simplified model of the DENV polyprotein embedded into the membrane of the endoplasmic reticulum, and schematically shows the cleavage sites of various proteases involved in the maturation process [86]. It is interesting to compare the computationally predicted disorder propensities and predicted disorder-based functions of the dengue virus proteins with the available functional and structural information obtained for these proteins by experiment.

Structural proteins

There are three structural proteins in the mature DENV virion (capsid protein C, membrane protein M and envelope protein E), while the immature intracellular virus also contains prM protein, which is a precursor of M [87]. The gene order for the structural proteins from the 5′ terminus of the DENV genome is C–prM/M–E. The viral particles consist of an outer glycoprotein shell and an internal host-derived lipid bilayer that encapsulates the RNA/protein core consisting of genome RNA and capsid protein C.

The capsid protein C

Located at the very end of the 5′ terminus of the DENV genome, protein C is the first viral protein synthesized during translation. In the sequence of the DENV polyprotein, protein C corresponds to the first 113 residues (e.g. residues 2–114 in the genome polyprotein of DENV-2; UniProt ID Q91H74). This highly basic protein is enriched in lysine and arginine residues, which account for 25% of its sequence, and has a major function of interaction with and protection of the virion RNA [87]. It is predicted to be one of the most disordered DENV proteins (see Table 1 and Fig. 6A). Despite little sequence conservation overall, protein C contains a conserved internal hydrophobic segment (around region 45–65) that acts as a membrane anchor domain [88,89]. In infected cells, protein C has been shown to be integrated in the membrane of the endoplasmic reticulum in a ‘hairpin’ conformation, with both positively charged N- and C-terminal tails protruding into the cytoplasm and the centrally located hydrophobic signal/anchor segment being embedded into the membrane [88,89].

There are several experimental observations supporting the intrinsically disordered nature of protein C. For example, in SDS/PAGE experiments, protein C migrates at an apparent molecular mass of 16–18 kDa, compared with its expected molecular mass of 11.4 kDa [88]. Abnormal electrophoretic mobility, whereby the aberrant molecular mass noticeably exceeds the expected molecular mass of a target protein, is a characteristic feature of IDPs [90,91]. Also, both the N- and C-terminal regions of membrane-
Table 1. Names and abbreviated names of proteins from the dengue virus. The disorder level was evaluated for the genome polyprotein of DENV-2 (UniProt ID P29990).

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Abbreviation</th>
<th>Disorder level predicted using PONDR® VSL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsid protein C</td>
<td>C</td>
<td>Percentage disordered: 36.0, Averaged score: 0.45</td>
</tr>
<tr>
<td>Endoplasmic reticulum anchor for protein C</td>
<td>ER</td>
<td>Percentage disordered: 21.4, Averaged score: 0.34</td>
</tr>
<tr>
<td>prM</td>
<td>prM</td>
<td>Percentage disordered: 14.5, Averaged score: 0.27</td>
</tr>
<tr>
<td>Envelope protein E</td>
<td>E</td>
<td>Percentage disordered: 21.1, Averaged score: 0.32</td>
</tr>
<tr>
<td>Non-structural protein 1</td>
<td>NS1</td>
<td>Percentage disordered: 9.5, Averaged score: 0.25</td>
</tr>
<tr>
<td>Non-structural protein 2A</td>
<td>NS2A</td>
<td>Percentage disordered: 24.8, Averaged score: 0.30</td>
</tr>
<tr>
<td>Serine protease subunit NS2B</td>
<td>NS2B</td>
<td>Percentage disordered: 30.8, Averaged score: 0.35</td>
</tr>
<tr>
<td>Serine protease NS3</td>
<td>NS3</td>
<td>Percentage disordered: 17.9, Averaged score: 0.34</td>
</tr>
<tr>
<td>Non-structural protein 4A</td>
<td>NS4A</td>
<td>Percentage disordered: 8.2, Averaged score: 0.23</td>
</tr>
<tr>
<td>Peptide 2k</td>
<td>2k</td>
<td>Percentage disordered: 8.2, Averaged score: 0.23</td>
</tr>
<tr>
<td>Non-structural protein 4B</td>
<td>NS4B</td>
<td>Percentage disordered: 30.4, Averaged score: 0.30</td>
</tr>
<tr>
<td>RNA-directed RNA polymerase NS5</td>
<td>NS5</td>
<td>Percentage disordered: 14.5, Averaged score: 0.27</td>
</tr>
</tbody>
</table>

bound protein C are easily accessible to proteolysis [88], which is another characteristic feature of IDPs/IDPRs [67,91]. Recent analysis of a conserved segment of DENV capsid protein C that inhibits the interaction of protein C with host intracellular lipid droplets using a combination of bioinformatics and biophysical techniques revealed that this membrane-binding peptide is disordered in the unbound form and folds to an α-helical conformation upon binding to negatively charged phospholipid membranes [92].

In addition to the membrane-bound form, protein C may exist as a soluble homodimer with pronounced helical structure [93,94]. For example, the analysis of the 15N HSQC spectrum of DENV-2 protein C revealed that although the major part of this protein is characterized by a well-defined fold, approximately 20% of the chemical shifts approximate random-coil values, indicating the presence of an unstructured region within the N-terminal tail of the protein [93,94].

In conclusion, the DENV capsid protein possesses functional and structural plasticity, being able to exist in membrane-bound and unbound forms and forming helical dimers in solution via a coupled folding-binding mechanism.

Membrane glycoprotein prM/M

The glycoprotein shell has a well-defined structure that includes 180 copies each of envelope protein E and membrane protein prM/M [86]. The DENV particles are able to exist in mature and immature forms that are very different morphologically (immature particles are ‘spiky’, whereas mature particles are ‘smooth’) [86]. In the immature virion, 90 heterodimers of prM and E extend as 60 trimeric spikes from the particle surface, whereas protein E of the mature virion forms 90 homodimers that lie flat against the viral surface, forming a ‘smooth’ protein shell [86]. The transition between these two forms of viral particle was shown to be driven by conformational changes in the viral E and prM/M proteins, with the predominant role being played by structural changes in protein E [86]. The immature virions are protected against premature fusion with the host membrane by the ‘pr’ peptide [96,97]. During transition from the immature to the mature form, the pr peptide is cleaved from the prM protein, and protein M acts in the mature particle as a transmembrane protein located beneath the E protein shell [86]. Figure 7A,B shows that both proteins are predicted to have some degree of disorder.

The dengue virus prM glycoprotein consists of 166 amino acids. During the maturation process, this protein is cleaved by furin, releasing the N-terminal ‘pr’ polypeptide (residues 1–91) and the mature M protein containing the ectodomain (residues 92–130) and the C-terminal transmembrane region (residues 131–166) [96,97]. Figure 7C shows crystal structures of a hybrid protein consisting of prM protein in which the transmembrane region of prM has been replaced by an
eight amino acid linker and DENV-2 protein E, solved at pH 5.5 and pH 7.0 [98]. No significant structural difference was found between these two structures. Although the prM protein used in this crystallographic study contained 130 residues, only the first 81 residues corresponding to the portion of the ‘pr’ polypeptide were resolved in the crystal structure, and no coordinates were determined for the remaining part of the protein, indicating that prM residues 82–130 are disordered.

Envelope protein E

The structural transition from immature (‘spiky’) to mature (‘smooth’) morphology of the DENV particle occurs while particles are in transit through the trans-Golgi network and is driven by conformational changes in protein E [86,99–101]. Figure 7D shows the crystal structure of the head-to-tail dimer of the ectodomain of DENV-2 protein E (sE, corresponding to a large tryptic fragment of protein E), indicating that monomers of this protein are characterized by a highly extended shape. Structurally, the sE glycoprotein consists of three domains: domain I (D1), which is the N-terminal, but structurally central, domain; domain II (DII), which is the fusion (or dimerization) domain, containing the hydrophobic fusion peptide (residues 98–110); domain III (DIII), which is the putative receptor-binding domain III [101]. Of the 395 amino acids in the polypeptide chain, 390 (residues 1–16, 19–224 and
228–395) were visible in the electron density map [101]. sE consists of two rigid bodies (DI + DIII and DII) connected by a flexible hinge. Protein E is a multi-functional protein that is able to form heterodimers with the prM protein in the immature virion or homodimers in the mature virus. Protein E also represents the first point of contact between the virus and the host cell, and is able to interact with several cellular proteins and carbohydrate molecules [102]. Among host proteins targeted by protein E are binding immunoglobulin protein (BiP) also known as 78 kDa glucose-regulated protein (GRP-78) or heat shock 70 kDa protein 5.
Non-structural proteins

Seven non-structural (NS) proteins are derived from the C-terminal sequence of DENV polyproteins in the order NS1–NS2A–NS2B–NS3–NS4A–NS4B–NS5 (see Fig. 5).

Non-structural protein NS1

NS1 is a 45 kDa glycoprotein that is translocated into the lumen of the endoplasmic reticulum and secreted from the cell. NS1 glycoproteins exhibit a high degree of sequence homology among various flaviviruses [109]. Although NS1 contains no N- or C-terminal membrane anchoring sequences [110], this protein exists predominantly in the dimeric form, associated with intracellular and cell-surface membranes [111] via a glycosylphosphatidylinositol anchor [112]. The NS1 protein is involved in viral RNA replication [113]. It exists as immature hydrophilic monomers in the lumen of the endoplasmic reticulum, as a stable hydrophobic homodimer that interacts with membranes, as a secreted soluble hexamer, or may be expressed on the surface of infected cells and serve as a target for human antibody responses to DENV infection. Maturation of NS1 involves N-linked glycosylation at two conserved N-linked glycosylation sites, and high-mannose oligosaccharide moieties are present at both these sites in the cell-associated form, whereas in the secreted form, one site binds complex glycans whereas the other binds a high-mannose oligosaccharide moiety [111,114,115]. NS1 dimers bind to other non-structural viral proteins, and, via this association, with viral RNA. The dimeric form of this protein may be also involved in assembly of the viral replicase complex and its localization to cytoplasmic membranes [116,117].

Mature DENV NS1 contains 352 amino acids, including 12 cysteine residues that are absolutely conserved among all flavivirus NS1 proteins [118,119] and form six invariant intramolecular disulfide bonds [120]. Disulfide-bonded NS1 monomers form non-covalent dimers [119] after post-translational modification in the lumen of the endoplasmic reticulum [121]. The dimer is processed in the trans-Golgi network, and secreted into the extracellular space as a hexamer [121]. This extracellular hexameric NS1 exists in the form of a lipoprotein particle with an open-barrel protein shell and a prominent central channel that is rich in lipids, such as triglycerides, cholesteryl esters and phospholipids [122]. This suggests that the DENV NS1 protein may hijack lipid metabolic pathways of the host, thereby contributing to a key feature of severe dengue disease: endothelium dysfunction [122]. Furthermore, this secreted form of NS1 plays a significant role in immune evasion and modulation during infection [123]. In the sera of some DENV-infected patients, high levels of secreted NS1 are accumulated, reaching concentrations of up to 50 μg·mL⁻¹ [124–126].

For a long time, no high-resolution structural information on the full-length NS1 protein was available, and the only source of such information was a low-resolution structure of the hexameric secreted form of NS1 (resolution 23 Å) obtained from electron microscopy images [123]. However, the crystal structures of the C-terminal fragments (residues 172–352) of West Nile virus and Dengue virus NS1 proteins at 1.85 and 2.7 Å resolution, respectively, have recently been reported [120]. NS1172–352 is folded into a unique rod-shaped head-to-head dimer with a long axis of approximately 9.9 nm [120] (see Fig. 8A,B). This novel fold is characterized by a highly asymmetric spatial organization, with one face being composed of a 16-stranded β-platform (Fig. 8A) and the other face representing a complex arrangement of protruding loops and 3₁₀ helices [120] (Fig. 8B). The β-structural core of the NS1172–352 monomer is formed by 11 β-strands (residues 185–189, 192–196, 200–206, 201–217, 273–277, 284–287, 298–299, 310–313, 321–324, 329–331 and 336–337). The loops connecting these β-strands range in length from 2 to 55 residues, with the longest loop between β-strands 4 and 5 (residues 218–272) containing four β-turns and five 3₁₀ helices [120]. Residues 172–177 are not visible in the electron density map. Figure 8C shows that, although DENV NS1 is predicted to be mostly structured, this protein is expected to have several disordered or flexible regions (i.e. regions with disorder scores exceeding or approaching 0.5, correspondingly).
Non-structural protein NS2A

No structural information is yet available on the hydrophobic NS2A protein (approximately 22 kDa, with 42% of amino acids of the DENV NS2A protein being hydrophobic). The NS2A protein serves as a component of the viral replication complex that functions in virion assembly and antagonizes the host immune response [127,128]. Two distinct sets of NS2A molecules were shown to be responsible for DENV RNA synthesis (NS2A molecules located in the viral replication complex) and virion assembly (NS2A molecules located in the virion assembly/budding site) [128]. The DENV-2 NS2A protein contains five integral transmembrane segments (residues 69–93, 100–118, 143–163, 165–186 and 189–209) that span the lipid bilayer of the membrane of the endoplasmic reticulum [129]. Furthermore, this protein has two membrane-associated segments (residues 32–51 and 120–140) that interact with the membrane of the endoplasmic reticulum without traversing the lipid bilayer [129]. NMR analysis of the first transmembrane segment (residues 69–93) of the DENV-2 NS2A protein revealed that this region contains two helices connected by a Pro85-mediated ‘helix breaker’ [129]. In agreement with its highly hydrophobic nature and predominant transmembrane localization, the DENV-2 NS2A protein is predicted to be mostly ordered (Fig. 9A).
Fig. 9. Predicted disorder (A–C) in DENV-2 proteins NS2A, NS2B and NS3, and crystal structures of the DENV-2 NS2B–NS3 complex (D, E). (A–C) The predisposition for intrinsic disorder in residues 1128–1345 of the DENV-2 polyprotein (NS2A), residues 1346–1475 of the DENV-2 polyprotein (NS2B) and residues 1476–2093 of the DENV-2 polyprotein (NS3) (UniProt ID P29990) was evaluated using PONDR\textregistered VSL2, PONDR\textregistered VL3 and PONDR-FIT. Scores > 0.5 correspond to disordered residues/regions. (D) Crystal structure of the NS2B–NS3 complex comprising the C-terminal fragment of the NS2B protein (residues 1394–1440, blue ribbon) and the N-terminal protease domain of the NS3 protein (residues 1493–1641, red ribbon) (PDB ID 2FOM). (E) Crystal structure for the complex between full-length DENV-4 NS3 (red ribbon) and a short fragment corresponding to residues 45–75 of the DENV-4 NS2B protein (PDB ID 2VBC).
Non-structural proteins NS2B and NS2A: the two-component NS2B–NS3 protease and helicase NS3

In flaviviruses, the viral NS3 protease is required for processing of the viral polyprotein and subsequently for virus replication. NS2B is an integral membrane protein that serves as a cofactor that plays an essential role in regulation of the catalytic activity of the NS3 protease.

Figure 9B shows that the DENV-2 NS2B protein is predicted to have substantial levels of disorder. No information is available about the structure of the NS2B protein in the unbound form. According to NMR and circular dichroism analyses, the intact DENV-2 NS2B protein adopts α-helical structures in lipid micelles [130]. Curiously, in the NS2B–NS3 complex, a fragment corresponding to the central part of the NS2B protein (residues 1394–1440) is loosely folded, being wrapped around the protease domain of the NS3 protein (Fig. 9D). The ability of the NS2B to wrap around the protease domain of NS3 in a ‘belt-like’ structure defines the ability of this protein to serve as an integral part of the protease active site [86]. Furthermore, while the central region of NS2B (residues 67–80) interacts with the protease, flanking hydrophobic regions of NS2B are expected to be responsible for anchoring the NS2B–NS3 complex in the membrane of the endoplasmic reticulum [86].

Figure 9D shows that, in its NS3-bound form, NS2B has 9% helical and 16% β-sheet structure, being folded in a mixed structure containing two short β-strands, a short α-helix, and a long region with irregular structure [131]. The bound form of this protein is characterized by a very large interface. Therefore, there is a high probability that this NS2B fragment is disordered in the unbound state and folds upon binding to NS3. In agreement with this hypothesis, Fig. 9B shows that the central region of the DENV NS2B protein is predicted to be mostly disordered. As far as DENV NS3 is concerned, this protein is a multi-functional enzyme of 618 amino acids that functions both as a chymotrypsin-like serine protease and as an RNA helicase and RTPase/NTPase. The protease domain is located at the N-terminal domain of NS3 (residues 1–180), and cleaves the DENV polyprotein at several sites, generating ends of several viral proteins (see Fig. 5). Figure 9D shows the PONDR-based disorder profile of DENV-2 NS3, indicating that this protein has several disordered regions. Figure 9E shows the crystal structure of a complex between full-length DENV-4 NS3 and a short fragment of the DENV-4 NS2B protein (residues 49–66), which are linked to the N-terminus of full-length NS3 by a Gly–Ser linker. Curiously, although the NS2B fragment and linker used in this study were 31 residues long, only half of these residues were visible in the complex, with the remaining parts being disordered [132]. This observation provides further support for the highly disordered nature of the NS2B protein.

Figure 9E shows that the DENV-4 NS3 protein is an extended molecule (with approximate overall dimensions of 100 A × 60 A × 40 A), with the protease domain located next to the entrance of the ATPase active site between helicase sub-domains I and II (residues 181–326 and 327–481, respectively) and opposite to sub-domain III (residues 482–618) [86,132]. Importantly, linkers connecting the protease and helicase domains, as well as linking the helicase sub-domains, are predicted to be located within the disordered regions. It was also observed that an amino acid sequence of the interdomain linker connecting the protease and helicase domains has little conservation between the flaviviruses [86]. Analysis of the NS3 crystal structure revealed that the protease domain, the interdomain (linker) region, and sub-domain II from the helicase domain are the most mobile parts of the protein [132].

In addition to serving as a dual protease–helicase enzyme that interacts with specific cleavage sites of the DENV polyprotein and with RNA, NS3 protein binds to DENV polymerase NS5 [133]. Also, in addition to being responsible for maturation of several DENV proteins, the NS3 protein was shown to undergo autolysis at two sites located at the NS2B–NS3 junction and within the helicase C-terminal region, respectively [134]. As the NS3 polypeptide substrate must be accommodated into its own protease active site during this cis cleavage event, intramolecular proteolysis requires significant structural plasticity of the NS3 protein and order/disorder transitions within the NS3 polypeptide chain [86,134]. Also, within the helicase sub-domain I, a segment of 10 residues, Gln243 to Thr252, which was disordered in the structure of the isolated DENV-2 helicase domain, in the full-length NS3 protein structure, forms a β-strand that runs antiparallel to a β-strand from the helicase sub-domain II of a neighboring molecule [132].

Non-structural proteins NS4A and NS4B

NS4A (16 kDa) and NS4B (27 kDa) are highly hydrophobic integral membrane proteins, but structural characterization attempts have been mostly unsuccessful so far. Functionally, NS4A plays a role in induction of the membrane alterations required for virus replication [135,136], whereas NS4B is involved in
direct interactions with the NS3 protein, dissociates NS3 from single-stranded RNA, and consequently enhances the helicase activity of NS3, assisting viral RNA replication [137]. The DENV NS4B protein was recently shown to homodimerize in vitro, as evidenced by gel filtration, chemical cross-linking, and multi-angle light scattering experiments [140]. This dimerization is driven by the cytosolic loop (amino acids 129–165) and the C-terminal region (amino acids 166–248) [140]. Figure 10B shows that the cytosolic loop crucial for NS4B dimerization is predicted to be mostly disordered.

Bi-functional non-structural protein xml: viral methyltransferase polymerase

The NS5 protein is the largest DENV protein (900 residues, 104 kDa) and the most conserved DENV protein, with 67% sequence identity among the four DENV serotypes [86]. This bi-functional enzyme comprises an N-terminal methyltransferase (residues 1–265) and a C-terminal RNA-dependent RNA polymerase (RdRp) domain (residues 266–900). The crystal structure of the full-length protein became available very recently (PDB ID 4V0Q, Fig. 11A) [141], but structures for the methyltransferase and RdRp domains have been known for longer time [e.g. methyltransferase domain of DENV-2 NS5 (PDB ID 1L9K) [142]; RdRp domain of DENV-3 NS5 (PDB ID 2J7W) [143]]. As structural information is available for the NS5 protein from the DENV2 and DENV3, we compared their intrinsic disorder predispositions. Figure 11B,C shows the disorder profiles of the DENV-2 and DENV-3 NS5 proteins, respectively, indicating that these NS5s have remarkably similar disorder propensities. Furthermore, these plots show that the linker region of the NS5 protein connecting its methyltransferase and RdRp domains is predicted to be highly disordered. It is likely that the highly disordered and flexible nature of this linker precludes crystallization of the full-length protein. Although the linker region located between the two functional domains of NS5 may be flexible, it also plays an important role in regulation of the polymerase initiation activities of the RdRp domain by stabilizing this domain and enhancing turnover of the RNA and NTP substrates [144]. This conclusion was drawn based on comparative analysis of the DENV-3 RdRp fragments spanning residues 265–900 (RdRp with enhanced catalytic properties) and residues 272–900 [144]. The analysis revealed that DENV-3 NS5 residues 269–271 interact with the RdRp domain, suggesting that the flexibility between the methyltransferase and RdRp domains is determined by residues 263–268 of this NS5 protein [144]. Figure 11 shows that both func-

Fig. 10. Predicted disorder in DENV-2 proteins NS4A (A) and NS4B (B). The predisposition for intrinsic disorder in residues 2094–2243 of the DENV-2 polyprotein, which include the NS4A protein (residues 2094–2220) and the 2k peptide (residues 2221–2243), and residues 2244–2491 of the DENV-2 polyprotein (NS4B protein) (UniProt ID P29990) was evaluated using PONDR® VSL2, PONDR® VL3 and PONDR-FIT. Scores > 0.5 correspond to disordered residues/regions.
tional domains are rather loopy. For example, the secondary structure content of the methyltransferase is 30% α-helical, 13% β-structural and 57% irregular secondary structure elements [142], whereas the RdRp domain contains 42% α-helical, 10% β-structural and 50% irregular secondary structure elements [143].

Conclusions

Many viral proteins or their biologically important regions do not have unique 3D structures, instead being intrinsically disordered. Numerous functions of viral proteins rely heavily on intrinsic disorder. Although knowledge of the 3D structures of various viral proteins is used in the rational design of antiviral drugs, the biology of viruses is critically dependent on the intrinsically disordered protein regions. In fact, these highly flexible regions are used by viruses as specific tools to invade host organisms and hijack various host systems. Disorder also helps viruses to accommodate to their hostile habitats. We evaluated the applicability of these general conclusions to DENV proteins using a set of bioinformatics tools to assess the abundance and distribution of intrinsic disorder in these proteins, and to understand the potential functional roles and evolvability of such disorder. This analysis revealed that several proteins (ER, E, 1, 2A and 4A) are expected to be mostly ordered, whereas four proteins (C, 2k, NS3 and NS5) are predicted to have high disorder levels. We also showed that, although disordered regions are typically very polymorphic, the high density of polymorphism is not unique to the disordered regions, and two of the mostly structured proteins, 2A and 4A, contain a high density of polymorphisms. Established disorder-related functions in the DENV proteins include protein–protein interac-

Fig. 11. Crystal structures of the DENV-3 NS5 protein (PDB ID 4V0Q) (A). (B, C) The predisposition for intrinsic disorder of the bi-functional methyltransferase/RNA-dependent RNA polymerase from DENV-2 (residues 2492–3391 of the DENV-2 polyprotein, UniProt ID P29990) (B) or DENV-3 (residues 2494–3395 of the DENV-3 polyprotein, UniProt ID Q8DVL0) (C) was evaluated using PONDR® VSL2, PONDR® VL3 and PONDR-FIT. Scores > 0.5 correspond to disordered residues/regions.
tions and binding of nucleic acids, metals and other small molecules. The IDPRs in the DENV proteins are frequently post-translational modification sites, and known cleavage sites are depleted in polymorphic sites and have a high propensity for disorder, especially relative to the neighboring residues. Therefore, many DENV proteins, irrespective of their functions, have biologically important disordered regions. The list of functions attributed to IDPRs of DENV proteins overlaps with the disorder-based activities of proteins from other organisms.

Experimental procedures

Dataset

We collected all complete genomes of the dengue virus from UniProt [145] in June 2014. The query consisted of ‘dengue virus’ as the organism keyword, and was restricted to reviewed entries. The latter criterion ensures that the genomes, particularly the corresponding polyproteins, have been reviewed manually, and that they include functional annotations. The query returned 28 polyprotein sequences, including eight fragments that were excluded. The remaining 20 polyproteins cover all four serotypes of dengue virus [146]. They include three sequences from DENV-1 (UniProt ID P33478, P27909 and P17763), seven from DENV-2 (UniProt ID P29990, P29991, P14337, P07564, P14340, Q9WDA6 and P12823), five from DENV-3 (UniProt ID Q99D35, Q5UB51, Q6YMS3, P27915 and Q6YMS4), and five from DENV-4 (UniProt ID P09866, Q2YHF2, Q58HT7, Q5UCB8 and Q2YHF0). The lengths of the 20 polyproteins are similar, and range between 3387 and 3396 residues. Each polyprotein encodes 12 protein chains (Table 1) for which cleavage sites were annotated in UniProt [145]. In total, there are 240 protein chains from the 20 polyproteins of the four serotypes. The lengths of these individual viral proteins vary between 14 and 904 residues.

Functional and structural annotations

We collected 20 types of structural and functional annotations for each of the considered 20 polyproteins. These were obtained from a variety of resources, including multiple sequence alignment using Clustal Omega [147], Uniprot [145], the ELM resource server [148], and two prediction methods: MFDP, which was used to annotate putative intrinsic disorder [149], and MoRFpred, which predicts MoRFs [150]. These annotations include polymorphisms within and between virus serotypes, cleavage sites (CLV), transmembrane regions (“Trans”), intra-membrane regions (“Intra”), topological cytoplasmic, extracellular and luminal domains (Topo-cy, Topo-ex and Topo-lu), functional sites, ELMs, IDPRs, disorder-promoting amino acids (DisPro-AA) [74] and MoRFs.

Annotations of polymorphisms, i.e. changes in amino acid type between aligned polyproteins, were derived by performing a multiple sequence alignment using Clustal Omega [147]. We assessed polymorphisms in polyproteins within each individual virus serotype and between virus serotypes. For the individual serotypes, we define three types of annotations: conserved positions; strong polymorphisms and weak polymorphisms. The conserved positions have identical amino acid type across all aligned sequences. The strong polymorphisms are defined as substitutions that involve amino acid types that are strongly dissimilar based on the PAM substitution matrix [151]; these are indicated by a space in the Clustal Omega output. The weak polymorphisms involve substitutions of amino acid types that are similar; these are indicated by colon and points in the Clustal Omega output and correspond to conserved and semi-conserved substitutions. For the polymorphisms over multiple serotypes, we combined the polymorphism status of each virus serotype to define conserved positions, strong polymorphisms and weak polymorphisms. For a given position, if two or more virus serotypes were annotated as having polymorphisms, and at least one of them is strong, then we defined this position as a strong polymorphism. If two or more serotypes were annotated as having weak polymorphisms (i.e. neither is strong), we defined this position as a weak polymorphism. We define the remaining positions as conserved. We analyzed strongly polymorphic positions and all polymorphic positions (weak and strong combined) separately.

Annotations of cleavage sites, ‘Trans’ and ‘Intra’ regions, the three types of topological domains and functional sites were derived directly from UniProt [145] for each of the 20 polyproteins. The functional sites are a combination of annotations of regions of interest, active sites, binding sites, other functional sites (except cleavage sites), and nucleotide binding regions. In other words, a given position is annotated as functional if any of these annotations is true.

ELMs are short conserved functional sequence motifs, usually between 3 and 11 residues in length [152] that are often found in IDPRs [148]. We include annotations of all six types of ELMs as defined by the ELM server [148]. They include motifs that serve as proteolytic cleavage sites (ELM_CLV), post-translational modification sites (ELM_MOD), motifs for recognition and targeting to subcellular compartments (ELM_TRG), generic ligand binding motifs (ELM_LIG), degtron motifs that are involved in polyubiquitination and targeting the protein to the proteasome for degradation (ELM_DEG), and docking motifs that correspond to site of interactions with modifying enzymes that are distinct from active sites (ELM_DOC). The ELM_DEG and ELM_DOC motifs are specific sub-types of the ligand-binding motifs that were introduced to improve discrimination of functions of ELMs [148]. These annotations were parsed...
from the results of the ELM motif search after globular domain filtering, structural filtering and context filtering.

The putative intrinsically disordered residues were determined using the MFDp websolver (http://biomine.ece.ualberta.ca/MFDp/). MFDp is a sophisticated consensus predictor that combines disorder predictions generated by IUPred [153], DISOclust [154] and DISOPRED2 [155], sequence profiles and predictions of secondary structure generated by PSIPRED [156], relative solvent accessibility and backbone dihedral torsion angles generated by Real-SPINE3 [157], B-factors generated by PROFbval [158], and globular domains generated by IUPred. The MFDp predictor is characterized by a highly competitive predictive performance, with an AUC (Areas Under the Receiver Operating characteristic Curve) > 0.81 based on multiple benchmark tests [149,159]. We utilize both propensity scores (a larger score means that a given residues is more likely to be disordered) and binary annotations (residues with propensities above a cut-off value are classified as disordered; otherwise they are assumed to be structured). We consider two types of binary annotations: using the default propensity score cut-off of 0.37, and using a higher cut-off of 0.57 that corresponds to higher-quality disorder predictions with a low false-positive rate of 0.05 (MFDp_H). These cut-off values are based on a comprehensive benchmark test [159].

We also predict MoRFs, which are short protein-binding regions (5–25 consecutive amino acids) located within longer IDPRs that undergo coupled folding and binding, i.e. disorder-to-order transition, upon binding [160,161]. These regions were predicted using the MoRFpred webserver [150]. Similar to MFDp, this method is characterized by a state-of-the-art design that combines information from pairwise alignments, sequence profiles, and predictions of disorder generated by IUPred [153], DISOclust [154], DISOPRED2 [155], DISOclust [154] and MFDp [149], solvent accessibility generated by Real-SPINE3 [157], and B-factors generated by PROFbval [158]. We utilize both propensity scores and binary predictions, with the latter being computed using the default cut-off of 0.5. We consider a region to be a MoRF only if it is at least five residues long; shorter putative regions were removed. Both MFDp and MoRFpred use sequences of individual proteins for prediction, and thus we first divided polyproteins into proteins, performed predictions for each protein, and combined these predictions to annotate the full polyproteins.

Per-residue disorder analysis in DENV-2 proteins

For illustration purposes, the per-residue predisposition for intrinsic disorder in individual DENV-2 proteins was evaluated by predictors from the PONDR family. Here, scores above 0.5 were considered to correspond to disordered residues/regions. PONDR® VSL2B is one of the more accurate stand-alone disorder predictors [162], and comprehensive assessments of *in silico* predictors of intrinsic disorder showed that this tool performs reasonably well [159,163]. PONDRL® VL3 possesses high accuracy for finding long IDPRs [164], whereas PONDR-FIT is a meta-predictor that is moderately more accurate than each of the component predictors [165].

Acknowledgements

This work was supported in part by a grant from King Abdulaziz University (56-130-35-HiCi).

Author contributions

FM and RAB performed experiments and analyzed data. HAA and EMR analyzed data and wrote the paper. LK and VNU planned experiments, performed experiments, analyzed data and wrote the paper.

References

Unstructural biology of the dengue virus proteins

F. Meng et al.

Unstructural biology of the dengue virus proteins
F. Meng et al.

Unstructural biology of the dengue virus proteins

F. Meng et al.

163 Fan X & Kurgan L (2014) Accurate prediction of disorder in protein chains with a comprehensive and
